US20150194914A1 - Automated motor control - Google Patents
Automated motor control Download PDFInfo
- Publication number
- US20150194914A1 US20150194914A1 US14/660,363 US201514660363A US2015194914A1 US 20150194914 A1 US20150194914 A1 US 20150194914A1 US 201514660363 A US201514660363 A US 201514660363A US 2015194914 A1 US2015194914 A1 US 2015194914A1
- Authority
- US
- United States
- Prior art keywords
- control
- current
- motor
- speed
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H02P6/002—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/13—Observer control, e.g. using Luenberger observers or Kalman filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/28—Arrangements for controlling current
Definitions
- This invention relates generally to electric motor controllers, and more specifically to controlling electric motors with an improved automation aspect.
- Electric motors of various kinds are well known. Generally speaking, electric motors are driven by applying a current to inputs of the motor, which currents create a magnetic field that interacts with another magnetic field to turn the motor's rotor. For example, one or more permanent magnets can provide magnetic fields to interact with the magnetic fields produced by the input current. The motor's turning can be controlled by controlling various aspects of the current applied to the motor.
- Motors come in a variety of designs.
- a common design includes having three windings of wires through which current flows, which current flow creates magnetic fields that interact with a plurality of permanent magnets.
- the current control may need a complicated and automated pattern that may be changed based on feedback regarding the motor's operation.
- FOC Field Oriented Control
- PMSM Permanent Magnet Synchronous Motors
- PMSM Permanent Magnet Synchronous Motors
- FIG. 1 The general control flow in traditional Proportional Integral (PI)-based field oriented control is shown in FIG. 1 .
- Usage of PIs requires manual tuning of six gains (k p and k i for each of three PIs) to achieve desired system performance. These gains are usually found by laboratory testing. Also, there is no closed form solution to specify desired controller bandwidth (the amount of computation capability for a controller when controlling a motor) while using this approach.
- FOC is applied using simplified and/or special input-output linearization (IOL) and extended state observer (ESO) techniques.
- IOL input-output linearization
- ESO extended state observer
- ADRC Active Disturbance Rejection Control
- PMSM contexts has certain limitations.
- applications of ADRC in this context have either used first-order ADRC for speed and PIs for i d and i q or first-order ADRCs for speed, i d and i q .
- there is no need to cascade two control systems for speed and i q Unnecessarily increasing the number of controllers not only increases complexity in gain design but also degrades system performance.
- IOL input-output linearization
- ESO extended state observer
- FOC Field Oriented Control
- FOC Permanent Magnet Synchronous Motors
- at least one gain value is determined based at least in part on a given bandwidth value.
- Operating parameters for the motor are determined based on the at least one gain value and information from a current sensor regarding motor current.
- Control signals used to control the motor are determined based on the determined operating parameters. Accordingly, automated control can be effected through setting a bandwidth value through the implementation of IOL and ESO techniques.
- the total number of controllers can be reduced.
- FIG. 1 comprises a schematic diagram for an example prior art approach to PMSM motor control
- FIG. 2 comprises a schematic diagram of an example approach to motor control as configured in accordance with various embodiments of the invention
- FIG. 3 comprises a flow diagram of an example method of motor control as configured in accordance with various embodiments of the invention
- FIG. 4 comprises a diagram of a load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention
- FIG. 5 comprises a diagram of rotor speed ⁇ r and current i d with disturbance rejection for given load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention
- FIG. 6 comprises a diagram of control efforts v d and v g with disturbance rejection for given load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention.
- FIG. 7 comprises a diagram of rotor speed ⁇ r and current i d for parameter uncertainty in (rotor+load) inertia J for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention.
- a PMSM 100 is controlled using a traditional PI-based field oriented control approach.
- a rectifier 105 provides power to an inverter 110 .
- the inverter 110 includes various gates or switches to take power from the rectifier 105 and apply power to current paths 112 , 113 , 114 for the three windings of the motor 100 .
- the inverter 110 is controlled by the receipt of control signals from a control device 120 .
- An estimator 130 takes available motor current (i ⁇ and i ⁇ ) and applied voltage (V ⁇ and V ⁇ ) values and outputs estimated rotor position ⁇ est and speed ⁇ est .
- the estimated rotor position ⁇ est is used in the Park transformations.
- the estimated speed ⁇ est is compared 135 to a reference speed ⁇ ref to determine variance from the reference speed ⁇ ref .
- the variance is applied to a speed proportional integral (PI) computation 140 to determine a reference current value (i q ) ref that relates to speed.
- PI speed proportional integral
- This speed related reference current value (i q ) ref is compared 145 to the current feedback value i q from the Clarke-Park transformation 125 to determine a variance, which is provided to an i q current proportional integral (PI) computation 150 to determine a reference voltage value (V q ) ref to use to control the motor.
- PI current proportional integral
- current information i d from the Clarke-Park transformation 125 is compared 160 to a reference current (i d ) ref to determine variance from the reference current (i d ) ref .
- the variance is provided to an i d current proportional integral (PI) computation 165 to determine a reference voltage value (V d ) ref to use to control the motor.
- the voltage reference values (V q ) ref and (V d ) ref are input to an inverse Park transformation 170 to obtain voltage values (V ⁇ ) ref and (V ⁇ ) ref used by a pulse width modulator 180 that uses these values to output control signals for the inverter 110 .
- a general second-order dynamic system such as a motor
- a general second-order dynamic system such as a motor
- b is not necessarily a constant, and can be a time-varying coefficient depending on other state variables. Allowing for a time-varying coefficient b provides better tracking performance and also accounts for general non-linear systems that are not affine in the control input, u. However, it should be made sure that b is never exactly equal to zero in the transient sense. This would cause a singularity in the control law and make the system unstable. Also, note that the IOL control law introduces the usage of derivatives of the reference command, r for better tracking performance. The ADRC control law ignores these derivatives to avoid differentiation of set points on a microcontroller. However, this problem can be solved by implementing a smooth reference profile generator (for example, cam profile equations) to ensure that the derivative components are smooth as well.
- a smooth reference profile generator for example, cam profile equations
- Each PI controller in the traditional approach can be replaced by a first-order ADRC or IOL controller.
- the (IOL+ESO) approach presented in this document implements a single second-order IOL controller for speed and i q , and a first-order IOL controller for i d .
- the total number of controllers decreases from three to two.
- the (IOL+ESO) approach is a more general approach and achieves better performance.
- an exact discrete-time equivalent of an (IOL+ESO) control system approach for Field Oriented Control of a PMSM can then be used for implementation of the system on a microcontroller whereas the ADRC approach only used an approximate discrete time equivalent.
- a PMSM 200 is controlled is this example via a rectifier 205 providing power to a motor power supply 210 .
- the motor power supply 210 includes various gates or switches to take power from the rectifier 205 and apply power to current paths 212 , 213 , 214 for the three windings of the motor 200 .
- An input 215 is configured to receive information from at least one current sensor 217 , 218 configured to sense current in at least one current path 212 , 213 , 214 to the permanent magnet synchronous motor 200 .
- a processing device 220 is connected to receive the information from the input 215 regarding the current i a , i b in the at least one current path 212 , 213 and configured to send signals to control operation of the permanent magnet synchronous motor 200 .
- the processing device 200 is configured to model the motor operation using the illustrated controllers and passing data as indicated to use bandwidth and motor current values to provide feedback control.
- K T is the torque constant usually given in motor datasheets.
- control inputs to the system are v d and v q
- control variables to be regulated by the use of reference commands are i d and ⁇ r .
- v d will be used to control i d and v q will be used to control ⁇ r .
- the control system that regulates i d will be referred to as the current controller, whereas the system that regulates ⁇ r will be referred to as the speed controller.
- f 1 is a function of the designated state-variables and other motor parameters
- equation (6) for the plant is in input-output form, and hence it can be modified to be represented in extended state-space form before an IOL control law and ESO can be developed for the system.
- Reassigning state-variables for the development of an (IOL+ESO) controller the above plant model can be represented in state-space form as
- u 1 k 11 ⁇ ( r 1 - x ⁇ 11 ) + ( r . 1 - x ⁇ 21 ) b 1 ⁇
- l 11 and l 21 are the observer gains
- k 11 is the controller gain
- r 1 is the reference command for x 11 , i.e., i d .
- ⁇ ⁇ r ⁇ t 1 J ⁇ [ 3 2 ⁇ P ⁇ [ ⁇ af + ( L d - L q ) ⁇ i d ] ⁇ i q - T f - T l ] .
- ⁇ 2 f 2 ( x 2 ,x 3 ,x 4 ,u 1 )+ b 2 u 2 (7)
- f 2 is a function of the designated state-variables and other motor parameters
- b 2 is a time-varying variable due to its dependence on i d .
- b 2 is time-varying there is no singularity in the control law due to a constant term in the expression for b 2 (t).
- effects due to u 1 are lumped into the non-linear unknown function, f 2 thus introducing decoupling control.
- ⁇ dot over ( ⁇ circumflex over ( x ) ⁇ 12 ⁇ circumflex over (x) ⁇ 22 +l 12 ( x 12 ⁇ circumflex over (x) ⁇ 12 )+ b 1 u 1
- ⁇ dot over ( ⁇ circumflex over ( x ) ⁇ 22 ⁇ circumflex over (x) ⁇ 32 +l 22 ( x 12 ⁇ circumflex over (x) ⁇ 12 )+ b 2 u 2
- l 12 , l 22 and l 32 are the observer gains
- k 12 and k 22 are the controller gains
- r 2 is the reference command for x 12 , i.e., ⁇ r .
- the next step in control design is to enable bandwidth tuning of the (IOL+ESO) controllers through controller and observer gains. This is achieved via mathematical pole-placement.
- ⁇ c1 and ⁇ o1 be the desired controller and observer bandwidths respectively for the current (IOL+ESO) system.
- ⁇ c2 and ⁇ o2 be the desired controller and observer bandwidths respectively for the speed (IOL+ESO) system. These desired bandwidths are typically received from a user or system designer.
- ⁇ dot over (x) ⁇ 2 A 2 x 2 +B 2 u 2 +E 2 h 2
- a 2 [ 0 1 0 0 0 1 0 0 0 ]
- B 2 [ 0 b 2 0 ]
- E 2 [ 0 0 1 ]
- C 2 [ 1 0 0 ] .
- ⁇ o2 ( s )
- s 3 +l 12 s 2 +l 22 s+l 32 .
- the observer gains are selected such that ⁇ o2 (s) is Hurwitz, meaning that all coefficients are positive and none are mathematically imaginary. This can be done by placing all poles at ⁇ o2 and thus enabling bandwidth tuning.
- gains are selected such that the characteristic polynomial
- k 12 ⁇ c2 2
- k 22 2 ⁇ c2 .
- gains can be designed for the lower-order current IOL and ESO. Gains that enable bandwidth tuning for both controllers and observers are summarized below.
- T is the sampling-time of the discrete-time system.
- a 1 [ - l 11 1 - l 21 0 ]
- B 1 [ b 1 l 11 0 l 21 ] .
- a reference profile generator is used to provide smooth time-varying reference commands for r 1 , ⁇ dot over (r) ⁇ 1 , r 2 , ⁇ dot over (r) ⁇ 2 and ⁇ umlaut over (r) ⁇ 2 where r 1 and r 2 are the reference commands for i d and ⁇ r respectively. Not using smooth reference commands may excite unstable dynamics in a system and cause the actuators to saturate or the system to go unstable. Because the second derivative of r 2 is used, the profile generator equations for r 2 are used, and the equations for r 1 then become clear. Let ( ⁇ r ) des be the desired set point for rotor speed and T des be the absolute time within which the rotor speed, ⁇ r should reach ( ⁇ r ) des . The profile generator equations for r 2 are given by:
- the processing device 220 is to implement selected ones of the above equations to control the motor in corresponding modules.
- the processing device 220 is configured to transform the sensed motor current (i a and i b ) using the known mathematical transform, Clarke-Park transformation 225 , to obtain feedback values i q and i d .
- Estimated values can also be used.
- An estimator 230 takes available motor current (i ⁇ and i ⁇ ) and applied voltage (V ⁇ and V ⁇ ) values and outputs estimated rotor position ⁇ est and speed ⁇ est .
- the estimated rotor position ⁇ est is used in the Park transformations.
- the estimated speed ⁇ est is used in the ESO speed module 240 .
- various reference values are received.
- processor device 220 can comprise a fixed-purpose hard-wired platform or can comprise a partially or wholly programmable platform. All of these architectural options are well known and understood in the art and require no further description here. Moreover, those skilled in the art will recognize and understand that such an apparatus as illustrated in FIG. 2 may be comprised of a plurality of physically distinct elements as is suggested by the illustration. It is also possible, however, to view this illustration as comprising a logical view, in which case one or more of these elements can be enabled and realized via a shared platform. It will also be understood that such a shared platform may comprise a wholly or at least partially programmable platform as are known in the art.
- the processing device 220 receives a bandwidth value ( ⁇ ) ref , for example, through a user interface or as a value received from a separate program in communication with the processing device 220 . Also, the processing device 220 may receive a reference current value (i d ) ref using similar methods.
- the processing device 220 is configured to determine at least one gain value based at least in part on the bandwidth value. In the approach described above for the ESO speed module 240 , the processing device 220 is further configured to determine the at least one gain value based at least in part on the bandwidth value by selecting observer gains such that a characteristic polynomial for the extended state observer speed module 240 has all positive and real coefficients by placing all poles at an extended state observer bandwidth.
- the processing device 220 is also configured to determine operating parameters for the motor 200 based at least in part on the at least one gain value and the information from the at least one current sensor 217 , 218 regarding the current in the at least one current path 212 , 213 , 214 using field oriented control by applying input-output linearization with an extended state observer feedback, for example, through algorithmic implementation of the above described mathematical relationships.
- the operating parameters can be determined by the processing device's 220 implementing one second-order input-output linearization controller 245 to output a speed control value using a reference rotational speed and speed extended state observer feedback in combination with implementing a single-order input-output linearization controller 255 to output a current control value using a reference d-axis current, (i d ) ref , and current extended state observer feedback.
- the processing device 220 is further configured to implement the one second-order input-output linearization controller 245 to output a speed control value by receiving information regarding a reference speed and feedback from an extended state observer speed module 240 of the processing device 220 .
- the information regarding the reference speed and ESO speed module 240 feedback in the illustrated example includes the reference speed value ( ⁇ ) ref , as compared 246 to a state variable ⁇ circumflex over (x) ⁇ 12 received from the ESO speed module 240 , a first derivative of the reference speed value ( ⁇ dot over ( ⁇ ) ⁇ ) ref as compared 247 to a state variable ⁇ circumflex over (x) ⁇ 22 received from the ESO speed module 240 , and a second derivative of the reference speed value ( ⁇ umlaut over ( ⁇ ) ⁇ ) ref .
- control value from the IOL speed module 245 is modified 248 using a state variable ⁇ circumflex over (x) ⁇ 32 received from the ESO speed module 240 , which state variable is combined with the time varying control law coefficient b 2 as illustrated.
- the processing device's 220 extended state observer speed module 240 is configured to receive feedback information regarding motor speed and control signals from the one second-order input-output linearization controller 245 and to provide extended state observer outputs as the feedback to the one second-order input-output linearization controller 245 .
- the information regarding motor speed received by the ESO speed module 240 includes the estimated speed ⁇ est from the estimator 230 whereas the control signals from the IOL speed controller 245 include the time varying control law coefficient b 2 .
- the processing device 220 is configured to implement the single-order input-output linearization controller 245 to output a current control value by receiving information regarding a reference current and feedback from an extended state observer current module.
- the information regarding the reference current includes, in the FIG. 2 example, a reference current, (i d ) ref , received by the processing device 220 as compared 256 to a state variable ⁇ circumflex over (x) ⁇ 11 received from the ESO current module 250 and a first derivative of the reference current value ( ⁇ dot over (i) ⁇ d ) ref .
- the processing device's 220 extended state observer current module 250 is configured to receive feedback information regarding d-axis current, i d , and control signals from the single-order input-output linearization controller 255 and to provide extended state observer outputs as the feedback to the single-order input-output linearization controller 255 .
- the control value from the IOL current module 255 is modified 258 using a state variable ⁇ circumflex over (x) ⁇ 21 received from the ESO current module 250 , which state variable is combined with the time varying control law coefficient b 1 as illustrated.
- the control signals from the single-order IOL current controller 255 received by the ESO current module 250 include the time varying control law coefficient b 1 .
- the processing device 220 is further configured to effect sending control signals based on the operating parameters to a control circuit 210 to control operation of the motor 200 .
- the above described processes result in a voltage reference value (V q ) ref from the speed control modules and the voltage reference value (V d ) ref from the current control modules.
- V q voltage reference value
- V d voltage reference value
- These values are input to an inverse Park transformation 270 to obtain voltage values (V ⁇ ) ref and (V ⁇ ) ref used by a pulse width modulator 280 that uses these values to output control signals for the inverter 210 .
- a controller for such permanent magnet motors using a non-linear control approach called input-output linearization (IOL) with extended state observer (ESO) can have the following features: automated controller gain design via pole-placement, bandwidth tuning, improved disturbance rejection, improved robustness against parameter uncertainty, discrete-time equivalent of controller for embedded implementations, and implementation of a smooth reference profile generator.
- IOL input-output linearization
- ESO extended state observer
- a method 300 of controlling a PMSM will be described with reference to FIG. 3 .
- the method includes receiving 305 by a processing device information from at least one current sensor regarding current in at least one current path to a permanent magnet synchronous motor and determining 310 by the processing device at least one gain value based at least in part on a bandwidth value. Determining the gain value may include selecting 312 observer gains such that a characteristic polynomial for an extended state observer speed module has all positive and real coefficients by placing all poles at an extended state observer bandwidth.
- determining the gain value may include selecting 314 input-output controller gains such that a characteristic polynomial for an input-output linearization control module has all positive and real coefficients by placing all poles at an input-output linearization control module bandwidth.
- the method further includes determining 315 by the processing device operating parameters for the permanent magnet synchronous motor based at least in part on the at least one gain value and the information from the at least one current sensor regarding the current in the at least one current path using field oriented control by applying input-output linearization with an extended state observer feedback.
- determining the operating parameters includes implementing 320 one second-order input-output linearization controller to output a speed control value using a reference rotational speed and speed extended state observer feedback.
- implementing the one second-order input-output linearization controller may include receiving 322 information regarding a reference speed and feedback from an extended state observer speed module.
- the extended state observer speed module receives 324 feedback information regarding motor speed and control signals from the one second-order input-output linearization controller and provides extended state observer outputs as the feedback to the one second-order input-output linearization controller.
- determining the operating parameters includes implementing 325 a single-order input-output linearization controller to output a current control value using a reference d-axis current and current extended state observer feedback.
- implementing the single-order input-output linearization controller to output a current control value may include receiving 327 information regarding a reference current and feedback from an extended state observer current module.
- the extended state observer current module receives 329 feedback information regarding d-axis current and control signals from the single-order input-output linearization controller and provides extended state observer outputs as the feedback to the single-order input-output linearization controller.
- each block may represent a module, segment, or portion of code that comprises program instructions to implement the specified logical function(s).
- the program instructions may be embodied in the form of source code that comprises human-readable statements written in a programming language or machine code that comprises numerical instructions recognizable by a suitable execution system such as a processor in a computer system or other system.
- the machine code may be converted from the source code, etc.
- each block may represent a circuit or a number of interconnected circuits to implement the specified logical function(s).
- the (IOL+ESO) based speed controller for Field Oriented Control of Permanent Magnet Synchronous Motors is capable of enhanced disturbance rejection and robustness against parameter uncertainties.
- disturbances include T l and T f while motor parameters include J, R, L d , L q , P and ⁇ af .
- This controller also enables bandwidth tuning and automated gain design via pole-placement, thus eliminating the overhead of manual tuning for achieving desired system performance.
- An exact discrete-time equivalent of the (IOL+ESO) controller allows direct implementation on a microcontroller operatively connected to the motor. Also, a reference command profile generator generates smooth reference commands for the motor.
- ⁇ c1 150 Hz
- ⁇ c2 50 Hz
- the sampling frequency for the discrete-time control system is 10 kHz.
- the motor is initialized from rest condition, i.e., initial conditions on ⁇ r and i d are both zero.
- the set point for rotor speed ⁇ r is 3000 rpm, which is reached using a smooth reference profile; whereas, i d is controlled such that it remains zero, i.e., reference command for i d is 0 Amp.
- the controller's disturbance rejection properties are demonstrated by first simulating the system under normal conditions (for which the controller was designed), and then introducing disturbances to check if the system is stable with zero steady-state error and settling times are short after the disturbance events have occurred.
- load torque is considered as a disturbance.
- a 250 millisecond transient simulation where a load torque of 0.5 N ⁇ m is used for the first 150 milliseconds, and then step load inputs of 1 N ⁇ m and 2 N ⁇ m are introduced at 150 ms and 200 ms respectively. These step load inputs thus create disturbance events.
- FIG. 4 shows the load torque profile described here
- FIG. 5 displays transient simulation results for ⁇ r and i d while using this load torque profile.
- FIG. 6 shows the corresponding control efforts v d and v q required to follow the desired reference command profiles for ⁇ r and i d while exhibiting disturbance rejection. Because the load of the system is increasing due to disturbances at 150 ms and 200 ms, one would expect that the control effort increases as seen in FIG. 6 .
- J exact be the exact (rotor+load) inertia of the actual system and J control be the approximate value of J exact .
- J control is usually known through motor datasheets and other preliminary calculations. Recall that J control will be used in b 2 (t) from the speed IOL control law, which is where the uncertainty lies.
- J control is varied from J exact to 2 ⁇ J exact , while load torque T l is kept constant at 0.5 N ⁇ m.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Input-output linearization (IOL) and extended state observer (ESO) techniques are applied to a Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM). In one such approach, at least one gain value is determined based at least in part on a given bandwidth value. Operating parameters for the motor are determined based on the at least one gain value and information from a current sensor regarding motor current. Control signals used to the control the motor are determined based on the determined operating parameters. Accordingly, automated control can be effected through setting a bandwidth value through the implementation of IOL and ESO techniques.
Description
- This application is a Continuation of prior application Ser. No. 13/833,746, filed Mar. 15, 2013, now U.S. Pat. No. 8,981,702, granted Mar. 17, 2015.
- This invention relates generally to electric motor controllers, and more specifically to controlling electric motors with an improved automation aspect.
- Electric motors of various kinds are well known. Generally speaking, electric motors are driven by applying a current to inputs of the motor, which currents create a magnetic field that interacts with another magnetic field to turn the motor's rotor. For example, one or more permanent magnets can provide magnetic fields to interact with the magnetic fields produced by the input current. The motor's turning can be controlled by controlling various aspects of the current applied to the motor.
- Motors come in a variety of designs. A common design includes having three windings of wires through which current flows, which current flow creates magnetic fields that interact with a plurality of permanent magnets. To control a motor with a complicated design, the current control may need a complicated and automated pattern that may be changed based on feedback regarding the motor's operation.
- Many of today's motor control systems (as may be used with motors used in washing machines, electronic bicycles, manufacturing applications, and any other automated motor control) contain speed and current controllers that contain parameters that must be tuned manually to achieve the desired level of system performance. Performance is usually measured in terms of the controller's disturbance rejection properties, its robustness against parameter uncertainty, and settling times. However, tuning controllers manually can be time consuming and tedious given a large application space such as motor control because motors are applied in a wide variety of applications having different motor control needs. Moreover, tuning controller parameters for a particular application does not imply that the same parameters will give desired system performance for a different application. Changing applications often degrades robustness and disturbance rejection properties of the controller. Also, many applications require control systems expertise that is often not available to software engineers that develop microcontroller based motor control solutions.
- In one approach known in the art, Field Oriented Control (FOC) is used for Permanent Magnet Synchronous Motors (PMSM). Such motors have non-linear characteristics, and one way to control such motors is to linearize the characteristics and apply linear controls. The general control flow in traditional Proportional Integral (PI)-based field oriented control is shown in
FIG. 1 . Usage of PIs requires manual tuning of six gains (kp and ki for each of three PIs) to achieve desired system performance. These gains are usually found by laboratory testing. Also, there is no closed form solution to specify desired controller bandwidth (the amount of computation capability for a controller when controlling a motor) while using this approach. - In other general dynamic systems or contexts, FOC is applied using simplified and/or special input-output linearization (IOL) and extended state observer (ESO) techniques. This simplified version is called Active Disturbance Rejection Control (ADRC). Application of this approach to PMSM contexts has certain limitations. For example, applications of ADRC in this context have either used first-order ADRC for speed and PIs for id and iq or first-order ADRCs for speed, id and iq. However, there is no need to cascade two control systems for speed and iq. Unnecessarily increasing the number of controllers not only increases complexity in gain design but also degrades system performance.
- Generally speaking and pursuant to these various embodiments, input-output linearization (IOL) and extended state observer (ESO) techniques are applied to Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM). In one such approach, at least one gain value is determined based at least in part on a given bandwidth value. Operating parameters for the motor are determined based on the at least one gain value and information from a current sensor regarding motor current. Control signals used to control the motor are determined based on the determined operating parameters. Accordingly, automated control can be effected through setting a bandwidth value through the implementation of IOL and ESO techniques. Moreover, as compared to previous applications, the total number of controllers can be reduced. These and other benefits may become clear upon making a thorough review and study of the following detailed description.
- The above needs are at least partially met through provision of the automated motor control described in the following detailed description and particularly when studied in conjunction with the drawings wherein:
-
FIG. 1 comprises a schematic diagram for an example prior art approach to PMSM motor control; -
FIG. 2 comprises a schematic diagram of an example approach to motor control as configured in accordance with various embodiments of the invention; -
FIG. 3 comprises a flow diagram of an example method of motor control as configured in accordance with various embodiments of the invention; -
FIG. 4 comprises a diagram of a load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention; -
FIG. 5 comprises a diagram of rotor speed ωr and current id with disturbance rejection for given load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention; -
FIG. 6 comprises a diagram of control efforts vd and vg with disturbance rejection for given load torque profile for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention; and -
FIG. 7 comprises a diagram of rotor speed ωr and current id for parameter uncertainty in (rotor+load) inertia J for a disturbance rejection simulation of a motor control approach as configured in accordance with various embodiments of the invention. - Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
- Referring now to the drawings, and in particular to
FIG. 1 , a prior approach to motor control will be described to help illustrate the advances described herein. InFIG. 1 , a PMSM 100 is controlled using a traditional PI-based field oriented control approach. Arectifier 105 provides power to aninverter 110. Theinverter 110 includes various gates or switches to take power from therectifier 105 and apply power tocurrent paths motor 100. Theinverter 110 is controlled by the receipt of control signals from acontrol device 120. Current for themotor 100 is sensed (ia and ib) and transformed using the known mathematical transform, Clarke-Parktransformation 125, to obtain feedback values iq and id. Anestimator 130 takes available motor current (iα and iβ) and applied voltage (Vα and Vβ) values and outputs estimated rotor position θest and speed ωest. The estimated rotor position θest is used in the Park transformations. The estimated speed ωest is compared 135 to a reference speed ωref to determine variance from the reference speed ωref. The variance is applied to a speed proportional integral (PI)computation 140 to determine a reference current value (iq)ref that relates to speed. This speed related reference current value (iq)ref is compared 145 to the current feedback value iq from the Clarke-Parktransformation 125 to determine a variance, which is provided to an iq current proportional integral (PI)computation 150 to determine a reference voltage value (Vq)ref to use to control the motor. - Similarly, current information id from the Clarke-
Park transformation 125 is compared 160 to a reference current (id)ref to determine variance from the reference current (id)ref. The variance is provided to an id current proportional integral (PI)computation 165 to determine a reference voltage value (Vd)ref to use to control the motor. The voltage reference values (Vq)ref and (Vd)ref are input to aninverse Park transformation 170 to obtain voltage values (Vα)ref and (Vβ)ref used by apulse width modulator 180 that uses these values to output control signals for theinverter 110. - In a general case, a general second-order dynamic system, such as a motor, can be represented as
-
ÿ=f(y,{dot over (y)},w,t)+bu - where b is a constant in terms of system parameters, u(t) is the system control input, w(t) is an external disturbance, y are the system states, and t is time. Representing the above system in the extended state-space form, where
-
{dot over (x)} 1 =x 2 -
{dot over (x)} 2 =x 3 +bu -
{dot over (x)} 3 =h, - the ADRC control law is given by
-
- where x3=f, h={dot over (f)} and r is the reference command or set point for x1 i.e. y. However, the IOL control law used in various approaches of this disclosure is given by
-
- Note that in the IOL control law, b is not necessarily a constant, and can be a time-varying coefficient depending on other state variables. Allowing for a time-varying coefficient b provides better tracking performance and also accounts for general non-linear systems that are not affine in the control input, u. However, it should be made sure that b is never exactly equal to zero in the transient sense. This would cause a singularity in the control law and make the system unstable. Also, note that the IOL control law introduces the usage of derivatives of the reference command, r for better tracking performance. The ADRC control law ignores these derivatives to avoid differentiation of set points on a microcontroller. However, this problem can be solved by implementing a smooth reference profile generator (for example, cam profile equations) to ensure that the derivative components are smooth as well.
- Each PI controller in the traditional approach can be replaced by a first-order ADRC or IOL controller. To this end, the (IOL+ESO) approach presented in this document implements a single second-order IOL controller for speed and iq, and a first-order IOL controller for id. Hence, the total number of controllers decreases from three to two. Moreover, the (IOL+ESO) approach is a more general approach and achieves better performance. Additionally, an exact discrete-time equivalent of an (IOL+ESO) control system approach for Field Oriented Control of a PMSM can then be used for implementation of the system on a microcontroller whereas the ADRC approach only used an approximate discrete time equivalent.
- One such approach to will be described with reference to
FIG. 2 . APMSM 200 is controlled is this example via arectifier 205 providing power to amotor power supply 210. Themotor power supply 210 includes various gates or switches to take power from therectifier 205 and apply power tocurrent paths motor 200. Aninput 215 is configured to receive information from at least onecurrent sensor current path magnet synchronous motor 200. Aprocessing device 220 is connected to receive the information from theinput 215 regarding the current ia, ib in the at least onecurrent path magnet synchronous motor 200. In the illustrated example, theprocessing device 200 is configured to model the motor operation using the illustrated controllers and passing data as indicated to use bandwidth and motor current values to provide feedback control. - To understand the operations of the various illustrated modules, the derivation of mathematical models that describe the operation of the controllers will now be described. To create an input-output linearization with extended state observer model for a PMSM, the modeling starts with the differential-equation model of a PMSM in d-q reference frame as given by:
-
- and the electromagnetic torque, Te, is given by
-
- A list of symbol definitions as used in this model is provided later in this disclosure. Note that when id=0,
-
- where KT is the torque constant usually given in motor datasheets. The differential-equation model can be represented in state-space form by making the following state-variable assignments:
x1(t)=θr=Mechanical rotor position
x2(t)=ωr=Mechanical rotor speed
x3(t)=id=d-axis current
x4(t)=iq=q-axis current
u1(t)=vd=d-axis voltage
u2(t)=vq=q-axis voltage
y1(t)=id
y2(t)=ωr. - The above state-variable assignment demonstrates that the control inputs to the system are vd and vq, and the control variables to be regulated by the use of reference commands are id and ωr.
- Because two variables need to be controlled, it calls for the development of two separate (IOL+ESO) controllers that exhibit decoupling control. Likewise, vd will be used to control id and vq will be used to control ωr. The control system that regulates id will be referred to as the current controller, whereas the system that regulates ωr will be referred to as the speed controller.
- Consider differential-equation (3) from the above PMSM model because id is one of the variables to be controlled,
-
- Making the respective state-variable assignments shown above, the above equation can be written as
-
{dot over (y)} 1 =f 1(x 2 ,x 3 ,x 4)+b 1 u 1 (6) - where f1 is a function of the designated state-variables and other motor parameters and
-
- Note that equation (6) for the plant is in input-output form, and hence it can be modified to be represented in extended state-space form before an IOL control law and ESO can be developed for the system. Reassigning state-variables for the development of an (IOL+ESO) controller, the above plant model can be represented in state-space form as
-
{dot over (x)} 11 =x 21 +b 1 u 1 -
{dot over (x)} 21 =h 1 -
y 1 =x 11 =x 3 =i d - where x21=f1 and h1={dot over (f)}1. The extended state observer for the above system is given by
-
{dot over ({circumflex over (x)}11 ={circumflex over (x)} 21 +l 11(x 11 −{circumflex over (x)} 11)+b 1 u 1 -
{dot over ({circumflex over (x)}21 =l 21(x 11 −{circumflex over (x)} 11) - and the input-output linearization control law is given by
-
- where l11 and l21 are the observer gains, k11 is the controller gain and r1 is the reference command for x11, i.e., id.
- Now, consider differential-equation (2) from the PMSM model for development of the speed controller,
-
- Because {dot over (ω)}r does not directly depend on the system inputs vd or vq, a higher order of the same differential-equation can be considered for the development of (IOL+ESO) controller. Hence,
-
- Making respective state-variable assignments, the above equation becomes
-
ÿ 2 =f 2(x 2 ,x 3 ,x 4 ,u 1)+b 2 u 2 (7) - where f2 is a function of the designated state-variables and other motor parameters, whereas
-
- Note that b2 is a time-varying variable due to its dependence on id. Although b2 is time-varying there is no singularity in the control law due to a constant term in the expression for b2(t). Also, note that effects due to u1 are lumped into the non-linear unknown function, f2 thus introducing decoupling control. Once again, because the plant equation is in input-output form, it can be converted to be represented in extended state-space form before an IOL control law and ESO can be developed for the system. Reassigning state-variables for the development of an (IOL+ESO) controller, the above plant model can be represented in state-space form as
-
{dot over (x)} 12 =x 22 -
{dot over (x)} 22 =x 32 +b 2u2 -
{dot over (x)} 32 =h 2 -
y 2 =x 12 =x 2=ωr - where x32=f2 and h2={dot over (f)}2. The extended state observer for the above system is given by
-
{dot over ({circumflex over (x)}12 ={circumflex over (x)} 22 +l 12(x 12 −{circumflex over (x)} 12)+b 1 u 1 -
{dot over ({circumflex over (x)}22 ={circumflex over (x)} 32 +l 22(x 12 −{circumflex over (x)} 12)+b 2 u 2 -
{dot over ({circumflex over (x)}32 =l 32(x 12 −{circumflex over (x)} 12) - and the input-output linearization control law is given by
-
- where l12, l22 and l32 are the observer gains, k12 and k22 are the controller gains, and r2 is the reference command for x12, i.e., ωr.
- So configured, through the development of two (IOL+ESO) controllers, measurements (as available in sensed FOC approaches) or estimates (as available in sensor-less FOC approaches) of only id and ωr are used in feedback; whereas, in traditional PI-based FOC, measurements or estimates of id, ωr and iq are required in feedback. Also, only approximate values of b1 and b2 need to be known; the control system will have zero steady-state error even if exact values are not known.
- The next step in control design is to enable bandwidth tuning of the (IOL+ESO) controllers through controller and observer gains. This is achieved via mathematical pole-placement. In this example, let ωc1 and ωo1 be the desired controller and observer bandwidths respectively for the current (IOL+ESO) system. Likewise, let ωc2 and ωo2 be the desired controller and observer bandwidths respectively for the speed (IOL+ESO) system. These desired bandwidths are typically received from a user or system designer.
- For purposes of gain design and illustration, consider the speed controller and its third-order extended state observer shown above. Note that all equations for the speed controller bear the
subscript 2, whereas equations for the current controller have subscript 1. The respective extended state-space form can be written as a linear system, -
{dot over (x)} 2 =A 2 x 2 +B 2 u 2 +E 2 h 2 -
y 2 =C 2 x 2 - where
-
- If the observer gain matrix is given by
-
- the characteristic polynomial for the observer is given by
-
λo2(s)=|det(s1−(A 2 −L 2 C 2))|=s 3 +l 12 s 2 +l 22 s+l 32. - Now, the observer gains are selected such that λo2(s) is Hurwitz, meaning that all coefficients are positive and none are mathematically imaginary. This can be done by placing all poles at −ωo2 and thus enabling bandwidth tuning. Hence,
-
λo2(s)=s 3 +l 12 s 2 +l 22 s+l 32=(s+ω o2)3 - Comparing both equations above,
-
l 12=3ωo2 , l 22=3ωo2 2 , l 32=ωo2 3. - Similarly, for the speed IOL control law, gains are selected such that the characteristic polynomial,
-
λc1(s)=s 2 +k 22 s+k 12=(s+ω c)2 - is Hurwitz and all poles are placed at −ωc. Once again, comparing the above equations,
-
k 12=ωc2 2 , k 22=2ωc2. - Using a similar approach, gains can be designed for the lower-order current IOL and ESO. Gains that enable bandwidth tuning for both controllers and observers are summarized below.
-
l 11=2ωo1 , l 12=ωo1 2 -
k 11=ωc1 -
l 12=3ωo2 , l 22=3ωo2 2 , l 32=ωo2 3 -
k 12=ωc2 2 , k 22=2ωc2 - It is common practice to design controllers with a desired bandwidth based on design objectives; however, choosing a bandwidth for the observers may pose a challenge. Through simulations and experimentation it is found that observer bandwidths may be specified using the following rule,
-
ωo≈5˜10ωc. - Using the starting point above, the discrete-time equivalent of the control system is derived so that embedded implementation of the control system on a micro-controller is possible. All previous sections assumed that the developed controller is continuous in nature; whereas, this section makes the transition to a discrete version of the (IOL+ESO) controllers.
- The discretization of the IOL control law is generally trivial; however, discretization of the ESO may pose some challenges. The discrete-time equivalents of the two IOL controls laws are given by:
-
- For the discretization of the ESO, first consider a general continuous-time plant of the form,
-
{dot over (x)}(t)=Ax(t)+Bu(t) -
y(t)=Cx(t) - The exact discrete-time equivalent of the above system is given by
-
- and T is the sampling-time of the discrete-time system.
- Now, consider the continuous-time current ESO represented in general form,
-
- In view of the above system of equations, for the current ESO in continuous-time,
-
- Using the discrete-time equivalent equations shown earlier and the relationship between observer gains and bandwidth shown above, the discrete version of the current ESO is given by
-
- Similarly, the discrete version of the speed ESO is given by
-
- A reference profile generator is used to provide smooth time-varying reference commands for r1, {dot over (r)}1, r2, {dot over (r)}2 and {umlaut over (r)}2 where r1 and r2 are the reference commands for id and ωr respectively. Not using smooth reference commands may excite unstable dynamics in a system and cause the actuators to saturate or the system to go unstable. Because the second derivative of r2 is used, the profile generator equations for r2 are used, and the equations for r1 then become clear. Let (ωr)des be the desired set point for rotor speed and Tdes be the absolute time within which the rotor speed, ωr should reach (ωr)des. The profile generator equations for r2 are given by:
-
- Similar equations can be written for r1(t) and {dot over (r)}1(t) using the above structure.
- Referring again to
FIG. 2 , in operation, theprocessing device 220 is to implement selected ones of the above equations to control the motor in corresponding modules. First, to obtain the information used in the equations for the illustrated example, theprocessing device 220 is configured to transform the sensed motor current (ia and ib) using the known mathematical transform, Clarke-Park transformation 225, to obtain feedback values iq and id. Estimated values can also be used. Anestimator 230 takes available motor current (iα and iβ) and applied voltage (Vα and Vβ) values and outputs estimated rotor position θest and speed ωest. The estimated rotor position θest is used in the Park transformations. The estimated speed ωest is used in theESO speed module 240. In addition to the estimated rotor position θest, estimated speed ωest, and current value id, various reference values are received. - Those skilled in the art will recognize and appreciate that such a
processor device 220 can comprise a fixed-purpose hard-wired platform or can comprise a partially or wholly programmable platform. All of these architectural options are well known and understood in the art and require no further description here. Moreover, those skilled in the art will recognize and understand that such an apparatus as illustrated inFIG. 2 may be comprised of a plurality of physically distinct elements as is suggested by the illustration. It is also possible, however, to view this illustration as comprising a logical view, in which case one or more of these elements can be enabled and realized via a shared platform. It will also be understood that such a shared platform may comprise a wholly or at least partially programmable platform as are known in the art. - In the illustrated example, the
processing device 220 receives a bandwidth value (ω)ref, for example, through a user interface or as a value received from a separate program in communication with theprocessing device 220. Also, theprocessing device 220 may receive a reference current value (id)ref using similar methods. Theprocessing device 220 is configured to determine at least one gain value based at least in part on the bandwidth value. In the approach described above for theESO speed module 240, theprocessing device 220 is further configured to determine the at least one gain value based at least in part on the bandwidth value by selecting observer gains such that a characteristic polynomial for the extended stateobserver speed module 240 has all positive and real coefficients by placing all poles at an extended state observer bandwidth. - The
processing device 220 is also configured to determine operating parameters for themotor 200 based at least in part on the at least one gain value and the information from the at least onecurrent sensor current path output linearization controller 245 to output a speed control value using a reference rotational speed and speed extended state observer feedback in combination with implementing a single-order input-output linearization controller 255 to output a current control value using a reference d-axis current, (id)ref, and current extended state observer feedback. By one approach, theprocessing device 220 is further configured to implement the one second-order input-output linearization controller 245 to output a speed control value by receiving information regarding a reference speed and feedback from an extended stateobserver speed module 240 of theprocessing device 220. The information regarding the reference speed andESO speed module 240 feedback in the illustrated example, includes the reference speed value (ω)ref, as compared 246 to a state variable {circumflex over (x)}12 received from theESO speed module 240, a first derivative of the reference speed value ({dot over (ω)})ref as compared 247 to a state variable {circumflex over (x)}22 received from theESO speed module 240, and a second derivative of the reference speed value ({umlaut over (ω)})ref. Moreover, in the illustrated example, the control value from theIOL speed module 245 is modified 248 using a state variable {circumflex over (x)}32 received from theESO speed module 240, which state variable is combined with the time varying control law coefficient b2 as illustrated. - To provide such feedback, the processing device's 220 extended state
observer speed module 240 is configured to receive feedback information regarding motor speed and control signals from the one second-order input-output linearization controller 245 and to provide extended state observer outputs as the feedback to the one second-order input-output linearization controller 245. In the example ofFIG. 2 , the information regarding motor speed received by theESO speed module 240 includes the estimated speed ωest from theestimator 230 whereas the control signals from theIOL speed controller 245 include the time varying control law coefficient b2. - Furthermore, the
processing device 220 is configured to implement the single-order input-output linearization controller 245 to output a current control value by receiving information regarding a reference current and feedback from an extended state observer current module. The information regarding the reference current includes, in theFIG. 2 example, a reference current, (id)ref, received by theprocessing device 220 as compared 256 to a state variable {circumflex over (x)}11 received from the ESOcurrent module 250 and a first derivative of the reference current value ({dot over (i)}d)ref. By one approach, the processing device's 220 extended state observercurrent module 250 is configured to receive feedback information regarding d-axis current, id, and control signals from the single-order input-output linearization controller 255 and to provide extended state observer outputs as the feedback to the single-order input-output linearization controller 255. In the illustrated example, the control value from the IOLcurrent module 255 is modified 258 using a state variable {circumflex over (x)}21 received from the ESOcurrent module 250, which state variable is combined with the time varying control law coefficient b1 as illustrated. Also as illustrated in the example ofFIG. 2 , the control signals from the single-order IOLcurrent controller 255 received by the ESOcurrent module 250 include the time varying control law coefficient b1. - The
processing device 220 is further configured to effect sending control signals based on the operating parameters to acontrol circuit 210 to control operation of themotor 200. In the illustrated example, the above described processes result in a voltage reference value (Vq)ref from the speed control modules and the voltage reference value (Vd)ref from the current control modules. These values are input to aninverse Park transformation 270 to obtain voltage values (Vα)ref and (Vβ)ref used by apulse width modulator 280 that uses these values to output control signals for theinverter 210. - So configured, a controller for such permanent magnet motors using a non-linear control approach called input-output linearization (IOL) with extended state observer (ESO) can have the following features: automated controller gain design via pole-placement, bandwidth tuning, improved disturbance rejection, improved robustness against parameter uncertainty, discrete-time equivalent of controller for embedded implementations, and implementation of a smooth reference profile generator.
- A
method 300 of controlling a PMSM will be described with reference toFIG. 3 . The method includes receiving 305 by a processing device information from at least one current sensor regarding current in at least one current path to a permanent magnet synchronous motor and determining 310 by the processing device at least one gain value based at least in part on a bandwidth value. Determining the gain value may include selecting 312 observer gains such that a characteristic polynomial for an extended state observer speed module has all positive and real coefficients by placing all poles at an extended state observer bandwidth. In a further aspect, determining the gain value may include selecting 314 input-output controller gains such that a characteristic polynomial for an input-output linearization control module has all positive and real coefficients by placing all poles at an input-output linearization control module bandwidth. - The method further includes determining 315 by the processing device operating parameters for the permanent magnet synchronous motor based at least in part on the at least one gain value and the information from the at least one current sensor regarding the current in the at least one current path using field oriented control by applying input-output linearization with an extended state observer feedback. In one aspect, determining the operating parameters includes implementing 320 one second-order input-output linearization controller to output a speed control value using a reference rotational speed and speed extended state observer feedback. For example, implementing the one second-order input-output linearization controller may include receiving 322 information regarding a reference speed and feedback from an extended state observer speed module. In such an example, the extended state observer speed module receives 324 feedback information regarding motor speed and control signals from the one second-order input-output linearization controller and provides extended state observer outputs as the feedback to the one second-order input-output linearization controller.
- In another aspect, determining the operating parameters includes implementing 325 a single-order input-output linearization controller to output a current control value using a reference d-axis current and current extended state observer feedback. For example, implementing the single-order input-output linearization controller to output a current control value may include receiving 327 information regarding a reference current and feedback from an extended state observer current module. In such an example, the extended state observer current module receives 329 feedback information regarding d-axis current and control signals from the single-order input-output linearization controller and provides extended state observer outputs as the feedback to the single-order input-output linearization controller.
- Those skilled in the art will appreciate that the above-described processes are readily enabled using any of a wide variety of available and/or readily configured platforms, including partially or wholly programmable platforms as are known in the art or dedicated purpose platforms as may be desired for some applications. One such process is described above with reference to
FIG. 2 . - In an additional alternative embodiment, the functionality or logic described in
FIG. 3 may be embodied in the form of code that may be executed in a separate processor circuit. If embodied in software, each block may represent a module, segment, or portion of code that comprises program instructions to implement the specified logical function(s). The program instructions may be embodied in the form of source code that comprises human-readable statements written in a programming language or machine code that comprises numerical instructions recognizable by a suitable execution system such as a processor in a computer system or other system. The machine code may be converted from the source code, etc. If embodied in hardware, each block may represent a circuit or a number of interconnected circuits to implement the specified logical function(s). - As described, the (IOL+ESO) based speed controller for Field Oriented Control of Permanent Magnet Synchronous Motors is capable of enhanced disturbance rejection and robustness against parameter uncertainties. For a PMSM, disturbances include Tl and Tf while motor parameters include J, R, Ld, Lq, P and λaf. This controller also enables bandwidth tuning and automated gain design via pole-placement, thus eliminating the overhead of manual tuning for achieving desired system performance. An exact discrete-time equivalent of the (IOL+ESO) controller allows direct implementation on a microcontroller operatively connected to the motor. Also, a reference command profile generator generates smooth reference commands for the motor.
- Aspects of the (IOL+ESO) control system for FOC of PMSM presented in this disclosure have been simulated and tested in SIMULINK simulation program. This includes disturbance rejection, robustness, gain design/bandwidth tuning via pole-placement, discretized controller acting on a continuous plant model and usage of smooth reference commands from a profile generator.
- For purposes of simulation, motor parameters used for an 400 W motor are P=4, Ld=Lq=13.3 mH, R=4.7Ω,
-
- Tl=0.5 N·m, λaf=0.094 V·s, B=0.001 N·m·s where B is the friction coefficient and Tf=Bωr. The controller bandwidths are tuned such that there are minimal oscillations and overshoot when the above motor parameters and specifically Tl=0.5 N·m are used. Accordingly, the bandwidths used are
-
ωc1=150 Hz, ωo1=10ωc1=1500 Hz -
ωc2=50 Hz, ωo2=10ωc2=500 Hz. - The sampling frequency for the discrete-time control system is 10 kHz. The motor is initialized from rest condition, i.e., initial conditions on ωr and id are both zero. The set point for rotor speed ωr is 3000 rpm, which is reached using a smooth reference profile; whereas, id is controlled such that it remains zero, i.e., reference command for id is 0 Amp.
- The controller's disturbance rejection properties are demonstrated by first simulating the system under normal conditions (for which the controller was designed), and then introducing disturbances to check if the system is stable with zero steady-state error and settling times are short after the disturbance events have occurred. In motor control applications, load torque is considered as a disturbance. For example, a 250 millisecond transient simulation where a load torque of 0.5 N·m is used for the first 150 milliseconds, and then step load inputs of 1 N·m and 2 N·m are introduced at 150 ms and 200 ms respectively. These step load inputs thus create disturbance events. Accordingly,
FIG. 4 shows the load torque profile described here, andFIG. 5 displays transient simulation results for ωr and id while using this load torque profile. - In the plots in
FIG. 5 , actual rotor speed ωr and current id are laid on top of their desired reference command profiles. It can be seen that exact tracking is achieved for the entire simulation except for the small transients when disturbances are introduced. Because the overshoot in rotor speed ωr is extremely small and there are no undesired oscillations in ωr or id when disturbances are introduced, the control system is seen as having great disturbance rejection properties. - For reference,
FIG. 6 shows the corresponding control efforts vd and vq required to follow the desired reference command profiles for ωr and id while exhibiting disturbance rejection. Because the load of the system is increasing due to disturbances at 150 ms and 200 ms, one would expect that the control effort increases as seen inFIG. 6 . - One way to exhibit the controller's robustness against parameter uncertainty would be to introduce uncertainty in the controller and compare simulation results for different levels of uncertainty. Let Jexact be the exact (rotor+load) inertia of the actual system and Jcontrol be the approximate value of Jexact. In real-world implementations, Jcontrol is usually known through motor datasheets and other preliminary calculations. Recall that Jcontrol will be used in b2(t) from the speed IOL control law, which is where the uncertainty lies. For simulation purposes, Jcontrol is varied from Jexact to 2×Jexact, while load torque Tl is kept constant at 0.5 N·m.
- It can be seen from
FIG. 7 that transient performance for both levels of uncertainty (1.5×Jexact and 2×Jexact) is almost exactly the same as one with no uncertainty. Hence, it would be safe to assume that the control system is robust against parameter uncertainties. Similar simulations can be developed to demonstrate robustness against other parameter uncertainties such as R, Ld, Lq, etc. - Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
- θr: Mechanical rotor position
ωr: Mechanical rotor speed
id: d-axis current
iq: q-axis current
Ld: d-axis inductance
Lq: q-axis inductance
vd: d-axis voltage
vq: q-axis voltage
J: Inertia (rotor+load)
Te: Electromagnetic torque
Tf: Friction torque
Tl: Load torque
R: Stator resistance
P: Number of poles
λaf: Flux linkage between permanent magnets and stator phases
KT: Torque constant
ωc1: Current controller (IOL) bandwidth
ωo1: Current observer (ESO) bandwidth
ωc2: Speed controller (IOL) bandwidth
ωo2: Speed observer (ESO) bandwidth
Claims (1)
1. An apparatus comprising:
an input configured to receive information from at least one current sensor configured to sense current in at least one current path to a permanent magnet synchronous motor;
a processing device connected to receive the information from the input regarding the current in the at least one current path and configured to send signals to control operation of the permanent magnet synchronous motor, the processing device configured to:
receive a bandwidth value; and
determine at least one gain value based at least in part on the bandwidth value;
determine operating parameters for the motor based at least in part on the at least one gain value and the information from the at least one current sensor regarding the current in the at least one current path using field oriented control by applying input-output linearization with an extended state observer feedback;
effect sending control signals based on the operating parameters to a control circuit to control operation of the motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/660,363 US20150194914A1 (en) | 2013-03-15 | 2015-03-17 | Automated motor control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/833,746 US8981702B2 (en) | 2013-03-15 | 2013-03-15 | Automated motor control |
US14/660,363 US20150194914A1 (en) | 2013-03-15 | 2015-03-17 | Automated motor control |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/833,746 Continuation US8981702B2 (en) | 2013-03-15 | 2013-03-15 | Automated motor control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150194914A1 true US20150194914A1 (en) | 2015-07-09 |
Family
ID=51504820
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/833,746 Active 2033-11-12 US8981702B2 (en) | 2013-03-15 | 2013-03-15 | Automated motor control |
US14/660,363 Abandoned US20150194914A1 (en) | 2013-03-15 | 2015-03-17 | Automated motor control |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/833,746 Active 2033-11-12 US8981702B2 (en) | 2013-03-15 | 2013-03-15 | Automated motor control |
Country Status (2)
Country | Link |
---|---|
US (2) | US8981702B2 (en) |
CN (1) | CN104052363B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105652661A (en) * | 2016-01-06 | 2016-06-08 | 广州市香港科大霍英东研究院 | Injection process-oriented PMSM control method |
WO2016161213A1 (en) * | 2015-03-31 | 2016-10-06 | Texas Instruments Incorporated | Fractional delay adjustment in a field-oriented control architecture |
CN106788031A (en) * | 2016-12-27 | 2017-05-31 | 广东工业大学 | The Permanent-magnet Synchronous-motor Speed Servo System and method of a kind of Active Disturbance Rejection Control |
CN108039839A (en) * | 2017-12-08 | 2018-05-15 | 重庆邮电大学 | The tandem antidisturbance control system and method for permanent-magnet brushless DC electric machine governing system |
CN109129479A (en) * | 2018-08-23 | 2019-01-04 | 广东工业大学 | A kind of Rigid-flexible Coupled Motion platform courses method based on disturbance force compensating |
CN109194233A (en) * | 2018-09-30 | 2019-01-11 | 深圳市英威腾电动汽车驱动技术有限公司 | A kind of the torque closed-loop control system and method for permanent magnet synchronous motor |
CN109343549A (en) * | 2018-10-09 | 2019-02-15 | 北京航空航天大学 | A kind of Spacecraft Attitude Control, system, medium and equipment |
CN109725536A (en) * | 2019-01-17 | 2019-05-07 | 南京理工大学 | A kind of valve electric actuator control method based on Active Disturbance Rejection Control algorithm |
CN109802610A (en) * | 2019-01-14 | 2019-05-24 | 东南大学 | A kind of servo-system novel non-linearity field weakening control method |
CN109936319A (en) * | 2017-12-18 | 2019-06-25 | 青岛海尔智能技术研发有限公司 | A kind of method and device for adjusting rotational speed governor parameter |
CN110518853A (en) * | 2019-09-04 | 2019-11-29 | 合肥工业大学 | A kind of permanent magnet synchronous motor current decoupling control method and device |
CN110850887A (en) * | 2019-10-10 | 2020-02-28 | 南京航空航天大学 | Composite dynamic inverse anti-interference attitude control method for quad-rotor unmanned aerial vehicle |
CN110868128A (en) * | 2019-11-28 | 2020-03-06 | 沈阳工业大学 | Device and method for improving robust tracking control precision of permanent magnet linear synchronous motor |
CN111045324A (en) * | 2019-12-06 | 2020-04-21 | 北京工商大学 | Active disturbance rejection control method based on advanced correction |
CN111103905A (en) * | 2019-12-26 | 2020-05-05 | 南京航空航天大学 | Refueling hose vibration suppression method based on motor integral robust control drive |
CN111123703A (en) * | 2019-12-06 | 2020-05-08 | 北京工商大学 | Variable bandwidth active disturbance rejection control method |
CN111431456A (en) * | 2020-03-10 | 2020-07-17 | 浙江工业大学 | Permanent magnet synchronous motor finite set multi-step model prediction current control method based on rotation speed loop active disturbance rejection technology |
CN111510041A (en) * | 2020-06-11 | 2020-08-07 | 中国人民解放军火箭军工程大学 | Running state evaluation method and system of permanent magnet synchronous motor |
CN112398397A (en) * | 2020-11-27 | 2021-02-23 | 浙江工业大学 | Linear active disturbance rejection permanent magnet synchronous motor control method based on model assistance |
CN112422002A (en) * | 2020-10-09 | 2021-02-26 | 北京理工大学 | Robust permanent magnet synchronous motor single current sensor prediction control method |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9490738B2 (en) | 2013-01-16 | 2016-11-08 | Rockwell Automation Technologies, Inc. | Sensorless motor drive vector control |
US10158314B2 (en) | 2013-01-16 | 2018-12-18 | Rockwell Automation Technologies, Inc. | Feedforward control of motor drives with output sinewave filter |
WO2015133520A1 (en) * | 2014-03-05 | 2015-09-11 | 日本電産サーボ株式会社 | Motor system |
US9374028B2 (en) * | 2014-08-22 | 2016-06-21 | Rockwell Automation Technologies, Inc. | Transition scheme for position sensorless control of AC motor drives |
CN104355209A (en) * | 2014-11-11 | 2015-02-18 | 中山市卓梅尼控制技术有限公司 | Elevator and door machine control system thereof |
US9716460B2 (en) | 2015-01-28 | 2017-07-25 | Rockwell Automation Technologies, Inc. | Method and apparatus for speed reversal control of motor drive |
US9774284B2 (en) | 2015-02-19 | 2017-09-26 | Rockwell Automation Technologies, Inc. | Rotor position estimation apparatus and methods |
TWI551007B (en) * | 2015-03-13 | 2016-09-21 | 光寶電子(廣州)有限公司 | Servo motor system and operating method thereof |
US9369073B1 (en) | 2015-03-20 | 2016-06-14 | Linestream Technologies | Load-adaptive smooth startup method for sensorless field-oriented control of permanent magnet synchronous motors |
EP3136586B1 (en) * | 2015-08-31 | 2020-10-14 | Rockwell Automation Technologies, Inc. | Sensorless motor drive vector control with feedback compensation for filter capacitor current |
US9595896B1 (en) | 2015-12-16 | 2017-03-14 | Rockwell Automation Technologies, Inc. | Methods and systems for sensorless closed loop motor speed and torque control |
US9800190B2 (en) | 2016-02-03 | 2017-10-24 | Rockwell Automation Technologies, Inc. | Control of motor drives with output sinewave filter capacitor current compensation using sinewave filter transfer function |
US9985565B2 (en) | 2016-04-18 | 2018-05-29 | Rockwell Automation Technologies, Inc. | Sensorless motor drive vector control with feedback compensation for filter capacitor current |
US10224849B2 (en) * | 2016-06-06 | 2019-03-05 | Deere & Company | System and method for an inverter for self-excitation of an induction machine |
US10014807B2 (en) | 2016-06-06 | 2018-07-03 | Deere & Company | System and method for an inverter for self-excitation of an induction machine |
US10020766B2 (en) | 2016-11-15 | 2018-07-10 | Rockwell Automation Technologies, Inc. | Current control of motor drives with output sinewave filter |
CN106533299B (en) * | 2016-12-27 | 2018-10-02 | 山东大学 | Back-emf, the method for servo-controlling that load torque disturbs and its system are eliminated simultaneously |
CN107134964B (en) * | 2017-04-26 | 2020-08-28 | 江苏大学 | Five-phase fault-tolerant permanent magnet motor position sensorless control method based on extended state observer |
CN107992110B (en) * | 2018-01-18 | 2020-09-08 | 北京航空航天大学 | Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer |
CN108717266B (en) * | 2018-05-30 | 2021-03-12 | 迪比(重庆)智能科技研究院有限公司 | Neural self-adaptive tracking control method for wind field fan power based on disturbance observer |
CN109116721B (en) * | 2018-08-23 | 2021-10-19 | 广东工业大学 | Control method for converting time-varying system into steady system |
CN109245633A (en) * | 2018-10-26 | 2019-01-18 | 湖南科技大学 | The three-phase switch reluctance machine method for controlling position-less sensor and device extracted based on line inductive aspect point |
CN109660170B (en) * | 2019-01-22 | 2022-02-15 | 东南大学 | High-reliability current prediction control method and system for permanent magnet synchronous motor |
US11290023B2 (en) * | 2019-04-11 | 2022-03-29 | Hamilton Sundstrand Corporation | Model predictive control for matrix converter operating in current control mode with load current estimation |
CN110112970B (en) * | 2019-05-30 | 2020-12-29 | 华中科技大学 | Speed control method and system for permanent magnet vernier linear motor |
CN110995090B (en) * | 2019-12-12 | 2023-02-28 | 大连海事大学 | Asynchronous motor position tracking controller with unknown control parameters |
CN110729703A (en) * | 2019-12-19 | 2020-01-24 | 峰岹科技(深圳)有限公司 | Locked rotor protection method based on FOC motor control and motor control device |
CN111431403A (en) * | 2020-02-21 | 2020-07-17 | 浙江工业大学 | Direct-current boost converter system control method based on nonlinear extended state observer and PD control technology |
CN112019116B (en) * | 2020-09-11 | 2022-04-12 | 中国人民解放军国防科技大学 | Speed tracking control method for permanent magnet linear synchronous motor |
CN112688599B (en) * | 2020-12-25 | 2022-08-09 | 湖南科技大学 | Composite control method for improving anti-interference capability of brushless direct current motor |
CN112671288A (en) * | 2021-01-13 | 2021-04-16 | 东南大学 | Memory motor magnetic regulation torque ripple suppression method |
CN113346785B (en) * | 2021-04-30 | 2022-05-31 | 云南电网有限责任公司楚雄供电局 | Adaptive error compensation control system and method for inverter |
CN113556068B (en) * | 2021-07-12 | 2022-06-17 | 武汉市正弦电气技术有限公司 | Servo control method and servo system for permanent magnet synchronous motor |
CN113765453B (en) * | 2021-08-30 | 2023-06-13 | 江苏大学 | Suspension control system of magnetic suspension switch reluctance motor with wide-narrow pole characteristics |
CN113721469B (en) * | 2021-09-03 | 2023-07-07 | 华东理工大学 | Self-healing control method and system for sensor additive faults of sewage treatment system |
CN113890447B (en) * | 2021-11-01 | 2024-04-26 | 中车大连电力牵引研发中心有限公司 | Permanent magnet synchronous motor active disturbance rejection control method based on improved whale optimization algorithm |
AT525623A1 (en) * | 2021-11-12 | 2023-05-15 | Avl List Gmbh | Control method for checking the operating parameters of an electric motor, in particular for driving a vehicle |
CN115333422B (en) * | 2022-10-14 | 2022-12-20 | 希望森兰科技股份有限公司 | Permanent magnet synchronous motor rotating speed ring design method based on improved active disturbance rejection control |
CN117439463B (en) * | 2023-09-12 | 2024-10-01 | 南京工业大学 | Active disturbance rejection rotating speed current single loop control method and system for permanent magnet synchronous motor |
CN117519322B (en) * | 2024-01-04 | 2024-03-19 | 中国航空工业集团公司金城南京机电液压工程研究中心 | Dynamic bandwidth active disturbance rejection control method for aircraft electromechanical actuator |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5594307A (en) * | 1994-02-10 | 1997-01-14 | Nissan Motor Co., Ltd. | Current servo amplification/control apparatus and method for reversible DC motor |
US5938052A (en) * | 1995-04-26 | 1999-08-17 | Kabushiki Kaisha Yaskawa Denki | Rope steadying control method and apparatus for crane or the like |
US6518722B1 (en) * | 2001-04-27 | 2003-02-11 | Fuji Electric Co., Ltd. | Control system, observer, and control method for a speed-sensorless induction motor drive |
US6639380B2 (en) * | 2000-07-14 | 2003-10-28 | Sul Seung-Ki | Method and system of sensorless field orientation control for an AC motor |
US6731083B2 (en) * | 1998-06-02 | 2004-05-04 | Switched Reluctance Drives, Ltd. | Flux feedback control system |
US6801012B1 (en) * | 2003-03-31 | 2004-10-05 | Delphi Technologies, Inc. | Sensorless control of switched reluctance electric machines |
US7276877B2 (en) * | 2003-07-10 | 2007-10-02 | Honeywell International Inc. | Sensorless control method and apparatus for a motor drive system |
US7659685B2 (en) * | 2006-08-03 | 2010-02-09 | Stmicroelectronics S.R.L. | Method of estimating the state of a system and relative device for estimating position and speed of the rotor of a brushless motor |
US7969112B2 (en) * | 2007-04-27 | 2011-06-28 | Abb Oy | Stator resistance adaptation in sensorless PMSM drives |
US8759994B2 (en) * | 2009-09-18 | 2014-06-24 | Vestas Wind Systems A/S | Method of controlling a wind turbine generator and apparatus for controlling electric power generated by a wind turbine generator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4908556A (en) * | 1986-11-20 | 1990-03-13 | Unimation Inc. | Modular robot control system |
JP3189865B2 (en) * | 1995-08-18 | 2001-07-16 | 株式会社安川電機 | Mechanical vibration detection device and vibration control device |
CN100369344C (en) * | 2003-10-24 | 2008-02-13 | 华南理工大学 | Synthetized compensation device in electric power system and synthetized compensation method |
CN100444059C (en) * | 2006-10-13 | 2008-12-17 | 东南大学 | Method for building simplified self interference rejection controller of permanent magnet synchronous machine |
GB2465379A (en) * | 2008-11-17 | 2010-05-19 | Technelec Ltd | Controller for electrical machines |
CN101964624B (en) * | 2010-10-15 | 2012-08-22 | 浙江工业大学 | Sensorless control system of permanent magnet synchronous motor |
JP5273575B2 (en) * | 2011-09-01 | 2013-08-28 | 株式会社安川電機 | Electric motor control device |
CN102386832B (en) * | 2011-11-21 | 2014-06-25 | 南车株洲电力机车研究所有限公司 | Generator rotor current control method and system both based on equivalent compensate iron auto disturbance rejection control |
US9143081B2 (en) * | 2013-03-14 | 2015-09-22 | Steering Solutions Ip Holding Corporation | Motor control system having bandwidth compensation |
-
2013
- 2013-03-15 US US13/833,746 patent/US8981702B2/en active Active
-
2014
- 2014-03-17 CN CN201410097878.1A patent/CN104052363B/en active Active
-
2015
- 2015-03-17 US US14/660,363 patent/US20150194914A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5594307A (en) * | 1994-02-10 | 1997-01-14 | Nissan Motor Co., Ltd. | Current servo amplification/control apparatus and method for reversible DC motor |
US5938052A (en) * | 1995-04-26 | 1999-08-17 | Kabushiki Kaisha Yaskawa Denki | Rope steadying control method and apparatus for crane or the like |
US6731083B2 (en) * | 1998-06-02 | 2004-05-04 | Switched Reluctance Drives, Ltd. | Flux feedback control system |
US6639380B2 (en) * | 2000-07-14 | 2003-10-28 | Sul Seung-Ki | Method and system of sensorless field orientation control for an AC motor |
US6518722B1 (en) * | 2001-04-27 | 2003-02-11 | Fuji Electric Co., Ltd. | Control system, observer, and control method for a speed-sensorless induction motor drive |
US6801012B1 (en) * | 2003-03-31 | 2004-10-05 | Delphi Technologies, Inc. | Sensorless control of switched reluctance electric machines |
US7276877B2 (en) * | 2003-07-10 | 2007-10-02 | Honeywell International Inc. | Sensorless control method and apparatus for a motor drive system |
US7659685B2 (en) * | 2006-08-03 | 2010-02-09 | Stmicroelectronics S.R.L. | Method of estimating the state of a system and relative device for estimating position and speed of the rotor of a brushless motor |
US7969112B2 (en) * | 2007-04-27 | 2011-06-28 | Abb Oy | Stator resistance adaptation in sensorless PMSM drives |
US8759994B2 (en) * | 2009-09-18 | 2014-06-24 | Vestas Wind Systems A/S | Method of controlling a wind turbine generator and apparatus for controlling electric power generated by a wind turbine generator |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016161213A1 (en) * | 2015-03-31 | 2016-10-06 | Texas Instruments Incorporated | Fractional delay adjustment in a field-oriented control architecture |
CN105652661A (en) * | 2016-01-06 | 2016-06-08 | 广州市香港科大霍英东研究院 | Injection process-oriented PMSM control method |
CN106788031A (en) * | 2016-12-27 | 2017-05-31 | 广东工业大学 | The Permanent-magnet Synchronous-motor Speed Servo System and method of a kind of Active Disturbance Rejection Control |
CN108039839A (en) * | 2017-12-08 | 2018-05-15 | 重庆邮电大学 | The tandem antidisturbance control system and method for permanent-magnet brushless DC electric machine governing system |
CN109936319A (en) * | 2017-12-18 | 2019-06-25 | 青岛海尔智能技术研发有限公司 | A kind of method and device for adjusting rotational speed governor parameter |
CN109129479A (en) * | 2018-08-23 | 2019-01-04 | 广东工业大学 | A kind of Rigid-flexible Coupled Motion platform courses method based on disturbance force compensating |
CN109194233A (en) * | 2018-09-30 | 2019-01-11 | 深圳市英威腾电动汽车驱动技术有限公司 | A kind of the torque closed-loop control system and method for permanent magnet synchronous motor |
CN109343549A (en) * | 2018-10-09 | 2019-02-15 | 北京航空航天大学 | A kind of Spacecraft Attitude Control, system, medium and equipment |
CN109802610A (en) * | 2019-01-14 | 2019-05-24 | 东南大学 | A kind of servo-system novel non-linearity field weakening control method |
CN109725536A (en) * | 2019-01-17 | 2019-05-07 | 南京理工大学 | A kind of valve electric actuator control method based on Active Disturbance Rejection Control algorithm |
CN110518853A (en) * | 2019-09-04 | 2019-11-29 | 合肥工业大学 | A kind of permanent magnet synchronous motor current decoupling control method and device |
CN110850887A (en) * | 2019-10-10 | 2020-02-28 | 南京航空航天大学 | Composite dynamic inverse anti-interference attitude control method for quad-rotor unmanned aerial vehicle |
CN110868128A (en) * | 2019-11-28 | 2020-03-06 | 沈阳工业大学 | Device and method for improving robust tracking control precision of permanent magnet linear synchronous motor |
CN111045324A (en) * | 2019-12-06 | 2020-04-21 | 北京工商大学 | Active disturbance rejection control method based on advanced correction |
CN111123703A (en) * | 2019-12-06 | 2020-05-08 | 北京工商大学 | Variable bandwidth active disturbance rejection control method |
CN111103905A (en) * | 2019-12-26 | 2020-05-05 | 南京航空航天大学 | Refueling hose vibration suppression method based on motor integral robust control drive |
CN111431456A (en) * | 2020-03-10 | 2020-07-17 | 浙江工业大学 | Permanent magnet synchronous motor finite set multi-step model prediction current control method based on rotation speed loop active disturbance rejection technology |
CN111510041A (en) * | 2020-06-11 | 2020-08-07 | 中国人民解放军火箭军工程大学 | Running state evaluation method and system of permanent magnet synchronous motor |
CN112422002A (en) * | 2020-10-09 | 2021-02-26 | 北京理工大学 | Robust permanent magnet synchronous motor single current sensor prediction control method |
CN112398397A (en) * | 2020-11-27 | 2021-02-23 | 浙江工业大学 | Linear active disturbance rejection permanent magnet synchronous motor control method based on model assistance |
Also Published As
Publication number | Publication date |
---|---|
US8981702B2 (en) | 2015-03-17 |
US20140265952A1 (en) | 2014-09-18 |
CN104052363A (en) | 2014-09-17 |
CN104052363B (en) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8981702B2 (en) | Automated motor control | |
Zuo et al. | Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer | |
Saghafinia et al. | Adaptive fuzzy sliding-mode control into chattering-free IM drive | |
Sira-Ramírez et al. | On the control of the permanent magnet synchronous motor: An active disturbance rejection control approach | |
Yu et al. | Fractional order modeling and control for permanent magnet synchronous motor velocity servo system | |
US5296794A (en) | State observer for the permanent-magnet synchronous motor | |
Kim et al. | The Lyapunov-based controller with a passive nonlinear observer to improve position tracking performance of microstepping in permanent magnet stepper motors | |
You et al. | Adaptive neural network control using nonlinear information gain for permanent magnet synchronous motors | |
Uddin et al. | Development of a nonlinear and model-based online loss minimization control of an IM drive | |
Lee | Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning | |
Susperregui et al. | Automated control of doubly fed induction generator integrating sensorless parameter estimation and grid synchronisation | |
Fateh et al. | Comparative study of integral and classical backstepping controllers in IFOC of induction motor fed by voltage source inverter | |
Chakraborty et al. | Control of permanent magnet synchronous motor (pmsm) using vector control approach | |
Ramírez-Villalobos et al. | Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor | |
Kommuri et al. | Higher‐Order Sliding Mode Observer for Speed and Position Estimation in PMSM | |
Kim et al. | Nonlinear gain position control using only position feedback for permanent magnet stepper motors | |
Leuer et al. | Fast online model predictive control of IPMSM using parallel computing on FPGA | |
Badini et al. | MRAS-based speed and parameter estimation for a vector-controlled PMSM drive | |
Ren et al. | Model predictive control of PMSM considering online parameter identification | |
Wang et al. | Sensorless finite control set predictive current control for an induction machine | |
Lian et al. | Robust adaptive control of linear induction motors with unknown end-effect and secondary resistance | |
Babaei et al. | Study of bifurcation and chaos in scalar drive systems of permanent magnet synchronous machines | |
Uddin et al. | Development and implementation of a nonlinear-controller-based IM drive incorporating iron loss with parameter uncertainties | |
Uddin et al. | Adaptive-backstepping-based design of a nonlinear position controller for an IPMSM servo drive | |
Wallscheid et al. | Hierarchical model predictive speed and current control of an induction machine drive with moving-horizon load torque estimator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |