US20150197683A1 - Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications - Google Patents
Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications Download PDFInfo
- Publication number
- US20150197683A1 US20150197683A1 US14/596,092 US201514596092A US2015197683A1 US 20150197683 A1 US20150197683 A1 US 20150197683A1 US 201514596092 A US201514596092 A US 201514596092A US 2015197683 A1 US2015197683 A1 US 2015197683A1
- Authority
- US
- United States
- Prior art keywords
- weight
- composition
- percent
- petroleum
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 305
- 150000002148 esters Chemical class 0.000 title claims description 78
- -1 ester compounds Chemical class 0.000 claims abstract description 128
- 239000003208 petroleum Substances 0.000 claims abstract description 58
- 239000012530 fluid Substances 0.000 claims abstract description 57
- 239000004094 surface-active agent Substances 0.000 claims description 41
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 35
- 150000001875 compounds Chemical class 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- 239000002736 nonionic surfactant Substances 0.000 claims description 24
- 238000004140 cleaning Methods 0.000 claims description 22
- 239000001993 wax Substances 0.000 claims description 22
- 125000003342 alkenyl group Chemical group 0.000 claims description 21
- 150000001735 carboxylic acids Chemical class 0.000 claims description 20
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 20
- 239000000194 fatty acid Substances 0.000 claims description 20
- 229930195729 fatty acid Natural products 0.000 claims description 20
- 239000012169 petroleum derived wax Substances 0.000 claims description 19
- 235000019381 petroleum wax Nutrition 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 16
- KHAVLLBUVKBTBG-UHFFFAOYSA-N dec-9-enoic acid Chemical compound OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 claims description 16
- 150000004702 methyl esters Chemical class 0.000 claims description 16
- 150000004665 fatty acids Chemical class 0.000 claims description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- OZKLKDKGPNBGPK-UHFFFAOYSA-N 9-Dodecenoic acid Natural products CCCC=CCCCCCCC(O)=O OZKLKDKGPNBGPK-UHFFFAOYSA-N 0.000 claims description 10
- FKLSONDBCYHMOQ-UHFFFAOYSA-N 9E-dodecenoic acid Natural products CCC=CCCCCCCCC(O)=O FKLSONDBCYHMOQ-UHFFFAOYSA-N 0.000 claims description 10
- DUWQEMMRMJGHSA-UHFFFAOYSA-N methyl dodec-9-enoate Chemical compound CCC=CCCCCCCCC(=O)OC DUWQEMMRMJGHSA-UHFFFAOYSA-N 0.000 claims description 10
- FKLSONDBCYHMOQ-ONEGZZNKSA-N trans-dodec-9-enoic acid Chemical compound CC\C=C\CCCCCCCC(O)=O FKLSONDBCYHMOQ-ONEGZZNKSA-N 0.000 claims description 10
- 239000004200 microcrystalline wax Substances 0.000 claims description 9
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 4
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 10
- 239000003345 natural gas Substances 0.000 abstract description 5
- 150000004670 unsaturated fatty acids Chemical class 0.000 abstract description 5
- 235000021122 unsaturated fatty acids Nutrition 0.000 abstract description 5
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 239000003209 petroleum derivative Substances 0.000 abstract description 4
- 238000001556 precipitation Methods 0.000 abstract description 4
- 125000005907 alkyl ester group Chemical group 0.000 abstract description 3
- 238000005649 metathesis reaction Methods 0.000 description 114
- 150000001336 alkenes Chemical class 0.000 description 103
- 239000003921 oil Substances 0.000 description 102
- 235000019198 oils Nutrition 0.000 description 97
- 239000003054 catalyst Substances 0.000 description 57
- 239000000047 product Substances 0.000 description 48
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 45
- 239000002904 solvent Substances 0.000 description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 25
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 20
- 238000005686 cross metathesis reaction Methods 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 125000005456 glyceride group Chemical group 0.000 description 17
- 230000000670 limiting effect Effects 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 229920006395 saturated elastomer Polymers 0.000 description 16
- 150000003626 triacylglycerols Chemical class 0.000 description 16
- 125000000217 alkyl group Chemical group 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 14
- 150000001412 amines Chemical class 0.000 description 13
- 235000012424 soybean oil Nutrition 0.000 description 13
- 239000003549 soybean oil Substances 0.000 description 13
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 11
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 11
- 238000005872 self-metathesis reaction Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 10
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 10
- FLIACVVOZYBSBS-UHFFFAOYSA-N Methyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC FLIACVVOZYBSBS-UHFFFAOYSA-N 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 239000003995 emulsifying agent Substances 0.000 description 10
- 239000004530 micro-emulsion Substances 0.000 description 10
- 239000007764 o/w emulsion Substances 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000003945 anionic surfactant Substances 0.000 description 9
- 239000010779 crude oil Substances 0.000 description 9
- 239000003925 fat Substances 0.000 description 9
- 235000019197 fats Nutrition 0.000 description 9
- 238000005809 transesterification reaction Methods 0.000 description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 239000005642 Oleic acid Substances 0.000 description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 8
- SBIGSHCJXYGFMX-UHFFFAOYSA-N methyl dec-9-enoate Chemical compound COC(=O)CCCCCCCC=C SBIGSHCJXYGFMX-UHFFFAOYSA-N 0.000 description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 8
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 7
- 150000002193 fatty amides Chemical class 0.000 description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 235000015112 vegetable and seed oil Nutrition 0.000 description 7
- 239000008158 vegetable oil Substances 0.000 description 7
- LGAQJENWWYGFSN-PLNGDYQASA-N (z)-4-methylpent-2-ene Chemical compound C\C=C/C(C)C LGAQJENWWYGFSN-PLNGDYQASA-N 0.000 description 6
- WWUVJRULCWHUSA-UHFFFAOYSA-N 2-methyl-1-pentene Chemical compound CCCC(C)=C WWUVJRULCWHUSA-UHFFFAOYSA-N 0.000 description 6
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 6
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 6
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000005865 alkene metathesis reaction Methods 0.000 description 6
- 239000010426 asphalt Substances 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 6
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 6
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 6
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000007101 Grubbs Olefin metathesis reaction Methods 0.000 description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 5
- 239000000828 canola oil Substances 0.000 description 5
- 235000019519 canola oil Nutrition 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 5
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 5
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000003784 tall oil Substances 0.000 description 5
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- ZQDPJFUHLCOCRG-UHFFFAOYSA-N 3-hexene Chemical compound CCC=CCC ZQDPJFUHLCOCRG-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 4
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 238000010535 acyclic diene metathesis reaction Methods 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- QDRSJFZQMOOSAF-IHWYPQMZSA-N cis-9-undecenoic acid Chemical compound C\C=C/CCCCCCCC(O)=O QDRSJFZQMOOSAF-IHWYPQMZSA-N 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 235000020778 linoleic acid Nutrition 0.000 description 4
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 4
- ZAZKJZBWRNNLDS-UHFFFAOYSA-N methyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC ZAZKJZBWRNNLDS-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000006798 ring closing metathesis reaction Methods 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 3
- QMMOXUPEWRXHJS-HYXAFXHYSA-N (z)-pent-2-ene Chemical compound CC\C=C/C QMMOXUPEWRXHJS-HYXAFXHYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 3
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 3
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 3
- BEQGRRJLJLVQAQ-UHFFFAOYSA-N 3-methylpent-2-ene Chemical compound CCC(C)=CC BEQGRRJLJLVQAQ-UHFFFAOYSA-N 0.000 description 3
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 3
- 235000016401 Camelina Nutrition 0.000 description 3
- 244000197813 Camelina sativa Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 241000221089 Jatropha Species 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 235000019482 Palm oil Nutrition 0.000 description 3
- 235000019483 Peanut oil Nutrition 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- 235000019485 Safflower oil Nutrition 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 240000008488 Thlaspi arvense Species 0.000 description 3
- 235000008214 Thlaspi arvense Nutrition 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 125000001118 alkylidene group Chemical group 0.000 description 3
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 3
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 3
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 235000019864 coconut oil Nutrition 0.000 description 3
- 239000003240 coconut oil Substances 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- 239000002385 cottonseed oil Substances 0.000 description 3
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 3
- 235000021323 fish oil Nutrition 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 229960004488 linolenic acid Drugs 0.000 description 3
- 235000021388 linseed oil Nutrition 0.000 description 3
- 239000000944 linseed oil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000003346 palm kernel oil Substances 0.000 description 3
- 235000019865 palm kernel oil Nutrition 0.000 description 3
- 239000002540 palm oil Substances 0.000 description 3
- 235000019809 paraffin wax Nutrition 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000000312 peanut oil Substances 0.000 description 3
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 3
- 235000019271 petrolatum Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 244000144977 poultry Species 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 235000005713 safflower oil Nutrition 0.000 description 3
- 239000003813 safflower oil Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 239000008159 sesame oil Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 239000002600 sunflower oil Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 239000002383 tung oil Substances 0.000 description 3
- 239000007762 w/o emulsion Substances 0.000 description 3
- PIJZNCJOLUODIA-VQHVLOKHSA-N (4e)-deca-1,4-diene Chemical compound CCCCC\C=C\CC=C PIJZNCJOLUODIA-VQHVLOKHSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-UHFFFAOYSA-N 9,12-Octadecadienoic Acid Chemical compound CCCCCC=CCC=CCCCCCCCC(O)=O OYHQOLUKZRVURQ-UHFFFAOYSA-N 0.000 description 2
- 230000035495 ADMET Effects 0.000 description 2
- 235000019737 Animal fat Nutrition 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 244000188595 Brassica sinapistrum Species 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 0 [1*]C(=O)O[2*] Chemical compound [1*]C(=O)O[2*] 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000010460 hemp oil Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- KYYWBEYKBLQSFW-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCC(O)=O KYYWBEYKBLQSFW-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 2
- JGHZJRVDZXSNKQ-UHFFFAOYSA-N methyl octanoate Chemical compound CCCCCCCC(=O)OC JGHZJRVDZXSNKQ-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 235000019508 mustard seed Nutrition 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000007908 nanoemulsion Substances 0.000 description 2
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 2
- YZAZXIUFBCPZGB-KVVVOXFISA-N octadec-9-enoic acid;(z)-octadec-9-enoic acid Chemical compound CCCCCCCCC=CCCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O YZAZXIUFBCPZGB-KVVVOXFISA-N 0.000 description 2
- RQFLGKYCYMMRMC-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O RQFLGKYCYMMRMC-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- HWONQRSPLSUZTQ-UHFFFAOYSA-N pentadeca-9,12-dienoic acid Chemical compound CCC=CCC=CCCCCCCCC(O)=O HWONQRSPLSUZTQ-UHFFFAOYSA-N 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- BHRFAKJULVDHID-UHFFFAOYSA-N trideca-9,12-dienoic acid Chemical compound C(CCCCCCCC=CCC=C)(=O)O BHRFAKJULVDHID-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- DTOSIQBPPRVQHS-UHFFFAOYSA-N α-Linolenic acid Chemical compound CCC=CCC=CCC=CCCCCCCCC(O)=O DTOSIQBPPRVQHS-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- GQQQKUIHXIZOCM-KQQUZDAGSA-N (3e,6e)-nona-3,6-diene Chemical compound CC\C=C\C\C=C\CC GQQQKUIHXIZOCM-KQQUZDAGSA-N 0.000 description 1
- FMAMSYPJXSEYSW-VOTSOKGWSA-N (4e)-hepta-1,4-diene Chemical compound CC\C=C\CC=C FMAMSYPJXSEYSW-VOTSOKGWSA-N 0.000 description 1
- BUAQSUJYSBQTHA-BQYQJAHWSA-N (4e)-octa-1,4,7-triene Chemical compound C=CC\C=C\CC=C BUAQSUJYSBQTHA-BQYQJAHWSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ZRPFJAPZDXQHSM-UHFFFAOYSA-L 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazole;dichloro-[(2-propan-2-yloxyphenyl)methylidene]ruthenium Chemical compound CC(C)OC1=CC=CC=C1C=[Ru](Cl)(Cl)=C1N(C=2C(=CC(C)=CC=2C)C)CCN1C1=C(C)C=C(C)C=C1C ZRPFJAPZDXQHSM-UHFFFAOYSA-L 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- NPSJHQMIVNJLNN-UHFFFAOYSA-N 2-ethylhexyl 4-nitrobenzoate Chemical compound CCCCC(CC)COC(=O)C1=CC=C([N+]([O-])=O)C=C1 NPSJHQMIVNJLNN-UHFFFAOYSA-N 0.000 description 1
- 239000004808 2-ethylhexylester Substances 0.000 description 1
- CHJPSENKQNDBIN-UHFFFAOYSA-N 2-methyldodec-9-enoic acid Chemical compound CCC=CCCCCCCC(C)C(O)=O CHJPSENKQNDBIN-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000592335 Agathis australis Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- ONAWWBRGWXRMAF-UHFFFAOYSA-L [1,3-bis[2,6-di(propan-2-yl)phenyl]imidazolidin-2-ylidene]-dichloro-[(2-propan-2-yloxyphenyl)methylidene]ruthenium Chemical compound CC(C)OC1=CC=CC=C1C=[Ru](Cl)(Cl)=C1N(C=2C(=CC=CC=2C(C)C)C(C)C)CCN1C1=C(C(C)C)C=CC=C1C(C)C ONAWWBRGWXRMAF-UHFFFAOYSA-L 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000011538 cleaning material Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- HGGLIXDRUINGBB-ONEGZZNKSA-N dimethyl (e)-octadec-9-enedioate Chemical compound COC(=O)CCCCCCC\C=C\CCCCCCCC(=O)OC HGGLIXDRUINGBB-ONEGZZNKSA-N 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- WZHKDGJSXCTSCK-UHFFFAOYSA-N hept-3-ene Chemical compound CCCC=CCC WZHKDGJSXCTSCK-UHFFFAOYSA-N 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- YCBSHDKATAPNIA-UHFFFAOYSA-N non-3-ene Chemical compound CCCCCC=CCC YCBSHDKATAPNIA-UHFFFAOYSA-N 0.000 description 1
- KPADFPAILITQBG-UHFFFAOYSA-N non-4-ene Chemical compound CCCCC=CCCC KPADFPAILITQBG-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 125000006238 prop-1-en-1-yl group Chemical group [H]\C(*)=C(/[H])C([H])([H])[H] 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/52—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
- C09K8/524—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2093—Esters; Carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
- C11D7/5022—Organic solvents containing oxygen
Definitions
- compositions for treating high-molecular-weight components of a petroleum fluid are generally disclosed.
- such compositions include olefinic ester compounds, such as alkyl esters of C 10-18 unsaturated fatty acids.
- such compositions are added to a petroleum fluid to improve the rheological properties, e.g., breaking up or inhibiting the precipitation of high-molecular-weight components of petroleum fluids, such as waxes, asphaltenes, and the like.
- such compositions are used for removing deposits of such high-molecular-weight components from the surfaces of equipment used for extracting or transporting petroleum or natural gas.
- the olefinic ester compounds are derived from a natural oil or a natural oil derivative, for example, by catalytic olefin metathesis.
- Extracted carbonaceous fluids such as petroleum fluids or natural gas
- Extracted carbonaceous fluids can contain a variety of high-molecular-weight components that precipitate out of the extracted fluid or that deposit onto the equipment used to extract and transport such fluids (e.g., pipelines, tanks, downhole pipes and tubes, and above-ground extraction equipment, such as rigs).
- the precipitation and deposition of these materials can cause significant problems in extracting these fluids and transporting them away from the extraction site for refinement.
- Petroleum waxes are one class of high-molecular-weight components that are typically present in extracted carbonaceous fluids (e.g., petroleum fluids), and which can cause the problems described above.
- Two different kinds of wax formations are common: paraffin waxes and microcrystalline waxes.
- Paraffin waxes are macrocrystalline waxes that tend to precipitate out as large, flat plates. They are made up primarily of straight-chain alkanes having at least 18 carbon atoms up to 75 or more carbon atoms. In most instances, these waxes have molecular weights that range from about 300 to 1200 amu, and more typically from about 300 to 600 amu.
- microcrystalline waxes tend to precipitate out as needle-like structures, and are made up primarily of branched-chain and/or cyclic alkanes. In most instances, such microcrystalline waxes have molecular weights that range from about 300 up to 2500 amu. The amount of various wax-forming components in an extracted fluid will vary from well to well.
- WAT wax appearance temperature
- Asphaltenes are another class of high-molecular-weight components that are typically present in extracted carbonaceous fluids (e.g., petroleum fluids), and which can cause the problems described above.
- Asphaltenes are high-molecular-weight aromatic agglomerates that are generally soluble in light aromatics (e.g., benzene, toluene, etc.), but which are generally insoluble in light paraffins (e.g., n-pentane, n-heptane, etc.). Asphaltenes generally desorb from the extracted fluid as the pressure on the fluid drops, such as when the fluid moves through the downhole tubing, through pipelines, etc.
- Petroleum waxes and asphaltenes may be soluble in certain organic solvents.
- such solvents have a high volatile organic content (VOC), and thereby may contribute to greenhouse gas production and ozone depletion.
- VOC volatile organic content
- traditional high-VOC solvents can also be carcinogenic, teratogenic, toxic, or mutagenic. Therefore, a number of common solvents have come under increased regulatory scrutiny and therefore suffer from decreased use.
- Such solvents include aromatics (e.g., benzene, toluene, xylenes, and the like), ketones (e.g., methyl ethyl ketone, methyl isobutyl ketone, and the like), halogenated organics (e.g., dichloromethane, perchloroethylene, and the like), glycol ethers, and alcohols (e.g., methanol, isopropanol, ethylene glycol, and the like). Therefore, it is generally undesirable these days to employ such solvents to address problems associated with petroleum waxes and asphaltenes.
- aromatics e.g., benzene, toluene, xylenes, and the like
- ketones e.g., methyl ethyl ketone, methyl isobutyl ketone, and the like
- halogenated organics e.g., dichloromethane, perchloroethylene, and the like
- Certain derivatives of renewable feedstocks can provide more suitable alternatives to high-VOC solvents.
- fatty acid alkyl esters e.g., from the transesterification of vegetable oils, animal fats, or other lipids
- Methyl soyate for example, has a low VOC value, a high flash point, a low toxicity, and a high biodegradability.
- Terpene oils from citrus and pine d-limonene and pinene, respectively
- Such renewable solvents are not without their problems, however.
- d-limonene and dipentene are both acute and chronic aquatic toxins, and also have an irritating and sensitizing effect on the skin.
- d-limonene is highly inflammable (e.g., more so than petroleum distillates) and can be subject to fluctuations in supply and price.
- Fatty acid alkyl esters can overcome some of these deficiencies of terpene oils, but can also exhibit poor solvency relative to certain incumbents.
- the disclosure provides compositions that include olefinic ester compounds, wherein the olefinic ester compounds are esters of C 10-18 carboxylic acids having one or more carbon-carbon double bonds.
- the esters are C 1-6 alkanol esters, such methyl esters, ethyl esters, isopropyl esters, and the like.
- the C 10-18 carboxylic acids are C 10-12 carboxylic acids having one to three carbon-carbon double bonds.
- the compositions consist essentially of or consist of said olefinic ester compounds.
- the compositions include one or more surfactants, such as non-ionic surfactants.
- the surfactants have a hydrophilic-lipophilic balance (HLB) ranging from 4 to 10, or from 5 to 9, and a molecular weight ranging from 200 to 800 amu, or from 300 to 600 amu.
- HLB hydrophilic-lipophilic balance
- the compositions of the first aspect are cleaning compositions, such as compositions suitable for use in cleaning gas- or oil-extraction equipment, such as cleaning certain materials or deposits from rigs, tuning, pipes, valves, and the like.
- the materials to be removed include asphaltenes and/or petroleum waxes (e.g., macrocrystalline waxes and/or microcrystalline waxes).
- the compositions include a surfactant, such as a non-ionic surfactant.
- compositions of the first aspect are petroleum additive compositions.
- the compositions are added to an extracted fluid (e.g., crude oil) to inhibit or prevent the formation and/or precipitation of deposits that include petroleum waxes and/or asphaltenes.
- the compositions include a surfactant, such as a non-ionic surfactant.
- the disclosure provides a petroleum composition, including: a petroleum fluid; and a petroleum additive composition of the third aspect.
- the petroleum additive composition makes up no more than 5 percent by weight of the petroleum composition, based on the total weight of the composition.
- the disclosure provides methods for cleaning a surface, including: providing a surface having a material (e.g., a deposit) disposed thereon, the material including asphaltenes, petroleum waxes, or a combination thereof; and contacting the material with the composition of any of the foregoing aspects.
- the surface is a surface of a component of an oil rig, such as the interior wall of a pipe, tube, or tank, or a gauge, valve, pressure regulator, and the like.
- the disclosure provides methods of reducing agglomerates in a petroleum fluid, comprising: providing a petroleum fluid including one or more agglomerating materials (e.g., asphaltenes, petroleum waxes, or combinations thereof); and introducing to the petroleum fluid the petroleum additive composition of the third aspect.
- agglomerating materials e.g., asphaltenes, petroleum waxes, or combinations thereof.
- the petroleum fluid includes crude oil or partially refined crude oil.
- compositions of the first aspect are hydraulic fracturing compositions.
- such compositions include a major amount of water.
- the compositions are mixed or slurried with solid particles, such as sand particles.
- such compositions include the olefinic ester compounds in amounts up to about 5 percent by weight, based on the total weight of liquid ingredients in the composition.
- the disclosure provides methods for treating a gas well (e.g., a shale gas well or a tight gas well), including: providing a hydraulic fracturing composition according to the seventh aspect; and introducing the hydraulic fracturing composition to a subterranean gas well.
- the introducing includes injecting the hydraulic fracturing composition to the subterranean gas well under hydraulic pressure.
- FIG. 1 shows an example of an olefinic ester compound of certain embodiments disclosed herein, where R 1 is a C 9-17 alkenyl group and R 2 is a C 1-6 alkyl group.
- FIG. 2 shows the results of gilsonite dissolution tests for two test compositions against toluene.
- FIG. 3 shows a rheogram for oil compositions containing an amount of the compositions disclosed herein as an additive.
- natural oil refers to oils derived from plants or animal sources. These terms include natural oil derivatives, unless otherwise indicated. The terms also include modified plant or animal sources (e.g., genetically modified plant or animal sources), unless indicated otherwise. Examples of natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like.
- vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil.
- animal fats include lard, tallow, poultry fat, yellow grease, and fish oil.
- Tall oils are by-products of wood pulp manufacture.
- the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides).
- the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.
- natural oil derivatives refers to the compounds or mixtures of compounds derived from a natural oil using any one or combination of methods known in the art. Such methods include but are not limited to saponification, fat splitting, transesterification, esterification, hydrogenation (partial, selective, or full), isomerization, oxidation, and reduction.
- Representative non-limiting examples of natural oil derivatives include gums, phospholipids, soapstock, acidulated soapstock, distillate or distillate sludge, fatty acids and fatty acid alkyl ester (e.g. non-limiting examples such as 2-ethylhexyl ester), hydroxy substituted variations thereof of the natural oil.
- the natural oil derivative may be a fatty acid methyl ester (“FAME”) derived from the glyceride of the natural oil.
- FAME fatty acid methyl ester
- a feedstock includes canola or soybean oil, as a non-limiting example, refined, bleached, and deodorized soybean oil (i.e., RBD soybean oil).
- Soybean oil typically comprises about 95% weight or greater (e.g., 99% weight or greater) triglycerides of fatty acids.
- Major fatty acids in the polyol esters of soybean oil include saturated fatty acids, as a non-limiting example, palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids, as a non-limiting example, oleic acid (9-octadecenoic acid), linoleic acid (9, 12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).
- saturated fatty acids as a non-limiting example, palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid)
- unsaturated fatty acids as a non-limiting example, oleic acid (9-octadecenoic acid), linoleic acid (9, 12-octadecadienoic acid), and linolenic acid (9,12,15-oct
- metalthesis catalyst includes any catalyst or catalyst system that catalyzes an olefin metathesis reaction.
- metathesize refers to the reacting of a feedstock in the presence of a metathesis catalyst to form a “metathesized product” comprising new olefinic compounds, i.e., “metathesized” compounds.
- Metathesizing is not limited to any particular type of olefin metathesis, and may refer to cross-metathesis (i.e., co-metathesis), self-metathesis, ring-opening metathesis, ring-opening metathesis polymerizations (“ROMP”), ring-closing metathesis (“RCM”), and acyclic diene metathesis (“ADMET”).
- metathesizing refers to reacting two triglycerides present in a natural feedstock (self-metathesis) in the presence of a metathesis catalyst, wherein each triglyceride has an unsaturated carbon-carbon double bond, thereby forming a new mixture of olefins and esters which may include a triglyceride dimer.
- triglyceride dimers may have more than one olefinic bond, thus higher oligomers also may form.
- metathesizing may refer to reacting an olefin, such as ethylene, and a triglyceride in a natural feedstock having at least one unsaturated carbon-carbon double bond, thereby forming new olefinic molecules as well as new ester molecules (cross-metathesis).
- an olefin such as ethylene
- a triglyceride in a natural feedstock having at least one unsaturated carbon-carbon double bond
- hydrocarbon refers to an organic group composed of carbon and hydrogen, which can be saturated or unsaturated, and can include aromatic groups.
- hydrocarbyl refers to a monovalent or polyvalent hydrocarbon moiety.
- olefin or “olefins” refer to compounds having at least one unsaturated carbon-carbon double bond.
- the term “olefins” refers to a group of unsaturated carbon-carbon double bond compounds with different carbon lengths.
- the terms “olefin” or “olefins” encompasses “polyunsaturated olefins” or “poly-olefins,” which have more than one carbon-carbon double bond.
- the term “monounsaturated olefins” or “mono-olefins” refers to compounds having only one carbon-carbon double bond.
- a compound having a terminal carbon-carbon double bond can be referred to as a “terminal olefin” or an “alpha-olefin,” while an olefin having a non-terminal carbon-carbon double bond can be referred to as an “internal olefin.”
- the alpha-olefin is a terminal alkene, which is an alkene (as defined below) having a terminal carbon-carbon double bond. Additional carbon-carbon double bonds can be present.
- C z refers to a group of compound having z carbon atoms
- C x-y refers to a group or compound containing from x to y, inclusive, carbon atoms.
- C 1-6 alkyl represents an alkyl chain having from 1 to 6 carbon atoms and, for example, includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, and n-hexyl.
- a “C 4-10 alkene” refers to an alkene molecule having from 4 to 10 carbon atoms, and, for example, includes, but is not limited to, 1-butene, 2-butene, isobutene, 1-pentene, 1-hexene, 3-hexene, 1-heptene, 3-heptene, 1-octene, 4-octene, 1-nonene, 4-nonene, and 1-decene.
- low-molecular-weight olefin may refer to any one or combination of unsaturated straight, branched, or cyclic hydrocarbons in the C 2-14 range.
- Low-molecular-weight olefins include alpha-olefins, wherein the unsaturated carbon-carbon bond is present at one end of the compound.
- Low-molecular-weight olefins may also include dienes or trienes.
- Low-molecular-weight olefins may also include internal olefins or “low-molecular-weight internal olefins.” In certain embodiments, the low-molecular-weight internal olefin is in the C 4-14 range.
- low-molecular-weight olefins in the C 2-6 range include, but are not limited to: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene.
- Non-limiting examples of low-molecular-weight olefins in the C 7-9 range include 1,4-heptadiene, 1-heptene, 3,6-nonadiene, 3-nonene, 1,4,7-octatriene.
- Other possible low-molecular-weight olefins include styrene and vinyl cyclohexane.
- it is preferable to use a mixture of olefins the mixture comprising linear and branched low-molecular-weight olefins in the C 4-10 range.
- Olefins in the C 4-10 range can also be referred to as “short-chain olefins,” which can be either branched or unbranched.
- C 11-14 it may be preferable to use a mixture of linear and branched C 4 olefins (i.e., combinations of: 1-butene, 2-butene, and/or isobutene). In other embodiments, a higher range of C 11-14 may be used.
- the olefin can be an “alkene,” which refers to a straight- or branched-chain non-aromatic hydrocarbon having 2 to 30 carbon atoms and one or more carbon-carbon double bonds, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed.
- a “monounsaturated alkene” refers to an alkene having one carbon-carbon double bond, while a “polyunsaturated alkene” refers to an alkene having two or more carbon-carbon double bonds.
- esters refer to compounds having the general formula: R—COO—R′, wherein R and R′ denote any organic group (such as alkyl, aryl, or silyl groups) including those bearing heteroatom-containing substituent groups. In certain embodiments, R and R′ denote alkyl, alkenyl, aryl, or alcohol groups. In certain embodiments, the term “esters” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths. In certain embodiments, the esters may be esters of glycerol, which is a trihydric alcohol. The term “glyceride” can refer to esters where one, two, or three of the —OH groups of the glycerol have been esterified.
- an olefin may also comprise an ester, and an ester may also comprise an olefin, if the R or R′ group in the general formula R—COO—R′ contains an unsaturated carbon-carbon double bond.
- Such compounds can be referred to as “unsaturated esters” or “olefin ester” or “olefinic ester compounds.”
- a “terminal olefinic ester compound” may refer to an ester compound where R has an olefin positioned at the end of the chain.
- An “internal olefin ester” may refer to an ester compound where R has an olefin positioned at an internal location on the chain.
- terminal olefin may refer to an ester or an acid thereof where R′ denotes hydrogen or any organic compound (such as an alkyl, aryl, or silyl group) and R has an olefin positioned at the end of the chain
- internal olefin may refer to an ester or an acid thereof where R′ denotes hydrogen or any organic compound (such as an alkyl, aryl, or silyl group) and R has an olefin positioned at an internal location on the chain.
- “acid,” “acids,” “carboxylic acid,” or “carboxylic acids” refer to compounds having the general formula: R—COOH, wherein R denotes any organic moiety (such as alkyl, aryl, or silyl groups), including those bearing heteroatom-containing substituent groups. In certain embodiments, R denotes alkyl, alkenyl, aryl, or alcohol groups. In certain embodiments, the term “acids” or “carboxylic acids” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths.
- alcohol or “alcohols” refer to compounds having the general formula: R—OH, wherein R denotes any organic moiety (such as alkyl, aryl, or silyl groups), including those bearing heteroatom-containing substituent groups.
- R denotes alkyl, alkenyl, aryl, or alcohol groups.
- the term “alcohol” or “alcohols” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths.
- alkanol refers to alcohols where R is an alkyl group.
- alkyl refers to a straight or branched chain saturated hydrocarbon having 1 to 30 carbon atoms, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed.
- Examples of “alkyl,” as used herein, include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, n-hexyl, and 2-ethylhexyl.
- the “alkyl” group can be divalent, in which case the group can alternatively be referred to as an “alkylene” group.
- alkenyl refers to a straight or branched chain non-aromatic hydrocarbon having 2 to 30 carbon atoms and having one or more carbon-carbon double bonds, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed.
- alkenyl include, but are not limited to, ethenyl, 2-propenyl, 2-butenyl, and 3-butenyl.
- the “alkenyl” group can be divalent, in which case the group can alternatively be referred to as an “alkenylene” group.
- halogen refers to a fluorine, chlorine, bromine, and/or iodine atom. In some embodiments, the terms refer to fluorine and/or chlorine.
- substituted refers to substitution of one or more hydrogen atoms of the designated moiety with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated, provided that the substitution results in a stable or chemically feasible compound.
- a stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about ⁇ 80° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week.
- the phrases “substituted with one or more . . . ” or “substituted one or more times . . . ” refer to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.
- yield refers to the amount of reaction product formed in a reaction. When expressed with units of percent (%), the term yield refers to the amount of reaction product actually formed, as a percentage of the amount of reaction product that would be formed if all of the limiting reactant were converted into the product.
- mixture refers broadly to any combining of two or more compositions.
- the two or more compositions need not have the same physical state; thus, solids can be “mixed” with liquids, e.g., to form a slurry, suspension, or solution. Further, these terms do not require any degree of homogeneity or uniformity of composition. This, such “mixtures” can be homogeneous or heterogeneous, or can be uniform or non-uniform. Further, the terms do not require the use of any particular equipment to carry out the mixing, such as an industrial mixer.
- HLB hydrophilic-lipophilic balance
- Mh molecular weight of the hydrophilic portion of the molecule
- M molecular weight of the molecule as a whole.
- Various commercial test kits can be purchased that permit one to measure the HLB of a surfactant by comparing the properties of the surfactant in question with the properties of a surfactant having a known HLB value.
- extracted fluid refers to any hydrocarbon-containing fluid that is extracted from subterranean deposits. Extracted fluids include, but are not limited to, crude oil and natural gas that is extracted from subterranean deposits.
- petroleum wax refers to C 18+ olefins, such as those typically contained in extracted fluids.
- asphaltes refers to fused heteroaromatic compounds, such as those typically contained in extracted fluids.
- optional event means that the subsequently described event(s) may or may not occur. In some embodiments, the optional event does not occur. In some other embodiments, the optional event does occur one or more times.
- “comprise” or “comprises” or “comprising” or “comprised of” refer to groups that are open, meaning that the group can include additional members in addition to those expressly recited.
- the phrase, “comprises A” means that A must be present, but that other members can be present too.
- the terms “include,” “have,” and “composed of” and their grammatical variants have the same meaning.
- “consist of” or “consists of” or “consisting of” refer to groups that are closed.
- the phrase “consists of A” means that A and only A is present.
- a or B is to be given its broadest reasonable interpretation, and is not to be limited to an either/or construction.
- the phrase “comprising A or B” means that A can be present and not B, or that B is present and not A, or that A and B are both present.
- A for example, defines a class that can have multiple members, e.g., A 1 and A 2 , then one or more members of the class can be present concurrently.
- the various functional groups represented will be understood to have a point of attachment at the functional group having the hyphen or dash (-) or an asterisk (*).
- a point of attachment at the functional group having the hyphen or dash (-) or an asterisk (*).
- the point of attachment is the CH 2 group at the far left. If a group is recited without an asterisk or a dash, then the attachment point is indicated by the plain and ordinary meaning of the recited group.
- multi-atom bivalent species are to be read from left to right.
- A-D-E and D is defined as —OC(O)—
- the resulting group with D replaced is: A-OC(O)-E and not A-C(O)O-E.
- compositions Including Olefinic Ester Compounds
- the disclosure provides compositions that include olefinic ester compounds.
- Any suitable olefin ester compounds can be used in the compositions.
- the olefinic ester compounds are alkanol esters, e.g., C 1-6 alkanol esters, of C 10-18 carboxylic acids having at least one carbon-carbon double bond.
- Suitable alkanols include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butyl alcohol, pentanol, isoamyl alcohol, neopentyl alcohol, and hexanol.
- the alkanol is methanol, ethanol, or isopropanol.
- the alkanol is methanol or ethanol.
- the alkanol is methanol.
- Any suitable C 10-18 carboxylic acid can be employed in such esters, including branched and unbranched carboxylic acids.
- the olefinic ester compounds are alkanol esters of C 10-16 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 10-15 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 10-14 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 10-12 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 12-18 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 12-16 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 12-15 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C 12-14 carboxylic acids having one to three carbon-carbon double bonds.
- any alkanols of the aforementioned embodiments can be used.
- the carboxylic acid has two or three carbon-carbon double bonds, none of the carbon-carbon double bands are conjugated, either to each other or to other unsaturation in the compound.
- the carboxylic acid group has a single carbon-carbon double bond.
- the carboxylic acid is 9-decenoic acid, 9-undecenoic acid, or 9-dodecenoic acid.
- the olefinic ester compounds are methyl 9-decenoate, methyl 9-undenenoate, methyl 9-dodecenoate, or a mixture thereof. In some embodiments, the olefinic ester compounds are methyl 9-decenoate, methyl 9-dodecenoate, or a mixture thereof. In some other embodiments, the olefinic ester compounds are methyl 9-decenoate. In some other embodiments, the olefinic ester compounds are methyl 9-dodecenoate.
- the olefinic ester compounds are one or more compounds of formula (I):
- R 1 is C 9-17 alkenyl
- R 2 is C 1-6 alkyl.
- R 1 is C 9-15 alkenyl. In some embodiments, R 1 is C 9-14 alkenyl. In some embodiments, R 1 is C 9-13 alkenyl. In some embodiments, R 1 is C 9-11 alkenyl. In some embodiments, R 1 is C 11-15 alkenyl. In some embodiments, R 1 is C 11-14 alkenyl. In some embodiments, R 1 is C 11-13 alkenyl. In some embodiments, R 1 is C 9 alkenyl or C 11 alkenyl. In some embodiments, R 1 is C 9 alkeny. In some embodiments, R 1 is C 11 alkenyl.
- R 1 has one to three carbon-carbon double bonds, which, when multiple carbon-carbon double bonds are present, in some embodiments, are not conjugated. In some embodiments, R 1 has a single carbon-carbon-double bond. In some other embodiments, R 1 has two non-conjugated double bonds. In some other embodiments, R 1 has two or three conjugated double bonds, such as a C 13-15 alkenyl having two or three conjugated carbon-carbon double bonds. In some embodiments, R 1 is —(CH 2 ) 7 —CH ⁇ CH 2 , —(CH 2 ) 7 —CH ⁇ CH—CH 3 , or —(CH 2 ) 7 —CH ⁇ CH—CH 2 —CH 3 .
- R 1 is —(CH 2 ) 7 —CH ⁇ CH 2 or —(CH 2 ) 7 —CH ⁇ CH—CH 2 —CH 3 . In some embodiments, R 1 is —(CH 2 ) 7 —CH ⁇ CH 2 . In some embodiments, R 1 is —(CH 2 ) 7 —CH ⁇ CH—CH 2 —CH 3 .
- R 2 is methyl, ethyl, isopropyl, propyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, neopentyl, or hexyl.
- R 2 is methyl, ethyl, isopropyl, propyl, butyl, isobutyl, sec-butyl, or tert-butyl.
- R 2 is methyl, ethyl, or isopropyl.
- R 2 is methyl or ethyl.
- R 2 is methyl.
- the compositions disclosed herein consist of the olefinic ester compounds, meaning that the compositions contain no other materials besides the olefinic ester compounds. In some embodiments, the compositions disclosed herein consist essentially of the olefinic ester compounds, meaning that the compositions can contain one or more other materials that do not materially affect the basic characteristics of the olefinic ester composition or its use. In some embodiments, the compositions disclosed herein can comprise (or include) other materials, including materials that can affect the basic characteristics of the olefinic ester composition or its use.
- the olefinic ester compounds can make up any suitable amount of the disclosed compositions. In some embodiments, the olefinic ester compounds make up at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight of the composition, based on the total weight of the composition. In some such embodiments, the olefinic ester compounds make up no more than 99 percent by weight of the composition, based on the total weight of the composition.
- the compositions can include any other suitable component or combination of components. In some other embodiments, however, the olefinic ester compounds make up a lower amount of the composition.
- the composition includes from 1 to 70 percent by weight, or from 2 to 70 percent by weight, or from 5 to 70 percent by weight, or from 10 to 70 percent by weight, or from 20 to 70 percent by weight, or from 30 to 70 percent by weight, or from 40 to 70 percent by weight, or from 1 to 50 percent by weight, or from 2 to 50 percent by weight, or from 5 to 50 percent by weight, or from 10 to 50 percent by weight, or from 20 to 50 percent by weight, or from 30 to 50 percent by weight, or from 1 to 30 percent by weight, or from 2 to 30 percent by weight, or from 5 to 30 percent by weight, or from 10 to 30 percent by weight, or from 1 to 20 percent by weight, or from 2 to 20 percent by weight, or from 5 to 20 percent by weight, based on the total weight of the composition.
- the compositions include one or more surfactants (according to any of the embodiments described below), such as non-ionic surfactants, anionic surfactants, or cationic surfactants. In some such embodiments, the compositions include one or more non-ionic surfactants. In some such embodiments, the compositions include one or more anionic surfactants. In some such embodiments, the compositions include one or more cationic surfactants.
- surfactants such as non-ionic surfactants, anionic surfactants, or cationic surfactants.
- the olefinic ester compounds may make up a smaller portion of the composition.
- the olefinic ester compounds make up at least 1 percent by weight up to 10 percent by weight, or up to 20 percent by weight, or up to 30 percent by weight, or up to 40 percent by weight, or up to 50 percent by weight, of the composition, based on the total weight of the composition.
- the composition further comprises saturated ester compounds.
- the saturated ester compounds make up at least 30 percent by weight, or at least 40 percent by weight, up to 60 percent by weight, or up to 70 percent by weight, or up to 80 percent by weight, or up to 90 percent by weight, or up to 95 percent by weight, of the composition, based on the total weight of the composition.
- the weight-to-weight ratio of saturated ester compounds to olefinic ester compounds in the composition ranges from 1:10 to 10:1, or from 1:5 to 5:1, or from 1:3 to 3:1, or from 1:2 to 2:1.
- Any suitable saturated fatty acid ester can be used, such as C 1-6 alkanolic esters of C 10-18 satyrated fatty acids, such as C 1-6 alkanolic esters (e.g., methyl esters, ethyl esters, isopropyl esters, etc.) of capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and the like.
- C 1-6 alkanolic esters e.g., methyl esters, ethyl esters, isopropyl esters, etc.
- the composition may be suitable to deliver the composition as a component of an emulsion, such as an oil-in-water emulsion or a water-in-oil emulsion.
- the olefinic ester compounds are part of an oily component (e.g., a primary solvent) of an emulsion, e.g., a microemulsion.
- the amount of primary solvent used in the emulsion is variable with the end use.
- the amount of primary solvent can be higher, such as from 50 to 99 percent by weight, or from 60 to 99 percent by weight, or from 70 to 99 percent by weight, or from 80 to 99 percent by weight, or from 50 to 95 percent by weight, or from 60 to 95 percent by weight, or from 70 to 95 percent by weight, or from 80 to 95 percent by weight, based on the weight of the microemulsion.
- the amount of primary solvent may be lower, such as from 10 to 70 percent by weight, or from 10 to 60 percent by weight, or from 10 to 50 percent by weight, or from 25 to 70 percent by weight, or from 25 to 60 percent by weight, or from 25 to 50 percent by weight, based on the weight of the microemulsion.
- the relative amounts of the other components of the composition vary according to the end use of the composition and can be any amounts required to clean a particular undesirable substance from a particular surface.
- the amount of anionic surfactant for example, can vary from 1 to 75 percent by weight, or from 2 to 60 percent by weight, or from 3 to 50 percent by weight, or from 5 to 40 percent by weight, or from 5 to 30 percent by weight, or from 5 to 20 percent by weight, or from 5 to 14 percent by weight, or from 5 to 13 percent by weight, based on the total weight of the composition (e.g., the undiluted, pre-emulsified composition).
- compositions are emulsified by mixing them with an aqueous medium to form an oil-in-water emulsion or a water-in-oil emulsion.
- Suitable emulsifiers can be added to assist in the emulsification. Any suitable degree of dilution can be used, depending on the intended end use, the desired concentration of solvent, and other ingredients.
- compositions comprising anionic surfactants can be used in a variety of cleaning applications.
- compositions comprising anionic surfactants are used for a variety of end uses.
- Suitable end uses include, but are not limited to, degreasing (e.g., from various surfaces), stain removal or treatment (e.g., on fabrics or other textiles), removal of food and food-containing materials, and general hard-surface cleaning.
- the desired end-use application may require use of different surfactants or combinations of surfactants, as well as different amounts of those surfactants.
- compositions can include one or more additional ingredients or additives.
- additional ingredients or additives include, but are not limited to, carriers, solvents, co-solvents (such as longer-chain olefinic ester compounds), surfactants, co-surfactants, emulsifiers, natural or synthetic colorants, natural or synthetic fragrances, natural or synthetic deodorizers, antioxidants, corrosion inhibitors, chelating agents, precipitating and/or sequestering builders, and antimicrobial agents.
- agents can be used in any suitable amounts, depending on the types of other ingredients in the composition (e.g., anionic surfactants, cationic surfactants, non-ionic surfactants, etc.), the amounts of other ingredients in the composition (e.g., amount of various surfactants), whether the composition is to be formulated as an emulsion, and, if so, what type of emulsion it will be (e.g., oil-in-water, water-in-oil, etc.), and what the desired range of end-uses will be.
- anionic surfactants e.g., anionic surfactants, cationic surfactants, non-ionic surfactants, etc.
- the amounts of other ingredients in the composition e.g., amount of various surfactants
- the composition is to be formulated as an emulsion, and, if so, what type of emulsion it will be (e.g., oil-in-water, water-in-oil, etc.), and what the desired range of
- any suitable surfactants can be used.
- the surfactants used in the composition can include surfactants having an HLB (hydrophile-lipophile balance) of 4 to 14, or 8 to 13.
- the surfactants used in the composition include the amine salts (e.g., the isopropyl amine salt) of dodecylbenzene sulfonic acid, the amine salts (e.g., the isopropyl amine salt) of oleic acid, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates, sorbitan esters, glycerol esters, and combinations thereof.
- nonionic surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates, and combinations thereof.
- anionic surfactants include, but are not limited to, water-soluble salts of alkyl benzene sulfonates, alkyl sulfates, alkyl polyalkoxy ether sulfates, paraffin sulfonates, alpha-olefin sulfonates and sulfosuccinates, alpha-sulfocarboxylates and their esters, alkyl glyceryl ether sulfonates, fatty acid monoglyceride sulfates and sulfonates, alkyl phenol polyalkoxyether sulfates and combinations thereof.
- anionic surfactants include, but are not limited to, the water-soluble salts or esters of alpha-sulfonated fatty acids containing from about 6 to about 20 carbon atoms in the fatty acid group and from about 1 to about 10 carbon atoms in the ester group.
- such cleaning compositions can have improved high- and low-temperature stability, in comparison to a cleaning composition not including such a surfactant.
- Surfactants can also be added to the finished composition to alleviate potential customers of the need to select a surfactant that may be suitable for particular end uses.
- Surfactant-containing compositions may also be useful in the preparation of emulsions (e.g., microemulsions or nanoemulsions), e.g., where the oily phase is emulsified in an aqueous medium, or vice versa.
- the surfactants can include linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates and combinations thereof.
- the olefinic ester compound is the primary solvent.
- such compositions can be used in a cleaning method, where the cleaning composition is applied to a surface (e.g., a surface to be cleaned).
- a surface e.g., a surface to be cleaned.
- the surface can be washed with an aqueous medium (e.g., water) after application of the cleaning composition.
- nonionic surfactants having an HLB of from about 4 to about 14, or from 8 to 13, may be suitable in the preparation of a microemulsion.
- Non-limiting examples of such surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty amide alkoxylates, fatty amine alkoxylates and combinations thereof.
- cationic surfactants can be used.
- Suitable cationic surfactants include, but are not limited to, water-soluble quaternary ammonium salts fatty amines, ammonium salts of fatty amines, quaternary ammonium salts of ethoxylated fatty amines, ammonium salts of ethoxylated fatty amines, quaternary ammonium salts of modified alkyl polyglucosides, and combinations thereof.
- the cleaning composition (e.g., a microemulsion) can include a nonionic and/or amphoteric surfactant.
- the olefinic ester compound is a primary solvent.
- nonionic surfactants and/or amphoteric surfactants can be used, e.g., nonionic surfactants having an HLB of from 4 to 14, or 8 to 13, e.g., in a microemulsion.
- nonionic surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty amide alkoxylates, fatty amine alkoxylates and combinations thereof.
- Non-limiting examples of amphoteric surfactants include, but are not limited to, water-soluble C 6-12 fatty amidoamine betaines, C 6-12 fatty amidoamine sultaines and hydroxysultaines, C 6-12 fatty amidoamine oxides, fatty iminodiproponiates, C 6-12 fatty amine betaines, C 6-12 fatty amines sultaines, C 6-12 fatty amine hydroxysultaines, C 6-12 fatty amine oxides, and combinations thereof.
- other surfactants can be used, either in combination with one or more of anionic, cationic and/or amphoteric surfactants (e.g., as short-chain co-surfactants) or alone.
- anionic, cationic and/or amphoteric surfactants e.g., as short-chain co-surfactants
- non-limiting examples of such other surfactants include, but are not limited to, C 3-6 alcohols, glycols, glycol ethers, pyrrolidones, glycol ether esters, and combinations thereof.
- the relative amounts of the components of the composition will vary according to the end use of the composition and can be any amounts required to clean a particular undesirable substance from a particular surface.
- the amount of non-ionic surfactant for example, can vary from 1 to 75 percent by weight, or from 2 to 60 percent by weight, or from 3 to 50 percent by weight, or from 5 to 40 percent by weight, or from 5 to 30 percent by weight, or from 5 to 20 percent by weight, based on the total weight of the composition (e.g., the undiluted, pre-emulsified composition).
- such compositions are emulsified by mixing them with an aqueous medium to form an oil-in-water emulsion or a water-in-oil emulsion. Suitable emulsifiers can be added to assist in the emulsification. Any suitable degree of dilution can be used, depending on the intended end use, the desired concentration of solvent, and other ingredients.
- the surfactants can have certain ranges of HLB values.
- the surfactants e.g., non-ionic surfactants
- the composition comprises at least one non-ionic surfactant having an HLB value of about 4, or an HLB value of about 5, or an HLB value of about 6, or an HLB value of about 7, or an HLB value of about 8, or an HLB value of about 9.
- the surfactants can have certain ranges of molecular weights. In some embodiments, the surfactants (e.g., non-ionic surfactants) have a molecular weight ranging from 200 to 800 amu, or from 250 to 700 amu, or from 300 to 600 amu.
- the composition comprises at least one non-ionic surfactant having a molecular weight of about 350 amu, or a molecular weight of about 400 amu, or a molecular weight of about 450 amu, or a molecular weight of about 500 amu, or a molecular weight of about 550 amu, or a molecular weight of about 600 amu, or a molecular weight of about 650 amu.
- the surfactants are ethoxylated fatty acids or ethoxylated alcohols.
- the surfactants are ethoxylated alcohols, where the alcohols have 8 to 16 carbon atoms, or 10 to 15 carbon atoms, or 12 to 15 carbon atoms.
- the ethoxylated chains of such alcohols can have any suitable number of ethylene oxide units.
- the surfactants have from 5 to 12 ethylene oxide units, or from 7 to 10 ethylene oxide units.
- the ethoxylated alcohols have a number-average number of ethylene oxide units of about 5, or of about 7, or of about 9, or of about 11, or of about 12. Analogous such ethyoxylated fatty acids can be used as well.
- compositions comprising non-ionic surfactants can be used in a variety of applications.
- compositions comprising non-ionic surfactants are used for a variety of end uses. Suitable end uses include, but are not limited to, cleaning of equipment used in extracting oil and gas, such as the tubing, pipes, tanks, etc., associated with oil and gas rigs.
- the composition comprises water.
- the composition is an emulsion, meaning that the composition includes two or more phases where at least one of the phases is at least partially dispersed in one or more of the other phases.
- the composition is a microemulsion or a nanoemulsion, meaning that at least one of the phases is dispersed as small droplets whose size is on the order of about 1 nm up to about 1 micron.
- the droplet size is less than the wavelength of the lowest energy visible light, e.g., less than 350 nm, or less than 300 nm, or less than 250 nm, or less than 200 nm, or less than 150 nm, or less than 100 nm, down to about 50 nm.
- the composition is substantially free of water.
- the composition includes less than 2 percent by weight, or less than 1 percent by weight, or less than 0.5 percent by weight, or less than 0.1 percent by weight water, based on the total weight of the composition.
- the composition also includes alkanol esters (e.g., methyl esters) of saturated carboxylic acids, referred to herein as “saturated ester compounds.”
- alkanol esters e.g., methyl esters
- the composition can contain any suitable distribution of olefinic ester compounds.
- the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight alkanol esters (e.g., methyl esters) of C 10-12 carboxylic acids having one or more carbon-carbon double bonds, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition.
- said C 10-12 carboxylic acids have one carbon-carbon double bond.
- the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 75 percent by weight of methyl esters of 9-decenoic acid, 9-undecenoic acid, or 9-dodecenoic acid, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition. In some embodiments, the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 75 percent by weight of methyl esters of 9-decenoic acid or 9-dodecenoic acid, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition.
- the composition includes no more than 20 percent by weight, or no more than 15 percent by weight, or no more than 10 percent by weight of saturated ester compounds, based on the total weight of olefinic ester compounds and saturated ester compounds.
- the composition includes: (a) 20 to 50 percent by weight, or 30 to 40 percent by weight of C 10 olefinic ester compounds (e.g., methyl esters of 9-decenoic acid); (b) 30 to 60 percent by weight, or 40 to 50 percent by weight of C 12 olefinic ester compounds (e.g., methyl esters of 9-dodecenoic acid); and (c) 5 to 25 percent by weight, or 5 to 15 percent by weight of saturated ester compounds (e.g., methyl palmitate).
- C 10 olefinic ester compounds e.g., methyl esters of 9-decenoic acid
- C 12 olefinic ester compounds e.g., methyl esters of 9-dodecenoic acid
- the composition includes at least 40 percent by weight, or at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, of C 12 olefinic ester compounds (e.g., alkanol esters of 9-dodecenoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- C 12 olefinic ester compounds e.g., alkanol esters of 9-dodecenoic acid
- the composition includes 50 to 99 percent by weight, or 60 to 99 percent by weight, of C 12 olefinic ester compounds (e.g., alkanol esters of 9-dodecenoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- C 12 olefinic ester compounds e.g., alkanol esters of 9-dodecenoic acid
- the composition can also include various amounts of C 13-15 olefinic ester compounds, e.g., alkanol esters of 9,12-tridecadienoic acid, alkanol esters of 9,12-pentadecadienoic acid, and the like.
- C 13-15 olefinic ester compounds e.g., alkanol esters of 9,12-tridecadienoic acid, alkanol esters of 9,12-pentadecadienoic acid, and the like.
- the composition includes up to 30 percent by weight, or up to 25 percent by weight, or up to 20 percent by weight, or up to 15 percent by weight, or up to 10 percent by weight, C 13 olefinic ester compounds (e.g., alkanol esters of 9,12-tridecanedienoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- C 13 olefinic ester compounds e.g., alkanol esters of 9,12-tridecanedienoic acid
- the composition includes up to 35 percent by weight, or up to 30 percent by weight, or up to 25 percent by weight, or up to 20 percent by weight, or up to 15 percent by weight, C 15 olefinic ester compounds (e.g., alkanol esters of 9,12-pentadecanedienoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- C 15 olefinic ester compounds e.g., alkanol esters of 9,12-pentadecanedienoic acid
- the composition can also include an amount of olefin, e.g., alkenes.
- the composition includes from 1 to 10 percent by weight, or from 1 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- the composition includes from 2 to 10 percent by weight, or from 2 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- the composition includes from 3 to 10 percent by weight, or from 3 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- higher amounts of saturated ester compounds can be included in the composition.
- the composition includes at least 30 percent by weight, or at least 40 percent by weight of saturated ester compounds, such as methyl palmitate, methyl stearate, methyl laurate, etc., based on the total weight of olefinic ester compounds and saturated ester compounds in the composition.
- the amounts of C 10-12 unsaturated ester compounds can be lower.
- the composition includes no more than 50 percent by weight, or no more than 40 percent by weight, or no more than 35 percent by weight of C 10-12 unsaturated ester compounds (e.g., methyl 9-decenoate and methyl 9-dodecenoate).
- C 10-12 unsaturated ester compounds e.g., methyl 9-decenoate and methyl 9-dodecenoate.
- the composition includes: (a) 5 to 30 percent by weight, or 5 to 20 percent by weight of C 10 olefinic ester compounds (e.g., methyl esters of 9-decenoic acid); (b) 5 to 30 percent by weight, or 10 to 20 percent by weight of C 12 olefinic ester compounds (e.g., methyl esters of 9-dodecenoic acid); and (c) 30 to 70 percent by weight, or 40 to 60 percent by weight of saturated ester compounds (e.g., methyl palmitate).
- C 10 olefinic ester compounds e.g., methyl esters of 9-decenoic acid
- C 12 olefinic ester compounds e.g., methyl esters of 9-dodecenoic acid
- saturated ester compounds e.g., methyl palmitate
- the composition includes at least 20 percent by weight, or at least 30 percent by weight, or at least 40 percent by weight of terminal olefinic ester compounds, based on the total weight of olefinic ester compounds in the composition. In some other embodiments, the composition includes no more than 30 percent by weight, or no more than 40 percent by weight, or no more than 50 percent by weight of terminal olefinic ester compounds, based on the total weight of olefinic ester compounds in the composition.
- the composition can include at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, of C 10-12 unsaturated ester compounds (e.g., methyl 9-decenoate and methyl 9-dodecenoate), as well as a ketone, such as cyclohexanone, e.g., in an amount of up to 5% by weight, or up to 10% by weight, or up to 15% by weight, or up to 20% by weight, based on the total weight of the composition.
- Such compositions can also include, in some embodiments, other fatty acids, such as oleic acid.
- the composition can also include certain petroleum distillates, such as mineral oil (100 SUS).
- the olefinic ester compounds employed in any of the aspects or embodiments disclosed herein can, in certain embodiments, be derived from renewable sources, such as from various natural oils or their derivatives. Any suitable methods can be used to make these compounds from such renewable sources. Suitable methods include, but are not limited to, fermentation, conversion by bioorganisms, and conversion by metathesis.
- Olefin metathesis provides one possible means to convert certain natural oil feedstocks into olefins and esters that can be used in a variety of applications, or that can be further modified chemically and used in a variety of applications.
- a composition may be formed from a renewable feedstock, such as a renewable feedstock formed through metathesis reactions of natural oils and/or their fatty acid or fatty ester derivatives.
- a renewable feedstock such as a renewable feedstock formed through metathesis reactions of natural oils and/or their fatty acid or fatty ester derivatives.
- natural oils can be used in such metathesis reactions.
- suitable natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like.
- vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil.
- the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides).
- the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.
- the natural oil may include canola or soybean oil, such as refined, bleached and deodorized soybean oil (i.e., RBD soybean oil).
- Soybean oil typically includes about 95 percent by weight (wt %) or greater (e.g., 99 wt % or greater) triglycerides of fatty acids.
- Major fatty acids in the polyol esters of soybean oil include but are not limited to saturated fatty acids such as palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids such as oleic acid (9-octadecenoic acid), linoleic acid (9,12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).
- saturated fatty acids such as palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid)
- unsaturated fatty acids such as oleic acid (9-octadecenoic acid), linoleic acid (9,12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).
- Metathesized natural oils can also be used.
- metathesized natural oils include but are not limited to a metathesized vegetable oil, a metathesized algal oil, a metathesized animal fat, a metathesized tall oil, a metathesized derivatives of these oils, or mixtures thereof.
- a metathesized vegetable oil may include metathesized canola oil, metathesized rapeseed oil, metathesized coconut oil, metathesized corn oil, metathesized cottonseed oil, metathesized olive oil, metathesized palm oil, metathesized peanut oil, metathesized safflower oil, metathesized sesame oil, metathesized soybean oil, metathesized sunflower oil, metathesized linseed oil, metathesized palm kernel oil, metathesized tung oil, metathesized jatropha oil, metathesized mustard oil, metathesized camelina oil, metathesized pennycress oil, metathesized castor oil, metathesized derivatives of these oils, or mixtures thereof.
- the metathesized natural oil may include a metathesized animal fat, such as metathesized lard, metathesized tallow, metathesized poultry fat, metathesized fish oil, metathesized derivatives of these oils, or mixtures thereof.
- Such natural oils, or derivatives thereof can contain esters, such as triglycerides, of various unsaturated fatty acids.
- esters such as triglycerides
- concentration of such fatty acids varies depending on the oil source, and, in some cases, on the variety.
- the natural oil comprises one or more esters of oleic acid, linoleic acid, linolenic acid, or any combination thereof. When such fatty acid esters are metathesized, new compounds are formed.
- an amount of 1-decene and 1-decenoid acid (or an ester thereof), among other products are formed.
- transesterification for example, with an alkyl alcohol, an amount of 9-denenoic acid alkyl ester is formed.
- a separation step may occur between the metathesis and the transesterification, where the alkenes are separated from the esters.
- transesterification can occur before metathesis, and the metathesis is performed on the transesterified product.
- the natural oil can be subjected to various pre-treatment processes, which can facilitate their utility for use in certain metathesis reactions.
- Useful pre-treatment methods are described in United States Patent Application Publication Nos. 2011/0113679, 2014/0275681, and 2014/0275595, all three of which are hereby incorporated by reference as though fully set forth herein.
- the natural oil feedstock is reacted in the presence of a metathesis catalyst in a metathesis reactor.
- an unsaturated ester e.g., an unsaturated glyceride, such as an unsaturated triglyceride
- unsaturated esters may be a component of a natural oil feedstock, or may be derived from other sources, e.g., from esters generated in earlier-performed metathesis reactions.
- the natural oil or unsaturated ester in the presence of a metathesis catalyst, can undergo a self-metathesis reaction with itself.
- the natural oil or unsaturated ester undergoes a cross-metathesis reaction with the low-molecular-weight olefin or mid-weight olefin.
- the self-metathesis and/or cross-metathesis reactions form a metathesized product wherein the metathesized product comprises olefins and esters.
- the low-molecular-weight olefin (or short-chain olefin) is in the C 2-6 range.
- the low-molecular-weight olefin may comprise at least one of: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene.
- the short-chain olefin is 1-butene.
- the metathesis comprises reacting a natural oil feedstock (or another unsaturated ester) in the presence of a metathesis catalyst.
- the metathesis comprises reacting one or more unsaturated glycerides (e.g., unsaturated triglycerides) in the natural oil feedstock in the presence of a metathesis catalyst.
- the unsaturated glyceride comprises one or more esters of oleic acid, linoleic acid, linoleic acid, or combinations thereof.
- the unsaturated glyceride is the product of the partial hydrogenation and/or the metathesis of another unsaturated glyceride (as described above).
- the metathesis is a cross-metathesis of any of the aforementioned unsaturated triglyceride species with another olefin, e.g., an alkene.
- the alkene used in the cross-metathesis is a lower alkene, such as ethylene, propylene, 1-butene, 2-butene, etc.
- the alkene is ethylene.
- the alkene is propylene.
- the alkene is 1-butene.
- the alkene is 2-butene.
- Metathesis reactions can provide a variety of useful products, when employed in the methods disclosed herein.
- the unsaturated esters may be derived from a natural oil feedstock, in addition to other valuable compositions.
- a number of valuable compositions can be targeted through the self-metathesis reaction of a natural oil feedstock, or the cross-metathesis reaction of the natural oil feedstock with a low-molecular-weight olefin or mid-weight olefin, in the presence of a metathesis catalyst.
- Such valuable compositions can include fuel compositions, detergents, surfactants, and other specialty chemicals.
- transesterified products i.e., the products formed from transesterifying an ester in the presence of an alcohol
- transesterified products may also be targeted, non-limiting examples of which include: fatty acid methyl esters (“FAMEs”); biodiesel; 9-decenoic acid (“9DA”) esters, 9-undecenoic acid (“9UDA”) esters, and/or 9-dodecenoic acid (“9DDA”) esters; 9DA, 9UDA, and/or 9DDA; alkali metal salts and alkaline earth metal salts of 9DA, 9UDA, and/or 9DDA; dimers of the transesterified products; and mixtures thereof.
- FAMEs fatty acid methyl esters
- 9DA 9-decenoic acid
- 9UDA 9-undecenoic acid
- 9DDA 9-dodecenoic acid
- multiple metathesis reactions can also be employed.
- the multiple metathesis reactions occur sequentially in the same reactor.
- a glyceride containing linoleic acid can be metathesized with a terminal lower alkene (e.g., ethylene, propylene, 1-butene, and the like) to form 1,4-decadiene, which can be metathesized a second time with a terminal lower alkene to form 1,4-pentadiene.
- the multiple metathesis reactions are not sequential, such that at least one other step (e.g., transesterification, hydrogenation, etc.) can be performed between the first metathesis step and the following metathesis step.
- multiple metathesis procedures can be used to obtain products that may not be readily obtainable from a single metathesis reaction using available starting materials.
- multiple metathesis can involve self-metathesis followed by cross-metathesis to obtain metathesis dimers, trimmers, and the like.
- multiple metathesis can be used to obtain olefin and/or ester components that have chain lengths that may not be achievable from a single metathesis reaction with a natural oil triglyceride and typical lower alkenes (e.g., ethylene, propylene, 1-butene, 2-butene, and the like).
- Such multiple metathesis can be useful in an industrial-scale reactor, where it may be easier to perform multiple metathesis than to modify the reactor to use a different alkene.
- the natural oil e.g., as a glyceride
- transesterification can precede metathesis, such that the fatty acid esters subjected to metathesis are fatty acid esters of monohydric alcohols, such as methanol, ethanol, or isopropanol.
- one or more of the unsaturated monomers can be made by metathesizing a natural oil or natural oil derivative.
- the terms “metathesis” or “metathesizing” can refer to a variety of different reactions, including, but not limited to, cross-metathesis, self-metathesis, ring-opening metathesis, ring-opening metathesis polymerizations (“ROMP”), ring-closing metathesis (“RCM”), and acyclic diene metathesis (“ADMET”). Any suitable metathesis reaction can be used, depending on the desired product or product mixture.
- the natural oil feedstock is reacted in the presence of a metathesis catalyst in a metathesis reactor.
- an unsaturated ester e.g., an unsaturated glyceride, such as an unsaturated triglyceride
- unsaturated esters may be a component of a natural oil feedstock, or may be derived from other sources, e.g., from esters generated in earlier-performed metathesis reactions.
- the natural oil or unsaturated ester in the presence of a metathesis catalyst, can undergo a self-metathesis reaction with itself.
- the natural oil or unsaturated ester undergoes a cross-metathesis reaction with the low-molecular-weight olefin or mid-weight olefin.
- the self-metathesis and/or cross-metathesis reactions form a metathesized product wherein the metathesized product comprises olefins and esters.
- the low-molecular-weight olefin is in the C 2-6 range.
- the low-molecular-weight olefin may comprise at least one of: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene.
- a higher-molecular-weight olefin can also be used.
- the metathesis comprises reacting a natural oil feedstock (or another unsaturated ester) in the presence of a metathesis catalyst.
- the metathesis comprises reacting one or more unsaturated glycerides (e.g., unsaturated triglycerides) in the natural oil feedstock in the presence of a metathesis catalyst.
- the unsaturated glyceride comprises one or more esters of oleic acid, linoleic acid, linoleic acid, or combinations thereof.
- the unsaturated glyceride is the product of the partial hydrogenation and/or the metathesis of another unsaturated glyceride (as described above).
- the metathesis is a cross-metathesis of any of the aforementioned unsaturated triglyceride species with another olefin, e.g., an alkene.
- the alkene used in the cross-metathesis is a lower alkene, such as ethylene, propylene, 1-butene, 2-butene, etc.
- the alkene is ethylene.
- the alkene is propylene.
- the alkene is 1-butene.
- the alkene is 2-butene.
- Metathesis reactions can provide a variety of useful products, when employed in the methods disclosed herein.
- terminal olefins and internal olefins may be derived from a natural oil feedstock, in addition to other valuable compositions.
- a number of valuable compositions can be targeted through the self-metathesis reaction of a natural oil feedstock, or the cross-metathesis reaction of the natural oil feedstock with a low-molecular-weight olefin or mid-weight olefin, in the presence of a metathesis catalyst.
- Such valuable compositions can include fuel compositions, detergents, surfactants, and other specialty chemicals.
- transesterified products i.e., the products formed from transesterifying an ester in the presence of an alcohol
- transesterified products may also be targeted, non-limiting examples of which include: fatty acid methyl esters (“FAMEs”); biodiesel; 9-decenoic acid (“9DA”) esters, 9-undecenoic acid (“9UDA”) esters, and/or 9-dodecenoic acid (“9DDA”) esters; 9DA, 9UDA, and/or 9DDA; alkali metal salts and alkaline earth metal salts of 9DA, 9UDA, and/or 9DDA; dimers of the transesterified products; and mixtures thereof.
- FAMEs fatty acid methyl esters
- 9DA 9-decenoic acid
- 9UDA 9-undecenoic acid
- 9DDA 9-dodecenoic acid
- the methods disclosed herein can employ multiple metathesis reactions.
- the multiple metathesis reactions occur sequentially in the same reactor.
- a glyceride containing linoleic acid can be metathesized with a terminal lower alkene (e.g., ethylene, propylene, 1-butene, and the like) to form 1,4-decadiene, which can be metathesized a second time with a terminal lower alkene to form 1,4-pentadiene.
- the multiple metathesis reactions are not sequential, such that at least one other step (e.g., transesterification, hydrogenation, etc.) can be performed between the first metathesis step and the following metathesis step.
- multiple metathesis procedures can be used to obtain products that may not be readily obtainable from a single metathesis reaction using available starting materials.
- multiple metathesis can involve self-metathesis followed by cross-metathesis to obtain metathesis dimers, trimmers, and the like.
- multiple metathesis can be used to obtain olefin and/or ester components that have chain lengths that may not be achievable from a single metathesis reaction with a natural oil triglyceride and typical lower alkenes (e.g., ethylene, propylene, 1-butene, 2-butene, and the like).
- Such multiple metathesis can be useful in an industrial-scale reactor, where it may be easier to perform multiple metathesis than to modify the reactor to use a different alkene.
- the metathesis process can be conducted under any conditions adequate to produce the desired metathesis products. For example, stoichiometry, atmosphere, solvent, temperature, and pressure can be selected by one skilled in the art to produce a desired product and to minimize undesirable byproducts.
- the metathesis process may be conducted under an inert atmosphere.
- an inert gaseous diluent can be used in the gas stream.
- the inert atmosphere or inert gaseous diluent typically is an inert gas, meaning that the gas does not interact with the metathesis catalyst to impede catalysis to a substantial degree.
- inert gases include helium, neon, argon, and nitrogen, used individually or in with each other and other inert gases.
- the rector design for the metathesis reaction can vary depending on a variety of factors, including, but not limited to, the scale of the reaction, the reaction conditions (heat, pressure, etc.), the identity of the catalyst, the identity of the materials being reacted in the reactor, and the nature of the feedstock being employed.
- Suitable reactors can be designed by those of skill in the art, depending on the relevant factors, and incorporated into a refining process such, such as those disclosed herein.
- the metathesis reactions disclosed herein generally occur in the presence of one or more metathesis catalysts. Such methods can employ any suitable metathesis catalyst.
- the metathesis catalyst in this reaction may include any catalyst or catalyst system that catalyzes a metathesis reaction. Any known metathesis catalyst may be used, alone or in combination with one or more additional catalysts. Examples of metathesis catalysts and process conditions are described in US 2011/0160472, incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail.
- a number of the metathesis catalysts described in US 2011/0160472 are presently available from Materia, Inc. (Pasadena, Calif.).
- the metathesis catalyst includes a Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a second-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom.
- the metathesis catalyst includes a second-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom.
- the metathesis catalyst includes one or a plurality of the ruthenium carbene metathesis catalysts sold by Materia, Inc. of Pasadena, Calif. and/or one or more entities derived from such catalysts.
- Representative metathesis catalysts from Materia, Inc. for use in accordance with the present teachings include but are not limited to those sold under the following product numbers as well as combinations thereof: product no. C823 (CAS no. 172222-30-9), product no. C848 (CAS no. 246047-72-3), product no. C601 (CAS no.
- the metathesis catalyst includes a molybdenum and/or tungsten carbene complex and/or an entity derived from such a complex.
- the metathesis catalyst includes a Schrock-type olefin metathesis catalyst and/or an entity derived therefrom.
- the metathesis catalyst includes a high-oxidation-state alkylidene complex of molybdenum and/or an entity derived therefrom.
- the metathesis catalyst includes a high-oxidation-state alkylidene complex of tungsten and/or an entity derived therefrom.
- the metathesis catalyst includes molybdenum (VI).
- the metathesis catalyst includes tungsten (VI).
- the metathesis catalyst includes a molybdenum- and/or a tungsten-containing alkylidene complex of a type described in one or more of (a) Angew. Chem. Int. Ed. Engl., 2003, 42, 4592-4633; (b) Chem. Rev., 2002, 102, 145-179; and/or (c) Chem. Rev., 2009, 109, 3211-3226, each of which is incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail.
- the metathesis catalyst is dissolved in a solvent prior to conducting the metathesis reaction.
- the solvent chosen may be selected to be substantially inert with respect to the metathesis catalyst.
- substantially inert solvents include, without limitation: aromatic hydrocarbons, such as benzene, toluene, xylenes, etc.; halogenated aromatic hydrocarbons, such as chlorobenzene and dichlorobenzene; aliphatic solvents, including pentane, hexane, heptane, cyclohexane, etc.; and chlorinated alkanes, such as dichloromethane, chloroform, dichloroethane, etc.
- the solvent comprises toluene.
- the metathesis catalyst is not dissolved in a solvent prior to conducting the metathesis reaction.
- the catalyst instead, for example, can be slurried with the natural oil or unsaturated ester, where the natural oil or unsaturated ester is in a liquid state. Under these conditions, it is possible to eliminate the solvent (e.g., toluene) from the process and eliminate downstream olefin losses when separating the solvent.
- the metathesis catalyst may be added in solid state form (and not slurried) to the natural oil or unsaturated ester (e.g., as an auger feed).
- the metathesis reaction temperature may, in some instances, be a rate-controlling variable where the temperature is selected to provide a desired product at an acceptable rate.
- the metathesis reaction temperature is greater than ⁇ 40° C., or greater than ⁇ 20° C., or greater than 0° C., or greater than 10° C.
- the metathesis reaction temperature is less than 200° C., or less than 150° C., or less than 120° C.
- the metathesis reaction temperature is between 0° C. and 150° C., or is between 10° C. and 120° C.
- the metathesis reaction can be run under any desired pressure. In some instances, it may be desirable to maintain a total pressure that is high enough to keep the cross-metathesis reagent in solution. Therefore, as the molecular weight of the cross-metathesis reagent increases, the lower pressure range typically decreases since the boiling point of the cross-metathesis reagent increases.
- the total pressure may be selected to be greater than 0.1 atm (10 kPa), or greater than 0.3 atm (30 kPa), or greater than 1 atm (100 kPa). In some embodiments, the reaction pressure is no more than about 70 atm (7000 kPa), or no more than about 30 atm (3000 kPa). In some embodiments, the pressure for the metathesis reaction ranges from about 1 atm (100 kPa) to about 30 atm (3000 kPa).
- the disclosed compositions are cleaning compositions, such as compositions useful for cleaning materials and/or deposits that contain petroleum waxes (e.g., macrocrystalline and/or microcrystalline waxes) and/or asphaltenes. Such materials often accumulate on equipment associated with the extraction and/or transport of extracted fluids, such as oil and gas. Therefore, in some embodiments, the compositions disclosed herein are useful for cleaning various surfaces on oil and/or gas rigs (e.g., tubing, pipes, tanks, and the like) and various mechanical devices (e.g., gauges, valves, regulators, and the like). In some embodiments, the compositions disclosed herein are useful for cleaning various surfaces of equipment used to transport oil and gas, such as pipes.
- oil and/or gas rigs e.g., tubing, pipes, tanks, and the like
- various mechanical devices e.g., gauges, valves, regulators, and the like.
- the compositions disclosed herein are useful for cleaning various surfaces of equipment used to transport oil and gas, such as pipes.
- the disclosure provides methods for cleaning a surface, comprising: providing a surface having a material and/or a deposit disposed thereon, the material and/or deposit comprising asphtaltenes, petroleum waxes, or a combination thereof; and contacting the material and/or deposit with any of the compositions disclosed herein.
- the surface is a surface of a rig, such as an oil rig (e.g., on-land drilling rig or off-shore drilling platform).
- the surface is the interior wall of a pipe, the interior wall of a tank, the interior wall of a tube, or a surface of a piece of mechanical equipment, such as a gauge, valve, or regulator.
- the materials and/or deposit comprises asphaltehes.
- the material and/or deposit comprises petroleum waxes, such as macrocrystalline waxes (paraffin waxes) and/or microcrystalline waxes.
- compositions are not limited to any particular type of surface, including both hard and porous surfaces.
- the compositions can be used effectively on a variety of surfaces, including, but not limited to, plastics, other polymeric materials, metals, wood, glass, ceramic, rock (e.g., granite, marble, etc.), and various synthetic countertop materials.
- an effective amount or a cleaning-effective amount of the composition is used. This amount can be determined readily based on the particular application, based on factors such as the nature of the surface, the nature and/or amount of the material to be removed, and the like.
- the disclosed compositions are petroleum additive compositions, meaning that they are added to a petroleum fluid (e.g., crude oil or partially refined crude oil), optionally with other materials.
- a petroleum fluid e.g., crude oil or partially refined crude oil
- the compositions are added for the purpose of preventing or inhibiting the development of various agglomerates in the petroleum fluid.
- agglomerates include, but are not limited to, materials that include asphaltenes, petroleum waxes (macrocrystalline waxes and/or microcrystalline waxes), or combinations thereof.
- the additive compositions can be present in any suitable amount.
- the petroleum fluid nevertheless makes up a major portion of the resulting composition.
- the petroleum fluid makes up at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, or at least 97 percent by weight, or at least 98 percent by weight, or at least 99 percent by weight of the petroleum composition, based on the total weight of the petroleum composition.
- the petroleum additive composition makes up no more than 5 percent by weight, or no more than 3 percent by weight, or no more than 2 percent by weight, or no more than 1 percent by weight, of the petroleum composition, based on the total weight of the petroleum composition.
- the disclosure provides methods for reducing agglomerates (e.g., reducing agglomerate formation) in a petroleum fluid, comprising: providing a petroleum fluid comprising one or more agglomerating materials, the agglomerating materials comprising asphaltenes, petroleum waxes, or a combination thereof; and introducing to the petroleum fluid the petroleum additive composition of any of the embodiments disclosed herein, e.g., to form a treated petroleum fluid.
- the introducing comprises adding the petroleum additive composition to the petroleum fluid in an amount such that the petroleum additive composition makes up no more than 5 percent by weight, or no more than 3 percent by weight, or no more than 2 percent by weight, or no more than 1 percent by weight, of the treated petroleum composition, based on the total weight of the treated petroleum composition.
- the petroleum fluid comprises crude oil or a partially refined crude oil.
- the one or more agglomerating materials comprise asphaltenes.
- the one or more agglomerating materials petroleum waxes, such as macrocrystalline waxes, microcrystalline waxes, or combinations thereof.
- an effective amount or an agglomerate-reducing-effective amount of the composition is used. This amount can be determined readily based on the particular application, based on factors such as the nature of the petroleum fluid, and the nature and/or amount of the agglomerating materials present in the petroleum fluid.
- the disclosed compositions are suitable for use as hydraulic fracturing fluids.
- the compositions are suitable for injection into a subterranean gas well (e.g., under hydraulic pressure) to create fractures through which natural gas (or, in some instances, oil) can flow.
- natural gas or, in some instances, oil
- gas is often referred to as shale gas, tight gas, etc.
- such compositions include a major amount of water.
- the compositions include at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, water, based on the total weight of liquid ingredients in the composition.
- such liquid compositions are mixed or slurried with solid components, such as sand.
- the compositions can include any suitable amount of the olefinic ester compositions of any of the above embodiments.
- the compositions include up to 5 percent by weight, or up to 3 percent by weight, or up to 2 percent by weight, or up to 1 percent by weight, or up to 0.5 percent by weight, of olefinic ester compounds, based on the total weight of liquid ingredients in the composition.
- the compositions include at least 0.01 percent by weight, or at least 0.05 percent by weight, or at least 0.1 percent by weight, of olefinic ester compounds, based on the total weight of liquid ingredients in the composition.
- the disclosure provides methods for treating a gas well, including: providing a hydraulic fracturing composition according to the above embodiments, which is optionally mixed or slurried with solid particles (e.g., sand particles); and introducing the hydraulic fracturing composition into a subterranean gas well, e.g., injecting under hydraulic pressure.
- a hydraulic fracturing composition according to the above embodiments, which is optionally mixed or slurried with solid particles (e.g., sand particles); and introducing the hydraulic fracturing composition into a subterranean gas well, e.g., injecting under hydraulic pressure.
- composition 1A included methyl 9-decenoate in its substantially pure form (>97 wt % pure).
- Composition 1B included methyl 9-dodecenoate in its substantially pure form (>97 wt % pure).
- Composition 1C included: 33.0 wt % methyl 9-decenoate; 46.9 wt % methyl 9-dodecenoate; 1.6 wt %
- Composition 1D included: 11.9 wt % methyl 9-decenoate; 18.6 wt % methyl 9-dodecenoate; 1.7 wt % C 13 olefinic methyl ester; 0.1 wt % methyl myristate; 3.7 wt % C 15 olefinic methyl ester; 48.8 wt % methyl palmitate; 7.8 wt % methyl stearate; 5.3 wt % dimethyl 9-octadecenedioate; 1.2 wt % alkenes; and trace amounts of other ingredients. In instances where the samples contain more than one ingredient, the samples were mixed to ensure homogeneity.
- Solvency power was determined by calculating kauri-butanol (K b ) values (ASTM D1133) for Compositions 1A-1D.
- K b values were calculated according to ASTM D1133, which is incorporated herein by reference.
- a butanolic solution of kauri resin was titrated with each composition until the admixture reaches a certain turbidity. Higher values correlate with improved performance as a solvent.
- Table 1 shows the measured K b values for Compositions 1A-1D. K b values were also measured for certain other solvents as a basis of comparison.
- Bitumen is a composite mixture of relatively high-molecular-weight hydrocarbons, maltenes, and asphaltenes, all of which are present in crude oil. Bitumen is therefore a representative composition of certain deposits that may develop in oil wells, and that may need to be cleaned away by the use of certain solvents. Bitumen removal was measured according to ASTM D4488-95 A5, which is incorporated herein by reference, for each of the compositions as well as methyl soyate and d-limonene (as a comparison). Bitumen removal was measured in terms of the number of Gardner scrub cycles necessary to achieve at least 80% removal. Lower values correlate with improved performance. Results are shown in Table 2.
- composition 1B Various asphaltene and rig wash removal formulations were made using Composition 1B. Such compositions can be useful for oil/gas well-related applications, especially for breaking up asphaltene deposits or washing above-the ground equipment.
- Table 3 shows the makeup of various compositions (in percent by weight). It should also be noted, the compositions identified as Composition 1B may, in certain optional embodiments, include some small amount of deodorizer. The compositions are described as 2A to 2G.
- ACTRASOL products are supplied by Afton Chemical Corp., Richmond, Virginia, USA.
- TOMADOL products are supplied by Air Products, Inc., Allentown, Pennsylvania, USA.
- BIOSOFT products are supplied by Stepan Co., Northfield, Illinois, USA.
- STEPANOL products are supplied by Stepan Co., Northfield, Illinois, USA.
- ALCOSPERSE products are supplied by AkzoNobel Surface Chemistry LLC, Chicago, Illinois, USA.
- Sample 3A contained 0.1 g. of gilsonite and 4.9 g. of toluene.
- Sample 3B contained 0.1 g. of gilsonite and 4.9 g. of the following solution: 85 wt % methyl 9-dodecenoic acid, 5 wt % cyclohexanone, 3 wt % oleic acid, and 7 wt % TOMADOL 25-9.
- Sample 3C contained 0.1 g.
- FIG. 2 shows the spreading of the composition on the filter paper, with Composition 3A on the far left, Composition 3B in the middle, and Composition 3C on the far right. The broader spreading indicated greater dissolution of the gilsonite by the solvent.
- composition 3A 5 wt % wax in oil
- Composition 3B 5 wt % wax in oil doped with 600 ppm
- Composition 1B and 300 ppm BASOFLUX RD4120 Composition 3C: 5 wt % wax in oil doped with 600 ppm
- Composition 3D 5 wt % wax doped with 300 ppm BASOFLUX RD4120
- Composition 3E oil.
- FIG. 3 shows the rheogram of the results.
- the vertical axis is viscosity, measured in Pa ⁇ s, and the horizontal axis is temperature measured in ° C.
- the curve for Composition 3A is labeled as A
- the curve for Composition 3B is labeled as B
- the curve for Composition 3C is labeled as C
- the curve for Composition 3D is labeled as D
- the curve for Composition 3E is labeled as E. Note that the labels for each curve appear immediately above the respective curve.
- the curve for Composition 3B is labeled twice to show its continuity as it crosses over the curve for Composition 3A.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Detergent Compositions (AREA)
- Lubricants (AREA)
Abstract
Description
- The present application claims the benefit of priority of United States Provisional Application Nos.: 61/928,290, filed Jan. 16, 2014; 62/006,655, filed Jun. 2, 2014; 62/075,055, filed Nov. 4, 2014; 62/081,933, filed Nov. 19, 2014; and 62/089,665, filed Dec. 9, 2014. Each of the foregoing applications is hereby incorporated by reference as though fully set forth herein in its entirety.
- Compositions for treating high-molecular-weight components of a petroleum fluid are generally disclosed. In some embodiments, such compositions include olefinic ester compounds, such as alkyl esters of C10-18 unsaturated fatty acids. In some embodiments, such compositions are added to a petroleum fluid to improve the rheological properties, e.g., breaking up or inhibiting the precipitation of high-molecular-weight components of petroleum fluids, such as waxes, asphaltenes, and the like. In some other embodiments, such compositions are used for removing deposits of such high-molecular-weight components from the surfaces of equipment used for extracting or transporting petroleum or natural gas. In some embodiments, the olefinic ester compounds are derived from a natural oil or a natural oil derivative, for example, by catalytic olefin metathesis.
- Extracted carbonaceous fluids, such as petroleum fluids or natural gas, can contain a variety of high-molecular-weight components that precipitate out of the extracted fluid or that deposit onto the equipment used to extract and transport such fluids (e.g., pipelines, tanks, downhole pipes and tubes, and above-ground extraction equipment, such as rigs). The precipitation and deposition of these materials can cause significant problems in extracting these fluids and transporting them away from the extraction site for refinement.
- Petroleum waxes are one class of high-molecular-weight components that are typically present in extracted carbonaceous fluids (e.g., petroleum fluids), and which can cause the problems described above. Two different kinds of wax formations are common: paraffin waxes and microcrystalline waxes. Paraffin waxes are macrocrystalline waxes that tend to precipitate out as large, flat plates. They are made up primarily of straight-chain alkanes having at least 18 carbon atoms up to 75 or more carbon atoms. In most instances, these waxes have molecular weights that range from about 300 to 1200 amu, and more typically from about 300 to 600 amu. In contrast, microcrystalline waxes tend to precipitate out as needle-like structures, and are made up primarily of branched-chain and/or cyclic alkanes. In most instances, such microcrystalline waxes have molecular weights that range from about 300 up to 2500 amu. The amount of various wax-forming components in an extracted fluid will vary from well to well.
- At elevated temperatures, these waxes tend to remain dissolved in the extracted fluid. But as the temperature of the fluid drops, nucleation occurs and wax deposits develop and grow. The wax appearance temperature (WAT) for a given extracted fluid is the temperature at which the wax molecules begin to cluster. Therefore, it is desirable to have a lower WAT, so as to avoid the development of waxy deposits.
- Asphaltenes are another class of high-molecular-weight components that are typically present in extracted carbonaceous fluids (e.g., petroleum fluids), and which can cause the problems described above. Asphaltenes are high-molecular-weight aromatic agglomerates that are generally soluble in light aromatics (e.g., benzene, toluene, etc.), but which are generally insoluble in light paraffins (e.g., n-pentane, n-heptane, etc.). Asphaltenes generally desorb from the extracted fluid as the pressure on the fluid drops, such as when the fluid moves through the downhole tubing, through pipelines, etc.
- Petroleum waxes and asphaltenes may be soluble in certain organic solvents. However, in many instances, such solvents have a high volatile organic content (VOC), and thereby may contribute to greenhouse gas production and ozone depletion. In some instances, traditional high-VOC solvents can also be carcinogenic, teratogenic, toxic, or mutagenic. Therefore, a number of common solvents have come under increased regulatory scrutiny and therefore suffer from decreased use. Such solvents include aromatics (e.g., benzene, toluene, xylenes, and the like), ketones (e.g., methyl ethyl ketone, methyl isobutyl ketone, and the like), halogenated organics (e.g., dichloromethane, perchloroethylene, and the like), glycol ethers, and alcohols (e.g., methanol, isopropanol, ethylene glycol, and the like). Therefore, it is generally undesirable these days to employ such solvents to address problems associated with petroleum waxes and asphaltenes.
- Certain derivatives of renewable feedstocks can provide more suitable alternatives to high-VOC solvents. For example, fatty acid alkyl esters (e.g., from the transesterification of vegetable oils, animal fats, or other lipids) can provide environmentally friendly alternatives to traditional oxygenated solvents. Methyl soyate, for example, has a low VOC value, a high flash point, a low toxicity, and a high biodegradability. Terpene oils from citrus and pine (d-limonene and pinene, respectively) may also serve as suitable alternatives to certain traditional organic solvents. Such renewable solvents are not without their problems, however. For example, d-limonene and dipentene (a racemate of d-limonene) are both acute and chronic aquatic toxins, and also have an irritating and sensitizing effect on the skin. Further, d-limonene is highly inflammable (e.g., more so than petroleum distillates) and can be subject to fluctuations in supply and price. Fatty acid alkyl esters can overcome some of these deficiencies of terpene oils, but can also exhibit poor solvency relative to certain incumbents.
- In some cases, specialized polymers have been developed to help disperse petroleum waxes in extracted fluids, thereby inhibiting their ability to agglomerate and have a negative effect on the flow properties of the fluid and accumulate as deposits onto various equipment. But these polymers can have the effect of increasing the viscosity of the fluid. So, while use of these polymers may solve certain problems associated with wax formation, they create other issues.
- Thus, there is a continuing need to develop solvent compounds and compositions that are renewably sourced, exhibit high solvency toward petroleum waxes and asphaltenes, and have a desirable health and safety profile.
- In a first aspect, the disclosure provides compositions that include olefinic ester compounds, wherein the olefinic ester compounds are esters of C10-18 carboxylic acids having one or more carbon-carbon double bonds. In some embodiments, the esters are C1-6 alkanol esters, such methyl esters, ethyl esters, isopropyl esters, and the like. Further, in some embodiments, the C10-18 carboxylic acids are C10-12 carboxylic acids having one to three carbon-carbon double bonds. In some embodiments, the compositions consist essentially of or consist of said olefinic ester compounds. In some embodiments, the compositions include one or more surfactants, such as non-ionic surfactants. In some embodiments, the surfactants have a hydrophilic-lipophilic balance (HLB) ranging from 4 to 10, or from 5 to 9, and a molecular weight ranging from 200 to 800 amu, or from 300 to 600 amu.
- In a second aspect, the compositions of the first aspect are cleaning compositions, such as compositions suitable for use in cleaning gas- or oil-extraction equipment, such as cleaning certain materials or deposits from rigs, tuning, pipes, valves, and the like. In some embodiments, the materials to be removed include asphaltenes and/or petroleum waxes (e.g., macrocrystalline waxes and/or microcrystalline waxes). In some such embodiments, the compositions include a surfactant, such as a non-ionic surfactant.
- In a third aspect, the compositions of the first aspect are petroleum additive compositions. In some such embodiments, the compositions are added to an extracted fluid (e.g., crude oil) to inhibit or prevent the formation and/or precipitation of deposits that include petroleum waxes and/or asphaltenes. In some such embodiments, the compositions include a surfactant, such as a non-ionic surfactant.
- In a fourth aspect, the disclosure provides a petroleum composition, including: a petroleum fluid; and a petroleum additive composition of the third aspect. In some embodiments, the petroleum additive composition makes up no more than 5 percent by weight of the petroleum composition, based on the total weight of the composition.
- In a fifth aspect, the disclosure provides methods for cleaning a surface, including: providing a surface having a material (e.g., a deposit) disposed thereon, the material including asphaltenes, petroleum waxes, or a combination thereof; and contacting the material with the composition of any of the foregoing aspects. In some embodiments, the surface is a surface of a component of an oil rig, such as the interior wall of a pipe, tube, or tank, or a gauge, valve, pressure regulator, and the like.
- In a sixth aspect, the disclosure provides methods of reducing agglomerates in a petroleum fluid, comprising: providing a petroleum fluid including one or more agglomerating materials (e.g., asphaltenes, petroleum waxes, or combinations thereof); and introducing to the petroleum fluid the petroleum additive composition of the third aspect. In some embodiments, the petroleum fluid includes crude oil or partially refined crude oil.
- In a seventh aspect, the disclosure provides compositions where the compositions of the first aspect are hydraulic fracturing compositions. In some embodiments, such compositions include a major amount of water. In some embodiments, the compositions are mixed or slurried with solid particles, such as sand particles. In some embodiments, such compositions include the olefinic ester compounds in amounts up to about 5 percent by weight, based on the total weight of liquid ingredients in the composition.
- In an eighth aspect, the disclosure provides methods for treating a gas well (e.g., a shale gas well or a tight gas well), including: providing a hydraulic fracturing composition according to the seventh aspect; and introducing the hydraulic fracturing composition to a subterranean gas well. In some embodiments, the introducing includes injecting the hydraulic fracturing composition to the subterranean gas well under hydraulic pressure.
- Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
- The following drawings are provided for purposes of illustrating various embodiments of the compositions and methods disclosed herein. The drawings are provided for illustrative purposes only, and are not intended to describe any preferred compositions or preferred methods, or to serve as a source of any limitations on the scope of the claimed inventions.
-
FIG. 1 shows an example of an olefinic ester compound of certain embodiments disclosed herein, where R1 is a C9-17 alkenyl group and R2 is a C1-6 alkyl group. -
FIG. 2 shows the results of gilsonite dissolution tests for two test compositions against toluene. -
FIG. 3 shows a rheogram for oil compositions containing an amount of the compositions disclosed herein as an additive. - The following description recites various aspects and embodiments of the compositions and methods disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions and methods. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
- The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
- As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
- As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure, and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
- As used herein, “natural oil,” “natural feedstock,” or “natural oil feedstock” refer to oils derived from plants or animal sources. These terms include natural oil derivatives, unless otherwise indicated. The terms also include modified plant or animal sources (e.g., genetically modified plant or animal sources), unless indicated otherwise. Examples of natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative non-limiting examples of vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture. In some embodiments, the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides). In some such embodiments, the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.
- As used herein, “natural oil derivatives” refers to the compounds or mixtures of compounds derived from a natural oil using any one or combination of methods known in the art. Such methods include but are not limited to saponification, fat splitting, transesterification, esterification, hydrogenation (partial, selective, or full), isomerization, oxidation, and reduction. Representative non-limiting examples of natural oil derivatives include gums, phospholipids, soapstock, acidulated soapstock, distillate or distillate sludge, fatty acids and fatty acid alkyl ester (e.g. non-limiting examples such as 2-ethylhexyl ester), hydroxy substituted variations thereof of the natural oil. For example, the natural oil derivative may be a fatty acid methyl ester (“FAME”) derived from the glyceride of the natural oil. In some embodiments, a feedstock includes canola or soybean oil, as a non-limiting example, refined, bleached, and deodorized soybean oil (i.e., RBD soybean oil). Soybean oil typically comprises about 95% weight or greater (e.g., 99% weight or greater) triglycerides of fatty acids. Major fatty acids in the polyol esters of soybean oil include saturated fatty acids, as a non-limiting example, palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids, as a non-limiting example, oleic acid (9-octadecenoic acid), linoleic acid (9, 12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).
- As used herein, “metathesis catalyst” includes any catalyst or catalyst system that catalyzes an olefin metathesis reaction.
- As used herein, “metathesize” or “metathesizing” refer to the reacting of a feedstock in the presence of a metathesis catalyst to form a “metathesized product” comprising new olefinic compounds, i.e., “metathesized” compounds. Metathesizing is not limited to any particular type of olefin metathesis, and may refer to cross-metathesis (i.e., co-metathesis), self-metathesis, ring-opening metathesis, ring-opening metathesis polymerizations (“ROMP”), ring-closing metathesis (“RCM”), and acyclic diene metathesis (“ADMET”). In some embodiments, metathesizing refers to reacting two triglycerides present in a natural feedstock (self-metathesis) in the presence of a metathesis catalyst, wherein each triglyceride has an unsaturated carbon-carbon double bond, thereby forming a new mixture of olefins and esters which may include a triglyceride dimer. Such triglyceride dimers may have more than one olefinic bond, thus higher oligomers also may form. Additionally, in some other embodiments, metathesizing may refer to reacting an olefin, such as ethylene, and a triglyceride in a natural feedstock having at least one unsaturated carbon-carbon double bond, thereby forming new olefinic molecules as well as new ester molecules (cross-metathesis).
- As used herein, “hydrocarbon” refers to an organic group composed of carbon and hydrogen, which can be saturated or unsaturated, and can include aromatic groups. The term “hydrocarbyl” refers to a monovalent or polyvalent hydrocarbon moiety.
- As used herein, “olefin” or “olefins” refer to compounds having at least one unsaturated carbon-carbon double bond. In certain embodiments, the term “olefins” refers to a group of unsaturated carbon-carbon double bond compounds with different carbon lengths. Unless noted otherwise, the terms “olefin” or “olefins” encompasses “polyunsaturated olefins” or “poly-olefins,” which have more than one carbon-carbon double bond. As used herein, the term “monounsaturated olefins” or “mono-olefins” refers to compounds having only one carbon-carbon double bond. A compound having a terminal carbon-carbon double bond can be referred to as a “terminal olefin” or an “alpha-olefin,” while an olefin having a non-terminal carbon-carbon double bond can be referred to as an “internal olefin.” In some embodiments, the alpha-olefin is a terminal alkene, which is an alkene (as defined below) having a terminal carbon-carbon double bond. Additional carbon-carbon double bonds can be present.
- The number of carbon atoms in any group or compound can be represented by the terms: “Cz”, which refers to a group of compound having z carbon atoms; and “Cx-y”, which refers to a group or compound containing from x to y, inclusive, carbon atoms. For example, “C1-6 alkyl” represents an alkyl chain having from 1 to 6 carbon atoms and, for example, includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, and n-hexyl. As a further example, a “C4-10 alkene” refers to an alkene molecule having from 4 to 10 carbon atoms, and, for example, includes, but is not limited to, 1-butene, 2-butene, isobutene, 1-pentene, 1-hexene, 3-hexene, 1-heptene, 3-heptene, 1-octene, 4-octene, 1-nonene, 4-nonene, and 1-decene.
- As used herein, the term “low-molecular-weight olefin” may refer to any one or combination of unsaturated straight, branched, or cyclic hydrocarbons in the C2-14 range. Low-molecular-weight olefins include alpha-olefins, wherein the unsaturated carbon-carbon bond is present at one end of the compound. Low-molecular-weight olefins may also include dienes or trienes. Low-molecular-weight olefins may also include internal olefins or “low-molecular-weight internal olefins.” In certain embodiments, the low-molecular-weight internal olefin is in the C4-14 range. Examples of low-molecular-weight olefins in the C2-6 range include, but are not limited to: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene. Non-limiting examples of low-molecular-weight olefins in the C7-9 range include 1,4-heptadiene, 1-heptene, 3,6-nonadiene, 3-nonene, 1,4,7-octatriene. Other possible low-molecular-weight olefins include styrene and vinyl cyclohexane. In certain embodiments, it is preferable to use a mixture of olefins, the mixture comprising linear and branched low-molecular-weight olefins in the C4-10 range. Olefins in the C4-10 range can also be referred to as “short-chain olefins,” which can be either branched or unbranched. In one embodiments, it may be preferable to use a mixture of linear and branched C4 olefins (i.e., combinations of: 1-butene, 2-butene, and/or isobutene). In other embodiments, a higher range of C11-14 may be used.
- In some instances, the olefin can be an “alkene,” which refers to a straight- or branched-chain non-aromatic hydrocarbon having 2 to 30 carbon atoms and one or more carbon-carbon double bonds, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed. A “monounsaturated alkene” refers to an alkene having one carbon-carbon double bond, while a “polyunsaturated alkene” refers to an alkene having two or more carbon-carbon double bonds. A “lower alkene,” as used herein, refers to an alkene having from 2 to 10 carbon atoms.
- As used herein, “ester” or “esters” refer to compounds having the general formula: R—COO—R′, wherein R and R′ denote any organic group (such as alkyl, aryl, or silyl groups) including those bearing heteroatom-containing substituent groups. In certain embodiments, R and R′ denote alkyl, alkenyl, aryl, or alcohol groups. In certain embodiments, the term “esters” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths. In certain embodiments, the esters may be esters of glycerol, which is a trihydric alcohol. The term “glyceride” can refer to esters where one, two, or three of the —OH groups of the glycerol have been esterified.
- It is noted that an olefin may also comprise an ester, and an ester may also comprise an olefin, if the R or R′ group in the general formula R—COO—R′ contains an unsaturated carbon-carbon double bond. Such compounds can be referred to as “unsaturated esters” or “olefin ester” or “olefinic ester compounds.” Further, a “terminal olefinic ester compound” may refer to an ester compound where R has an olefin positioned at the end of the chain. An “internal olefin ester” may refer to an ester compound where R has an olefin positioned at an internal location on the chain. Additionally, the term “terminal olefin” may refer to an ester or an acid thereof where R′ denotes hydrogen or any organic compound (such as an alkyl, aryl, or silyl group) and R has an olefin positioned at the end of the chain, and the term “internal olefin” may refer to an ester or an acid thereof where R′ denotes hydrogen or any organic compound (such as an alkyl, aryl, or silyl group) and R has an olefin positioned at an internal location on the chain.
- As used herein, “acid,” “acids,” “carboxylic acid,” or “carboxylic acids” refer to compounds having the general formula: R—COOH, wherein R denotes any organic moiety (such as alkyl, aryl, or silyl groups), including those bearing heteroatom-containing substituent groups. In certain embodiments, R denotes alkyl, alkenyl, aryl, or alcohol groups. In certain embodiments, the term “acids” or “carboxylic acids” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths.
- As used herein, “alcohol” or “alcohols” refer to compounds having the general formula: R—OH, wherein R denotes any organic moiety (such as alkyl, aryl, or silyl groups), including those bearing heteroatom-containing substituent groups. In certain embodiments, R denotes alkyl, alkenyl, aryl, or alcohol groups. In certain embodiments, the term “alcohol” or “alcohols” may refer to a group of compounds with the general formula described above, wherein the compounds have different carbon lengths. As used herein, the term “alkanol” refers to alcohols where R is an alkyl group.
- As used herein, “alkyl” refers to a straight or branched chain saturated hydrocarbon having 1 to 30 carbon atoms, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed. Examples of “alkyl,” as used herein, include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, n-hexyl, and 2-ethylhexyl. In some instances, the “alkyl” group can be divalent, in which case the group can alternatively be referred to as an “alkylene” group.
- As used herein, “alkenyl” refers to a straight or branched chain non-aromatic hydrocarbon having 2 to 30 carbon atoms and having one or more carbon-carbon double bonds, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed. Examples of “alkenyl,” as used herein, include, but are not limited to, ethenyl, 2-propenyl, 2-butenyl, and 3-butenyl. In some instances, the “alkenyl” group can be divalent, in which case the group can alternatively be referred to as an “alkenylene” group.
- As used herein, “halogen” or “halo” refers to a fluorine, chlorine, bromine, and/or iodine atom. In some embodiments, the terms refer to fluorine and/or chlorine.
- As used herein, “substituted” refers to substitution of one or more hydrogen atoms of the designated moiety with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated, provided that the substitution results in a stable or chemically feasible compound. A stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about −80° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week. As used herein, the phrases “substituted with one or more . . . ” or “substituted one or more times . . . ” refer to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.
- As used herein, “yield” refers to the amount of reaction product formed in a reaction. When expressed with units of percent (%), the term yield refers to the amount of reaction product actually formed, as a percentage of the amount of reaction product that would be formed if all of the limiting reactant were converted into the product.
- As used herein, “mix” or “mixed” or “mixture” refers broadly to any combining of two or more compositions. The two or more compositions need not have the same physical state; thus, solids can be “mixed” with liquids, e.g., to form a slurry, suspension, or solution. Further, these terms do not require any degree of homogeneity or uniformity of composition. This, such “mixtures” can be homogeneous or heterogeneous, or can be uniform or non-uniform. Further, the terms do not require the use of any particular equipment to carry out the mixing, such as an industrial mixer.
- As used herein, “hydrophilic-lipophilic balance” or “HLB,” with reference to surfactants refers to the property when determined by Griffin's method: HLB=20*(Mh/M), where Mh is the molecular weight of the hydrophilic portion of the molecule and M is the molecular weight of the molecule as a whole. Various commercial test kits can be purchased that permit one to measure the HLB of a surfactant by comparing the properties of the surfactant in question with the properties of a surfactant having a known HLB value.
- As used herein, “extracted fluid” refers to any hydrocarbon-containing fluid that is extracted from subterranean deposits. Extracted fluids include, but are not limited to, crude oil and natural gas that is extracted from subterranean deposits.
- As used herein, “petroleum wax” refers to C18+ olefins, such as those typically contained in extracted fluids.
- As used herein, “asphaltenes” refers to fused heteroaromatic compounds, such as those typically contained in extracted fluids.
- As used herein, “optionally” means that the subsequently described event(s) may or may not occur. In some embodiments, the optional event does not occur. In some other embodiments, the optional event does occur one or more times.
- As used herein, “comprise” or “comprises” or “comprising” or “comprised of” refer to groups that are open, meaning that the group can include additional members in addition to those expressly recited. For example, the phrase, “comprises A” means that A must be present, but that other members can be present too. The terms “include,” “have,” and “composed of” and their grammatical variants have the same meaning. In contrast, “consist of” or “consists of” or “consisting of” refer to groups that are closed. For example, the phrase “consists of A” means that A and only A is present.
- As used herein, “or” is to be given its broadest reasonable interpretation, and is not to be limited to an either/or construction. Thus, the phrase “comprising A or B” means that A can be present and not B, or that B is present and not A, or that A and B are both present. Further, if A, for example, defines a class that can have multiple members, e.g., A1 and A2, then one or more members of the class can be present concurrently.
- As used herein, the various functional groups represented will be understood to have a point of attachment at the functional group having the hyphen or dash (-) or an asterisk (*). In other words, in the case of —CH2CH2CH3, it will be understood that the point of attachment is the CH2 group at the far left. If a group is recited without an asterisk or a dash, then the attachment point is indicated by the plain and ordinary meaning of the recited group.
- As used herein, multi-atom bivalent species are to be read from left to right. For example, if the specification or claims recite A-D-E and D is defined as —OC(O)—, the resulting group with D replaced is: A-OC(O)-E and not A-C(O)O-E.
- Other terms are defined in other portions of this description, even though not included in this subsection.
- In certain aspects, the disclosure provides compositions that include olefinic ester compounds. Any suitable olefin ester compounds can be used in the compositions. In some embodiments, the olefinic ester compounds are alkanol esters, e.g., C1-6 alkanol esters, of C10-18 carboxylic acids having at least one carbon-carbon double bond.
- Suitable alkanols include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butyl alcohol, pentanol, isoamyl alcohol, neopentyl alcohol, and hexanol. In some embodiments, the alkanol is methanol, ethanol, or isopropanol. In some embodiments, the alkanol is methanol or ethanol. In some embodiments, the alkanol is methanol. Any suitable C10-18 carboxylic acid can be employed in such esters, including branched and unbranched carboxylic acids.
- In some such embodiments, the olefinic ester compounds are alkanol esters of C10-16 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C10-15 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C10-14 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C10-12 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C12-18 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C12-16 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C12-15 carboxylic acids having one to three carbon-carbon double bonds, or alkanol esters of C12-14 carboxylic acids having one to three carbon-carbon double bonds. Any alkanols of the aforementioned embodiments can be used. In some embodiments, where the carboxylic acid has two or three carbon-carbon double bonds, none of the carbon-carbon double bands are conjugated, either to each other or to other unsaturation in the compound. In some other embodiments, the carboxylic acid group has a single carbon-carbon double bond. In some embodiments, the carboxylic acid is 9-decenoic acid, 9-undecenoic acid, or 9-dodecenoic acid.
- In some embodiments, the olefinic ester compounds are methyl 9-decenoate, methyl 9-undenenoate, methyl 9-dodecenoate, or a mixture thereof. In some embodiments, the olefinic ester compounds are methyl 9-decenoate, methyl 9-dodecenoate, or a mixture thereof. In some other embodiments, the olefinic ester compounds are methyl 9-decenoate. In some other embodiments, the olefinic ester compounds are methyl 9-dodecenoate.
- In some embodiments, the olefinic ester compounds are one or more compounds of formula (I):
- wherein:
- R1 is C9-17 alkenyl; and
- R2 is C1-6 alkyl.
- In some embodiments, R1 is C9-15 alkenyl. In some embodiments, R1 is C9-14 alkenyl. In some embodiments, R1 is C9-13 alkenyl. In some embodiments, R1 is C9-11 alkenyl. In some embodiments, R1 is C11-15 alkenyl. In some embodiments, R1 is C11-14 alkenyl. In some embodiments, R1 is C11-13 alkenyl. In some embodiments, R1 is C9 alkenyl or C11 alkenyl. In some embodiments, R1 is C9 alkeny. In some embodiments, R1 is C11 alkenyl. In some such embodiments, R1 has one to three carbon-carbon double bonds, which, when multiple carbon-carbon double bonds are present, in some embodiments, are not conjugated. In some embodiments, R1 has a single carbon-carbon-double bond. In some other embodiments, R1 has two non-conjugated double bonds. In some other embodiments, R1 has two or three conjugated double bonds, such as a C13-15 alkenyl having two or three conjugated carbon-carbon double bonds. In some embodiments, R1 is —(CH2)7—CH═CH2, —(CH2)7—CH═CH—CH3, or —(CH2)7—CH═CH—CH2—CH3. In some embodiments, R1 is —(CH2)7—CH═CH2 or —(CH2)7—CH═CH—CH2—CH3. In some embodiments, R1 is —(CH2)7—CH═CH2. In some embodiments, R1 is —(CH2)7—CH═CH—CH2—CH3.
- In some embodiments, R2 is methyl, ethyl, isopropyl, propyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, neopentyl, or hexyl. In some embodiments, R2 is methyl, ethyl, isopropyl, propyl, butyl, isobutyl, sec-butyl, or tert-butyl. In some embodiments, R2 is methyl, ethyl, or isopropyl. In some embodiments, R2 is methyl or ethyl. In some embodiments, R2 is methyl.
- In some embodiments, the compositions disclosed herein consist of the olefinic ester compounds, meaning that the compositions contain no other materials besides the olefinic ester compounds. In some embodiments, the compositions disclosed herein consist essentially of the olefinic ester compounds, meaning that the compositions can contain one or more other materials that do not materially affect the basic characteristics of the olefinic ester composition or its use. In some embodiments, the compositions disclosed herein can comprise (or include) other materials, including materials that can affect the basic characteristics of the olefinic ester composition or its use.
- The olefinic ester compounds can make up any suitable amount of the disclosed compositions. In some embodiments, the olefinic ester compounds make up at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight of the composition, based on the total weight of the composition. In some such embodiments, the olefinic ester compounds make up no more than 99 percent by weight of the composition, based on the total weight of the composition. The compositions can include any other suitable component or combination of components. In some other embodiments, however, the olefinic ester compounds make up a lower amount of the composition. Thus, in some embodiments, the composition includes from 1 to 70 percent by weight, or from 2 to 70 percent by weight, or from 5 to 70 percent by weight, or from 10 to 70 percent by weight, or from 20 to 70 percent by weight, or from 30 to 70 percent by weight, or from 40 to 70 percent by weight, or from 1 to 50 percent by weight, or from 2 to 50 percent by weight, or from 5 to 50 percent by weight, or from 10 to 50 percent by weight, or from 20 to 50 percent by weight, or from 30 to 50 percent by weight, or from 1 to 30 percent by weight, or from 2 to 30 percent by weight, or from 5 to 30 percent by weight, or from 10 to 30 percent by weight, or from 1 to 20 percent by weight, or from 2 to 20 percent by weight, or from 5 to 20 percent by weight, based on the total weight of the composition.
- In some embodiments, the compositions include one or more surfactants (according to any of the embodiments described below), such as non-ionic surfactants, anionic surfactants, or cationic surfactants. In some such embodiments, the compositions include one or more non-ionic surfactants. In some such embodiments, the compositions include one or more anionic surfactants. In some such embodiments, the compositions include one or more cationic surfactants.
- In some embodiments, the olefinic ester compounds may make up a smaller portion of the composition. For example, in some embodiments, the olefinic ester compounds make up at least 1 percent by weight up to 10 percent by weight, or up to 20 percent by weight, or up to 30 percent by weight, or up to 40 percent by weight, or up to 50 percent by weight, of the composition, based on the total weight of the composition.
- In some such embodiments, the composition further comprises saturated ester compounds. For example, in some such embodiments, the saturated ester compounds make up at least 30 percent by weight, or at least 40 percent by weight, up to 60 percent by weight, or up to 70 percent by weight, or up to 80 percent by weight, or up to 90 percent by weight, or up to 95 percent by weight, of the composition, based on the total weight of the composition. As another example, the weight-to-weight ratio of saturated ester compounds to olefinic ester compounds in the composition ranges from 1:10 to 10:1, or from 1:5 to 5:1, or from 1:3 to 3:1, or from 1:2 to 2:1. Any suitable saturated fatty acid ester can be used, such as C1-6 alkanolic esters of C10-18 satyrated fatty acids, such as C1-6 alkanolic esters (e.g., methyl esters, ethyl esters, isopropyl esters, etc.) of capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and the like.
- In some instances it may be suitable to deliver the composition as a component of an emulsion, such as an oil-in-water emulsion or a water-in-oil emulsion. In some embodiments, the olefinic ester compounds are part of an oily component (e.g., a primary solvent) of an emulsion, e.g., a microemulsion. In some such embodiments, the amount of primary solvent used in the emulsion is variable with the end use. For example, in the event that the microemulsion is used to remove an undesirable substance from a hard surface such as, for example, stripping paint from a painted surface or removing grease from the surface of a piece of industrial equipment, the amount of primary solvent can be higher, such as from 50 to 99 percent by weight, or from 60 to 99 percent by weight, or from 70 to 99 percent by weight, or from 80 to 99 percent by weight, or from 50 to 95 percent by weight, or from 60 to 95 percent by weight, or from 70 to 95 percent by weight, or from 80 to 95 percent by weight, based on the weight of the microemulsion. On the other hand, for example, if the microemulsion is used to remove an undesirable substance, such as undesirable paint or graffiti, from a coated surface, such as a painted wall or railroad boxcar, the amount of primary solvent may be lower, such as from 10 to 70 percent by weight, or from 10 to 60 percent by weight, or from 10 to 50 percent by weight, or from 25 to 70 percent by weight, or from 25 to 60 percent by weight, or from 25 to 50 percent by weight, based on the weight of the microemulsion.
- In some embodiments, the relative amounts of the other components of the composition vary according to the end use of the composition and can be any amounts required to clean a particular undesirable substance from a particular surface. The amount of anionic surfactant, for example, can vary from 1 to 75 percent by weight, or from 2 to 60 percent by weight, or from 3 to 50 percent by weight, or from 5 to 40 percent by weight, or from 5 to 30 percent by weight, or from 5 to 20 percent by weight, or from 5 to 14 percent by weight, or from 5 to 13 percent by weight, based on the total weight of the composition (e.g., the undiluted, pre-emulsified composition). In some embodiments, such compositions are emulsified by mixing them with an aqueous medium to form an oil-in-water emulsion or a water-in-oil emulsion. Suitable emulsifiers can be added to assist in the emulsification. Any suitable degree of dilution can be used, depending on the intended end use, the desired concentration of solvent, and other ingredients.
- Compositions comprising anionic surfactants can be used in a variety of cleaning applications. For example, in some embodiments, compositions comprising anionic surfactants are used for a variety of end uses. Suitable end uses include, but are not limited to, degreasing (e.g., from various surfaces), stain removal or treatment (e.g., on fabrics or other textiles), removal of food and food-containing materials, and general hard-surface cleaning. The desired end-use application may require use of different surfactants or combinations of surfactants, as well as different amounts of those surfactants.
- In some embodiments, the compositions can include one or more additional ingredients or additives. Such additional ingredients or additives include, but are not limited to, carriers, solvents, co-solvents (such as longer-chain olefinic ester compounds), surfactants, co-surfactants, emulsifiers, natural or synthetic colorants, natural or synthetic fragrances, natural or synthetic deodorizers, antioxidants, corrosion inhibitors, chelating agents, precipitating and/or sequestering builders, and antimicrobial agents. These agents can be used in any suitable amounts, depending on the types of other ingredients in the composition (e.g., anionic surfactants, cationic surfactants, non-ionic surfactants, etc.), the amounts of other ingredients in the composition (e.g., amount of various surfactants), whether the composition is to be formulated as an emulsion, and, if so, what type of emulsion it will be (e.g., oil-in-water, water-in-oil, etc.), and what the desired range of end-uses will be.
- In embodiments that include surfactants, any suitable surfactants can be used. For example, in some embodiments, the surfactants used in the composition can include surfactants having an HLB (hydrophile-lipophile balance) of 4 to 14, or 8 to 13. In some embodiments, the surfactants used in the composition include the amine salts (e.g., the isopropyl amine salt) of dodecylbenzene sulfonic acid, the amine salts (e.g., the isopropyl amine salt) of oleic acid, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates, sorbitan esters, glycerol esters, and combinations thereof. Other examples of suitable nonionic surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates, and combinations thereof. Some other examples of suitable anionic surfactants include, but are not limited to, water-soluble salts of alkyl benzene sulfonates, alkyl sulfates, alkyl polyalkoxy ether sulfates, paraffin sulfonates, alpha-olefin sulfonates and sulfosuccinates, alpha-sulfocarboxylates and their esters, alkyl glyceryl ether sulfonates, fatty acid monoglyceride sulfates and sulfonates, alkyl phenol polyalkoxyether sulfates and combinations thereof. Other examples of suitable anionic surfactants include, but are not limited to, the water-soluble salts or esters of alpha-sulfonated fatty acids containing from about 6 to about 20 carbon atoms in the fatty acid group and from about 1 to about 10 carbon atoms in the ester group.
- In some embodiments, such cleaning compositions can have improved high- and low-temperature stability, in comparison to a cleaning composition not including such a surfactant.
- Surfactants can also be added to the finished composition to alleviate potential customers of the need to select a surfactant that may be suitable for particular end uses.
- Surfactant-containing compositions may also be useful in the preparation of emulsions (e.g., microemulsions or nanoemulsions), e.g., where the oily phase is emulsified in an aqueous medium, or vice versa. In such embodiments, the surfactants can include linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty alkanolamides, fatty amine alkoxylates and combinations thereof. In some such embodiments, the olefinic ester compound is the primary solvent.
- In certain aspects and embodiments, such compositions can be used in a cleaning method, where the cleaning composition is applied to a surface (e.g., a surface to be cleaned). In some such embodiments, the surface can be washed with an aqueous medium (e.g., water) after application of the cleaning composition.
- In some embodiments, nonionic surfactants having an HLB of from about 4 to about 14, or from 8 to 13, may be suitable in the preparation of a microemulsion. Non-limiting examples of such surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty amide alkoxylates, fatty amine alkoxylates and combinations thereof.
- In some embodiments, cationic surfactants can be used. Suitable cationic surfactants include, but are not limited to, water-soluble quaternary ammonium salts fatty amines, ammonium salts of fatty amines, quaternary ammonium salts of ethoxylated fatty amines, ammonium salts of ethoxylated fatty amines, quaternary ammonium salts of modified alkyl polyglucosides, and combinations thereof.
- In some embodiments, the cleaning composition (e.g., a microemulsion) can include a nonionic and/or amphoteric surfactant. In some such embodiments, the olefinic ester compound is a primary solvent.
- In some embodiments, nonionic surfactants and/or amphoteric surfactants can be used, e.g., nonionic surfactants having an HLB of from 4 to 14, or 8 to 13, e.g., in a microemulsion. Non-limiting examples of nonionic surfactants include, but are not limited to, linear alcohol alkoxylates, branched alcohol alkoxylates, alkyl phenol alkoxylates, fatty amides, fatty amide alkoxylates, fatty amine alkoxylates and combinations thereof. Non-limiting examples of amphoteric surfactants include, but are not limited to, water-soluble C6-12 fatty amidoamine betaines, C6-12 fatty amidoamine sultaines and hydroxysultaines, C6-12 fatty amidoamine oxides, fatty iminodiproponiates, C6-12 fatty amine betaines, C6-12 fatty amines sultaines, C6-12 fatty amine hydroxysultaines, C6-12 fatty amine oxides, and combinations thereof.
- In some embodiments, other surfactants can be used, either in combination with one or more of anionic, cationic and/or amphoteric surfactants (e.g., as short-chain co-surfactants) or alone. Non-limiting examples of such other surfactants include, but are not limited to, C3-6 alcohols, glycols, glycol ethers, pyrrolidones, glycol ether esters, and combinations thereof.
- In some embodiments, the relative amounts of the components of the composition will vary according to the end use of the composition and can be any amounts required to clean a particular undesirable substance from a particular surface. The amount of non-ionic surfactant, for example, can vary from 1 to 75 percent by weight, or from 2 to 60 percent by weight, or from 3 to 50 percent by weight, or from 5 to 40 percent by weight, or from 5 to 30 percent by weight, or from 5 to 20 percent by weight, based on the total weight of the composition (e.g., the undiluted, pre-emulsified composition). In some embodiments, such compositions are emulsified by mixing them with an aqueous medium to form an oil-in-water emulsion or a water-in-oil emulsion. Suitable emulsifiers can be added to assist in the emulsification. Any suitable degree of dilution can be used, depending on the intended end use, the desired concentration of solvent, and other ingredients.
- In some embodiments, the surfactants (e.g., non-ionic surfactants) can have certain ranges of HLB values. In some embodiments, the surfactants (e.g., non-ionic surfactants) have a HLB value ranging from 4 to 10, or from 5 to 9, or from 6 to 8. In some embodiments, the composition comprises at least one non-ionic surfactant having an HLB value of about 4, or an HLB value of about 5, or an HLB value of about 6, or an HLB value of about 7, or an HLB value of about 8, or an HLB value of about 9.
- In some embodiments, the surfactants (e.g., non-ionic surfactants) can have certain ranges of molecular weights. In some embodiments, the surfactants (e.g., non-ionic surfactants) have a molecular weight ranging from 200 to 800 amu, or from 250 to 700 amu, or from 300 to 600 amu. In some embodiments, the composition comprises at least one non-ionic surfactant having a molecular weight of about 350 amu, or a molecular weight of about 400 amu, or a molecular weight of about 450 amu, or a molecular weight of about 500 amu, or a molecular weight of about 550 amu, or a molecular weight of about 600 amu, or a molecular weight of about 650 amu.
- In some embodiments, the surfactants are ethoxylated fatty acids or ethoxylated alcohols. For example, in some non-limiting examples, the surfactants are ethoxylated alcohols, where the alcohols have 8 to 16 carbon atoms, or 10 to 15 carbon atoms, or 12 to 15 carbon atoms. The ethoxylated chains of such alcohols can have any suitable number of ethylene oxide units. For example, in some embodiments, the surfactants have from 5 to 12 ethylene oxide units, or from 7 to 10 ethylene oxide units. In some embodiments, the ethoxylated alcohols have a number-average number of ethylene oxide units of about 5, or of about 7, or of about 9, or of about 11, or of about 12. Analogous such ethyoxylated fatty acids can be used as well.
- Compositions comprising non-ionic surfactants can be used in a variety of applications. For example, in some embodiments, compositions comprising non-ionic surfactants are used for a variety of end uses. Suitable end uses include, but are not limited to, cleaning of equipment used in extracting oil and gas, such as the tubing, pipes, tanks, etc., associated with oil and gas rigs.
- In some embodiments, the composition comprises water. In some such embodiments, the composition is an emulsion, meaning that the composition includes two or more phases where at least one of the phases is at least partially dispersed in one or more of the other phases. In some further such embodiments, the composition is a microemulsion or a nanoemulsion, meaning that at least one of the phases is dispersed as small droplets whose size is on the order of about 1 nm up to about 1 micron. In some embodiments, the droplet size is less than the wavelength of the lowest energy visible light, e.g., less than 350 nm, or less than 300 nm, or less than 250 nm, or less than 200 nm, or less than 150 nm, or less than 100 nm, down to about 50 nm.
- In some other embodiments, the composition is substantially free of water. For example, in some embodiments, the composition includes less than 2 percent by weight, or less than 1 percent by weight, or less than 0.5 percent by weight, or less than 0.1 percent by weight water, based on the total weight of the composition.
- In some embodiments, the composition also includes alkanol esters (e.g., methyl esters) of saturated carboxylic acids, referred to herein as “saturated ester compounds.”
- The composition can contain any suitable distribution of olefinic ester compounds. For example, in some embodiments, the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight alkanol esters (e.g., methyl esters) of C10-12 carboxylic acids having one or more carbon-carbon double bonds, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition. In some embodiments, said C10-12 carboxylic acids have one carbon-carbon double bond. In some embodiments, the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 75 percent by weight of methyl esters of 9-decenoic acid, 9-undecenoic acid, or 9-dodecenoic acid, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition. In some embodiments, the composition includes at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 75 percent by weight of methyl esters of 9-decenoic acid or 9-dodecenoic acid, based on the total weight of olefinic ester compounds and saturated ester compounds in the composition. In some such embodiments, the composition includes no more than 20 percent by weight, or no more than 15 percent by weight, or no more than 10 percent by weight of saturated ester compounds, based on the total weight of olefinic ester compounds and saturated ester compounds. In some embodiments, the composition includes: (a) 20 to 50 percent by weight, or 30 to 40 percent by weight of C10 olefinic ester compounds (e.g., methyl esters of 9-decenoic acid); (b) 30 to 60 percent by weight, or 40 to 50 percent by weight of C12 olefinic ester compounds (e.g., methyl esters of 9-dodecenoic acid); and (c) 5 to 25 percent by weight, or 5 to 15 percent by weight of saturated ester compounds (e.g., methyl palmitate).
- In some other embodiments, the composition includes at least 40 percent by weight, or at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, of C12 olefinic ester compounds (e.g., alkanol esters of 9-dodecenoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers). In some such embodiments, the composition includes 50 to 99 percent by weight, or 60 to 99 percent by weight, of C12 olefinic ester compounds (e.g., alkanol esters of 9-dodecenoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- In some such embodiments, the composition can also include various amounts of C13-15 olefinic ester compounds, e.g., alkanol esters of 9,12-tridecadienoic acid, alkanol esters of 9,12-pentadecadienoic acid, and the like. In some embodiments, the composition includes up to 30 percent by weight, or up to 25 percent by weight, or up to 20 percent by weight, or up to 15 percent by weight, or up to 10 percent by weight, C13 olefinic ester compounds (e.g., alkanol esters of 9,12-tridecanedienoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers). In some embodiments, the composition includes up to 35 percent by weight, or up to 30 percent by weight, or up to 25 percent by weight, or up to 20 percent by weight, or up to 15 percent by weight, C15 olefinic ester compounds (e.g., alkanol esters of 9,12-pentadecanedienoic acid), based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- In some such embodiments, the composition can also include an amount of olefin, e.g., alkenes. In some embodiments, the composition includes from 1 to 10 percent by weight, or from 1 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers). In some embodiments, the composition includes from 2 to 10 percent by weight, or from 2 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers). In some embodiments, the composition includes from 3 to 10 percent by weight, or from 3 to 7 percent by weight, alkenes, based on the total weight of the composition or the total weight of the oily phase of an oil-in-water emulsion (excluding emulsifiers).
- In some other embodiments, higher amounts of saturated ester compounds can be included in the composition. For example, in some embodiments, the composition includes at least 30 percent by weight, or at least 40 percent by weight of saturated ester compounds, such as methyl palmitate, methyl stearate, methyl laurate, etc., based on the total weight of olefinic ester compounds and saturated ester compounds in the composition. In some such embodiments, the amounts of C10-12 unsaturated ester compounds can be lower. For example, in some embodiments, the composition includes no more than 50 percent by weight, or no more than 40 percent by weight, or no more than 35 percent by weight of C10-12 unsaturated ester compounds (e.g., methyl 9-decenoate and methyl 9-dodecenoate). In some embodiments, the composition includes: (a) 5 to 30 percent by weight, or 5 to 20 percent by weight of C10 olefinic ester compounds (e.g., methyl esters of 9-decenoic acid); (b) 5 to 30 percent by weight, or 10 to 20 percent by weight of C12 olefinic ester compounds (e.g., methyl esters of 9-dodecenoic acid); and (c) 30 to 70 percent by weight, or 40 to 60 percent by weight of saturated ester compounds (e.g., methyl palmitate).
- In some other embodiments, the composition includes at least 20 percent by weight, or at least 30 percent by weight, or at least 40 percent by weight of terminal olefinic ester compounds, based on the total weight of olefinic ester compounds in the composition. In some other embodiments, the composition includes no more than 30 percent by weight, or no more than 40 percent by weight, or no more than 50 percent by weight of terminal olefinic ester compounds, based on the total weight of olefinic ester compounds in the composition.
- In some embodiments, the composition can include at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, of C10-12 unsaturated ester compounds (e.g., methyl 9-decenoate and methyl 9-dodecenoate), as well as a ketone, such as cyclohexanone, e.g., in an amount of up to 5% by weight, or up to 10% by weight, or up to 15% by weight, or up to 20% by weight, based on the total weight of the composition. Such compositions can also include, in some embodiments, other fatty acids, such as oleic acid. In some embodiments, the composition can also include certain petroleum distillates, such as mineral oil (100 SUS).
- Derivation from Renewable Sources
- The olefinic ester compounds employed in any of the aspects or embodiments disclosed herein can, in certain embodiments, be derived from renewable sources, such as from various natural oils or their derivatives. Any suitable methods can be used to make these compounds from such renewable sources. Suitable methods include, but are not limited to, fermentation, conversion by bioorganisms, and conversion by metathesis.
- Olefin metathesis provides one possible means to convert certain natural oil feedstocks into olefins and esters that can be used in a variety of applications, or that can be further modified chemically and used in a variety of applications. In some embodiments, a composition (or components of a composition) may be formed from a renewable feedstock, such as a renewable feedstock formed through metathesis reactions of natural oils and/or their fatty acid or fatty ester derivatives. When compounds containing a carbon-carbon double bond undergo metathesis reactions in the presence of a metathesis catalyst, some or all of the original carbon-carbon double bonds are broken, and new carbon-carbon double bonds are formed. The products of such metathesis reactions include carbon-carbon double bonds in different locations, which can provide unsaturated organic compounds having useful chemical properties.
- A wide range of natural oils, or derivatives thereof, can be used in such metathesis reactions. Examples of suitable natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative non-limiting examples of vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture. In some embodiments, the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides). In some such embodiments, the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.
- The natural oil may include canola or soybean oil, such as refined, bleached and deodorized soybean oil (i.e., RBD soybean oil). Soybean oil typically includes about 95 percent by weight (wt %) or greater (e.g., 99 wt % or greater) triglycerides of fatty acids. Major fatty acids in the polyol esters of soybean oil include but are not limited to saturated fatty acids such as palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids such as oleic acid (9-octadecenoic acid), linoleic acid (9,12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).
- Metathesized natural oils can also be used. Examples of metathesized natural oils include but are not limited to a metathesized vegetable oil, a metathesized algal oil, a metathesized animal fat, a metathesized tall oil, a metathesized derivatives of these oils, or mixtures thereof. For example, a metathesized vegetable oil may include metathesized canola oil, metathesized rapeseed oil, metathesized coconut oil, metathesized corn oil, metathesized cottonseed oil, metathesized olive oil, metathesized palm oil, metathesized peanut oil, metathesized safflower oil, metathesized sesame oil, metathesized soybean oil, metathesized sunflower oil, metathesized linseed oil, metathesized palm kernel oil, metathesized tung oil, metathesized jatropha oil, metathesized mustard oil, metathesized camelina oil, metathesized pennycress oil, metathesized castor oil, metathesized derivatives of these oils, or mixtures thereof. In another example, the metathesized natural oil may include a metathesized animal fat, such as metathesized lard, metathesized tallow, metathesized poultry fat, metathesized fish oil, metathesized derivatives of these oils, or mixtures thereof.
- Such natural oils, or derivatives thereof, can contain esters, such as triglycerides, of various unsaturated fatty acids. The identity and concentration of such fatty acids varies depending on the oil source, and, in some cases, on the variety. In some embodiments, the natural oil comprises one or more esters of oleic acid, linoleic acid, linolenic acid, or any combination thereof. When such fatty acid esters are metathesized, new compounds are formed. For example, in embodiments where the metathesis uses certain short-chain olefins, e.g., ethylene, propylene, or 1-butene, and where the natural oil includes esters of oleic acid, an amount of 1-decene and 1-decenoid acid (or an ester thereof), among other products, are formed. Following transesterification, for example, with an alkyl alcohol, an amount of 9-denenoic acid alkyl ester is formed. In some such embodiments, a separation step may occur between the metathesis and the transesterification, where the alkenes are separated from the esters. In some other embodiments, transesterification can occur before metathesis, and the metathesis is performed on the transesterified product.
- In some embodiments, the natural oil can be subjected to various pre-treatment processes, which can facilitate their utility for use in certain metathesis reactions. Useful pre-treatment methods are described in United States Patent Application Publication Nos. 2011/0113679, 2014/0275681, and 2014/0275595, all three of which are hereby incorporated by reference as though fully set forth herein.
- In some embodiments, after any optional pre-treatment of the natural oil feedstock, the natural oil feedstock is reacted in the presence of a metathesis catalyst in a metathesis reactor. In some other embodiments, an unsaturated ester (e.g., an unsaturated glyceride, such as an unsaturated triglyceride) is reacted in the presence of a metathesis catalyst in a metathesis reactor. These unsaturated esters may be a component of a natural oil feedstock, or may be derived from other sources, e.g., from esters generated in earlier-performed metathesis reactions. In certain embodiments, in the presence of a metathesis catalyst, the natural oil or unsaturated ester can undergo a self-metathesis reaction with itself. In other embodiments, the natural oil or unsaturated ester undergoes a cross-metathesis reaction with the low-molecular-weight olefin or mid-weight olefin. The self-metathesis and/or cross-metathesis reactions form a metathesized product wherein the metathesized product comprises olefins and esters.
- In some embodiments, the low-molecular-weight olefin (or short-chain olefin) is in the C2-6 range. As a non-limiting example, in one embodiment, the low-molecular-weight olefin may comprise at least one of: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene. In some embodiments, the short-chain olefin is 1-butene. In some instances, a higher-molecular-weight olefin can also be used.
- In some embodiments, the metathesis comprises reacting a natural oil feedstock (or another unsaturated ester) in the presence of a metathesis catalyst. In some such embodiments, the metathesis comprises reacting one or more unsaturated glycerides (e.g., unsaturated triglycerides) in the natural oil feedstock in the presence of a metathesis catalyst. In some embodiments, the unsaturated glyceride comprises one or more esters of oleic acid, linoleic acid, linoleic acid, or combinations thereof. In some other embodiments, the unsaturated glyceride is the product of the partial hydrogenation and/or the metathesis of another unsaturated glyceride (as described above). In some such embodiments, the metathesis is a cross-metathesis of any of the aforementioned unsaturated triglyceride species with another olefin, e.g., an alkene. In some such embodiments, the alkene used in the cross-metathesis is a lower alkene, such as ethylene, propylene, 1-butene, 2-butene, etc. In some embodiments, the alkene is ethylene. In some other embodiments, the alkene is propylene. In some further embodiments, the alkene is 1-butene. And in some even further embodiments, the alkene is 2-butene.
- Metathesis reactions can provide a variety of useful products, when employed in the methods disclosed herein. For example, the unsaturated esters may be derived from a natural oil feedstock, in addition to other valuable compositions. Moreover, in some embodiments, a number of valuable compositions can be targeted through the self-metathesis reaction of a natural oil feedstock, or the cross-metathesis reaction of the natural oil feedstock with a low-molecular-weight olefin or mid-weight olefin, in the presence of a metathesis catalyst. Such valuable compositions can include fuel compositions, detergents, surfactants, and other specialty chemicals. Additionally, transesterified products (i.e., the products formed from transesterifying an ester in the presence of an alcohol) may also be targeted, non-limiting examples of which include: fatty acid methyl esters (“FAMEs”); biodiesel; 9-decenoic acid (“9DA”) esters, 9-undecenoic acid (“9UDA”) esters, and/or 9-dodecenoic acid (“9DDA”) esters; 9DA, 9UDA, and/or 9DDA; alkali metal salts and alkaline earth metal salts of 9DA, 9UDA, and/or 9DDA; dimers of the transesterified products; and mixtures thereof.
- Further, in some embodiments, multiple metathesis reactions can also be employed. In some embodiments, the multiple metathesis reactions occur sequentially in the same reactor. For example, a glyceride containing linoleic acid can be metathesized with a terminal lower alkene (e.g., ethylene, propylene, 1-butene, and the like) to form 1,4-decadiene, which can be metathesized a second time with a terminal lower alkene to form 1,4-pentadiene. In other embodiments, however, the multiple metathesis reactions are not sequential, such that at least one other step (e.g., transesterification, hydrogenation, etc.) can be performed between the first metathesis step and the following metathesis step. These multiple metathesis procedures can be used to obtain products that may not be readily obtainable from a single metathesis reaction using available starting materials. For example, in some embodiments, multiple metathesis can involve self-metathesis followed by cross-metathesis to obtain metathesis dimers, trimmers, and the like. In some other embodiments, multiple metathesis can be used to obtain olefin and/or ester components that have chain lengths that may not be achievable from a single metathesis reaction with a natural oil triglyceride and typical lower alkenes (e.g., ethylene, propylene, 1-butene, 2-butene, and the like). Such multiple metathesis can be useful in an industrial-scale reactor, where it may be easier to perform multiple metathesis than to modify the reactor to use a different alkene.
- The conditions for such metathesis reactions, and the reactor design, and suitable catalysts are as described above with reference to the metathesis of the olefin esters. That discussion is incorporated by reference as though fully set forth herein.
- In the embodiments above, the natural oil (e.g., as a glyceride) is metathesized, followed by transesterification. In some other embodiments, transesterification can precede metathesis, such that the fatty acid esters subjected to metathesis are fatty acid esters of monohydric alcohols, such as methanol, ethanol, or isopropanol.
- In some embodiments, one or more of the unsaturated monomers can be made by metathesizing a natural oil or natural oil derivative. The terms “metathesis” or “metathesizing” can refer to a variety of different reactions, including, but not limited to, cross-metathesis, self-metathesis, ring-opening metathesis, ring-opening metathesis polymerizations (“ROMP”), ring-closing metathesis (“RCM”), and acyclic diene metathesis (“ADMET”). Any suitable metathesis reaction can be used, depending on the desired product or product mixture.
- In some embodiments, after any optional pre-treatment of the natural oil feedstock, the natural oil feedstock is reacted in the presence of a metathesis catalyst in a metathesis reactor. In some other embodiments, an unsaturated ester (e.g., an unsaturated glyceride, such as an unsaturated triglyceride) is reacted in the presence of a metathesis catalyst in a metathesis reactor. These unsaturated esters may be a component of a natural oil feedstock, or may be derived from other sources, e.g., from esters generated in earlier-performed metathesis reactions. In certain embodiments, in the presence of a metathesis catalyst, the natural oil or unsaturated ester can undergo a self-metathesis reaction with itself. In other embodiments, the natural oil or unsaturated ester undergoes a cross-metathesis reaction with the low-molecular-weight olefin or mid-weight olefin. The self-metathesis and/or cross-metathesis reactions form a metathesized product wherein the metathesized product comprises olefins and esters.
- In some embodiments, the low-molecular-weight olefin is in the C2-6 range. As a non-limiting example, in one embodiment, the low-molecular-weight olefin may comprise at least one of: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene. In some instances, a higher-molecular-weight olefin can also be used.
- In some embodiments, the metathesis comprises reacting a natural oil feedstock (or another unsaturated ester) in the presence of a metathesis catalyst. In some such embodiments, the metathesis comprises reacting one or more unsaturated glycerides (e.g., unsaturated triglycerides) in the natural oil feedstock in the presence of a metathesis catalyst. In some embodiments, the unsaturated glyceride comprises one or more esters of oleic acid, linoleic acid, linoleic acid, or combinations thereof. In some other embodiments, the unsaturated glyceride is the product of the partial hydrogenation and/or the metathesis of another unsaturated glyceride (as described above). In some such embodiments, the metathesis is a cross-metathesis of any of the aforementioned unsaturated triglyceride species with another olefin, e.g., an alkene. In some such embodiments, the alkene used in the cross-metathesis is a lower alkene, such as ethylene, propylene, 1-butene, 2-butene, etc. In some embodiments, the alkene is ethylene. In some other embodiments, the alkene is propylene. In some further embodiments, the alkene is 1-butene. And in some even further embodiments, the alkene is 2-butene.
- Metathesis reactions can provide a variety of useful products, when employed in the methods disclosed herein. For example, terminal olefins and internal olefins may be derived from a natural oil feedstock, in addition to other valuable compositions. Moreover, in some embodiments, a number of valuable compositions can be targeted through the self-metathesis reaction of a natural oil feedstock, or the cross-metathesis reaction of the natural oil feedstock with a low-molecular-weight olefin or mid-weight olefin, in the presence of a metathesis catalyst. Such valuable compositions can include fuel compositions, detergents, surfactants, and other specialty chemicals. Additionally, transesterified products (i.e., the products formed from transesterifying an ester in the presence of an alcohol) may also be targeted, non-limiting examples of which include: fatty acid methyl esters (“FAMEs”); biodiesel; 9-decenoic acid (“9DA”) esters, 9-undecenoic acid (“9UDA”) esters, and/or 9-dodecenoic acid (“9DDA”) esters; 9DA, 9UDA, and/or 9DDA; alkali metal salts and alkaline earth metal salts of 9DA, 9UDA, and/or 9DDA; dimers of the transesterified products; and mixtures thereof.
- Further, in some embodiments, the methods disclosed herein can employ multiple metathesis reactions. In some embodiments, the multiple metathesis reactions occur sequentially in the same reactor. For example, a glyceride containing linoleic acid can be metathesized with a terminal lower alkene (e.g., ethylene, propylene, 1-butene, and the like) to form 1,4-decadiene, which can be metathesized a second time with a terminal lower alkene to form 1,4-pentadiene. In other embodiments, however, the multiple metathesis reactions are not sequential, such that at least one other step (e.g., transesterification, hydrogenation, etc.) can be performed between the first metathesis step and the following metathesis step. These multiple metathesis procedures can be used to obtain products that may not be readily obtainable from a single metathesis reaction using available starting materials. For example, in some embodiments, multiple metathesis can involve self-metathesis followed by cross-metathesis to obtain metathesis dimers, trimmers, and the like. In some other embodiments, multiple metathesis can be used to obtain olefin and/or ester components that have chain lengths that may not be achievable from a single metathesis reaction with a natural oil triglyceride and typical lower alkenes (e.g., ethylene, propylene, 1-butene, 2-butene, and the like). Such multiple metathesis can be useful in an industrial-scale reactor, where it may be easier to perform multiple metathesis than to modify the reactor to use a different alkene.
- The metathesis process can be conducted under any conditions adequate to produce the desired metathesis products. For example, stoichiometry, atmosphere, solvent, temperature, and pressure can be selected by one skilled in the art to produce a desired product and to minimize undesirable byproducts. In some embodiments, the metathesis process may be conducted under an inert atmosphere. Similarly, in embodiments where a reagent is supplied as a gas, an inert gaseous diluent can be used in the gas stream. In such embodiments, the inert atmosphere or inert gaseous diluent typically is an inert gas, meaning that the gas does not interact with the metathesis catalyst to impede catalysis to a substantial degree. For example, non-limiting examples of inert gases include helium, neon, argon, and nitrogen, used individually or in with each other and other inert gases.
- The rector design for the metathesis reaction can vary depending on a variety of factors, including, but not limited to, the scale of the reaction, the reaction conditions (heat, pressure, etc.), the identity of the catalyst, the identity of the materials being reacted in the reactor, and the nature of the feedstock being employed. Suitable reactors can be designed by those of skill in the art, depending on the relevant factors, and incorporated into a refining process such, such as those disclosed herein.
- The metathesis reactions disclosed herein generally occur in the presence of one or more metathesis catalysts. Such methods can employ any suitable metathesis catalyst. The metathesis catalyst in this reaction may include any catalyst or catalyst system that catalyzes a metathesis reaction. Any known metathesis catalyst may be used, alone or in combination with one or more additional catalysts. Examples of metathesis catalysts and process conditions are described in US 2011/0160472, incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail. A number of the metathesis catalysts described in US 2011/0160472 are presently available from Materia, Inc. (Pasadena, Calif.).
- In some embodiments, the metathesis catalyst includes a Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a second-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a second-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes one or a plurality of the ruthenium carbene metathesis catalysts sold by Materia, Inc. of Pasadena, Calif. and/or one or more entities derived from such catalysts. Representative metathesis catalysts from Materia, Inc. for use in accordance with the present teachings include but are not limited to those sold under the following product numbers as well as combinations thereof: product no. C823 (CAS no. 172222-30-9), product no. C848 (CAS no. 246047-72-3), product no. C601 (CAS no. 203714-71-0), product no. C627 (CAS no. 301224-40-8), product no. C571 (CAS no. 927429-61-6), product no. C598 (CAS no. 802912-44-3), product no. C793 (CAS no. 927429-60-5), product no. C801 (CAS no. 194659-03-9), product no. C827 (CAS no. 253688-91-4), product no. C884 (CAS no. 900169-53-1), product no. C833 (CAS no. 1020085-61-3), product no. C859 (CAS no. 832146-68-6), product no. C711 (CAS no. 635679-24-2), product no. C933 (CAS no. 373640-75-6).
- In some embodiments, the metathesis catalyst includes a molybdenum and/or tungsten carbene complex and/or an entity derived from such a complex. In some embodiments, the metathesis catalyst includes a Schrock-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a high-oxidation-state alkylidene complex of molybdenum and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a high-oxidation-state alkylidene complex of tungsten and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes molybdenum (VI). In some embodiments, the metathesis catalyst includes tungsten (VI). In some embodiments, the metathesis catalyst includes a molybdenum- and/or a tungsten-containing alkylidene complex of a type described in one or more of (a) Angew. Chem. Int. Ed. Engl., 2003, 42, 4592-4633; (b) Chem. Rev., 2002, 102, 145-179; and/or (c) Chem. Rev., 2009, 109, 3211-3226, each of which is incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail.
- In certain embodiments, the metathesis catalyst is dissolved in a solvent prior to conducting the metathesis reaction. In certain such embodiments, the solvent chosen may be selected to be substantially inert with respect to the metathesis catalyst. For example, substantially inert solvents include, without limitation: aromatic hydrocarbons, such as benzene, toluene, xylenes, etc.; halogenated aromatic hydrocarbons, such as chlorobenzene and dichlorobenzene; aliphatic solvents, including pentane, hexane, heptane, cyclohexane, etc.; and chlorinated alkanes, such as dichloromethane, chloroform, dichloroethane, etc. In some embodiments, the solvent comprises toluene.
- In other embodiments, the metathesis catalyst is not dissolved in a solvent prior to conducting the metathesis reaction. The catalyst, instead, for example, can be slurried with the natural oil or unsaturated ester, where the natural oil or unsaturated ester is in a liquid state. Under these conditions, it is possible to eliminate the solvent (e.g., toluene) from the process and eliminate downstream olefin losses when separating the solvent. In other embodiments, the metathesis catalyst may be added in solid state form (and not slurried) to the natural oil or unsaturated ester (e.g., as an auger feed).
- The metathesis reaction temperature may, in some instances, be a rate-controlling variable where the temperature is selected to provide a desired product at an acceptable rate. In certain embodiments, the metathesis reaction temperature is greater than −40° C., or greater than −20° C., or greater than 0° C., or greater than 10° C. In certain embodiments, the metathesis reaction temperature is less than 200° C., or less than 150° C., or less than 120° C. In some embodiments, the metathesis reaction temperature is between 0° C. and 150° C., or is between 10° C. and 120° C.
- The metathesis reaction can be run under any desired pressure. In some instances, it may be desirable to maintain a total pressure that is high enough to keep the cross-metathesis reagent in solution. Therefore, as the molecular weight of the cross-metathesis reagent increases, the lower pressure range typically decreases since the boiling point of the cross-metathesis reagent increases. The total pressure may be selected to be greater than 0.1 atm (10 kPa), or greater than 0.3 atm (30 kPa), or greater than 1 atm (100 kPa). In some embodiments, the reaction pressure is no more than about 70 atm (7000 kPa), or no more than about 30 atm (3000 kPa). In some embodiments, the pressure for the metathesis reaction ranges from about 1 atm (100 kPa) to about 30 atm (3000 kPa).
- In certain aspects, the disclosed compositions are cleaning compositions, such as compositions useful for cleaning materials and/or deposits that contain petroleum waxes (e.g., macrocrystalline and/or microcrystalline waxes) and/or asphaltenes. Such materials often accumulate on equipment associated with the extraction and/or transport of extracted fluids, such as oil and gas. Therefore, in some embodiments, the compositions disclosed herein are useful for cleaning various surfaces on oil and/or gas rigs (e.g., tubing, pipes, tanks, and the like) and various mechanical devices (e.g., gauges, valves, regulators, and the like). In some embodiments, the compositions disclosed herein are useful for cleaning various surfaces of equipment used to transport oil and gas, such as pipes.
- In certain aspects, the disclosure provides methods for cleaning a surface, comprising: providing a surface having a material and/or a deposit disposed thereon, the material and/or deposit comprising asphtaltenes, petroleum waxes, or a combination thereof; and contacting the material and/or deposit with any of the compositions disclosed herein. In some embodiments, the surface is a surface of a rig, such as an oil rig (e.g., on-land drilling rig or off-shore drilling platform). In some such embodiments, the surface is the interior wall of a pipe, the interior wall of a tank, the interior wall of a tube, or a surface of a piece of mechanical equipment, such as a gauge, valve, or regulator. In some embodiments, the materials and/or deposit comprises asphaltehes. In some embodiments, the material and/or deposit comprises petroleum waxes, such as macrocrystalline waxes (paraffin waxes) and/or microcrystalline waxes.
- The cleaning capability of the compositions is not limited to any particular type of surface, including both hard and porous surfaces. The compositions can be used effectively on a variety of surfaces, including, but not limited to, plastics, other polymeric materials, metals, wood, glass, ceramic, rock (e.g., granite, marble, etc.), and various synthetic countertop materials.
- In some embodiments, an effective amount or a cleaning-effective amount of the composition is used. This amount can be determined readily based on the particular application, based on factors such as the nature of the surface, the nature and/or amount of the material to be removed, and the like.
- In certain aspects, the disclosed compositions are petroleum additive compositions, meaning that they are added to a petroleum fluid (e.g., crude oil or partially refined crude oil), optionally with other materials. In some embodiments, the compositions are added for the purpose of preventing or inhibiting the development of various agglomerates in the petroleum fluid. Such agglomerates include, but are not limited to, materials that include asphaltenes, petroleum waxes (macrocrystalline waxes and/or microcrystalline waxes), or combinations thereof. The additive compositions can be present in any suitable amount. In some embodiments, the petroleum fluid nevertheless makes up a major portion of the resulting composition. For example, in some embodiments, the petroleum fluid makes up at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, or at least 97 percent by weight, or at least 98 percent by weight, or at least 99 percent by weight of the petroleum composition, based on the total weight of the petroleum composition. In some embodiments, the petroleum additive composition makes up no more than 5 percent by weight, or no more than 3 percent by weight, or no more than 2 percent by weight, or no more than 1 percent by weight, of the petroleum composition, based on the total weight of the petroleum composition.
- In certain aspects, the disclosure provides methods for reducing agglomerates (e.g., reducing agglomerate formation) in a petroleum fluid, comprising: providing a petroleum fluid comprising one or more agglomerating materials, the agglomerating materials comprising asphaltenes, petroleum waxes, or a combination thereof; and introducing to the petroleum fluid the petroleum additive composition of any of the embodiments disclosed herein, e.g., to form a treated petroleum fluid. In some embodiments, the introducing comprises adding the petroleum additive composition to the petroleum fluid in an amount such that the petroleum additive composition makes up no more than 5 percent by weight, or no more than 3 percent by weight, or no more than 2 percent by weight, or no more than 1 percent by weight, of the treated petroleum composition, based on the total weight of the treated petroleum composition. In some embodiments, the petroleum fluid comprises crude oil or a partially refined crude oil. In some embodiments, the one or more agglomerating materials comprise asphaltenes. In some embodiments, the one or more agglomerating materials petroleum waxes, such as macrocrystalline waxes, microcrystalline waxes, or combinations thereof.
- In some embodiments, an effective amount or an agglomerate-reducing-effective amount of the composition is used. This amount can be determined readily based on the particular application, based on factors such as the nature of the petroleum fluid, and the nature and/or amount of the agglomerating materials present in the petroleum fluid.
- In certain aspects, the disclosed compositions are suitable for use as hydraulic fracturing fluids. In some such embodiments, the compositions are suitable for injection into a subterranean gas well (e.g., under hydraulic pressure) to create fractures through which natural gas (or, in some instances, oil) can flow. Such gas is often referred to as shale gas, tight gas, etc. In some embodiments, such compositions include a major amount of water. For example, in some embodiments, the compositions include at least 50 percent by weight, or at least 60 percent by weight, or at least 70 percent by weight, or at least 80 percent by weight, or at least 90 percent by weight, or at least 95 percent by weight, water, based on the total weight of liquid ingredients in the composition. In some embodiments, such liquid compositions are mixed or slurried with solid components, such as sand. The compositions can include any suitable amount of the olefinic ester compositions of any of the above embodiments. For example, in some embodiments, the compositions include up to 5 percent by weight, or up to 3 percent by weight, or up to 2 percent by weight, or up to 1 percent by weight, or up to 0.5 percent by weight, of olefinic ester compounds, based on the total weight of liquid ingredients in the composition. In any of the aforementioned embodiments, the compositions include at least 0.01 percent by weight, or at least 0.05 percent by weight, or at least 0.1 percent by weight, of olefinic ester compounds, based on the total weight of liquid ingredients in the composition.
- In certain aspects, the disclosure provides methods for treating a gas well, including: providing a hydraulic fracturing composition according to the above embodiments, which is optionally mixed or slurried with solid particles (e.g., sand particles); and introducing the hydraulic fracturing composition into a subterranean gas well, e.g., injecting under hydraulic pressure.
- Four compositions were prepared. Composition 1A included methyl 9-decenoate in its substantially pure form (>97 wt % pure). Composition 1B included methyl 9-dodecenoate in its substantially pure form (>97 wt % pure). Composition 1C included: 33.0 wt % methyl 9-decenoate; 46.9 wt % methyl 9-dodecenoate; 1.6 wt %
- C13 olefinic methyl ester; 2.2 wt % methyl myristate; 4.1 wt % C15 olefinic methyl ester; 8.0 wt % methyl palmitate; 1.2 wt % alkenes; and trace amounts of other ingredients. Composition 1D included: 11.9 wt % methyl 9-decenoate; 18.6 wt % methyl 9-dodecenoate; 1.7 wt % C13 olefinic methyl ester; 0.1 wt % methyl myristate; 3.7 wt % C15 olefinic methyl ester; 48.8 wt % methyl palmitate; 7.8 wt % methyl stearate; 5.3 wt % dimethyl 9-octadecenedioate; 1.2 wt % alkenes; and trace amounts of other ingredients. In instances where the samples contain more than one ingredient, the samples were mixed to ensure homogeneity.
- Solvency power was determined by calculating kauri-butanol (Kb) values (ASTM D1133) for Compositions 1A-1D. The Kb values were calculated according to ASTM D1133, which is incorporated herein by reference. A butanolic solution of kauri resin was titrated with each composition until the admixture reaches a certain turbidity. Higher values correlate with improved performance as a solvent. Table 1 shows the measured Kb values for Compositions 1A-1D. Kb values were also measured for certain other solvents as a basis of comparison.
-
TABLE 1 Solvent Kb Value Composition 1A 98.5 Composition 1B 85.0 Composition 1C 81.5 Composition 1D 63.5 Methyl Caprate 96.1 Methyl Laurate 77.0 Methyl Soyate 59.3 Methyl Caprylate/Caprate 112.0 - Bitumen is a composite mixture of relatively high-molecular-weight hydrocarbons, maltenes, and asphaltenes, all of which are present in crude oil. Bitumen is therefore a representative composition of certain deposits that may develop in oil wells, and that may need to be cleaned away by the use of certain solvents. Bitumen removal was measured according to ASTM D4488-95 A5, which is incorporated herein by reference, for each of the compositions as well as methyl soyate and d-limonene (as a comparison). Bitumen removal was measured in terms of the number of Gardner scrub cycles necessary to achieve at least 80% removal. Lower values correlate with improved performance. Results are shown in Table 2.
-
TABLE 2 Solvent Gardner Scrub Cycles 80% Removal Composition 1A 55 Composition 1B 45 Composition 1C 60 Composition 1D 105 Methyl Soyate 175 D- Limonene 30 - Various asphaltene and rig wash removal formulations were made using Composition 1B. Such compositions can be useful for oil/gas well-related applications, especially for breaking up asphaltene deposits or washing above-the ground equipment. Table 3 shows the makeup of various compositions (in percent by weight). It should also be noted, the compositions identified as Composition 1B may, in certain optional embodiments, include some small amount of deodorizer. The compositions are described as 2A to 2G.
-
TABLE 3 Ingredient 2A 2B 2C 2D 2E 2F 2G Composition 1B 59.9 85.0 60.0 25.0 31.0 24.0 32.0 POLARTECH LA 8005 8.5 — — ACTRASOL MY-75 17.0 TOMADOL 25-9 7.0 7.0 BIOSOFT N1-9 — — — 15.0 23.0 18.0 BIOSOFT N411 — — — 38.0 46.0 37.0 BIOSOFT N300 58.0 BIOSOFT N91-6 10.0 STEPANOL AM — — — 22.0 ALCOSPERSE 747 21.0 Cyclohexanone 12.7 5.0 5.0 Oleic Acid 0.9 3.0 3.0 KOH (45% in H 20 soln.)1.0 — — Mineral Oil (100 SUS) — — 20.0 Benzene sulfonic acid — — 5.0 POLARTECH products are supplied by Afton Chemical Corp., Richmond, Virginia, USA. ACTRASOL products are supplied by Afton Chemical Corp., Richmond, Virginia, USA. TOMADOL products are supplied by Air Products, Inc., Allentown, Pennsylvania, USA. BIOSOFT products are supplied by Stepan Co., Northfield, Illinois, USA. STEPANOL products are supplied by Stepan Co., Northfield, Illinois, USA. ALCOSPERSE products are supplied by AkzoNobel Surface Chemistry LLC, Chicago, Illinois, USA. - Three gilsonite-containing compositions were prepared to test the dissolution of the solvent for gilsonite. Gilsonite is a naturally occurring form of bitumen. Dissolution of gilsonite correlates well with asphaltene dissolution. Sample 3A contained 0.1 g. of gilsonite and 4.9 g. of toluene. Sample 3B contained 0.1 g. of gilsonite and 4.9 g. of the following solution: 85 wt % methyl 9-dodecenoic acid, 5 wt % cyclohexanone, 3 wt % oleic acid, and 7 wt % TOMADOL 25-9. Sample 3C contained 0.1 g. of gilsonite and 4.9 g. of methyl 9-dodecenoate. Each of the three compositions was stirred for 24 hours at 300 rpm at room temperature. Then three drops of each composition were placed onto white filter paper.
FIG. 2 shows the spreading of the composition on the filter paper, with Composition 3A on the far left, Composition 3B in the middle, and Composition 3C on the far right. The broader spreading indicated greater dissolution of the gilsonite by the solvent. - Rheological studies were conducted to test wax dissolution in oil. The oil used in an SAE30 oil (Valvoline) and the wax used was wax NAFOL 20A. The tests were conducted on five samples: Composition 3A: 5 wt % wax in oil; Composition 3B: 5 wt % wax in oil doped with 600 ppm Composition 1B and 300 ppm BASOFLUX RD4120; Composition 3C: 5 wt % wax in oil doped with 600 ppm Composition 1B; Composition 3D: 5 wt % wax doped with 300 ppm BASOFLUX RD4120; and Composition 3E: oil.
- The five samples, viscosity was measured as a function of temperature at a constant shear rate of 10 s−1. Each sample was heated to about 45° C. above the wax appearance temperature and then cooled at a constant rate of 2° C./minute.
FIG. 3 shows the rheogram of the results. The vertical axis is viscosity, measured in Pa·s, and the horizontal axis is temperature measured in ° C. The curve for Composition 3A is labeled as A, the curve for Composition 3B is labeled as B, the curve for Composition 3C is labeled as C, the curve for Composition 3D is labeled as D, and the curve for Composition 3E is labeled as E. Note that the labels for each curve appear immediately above the respective curve. The curve for Composition 3B is labeled twice to show its continuity as it crosses over the curve for Composition 3A.
Claims (34)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/596,092 US20150197683A1 (en) | 2014-01-16 | 2015-01-13 | Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications |
| US14/855,018 US10081760B2 (en) | 2014-01-16 | 2015-09-15 | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US15/478,900 US10759990B2 (en) | 2014-01-16 | 2017-04-04 | Use of olefinic ester compositions in oil and gas fields |
| US16/108,288 US11299665B2 (en) | 2014-01-16 | 2018-08-22 | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US16/196,172 US20200148938A9 (en) | 2014-01-16 | 2018-11-20 | Olefinic Ester Compositions and Their Use in Remediating Wax Buildup in Oil- and Gas-Related Applications |
| US16/361,906 US11053430B2 (en) | 2014-01-16 | 2019-03-22 | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461928290P | 2014-01-16 | 2014-01-16 | |
| US201462006655P | 2014-06-02 | 2014-06-02 | |
| US201462075055P | 2014-11-04 | 2014-11-04 | |
| US201462081933P | 2014-11-19 | 2014-11-19 | |
| US201462089665P | 2014-12-09 | 2014-12-09 | |
| US14/596,092 US20150197683A1 (en) | 2014-01-16 | 2015-01-13 | Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/478,900 Continuation-In-Part US10759990B2 (en) | 2014-01-16 | 2017-04-04 | Use of olefinic ester compositions in oil and gas fields |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/855,018 Continuation-In-Part US10081760B2 (en) | 2014-01-16 | 2015-09-15 | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150197683A1 true US20150197683A1 (en) | 2015-07-16 |
Family
ID=53520797
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/596,092 Abandoned US20150197683A1 (en) | 2014-01-16 | 2015-01-13 | Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications |
| US14/596,044 Active 2035-06-05 US10858573B2 (en) | 2014-01-16 | 2015-01-13 | Olefinic ester compositions and their use as cleaning agents |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/596,044 Active 2035-06-05 US10858573B2 (en) | 2014-01-16 | 2015-01-13 | Olefinic ester compositions and their use as cleaning agents |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20150197683A1 (en) |
| WO (2) | WO2015108874A1 (en) |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017151158A1 (en) * | 2016-03-04 | 2017-09-08 | Halliburton Energy Services, Inc. | Improved performance non-emulsifiers that employ branched alcohols and a new high-solvency carrier oil |
| WO2017151159A1 (en) * | 2016-03-04 | 2017-09-08 | Halliburton Energy Services, Inc. | Alkyl unsaturated fatty acid ester oil as a oil component in the formulation and application of surfactant flowback aids for subterranean stimulation |
| WO2019082205A1 (en) * | 2017-10-24 | 2019-05-02 | Hindustan Petroleum Corporation Limited | A formulation for corrosion inhibition |
| US10294764B2 (en) | 2014-05-14 | 2019-05-21 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| EP3498814A1 (en) * | 2017-12-18 | 2019-06-19 | Pipeline Maintenance International Ltd | Pipeline cleaning composition |
| US10343153B2 (en) | 2013-03-14 | 2019-07-09 | Ximo Ag | Metathesis catalysts and reactions using the catalysts |
| US10421707B2 (en) | 2013-03-14 | 2019-09-24 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
| US10427146B2 (en) | 2013-10-01 | 2019-10-01 | Ximo Ag | Immobilized metathesis tungsten oxo alkylidene catalysts and use thereof in olefin metathesis |
| US10759990B2 (en) | 2014-01-16 | 2020-09-01 | Wilmar Trading Pte Ltd. | Use of olefinic ester compositions in oil and gas fields |
| CN111946309A (en) * | 2020-08-10 | 2020-11-17 | 王誉清 | Cold damage prevention dredging agent for low temperature resistant oil reservoir |
| US10941106B2 (en) | 2013-03-14 | 2021-03-09 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
| US11034879B2 (en) | 2013-03-14 | 2021-06-15 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| US11053433B2 (en) | 2017-12-01 | 2021-07-06 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
| US11053430B2 (en) | 2014-01-16 | 2021-07-06 | Wilmar Trading Pte Ltd. | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US11180690B2 (en) | 2013-03-14 | 2021-11-23 | Flotek Chemistry, Llc | Diluted microemulsions with low surface tensions |
| US11254856B2 (en) | 2013-03-14 | 2022-02-22 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| US11299665B2 (en) | 2014-01-16 | 2022-04-12 | Wilmar Trading Pte. Ltd. | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US11407930B2 (en) | 2012-05-08 | 2022-08-09 | Flotek Chemistry, Llc | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
| US11473004B2 (en) | 2016-12-02 | 2022-10-18 | University Of Wyoming | Microemulsions and uses thereof to displace oil in heterogeneous porous media |
| CN115324551A (en) * | 2022-09-08 | 2022-11-11 | 中国石油化工股份有限公司 | Fracturing method of low-permeability water-sensitive wax-containing reservoir |
| US11512243B2 (en) | 2020-10-23 | 2022-11-29 | Flotek Chemistry, Llc | Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods |
| US11535793B2 (en) * | 2015-12-07 | 2022-12-27 | Halliburton Energy Services, Inc. | Surfactant compositions for treatment of subterranean formations and produced oil |
| US11597873B2 (en) | 2019-10-10 | 2023-03-07 | Flotek Chemistry, Llc | Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency |
| US11634625B2 (en) | 2013-03-14 | 2023-04-25 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
| US20230134594A1 (en) * | 2020-02-13 | 2023-05-04 | Vinci Construction | Unsaturated fluxing agents for bituminous binders |
| DE102021132672A1 (en) | 2021-12-10 | 2023-06-15 | Werner & Mertz Gmbh | Use of a composition and composition for pretreating soiling on fabrics and method for removing soiling |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3328978A1 (en) * | 2015-07-31 | 2018-06-06 | Oleon N.V. | Composition for solubilization of organic residues |
| CN109837077B (en) * | 2019-03-13 | 2021-02-19 | 西安石油大学 | Wax inhibitor-supported rubber paraffin removal ball and preparation method, preparation device and application thereof |
| US20230183550A1 (en) * | 2019-05-01 | 2023-06-15 | Richard Strother | Bio-derived complex for oil and gas well remediation |
| FI128952B (en) | 2019-09-26 | 2021-03-31 | Neste Oyj | Renewable alkene production engaging metathesis |
| FI128954B (en) | 2019-09-26 | 2021-03-31 | Neste Oyj | Renewable base oil production engaging metathesis |
| FI128953B (en) | 2019-09-26 | 2021-03-31 | Neste Oyj | Renewable chemical production engaging metathesis and microbial oxidation |
| CN111593361A (en) * | 2020-06-02 | 2020-08-28 | 中国石油化工股份有限公司 | High flash point washing oil composition, preparation method and application |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040038847A1 (en) * | 1999-03-05 | 2004-02-26 | Gross Stephen F. | Hard surface cleaning composition |
| US20070259802A1 (en) * | 2006-05-04 | 2007-11-08 | Heintz Stavroula M | Cleaning compositions for hard to remove organic material |
| US20080033026A1 (en) * | 2006-02-09 | 2008-02-07 | Zullo Jill L | Antimicrobial compositions, methods and systems |
| US20100292328A1 (en) * | 2006-08-18 | 2010-11-18 | Cognis Ip Management Gmbh | Cosmetic Compositions Containing Esters of 2-ethylbutanol |
| US20130225469A1 (en) * | 2010-10-25 | 2013-08-29 | Stepan Company | Hard surface cleaners based on compositions derived from natural oil metathesis |
Family Cites Families (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4934391A (en) | 1988-02-08 | 1990-06-19 | 501 Petroleum Fermentations N.V. | Dibasic esters for cleaning electronic circuits |
| US5340407A (en) | 1988-02-08 | 1994-08-23 | Petroferm Inc. | Process of removing soldering flux and/or adhesive tape residue from a substrate |
| US5120371A (en) | 1990-11-29 | 1992-06-09 | Petroferm Inc. | Process of cleaning soldering flux and/or adhesive tape with terpenet and monobasic ester |
| DK533188D0 (en) | 1988-09-26 | 1988-09-26 | Aarhus Oliefabrik As | APPLICATION OF (C1-C5) ALKYL ESTERS OF ALIFATIC (C8-C22) MONOCARBOXYLIC ACIDS FOR THE PURIFICATION OF Grease, PAINT, PRINT COLORS O.L. AND CLEANER CONTAINING SUCH ESTERS |
| US5380453A (en) | 1988-09-26 | 1995-01-10 | Unichema Chemie B.V. | Composition comprising alkyl esters of aliphatic (C8 -C22) monocarboxylic acids and oil in water emulsifier |
| US5340495A (en) | 1993-04-30 | 1994-08-23 | Siebert, Inc. | Compositions for cleaning ink from a printing press and methods thereof |
| US5693600A (en) | 1994-07-20 | 1997-12-02 | Bruno Unger Scandinavia Aps | Cleansing agent for printing machines and presses and a method of cleaning such machines and presses |
| SE504066C2 (en) | 1995-03-08 | 1996-10-28 | Svenska Rapsoljebolaget Ab | Use of fatty acid alkyl esters for brush washing and / or paint removal |
| CO4560488A1 (en) | 1995-10-03 | 1998-02-10 | Nor Ind Inc | CLEANING COMPOSITIONS FOR LINE WELLS, HOUSINGS, TRAININGS AND OIL AND GAS EQUIPMENT. |
| CA2185308C (en) | 1995-10-05 | 2009-08-11 | Charles J. Good | Ester-based cleaning compositions |
| DE19708499A1 (en) | 1997-03-03 | 1998-09-10 | Henkel Kgaa | Process for removing solid asphalt residues from oil production |
| US5985816A (en) | 1998-04-17 | 1999-11-16 | Dotolo Research Ltd. | Heavy oil remover |
| FR2781497B1 (en) | 1998-07-07 | 2000-08-18 | Inst Francais Du Petrole | USE OF OIL ESTERS AS A WASHING AGENT FOR A POLLUTED SURFACE WITH HYDROCARBONS |
| US6281189B1 (en) | 1998-12-03 | 2001-08-28 | Elisha Technologies Co Llc | Soyate containing compositions |
| US6824623B1 (en) | 1999-09-22 | 2004-11-30 | Cognis Corporation | Graffiti remover, paint stripper, degreaser |
| EP1196524B1 (en) | 1999-07-16 | 2006-12-20 | The Procter & Gamble Company | Laundry detergent compositions comprising zwitterionic polyamines and mid-chain branched surfactants |
| US6191087B1 (en) | 1999-09-03 | 2001-02-20 | Vertec Biosolvents, Llc | Environmentally friendly solvent |
| US6284720B1 (en) | 1999-09-03 | 2001-09-04 | Vertec Biosolvents, Llc | Environmentally friendly ink cleaning preparation |
| US6096699A (en) | 1999-09-03 | 2000-08-01 | Ntec Versol, Llc | Environmentally friendly solvent |
| US6090769A (en) | 1999-09-20 | 2000-07-18 | Dotolo Research Ltd. | Asphalt and heavy oil degreaser |
| TW546370B (en) * | 2000-03-31 | 2003-08-11 | Ici Plc | Method of removing asphaltenes or petroleum waxes deposited in, or preventing, or inhibiting, the deposition of asphaltenes or petroleum waxes in, oil treatment equipment |
| FR2807763A1 (en) | 2000-04-17 | 2001-10-19 | Cognis Deutschland Gmbh | Aqueous cleaning products used as a base for skin cleansing pastes for the removal of oil marks containing an alkyl ester of a fatty acids and non-surfactant emulsifying agents |
| FR2816965B1 (en) | 2000-11-23 | 2003-09-05 | Inst Francais Du Petrole | CLEANING PRODUCTS BASED ON FATTY ACID ESTERS TO ENSURE THE DETACHMENT OF SOILED TEXTILES BY HYDROCARBON RESIDUES |
| DE10104470A1 (en) * | 2001-02-01 | 2002-08-08 | Basf Ag | Detergent formulations to prevent discoloration of plastic objects |
| US6776234B2 (en) * | 2001-12-21 | 2004-08-17 | Edward L. Boudreau | Recovery composition and method |
| AU2003219942A1 (en) | 2002-03-01 | 2003-09-16 | Cesi Chemical, A Flotek Company | Composition and process for well cleaning |
| MXPA04010803A (en) * | 2002-04-29 | 2005-03-07 | Dow Global Technologies Inc | Intergrated chemical processes for industrial utilization of seed oils. |
| ITMI20022627A1 (en) | 2002-12-12 | 2004-06-13 | Polimeri Europa Spa | USE OF A MIXTURE OF FATTY ACID ESTERS AS A FUEL |
| US6784147B1 (en) | 2003-07-03 | 2004-08-31 | State Industrial Products | Soy based drain cleaner |
| US7541315B2 (en) * | 2003-09-11 | 2009-06-02 | Baker Hughes Incorporated | Paraffin inhibitor compositions and their use in oil and gas production |
| US7192912B2 (en) | 2004-03-18 | 2007-03-20 | Johnsondiversey, Inc. | No VOC solvent blend |
| US8063004B2 (en) | 2004-07-22 | 2011-11-22 | Malcera, L.L.C. | Chemical composition of matter for the liquefaction and dissolution of asphaltene and paraffin sludges into petroleum crude oils and refined products at ambient temperatures and method of use |
| WO2006042316A1 (en) | 2004-10-12 | 2006-04-20 | Pantheon Chemical, Inc | Composition for cleaning and degreasing, system for using the composition, and methods of forming and using the composition |
| US7392844B2 (en) | 2004-11-10 | 2008-07-01 | Bj Services Company | Method of treating an oil or gas well with biodegradable low toxicity fluid system |
| US7231976B2 (en) | 2004-11-10 | 2007-06-19 | Bj Services Company | Method of treating an oil or gas well with biodegradable low toxicity fluid system |
| US7271136B2 (en) | 2005-01-21 | 2007-09-18 | Spray Nine Corporation | Aircraft cleaner formula |
| CA2531715A1 (en) | 2005-12-01 | 2007-06-01 | Zbigniew Stankiewicz | Biodegradable ecological cleaner |
| US20070155644A1 (en) | 2005-12-30 | 2007-07-05 | Archer-Daniel-Midland Company | Environmentally Friendly Solvent Containing Isoamyl Lactate |
| US8695267B2 (en) | 2006-02-04 | 2014-04-15 | Lasermax, Inc. | Firearm mount with embedded sight |
| WO2007092632A2 (en) | 2006-02-09 | 2007-08-16 | Elevance Renawable Sciences, Inc. | Surface coating compositions and methods |
| FR2907128B1 (en) | 2006-10-12 | 2012-08-31 | Arkema France | COMPOSITIONS USEFUL AS SOLVENTS FOR CLEANING PAINTS |
| US7588646B2 (en) | 2007-05-03 | 2009-09-15 | United Laboratories, Inc. | Cleaning compositions containing an alkyl ester and methods of using same |
| GB0804031D0 (en) | 2008-03-04 | 2008-04-09 | Swales Allen | Composition |
| FR2935984B1 (en) | 2008-09-15 | 2010-12-17 | Victor Seita | USE OF A CASTOR OIL ALKYL ESTER AS A CLEANING AND DEGREASING AGENT. |
| EP2175010A1 (en) | 2008-10-10 | 2010-04-14 | Eco Air S.r.l. | Use of fatty acid esters as descaling and lubricating agents |
| DE102009014119A1 (en) | 2009-03-24 | 2010-09-30 | Emery Oleochemicals Gmbh | Emulsion-based cleaning composition for oil field applications |
| EP2454359A4 (en) | 2009-07-16 | 2013-10-16 | Rhodia Operations | Industrial cleaning compositions and methods for using same |
| US8394751B2 (en) | 2010-01-29 | 2013-03-12 | W. M. Barr & Company | Organic residue remover composition |
| FR2957075B1 (en) | 2010-03-04 | 2012-06-22 | Centre Nat Rech Scient | METHOD FOR OBTAINING BIOSOLVANT COMPOSITIONS BY ESTERIFICATION AND OBTAINED BIOSOLVANT COMPOSITIONS |
| EP2368971B1 (en) | 2010-03-18 | 2014-06-18 | DENOLLE, Yann | Use of a combination of a mixture of fatty acid methyl esters in C16-C20 castor oil with at least one ethoxylated glyceride as a cleaning agent |
| ITGE20100098A1 (en) | 2010-09-09 | 2012-03-10 | Elettra Srl | COMPOSITION FOR WASHING RUBBER ROLLERS IN PRINTING MACHINES, IN PARTICULAR IN OFFSET PRINTING MACHINES. |
| MX388866B (en) * | 2010-10-25 | 2025-03-20 | Stepan Co | ALKOXYLATED FATTY ESTERS AND DERIVATIVES FROM THE METATHESIS OF NATURAL OIL. |
| CA2894831C (en) * | 2011-12-19 | 2020-09-08 | Biosynthetic Technologies, Llc | Processes for preparing estolide base oils and oligomeric compounds that include cross metathesis |
| US20130244913A1 (en) | 2012-03-13 | 2013-09-19 | L. Jack Maberry | Composition and method of converting a fluid from oil external to water external for cleaning a wellbore |
| CN104271542A (en) * | 2012-04-24 | 2015-01-07 | 艾勒旺斯可再生科学公司 | Unsaturated fatty alcohol compositions and derivatives from natural oil metathesis |
| WO2013162926A1 (en) * | 2012-04-24 | 2013-10-31 | Stepan Company | Aqueous hard surface cleaners based on terpenes and fatty acid derivatives |
| WO2014085393A1 (en) * | 2012-11-30 | 2014-06-05 | Elevance Renewable Sciences | Methods of making functionalized internal olefins and uses thereof |
| FR3001964B1 (en) | 2013-02-08 | 2015-02-20 | Arkema France | SYNTHESIS OF UNATURATED COMPACT BRANCHED BY CROSS METATHESIS |
| CN103305357B (en) | 2013-06-28 | 2014-12-17 | 上海应用技术学院 | Detergent as well as preparation method and application thereof |
-
2015
- 2015-01-13 US US14/596,092 patent/US20150197683A1/en not_active Abandoned
- 2015-01-13 WO PCT/US2015/011233 patent/WO2015108874A1/en active Application Filing
- 2015-01-13 US US14/596,044 patent/US10858573B2/en active Active
- 2015-01-13 WO PCT/US2015/011224 patent/WO2015108872A1/en active Application Filing
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040038847A1 (en) * | 1999-03-05 | 2004-02-26 | Gross Stephen F. | Hard surface cleaning composition |
| US20080033026A1 (en) * | 2006-02-09 | 2008-02-07 | Zullo Jill L | Antimicrobial compositions, methods and systems |
| US20070259802A1 (en) * | 2006-05-04 | 2007-11-08 | Heintz Stavroula M | Cleaning compositions for hard to remove organic material |
| US20100292328A1 (en) * | 2006-08-18 | 2010-11-18 | Cognis Ip Management Gmbh | Cosmetic Compositions Containing Esters of 2-ethylbutanol |
| US20130225469A1 (en) * | 2010-10-25 | 2013-08-29 | Stepan Company | Hard surface cleaners based on compositions derived from natural oil metathesis |
Non-Patent Citations (1)
| Title |
|---|
| Sigma-Aldrich Data sheet of sorbitan monoleate, 2016. * |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11407930B2 (en) | 2012-05-08 | 2022-08-09 | Flotek Chemistry, Llc | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
| US11034879B2 (en) | 2013-03-14 | 2021-06-15 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| US11180690B2 (en) | 2013-03-14 | 2021-11-23 | Flotek Chemistry, Llc | Diluted microemulsions with low surface tensions |
| US11634625B2 (en) | 2013-03-14 | 2023-04-25 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
| US11560351B2 (en) | 2013-03-14 | 2023-01-24 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
| US11285466B2 (en) | 2013-03-14 | 2022-03-29 | Verbio Vereinigte Bioenergie Ag | Metathesis catalysts and reactions using the catalysts |
| US11254856B2 (en) | 2013-03-14 | 2022-02-22 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| US10941106B2 (en) | 2013-03-14 | 2021-03-09 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
| US10343153B2 (en) | 2013-03-14 | 2019-07-09 | Ximo Ag | Metathesis catalysts and reactions using the catalysts |
| US10421707B2 (en) | 2013-03-14 | 2019-09-24 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
| US10427146B2 (en) | 2013-10-01 | 2019-10-01 | Ximo Ag | Immobilized metathesis tungsten oxo alkylidene catalysts and use thereof in olefin metathesis |
| US11053430B2 (en) | 2014-01-16 | 2021-07-06 | Wilmar Trading Pte Ltd. | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US10759990B2 (en) | 2014-01-16 | 2020-09-01 | Wilmar Trading Pte Ltd. | Use of olefinic ester compositions in oil and gas fields |
| US11299665B2 (en) | 2014-01-16 | 2022-04-12 | Wilmar Trading Pte. Ltd. | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation |
| US10294764B2 (en) | 2014-05-14 | 2019-05-21 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
| US11535793B2 (en) * | 2015-12-07 | 2022-12-27 | Halliburton Energy Services, Inc. | Surfactant compositions for treatment of subterranean formations and produced oil |
| WO2017151159A1 (en) * | 2016-03-04 | 2017-09-08 | Halliburton Energy Services, Inc. | Alkyl unsaturated fatty acid ester oil as a oil component in the formulation and application of surfactant flowback aids for subterranean stimulation |
| US20190040304A1 (en) * | 2016-03-04 | 2019-02-07 | Halliburton Energy Services, Inc. | Alkyl Unsaturated Fatty Acid Ester Oil as a Oil Component in the Formulation and Application of Surfactant Flowback Aids for Subterranean Stimulation |
| US20190136113A1 (en) * | 2016-03-04 | 2019-05-09 | Halliburton Energy Services, Inc. | Improved performance non-emulsifiers that employ branched alcohols and a new high-solvency carrier oil |
| US10717914B2 (en) * | 2016-03-04 | 2020-07-21 | Halliburton Energy Services, Inc. | Performance non-emulsifiers that employ branched alcohols and a new high-solvency carrier oil |
| WO2017151158A1 (en) * | 2016-03-04 | 2017-09-08 | Halliburton Energy Services, Inc. | Improved performance non-emulsifiers that employ branched alcohols and a new high-solvency carrier oil |
| US10961437B2 (en) * | 2016-03-04 | 2021-03-30 | Halliburton Energy Services, Inc. | Alkyl unsaturated fatty acid ester oil as a oil component in the formulation and application of surfactant flowback aids for subterranean stimulation |
| US11473004B2 (en) | 2016-12-02 | 2022-10-18 | University Of Wyoming | Microemulsions and uses thereof to displace oil in heterogeneous porous media |
| WO2019082205A1 (en) * | 2017-10-24 | 2019-05-02 | Hindustan Petroleum Corporation Limited | A formulation for corrosion inhibition |
| US11905604B2 (en) | 2017-10-24 | 2024-02-20 | Hindustan Petroleum Corporation Limited | Formulation for corrosion inhibition |
| US11053433B2 (en) | 2017-12-01 | 2021-07-06 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
| WO2019121810A1 (en) * | 2017-12-18 | 2019-06-27 | Pipe Maintenance International Ltd. | Pipeline cleaning composition |
| EP3498814A1 (en) * | 2017-12-18 | 2019-06-19 | Pipeline Maintenance International Ltd | Pipeline cleaning composition |
| US11597873B2 (en) | 2019-10-10 | 2023-03-07 | Flotek Chemistry, Llc | Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency |
| US20230134594A1 (en) * | 2020-02-13 | 2023-05-04 | Vinci Construction | Unsaturated fluxing agents for bituminous binders |
| CN111946309A (en) * | 2020-08-10 | 2020-11-17 | 王誉清 | Cold damage prevention dredging agent for low temperature resistant oil reservoir |
| US11512243B2 (en) | 2020-10-23 | 2022-11-29 | Flotek Chemistry, Llc | Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods |
| DE102021132672A1 (en) | 2021-12-10 | 2023-06-15 | Werner & Mertz Gmbh | Use of a composition and composition for pretreating soiling on fabrics and method for removing soiling |
| WO2023104983A1 (en) | 2021-12-10 | 2023-06-15 | Werner & Mertz Gmbh | Composition and use thereof for the pre-treatment of soiling on textile fabrics |
| CN115324551A (en) * | 2022-09-08 | 2022-11-11 | 中国石油化工股份有限公司 | Fracturing method of low-permeability water-sensitive wax-containing reservoir |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015108874A1 (en) | 2015-07-23 |
| US20150197711A1 (en) | 2015-07-16 |
| WO2015108872A1 (en) | 2015-07-23 |
| US10858573B2 (en) | 2020-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150197683A1 (en) | Olefinic Ester Compositions and Their Use in Oil- and Gas-Related Applications | |
| US11299665B2 (en) | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation | |
| US10759990B2 (en) | Use of olefinic ester compositions in oil and gas fields | |
| CN104870598A (en) | Environmentally Friendly Solvent System/Surfactant System for Drilling Fluids | |
| US10343970B2 (en) | Polyol esters of metathesized fatty acids and uses thereof | |
| Karis et al. | Non‐fuel uses for fatty acid methyl esters | |
| US10487039B2 (en) | Polyol esters of metathesized fatty acids and uses thereof | |
| US10017682B2 (en) | Natural oil-derived wellbore compositions and methods of use | |
| CA2963360A1 (en) | Use of olefinic ester compositions in oil and gas fields | |
| US20190264086A1 (en) | Olefinic Ester Compositions and Their Use in Remediating Wax Buildup in Oil- and Gas-Related Applications | |
| US9932542B2 (en) | Olefin compositions and their use as cleaning agents | |
| US11053430B2 (en) | Olefinic ester compositions and their use in stimulating hydrocarbon production from a subterranean formation | |
| US10358409B2 (en) | Low-toxicity olefinic ester compositions and methods of using the same | |
| US10711096B2 (en) | Aqueous monomer compositions and methods of making and using the same | |
| US20200190393A1 (en) | Olefinic Ester Compositions and Their Use in Remediating Wax Buildup in Oil- and Gas-Related Applications | |
| EP3322766B1 (en) | Natural oil-derived wellbore compositions | |
| US20160032167A1 (en) | Natural Oil-Derived Wellbore Compositions and Methods of Use | |
| HU231294B1 (en) | Polymer-tenside compositions for tertiary oil extraction process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ELEVANCE RENEWABLE SCIENCES, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HATEGAN, GEORGETA;FIRTH, BRUCE;NGANTUNG, FREDERYK;AND OTHERS;SIGNING DATES FROM 20150126 TO 20150128;REEL/FRAME:034829/0479 |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
| STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| AS | Assignment |
Owner name: WILMAR TRADING PTE LTD, SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELEVANCE RENEWABLE SCIENCES, INC.;REEL/FRAME:052942/0933 Effective date: 20200529 |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |

