CN112422002A - Robust permanent magnet synchronous motor single current sensor prediction control method - Google Patents
Robust permanent magnet synchronous motor single current sensor prediction control method Download PDFInfo
- Publication number
- CN112422002A CN112422002A CN202011072126.1A CN202011072126A CN112422002A CN 112422002 A CN112422002 A CN 112422002A CN 202011072126 A CN202011072126 A CN 202011072126A CN 112422002 A CN112422002 A CN 112422002A
- Authority
- CN
- China
- Prior art keywords
- current
- axis
- motor
- parameters
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 17
- 230000004907 flux Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/13—Observer control, e.g. using Luenberger observers or Kalman filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
一种鲁棒性的永磁同步电机单电流传感器预测控制方法,该方法中α轴扩张状态量可以实时跟随由参数扰动引起的电压扰动而变化,结合推导出的α轴扩张状态量和β轴扩张状态量的关系,使得在电机模型参数不准确时β轴扩张状态量能够同步跟随β轴电压扰动,实现了参数的鲁棒性,有效克服电机模型参数不准确对电流重构准确性的制约。扩张状态观测器的算法执行过程中除了转子电角速度、转子位置、定子电压以及电机a相电流几个参数以外,不再需要其他额外的参数即可实现对电机三相电流完整信息的重构,显著降低了扩张观测器参数的获取难度和重构过程的运算量。
A robust single-current sensor predictive control method for permanent magnet synchronous motors. In this method, the α-axis expansion state quantity can follow the voltage disturbance caused by the parameter disturbance in real time. Combined with the derived α-axis expansion state quantity and β-axis The relationship between the expansion state quantities enables the β-axis expansion state quantities to follow the β-axis voltage disturbance synchronously when the motor model parameters are inaccurate, thereby realizing the robustness of the parameters and effectively overcoming the restriction of the inaccurate motor model parameters on the accuracy of current reconstruction. . During the execution of the algorithm of the extended state observer, in addition to the rotor electrical angular velocity, rotor position, stator voltage and motor a-phase current, no additional parameters are required to reconstruct the complete information of the motor's three-phase current. The difficulty of obtaining the parameters of the expanded observer and the computational complexity of the reconstruction process are significantly reduced.
Description
技术领域technical field
本发明涉及永磁同步电机控制技术领域,尤其涉及一种提升鲁棒性的单个相电流传感器预测控制技术。The invention relates to the technical field of permanent magnet synchronous motor control, in particular to a single-phase current sensor predictive control technology with improved robustness.
背景技术Background technique
目前,一些对永磁同步电机进行控制的现有技术中,利用了单电流传感器的方式实现,这种技术手段相对于无位置传感器的永磁同步电机控制,不仅能实现减少物理传感器数量的目的,在电机低速条件下也能够实现很好的电机速度控制效果。At present, some existing technologies for controlling permanent magnet synchronous motors use a single current sensor. Compared with the control of permanent magnet synchronous motors without position sensors, this technical method can not only achieve the purpose of reducing the number of physical sensors , it can also achieve a good motor speed control effect under the condition of low motor speed.
现有的单电流传感器控制实现方式大多采用单直流母线电流传感器,根据母线电流和相电流之间的关系来重构电机的三相电流,但是这种方法首先是会引入无法消除的噪声误差,其次存在有电流重构盲区,而且对电流重构盲区进行补偿的方法都比较复杂。近期出现的少数现有技术中开始考虑基于单个相电流传感器进行相电流重构,但由于采用单个相电流传感器的电流重构方法大都是基于电机模型法,因而存在重构效果对电机模型参数准确性的依赖度极高的缺点。Most of the existing single current sensor control implementations use a single DC bus current sensor to reconstruct the three-phase current of the motor according to the relationship between the bus current and the phase current. However, this method will first introduce noise errors that cannot be eliminated. Secondly, there is a current reconstruction dead zone, and the methods for compensating for the current reconstruction dead zone are complicated. A few existing technologies that have appeared recently have begun to consider phase current reconstruction based on a single phase current sensor, but since most of the current reconstruction methods using a single phase current sensor are based on the motor model method, there is a reconstruction effect that affects the accuracy of the motor model parameters. The disadvantage of high dependence on sex.
发明内容SUMMARY OF THE INVENTION
有鉴于此,In view of this,
为解决现有永磁同步电机单个相电流传感器预测控制中,相电流重构过于依赖电机模型参数准确性的问题,本发明提供了一种鲁棒性的永磁同步电机单电流传感器预测控制方法,该方法具体包括以下步骤:In order to solve the problem that the phase current reconstruction depends too much on the accuracy of the motor model parameters in the prediction control of the single phase current sensor of the existing permanent magnet synchronous motor, the present invention provides a robust single current sensor prediction control method of the permanent magnet synchronous motor. , the method specifically includes the following steps:
步骤一、在线实时采集永磁同步电机的a相电流、转速、转子位置角;Step 1: Collect the phase a current, rotational speed and rotor position angle of the permanent magnet synchronous motor in real time online;
步骤二、在α-β坐标系下,以步骤一中采集到的a相电流、转速、转子位置角作为输入量,并推导出α轴、β轴电压扰动量的关系:Step 2: In the α-β coordinate system, the phase a current, rotational speed, and rotor position angle collected in
fα=-ΔRs×iα+ωe×Δψf×sinθf α = -ΔR s ×i α +ω e ×Δψ f ×sinθ
式中,fα,fβ为电机模型参数不准确引起的电压扰动量;iα为测量得到的α轴定子电流;Δψf为电机磁链估计误差;ΔRs为定子电阻估计误差;ωe为转子的电角速度;θ为转子位置角;where f α , f β are the voltage disturbances caused by inaccurate motor model parameters; i α is the measured α-axis stator current; Δψ f is the motor flux linkage estimation error; ΔR s is the stator resistance estimation error; ω e is the electrical angular velocity of the rotor; θ is the rotor position angle;
建立基于扩张状态观测器算法的相电流重构方程,实时更新计算α-β坐标系下的α轴、β轴电流并输出,实现abc三相电流的重构,再将所述α轴、β轴电流经过Park变换得到d-q坐标系下的d、q轴电流;Establish a phase current reconstruction equation based on the extended state observer algorithm, update and calculate the α-axis and β-axis currents in the α-β coordinate system in real time and output them to realize the reconstruction of abc three-phase currents. The axis current is transformed by Park to obtain the d and q axis currents in the d-q coordinate system;
步骤三、建立无差拍电流预测控制模型,利用所述步骤一中采集的电机转速、转子位置角以及所述步骤二中得到的电流参数实时计算出下一时刻的参考电压;利用计算得到的参考电压进行SVPWM控制。Step 3: Establish a deadbeat current predictive control model, and calculate the reference voltage at the next moment in real time by using the motor speed, rotor position angle and the current parameters obtained in the step 2 collected in the
进一步地,所述步骤二中基于扩张状态观测器算法的相电流重构方程,具体采用以下公式:Further, in the second step, the phase current reconstruction equation based on the extended state observer algorithm specifically adopts the following formula:
其中,分别为α轴、β轴电流的观测值;uα,uβ为α-β坐标系下定子电压;ψr_change为估计的转子磁链;Rs_change为估计的定子电阻;Ls为定子电感;ε为α轴观测电流与测量电流的iα差值,为fα的导数,α1,α2,δ为fal函数的可调节参数,用于实现所需的非光滑反馈,β01、β02均为可调节的参数,根据不同的电机参数选取控制效果最优值;t为时间;in, are the observed values of the α-axis and β-axis currents, respectively; u α , u β are the stator voltages in the α-β coordinate system; ψ r_change is the estimated rotor flux linkage; R s_change is the estimated stator resistance; L s is the stator inductance; ε is the α-axis observation current The difference between i α and the measured current, is the derivative of f α , α1, α2, δ are the adjustable parameters of the fal function, which are used to achieve the required non-smooth feedback, β 01 and β 02 are adjustable parameters, and the control effect is selected according to different motor parameters. figure of merit; t is time;
通过上述公式可得到α-β坐标系下电流观测值取电流观测值作为扩张状态观测器的输出电流值;Through the above formula, the observed current value in the α-β coordinate system can be obtained Take current observations As the output current value of the expansion state observer;
扩张状态观测器方程中的fal函数为:The fal function in the extended state observer equation is:
其中,α、δ为可调节参数,根据控制需求进行调节,当α<1时,fal函数具有:小误差,大增益;大误差,小增益的特性。Among them, α and δ are adjustable parameters, which are adjusted according to the control requirements. When α<1, the fal function has the characteristics of: small error, large gain; large error, small gain.
由于,三相坐标系电流到α-β坐标系电流的变换为:Because, the transformation of the three-phase coordinate system current to the α-β coordinate system current is:
由于ia+ib+ic=0,用-(ia+ib)代替ic,则上式可表示为:Since i a +i b + ic =0, replace ic with -(i a +i b ), the above formula can be expressed as:
可以看出:α-β静止坐标系下α轴电流iα=ia,则α-β坐标系下α轴电流iα即为采集到的a相电流,只需在α-β坐标系下估计出β轴电流iβ,即可得到完整的三相电流信息。因此,利用上述扩张观测器得到iβ电流。即完成了abc三相电流的重构。It can be seen that the α-axis current i α = i a in the α-β stationary coordinate system, then the α-axis current i α in the α-β coordinate system is the collected a-phase current, which only needs to be in the α-β coordinate system. After estimating the β-axis current i β , the complete three-phase current information can be obtained. Therefore, the iβ current is obtained using the above-described expansion observer. That is, the reconstruction of abc three-phase current is completed.
进一步地,所述步骤三中利用无差拍电流预测控制模型得到下一时刻的参考电压,具体包括:Further, in the step 3, the deadbeat current predictive control model is used to obtain the reference voltage at the next moment, which specifically includes:
式中,ud(k)、uq(k)为当前时刻定子电压;ud(k+1)、uq(k+1)为下一时刻参考电压;Ts为控制周期;iqref为q轴参考电流;ψr为电机转子磁链。In the formula, u d (k) and u q (k) are the stator voltages at the current moment; ud (k+1) and u q (k+1) are the reference voltages at the next moment; T s is the control period; i qref is the q-axis reference current; ψ r is the rotor flux linkage of the motor.
上述本发明所提供的方法,其α轴扩张状态量可以实时跟随由参数扰动引起的电压扰动而变化,结合所推导出的α轴扩张状态量和β轴扩张状态量的关系,使得在电机模型参数不准确时β轴扩张状态量能够同步跟随β轴电压扰动,实现了参数鲁棒性,有效克服电机模型参数不准确对电流重构准确性的制约。扩张状态观测器的算法执行过程中除了转子电角速度、转子位置、定子电压以及电机a相电流几个参数以外,不再需要其他额外的参数即可实现对电机三相电流完整信息的重构,显著降低了扩张观测器参数的获取难度和重构过程的运算量。In the above-mentioned method provided by the present invention, the α-axis expansion state quantity can change in real time with the voltage disturbance caused by the parameter disturbance. Combined with the derived relationship between the α-axis expansion state quantity and the β-axis expansion state quantity, the motor model When the parameters are inaccurate, the β-axis expansion state quantity can synchronously follow the β-axis voltage disturbance, which realizes the robustness of the parameters and effectively overcomes the restriction of the inaccurate parameters of the motor model on the accuracy of the current reconstruction. During the execution of the algorithm of the extended state observer, in addition to the rotor electrical angular velocity, rotor position, stator voltage and motor a-phase current, no additional parameters are required to reconstruct the complete information of the motor's three-phase current. The difficulty of obtaining the parameters of the extended observer and the computational complexity of the reconstruction process are significantly reduced.
附图说明Description of drawings
图1为本发明所提供方法的永磁同步电机控制模型框图;Fig. 1 is the block diagram of the permanent magnet synchronous motor control model of the method provided by the present invention;
图2为基于本发明的一个优选实例中实现预测控制的永磁同步电机运行曲线。FIG. 2 is an operation curve of a permanent magnet synchronous motor that implements predictive control in a preferred embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明所提供的一种鲁棒性的永磁同步电机单电流传感器预测控制方法,如图1所示,具体包括以下步骤:A robust single-current sensor predictive control method for a permanent magnet synchronous motor provided by the present invention, as shown in FIG. 1 , specifically includes the following steps:
步骤一、在线实时采集永磁同步电机的a相电流、转速、转子位置角;Step 1: Collect the phase a current, rotational speed and rotor position angle of the permanent magnet synchronous motor in real time online;
步骤二、在α-β坐标系下,以步骤一中采集到的a相电流、转速、转子位置角作为输入量,并推导出α轴、β轴电压扰动量的关系:Step 2: In the α-β coordinate system, the phase a current, rotational speed, and rotor position angle collected in
fα=-ΔRs×iα+ωe×Δψf×sinθf α = -ΔR s ×i α +ω e ×Δψ f ×sinθ
式中,fα,fβ为电机模型参数不准确引起的电压扰动量;iα为测量得到的α轴定子电流;Δψf为电机磁链估计误差;ΔRs为定子电阻估计误差;ωe为转子的电角速度;θ为转子位置角;where f α , f β are the voltage disturbances caused by inaccurate motor model parameters; i α is the measured α-axis stator current; Δψ f is the motor flux linkage estimation error; ΔR s is the stator resistance estimation error; ω e is the electrical angular velocity of the rotor; θ is the rotor position angle;
建立基于扩张状态观测器算法的相电流重构方程,实时更新计算α-β坐标系下的α轴、β轴电流并输出,实现abc三相电流的重构,再将所述α轴、β轴电流经过Park变换得到d-q坐标系下的d、q轴电流;Establish a phase current reconstruction equation based on the extended state observer algorithm, update and calculate the α-axis and β-axis currents in the α-β coordinate system in real time and output them to realize the reconstruction of abc three-phase currents. The axis current is transformed by Park to obtain the d and q axis currents in the d-q coordinate system;
步骤三、建立无差拍电流预测控制模型,利用所述步骤一中采集的电机转速、转子位置角以及所述步骤二中得到的电流参数实时计算出下一时刻的参考电压;利用计算得到的参考电压进行SVPWM控制。Step 3: Establish a deadbeat current predictive control model, and calculate the reference voltage at the next moment in real time by using the motor speed, rotor position angle and the current parameters obtained in the step 2 collected in the
步骤一中在线实时采集永磁同步电机的a相电流,由于,abc三相坐标系电流到α-β坐标系电流的变换为:In
由于ia+ib+ic=0,用-(ia+ib)代替ic,则上式可表示为:Since i a +i b + ic =0, replace ic with -(i a +i b ), the above formula can be expressed as:
可以看出:α-β静止坐标系下的α轴电流iα=ia,则α-β坐标系下α轴电流iα即为采集到的a相电流,只需在α-β坐标系下估计出β轴电流iβ,即可得到完整的三相电流信息。因此,利用上述扩张观测器得到iβ电流。即完成了abc三相电流的重构。It can be seen that the α-axis current i α = i a in the α-β stationary coordinate system, then the α-axis current i α in the α-β coordinate system is the collected a-phase current, and only in the α-β coordinate system By estimating the β-axis current i β , the complete three-phase current information can be obtained. Therefore, the iβ current is obtained using the above-described expansion observer. That is, the reconstruction of abc three-phase current is completed.
步骤二中首先建立永磁同步电机在α-β坐标系下的电压方程:In step 2, the voltage equation of the permanent magnet synchronous motor in the α-β coordinate system is first established:
式中,uα,uβ为α-β坐标系下定子电压;iα,iβ为α-β坐标系下定子电流;ψr为实际转子磁链;Rs为实际定子电阻;Ls为定子电感;ωe为转子的电角速度;θ为转子位置角。In the formula, u α , u β are the stator voltages in the α-β coordinate system; i α , i β are the stator currents in the α-β coordinate system; ψ r is the actual rotor flux linkage; R s is the actual stator resistance; L s is the stator inductance; ω e is the electrical angular velocity of the rotor; θ is the rotor position angle.
根据上式的电压方程可以得到在估计的电机参数不准确时,永磁同步电机模型在α-β坐标系下的电压方程:According to the voltage equation of the above formula, when the estimated motor parameters are inaccurate, the voltage equation of the permanent magnet synchronous motor model in the α-β coordinate system can be obtained:
式中,分别为电机模型中α,β轴的定子电流;ψf_change为估计的电机转子磁链;Rs_change为估计的定子电阻;fα,fβ分别为电机模型参数不准确引起的α,β轴电压的未知扰动量;其余参数同上式。In the formula, are the stator currents of the α and β axes in the motor model, respectively; ψ f_change is the estimated rotor flux linkage of the motor; R s_change is the estimated stator resistance; f α , f β are the α and β axis voltages caused by inaccurate motor model parameters, respectively The unknown disturbance amount of ; the other parameters are the same as above.
两式相减可得:Subtract the two equations to get:
若想要实现电机模型的观测电流分别等于实际电流iα,iβ,则需满足:If you want to realize the observed current of the motor model are equal to the actual currents i α , i β respectively, then it is necessary to satisfy:
(Rs_change-Rs)×iα-ωe×(ψf_change-ψf)×sinθ+fα=0(R s_change -R s )×i α -ω e ×(ψ f_change -ψ f )×sinθ+f α =0
(Rs_change-Rs)×iβ+ωe×(ψf_change-ψf)×cosθ+fβ=0(R s_change -R s )×i β +ω e ×(ψ f_change -ψ f )×cosθ+f β =0
fα=-ΔRs×iα+ωe×Δψf×sinθf α = -ΔR s ×i α +ω e ×Δψ f ×sinθ
fβ=-ΔRs×iβ-ωe×Δψf×cosθf β = -ΔR s ×i β -ω e ×Δψ f ×cosθ
其中:ΔRs=(Rs_change-Rs),表示电机模型电阻估计误差,Δψf=(ψf_change-ψf)表示电机模型磁链估计误差。Among them: ΔR s =(R s_change -R s ), represents the motor model resistance estimation error, and Δψ f =(ψ f_change -ψ f ) represents the motor model flux linkage estimation error.
由α-β坐标系到d-q坐标系的变换公式:id=iα×cosθ+iβ×sinθ以及参考电流则可以近似得到:Transformation formula from α-β coordinate system to dq coordinate system: i d =i α ×cosθ+i β ×sinθ and reference current can be approximated by:
将其代入到电流观测值与实际电流的关系中可得到:Substitute it into the relationship between the observed current and the actual current to get:
fα=-ΔRs×iα+ωe×Δψf×sinθf α = -ΔR s ×i α +ω e ×Δψ f ×sinθ
由上式可知:在α-β坐标系下,由电机模型参数不准确引起的电压It can be seen from the above formula: in the α-β coordinate system, the voltage caused by the inaccurate parameters of the motor model
扰动量值满足: The disturbance magnitude satisfies:
由此,结合扩张状态观测器理论,将fα,fβ作为扩张的状态变量,可得到基于扩张状态观测器算法的相电流重构方程:Therefore, combined with the theory of the extended state observer, taking f α and f β as the extended state variables, the phase current reconstruction equation based on the extended state observer algorithm can be obtained:
其中,iα为测量得到的α轴定子电流;分别为α轴、β轴电流的观测值;uα,uβ为α-β坐标系下定子电压;fα,fβ分别为α轴、β轴电压的未知扰动量;ψr_change为估计的转子磁链;Rs_change为估计的定子电阻;Ls为定子电感;ωe为转子的电角速度;θ为转子位置角;ε为α轴观测电流与测量电流的iα差值;为fα的导数;α1,α2,δ为fal函数的可调节参数,用于实现所需的非光滑反馈;β01、β02均为可调节的参数,根据不同的电机参数选取控制效果最优值;Among them, i α is the measured α-axis stator current; are the observed values of the α-axis and β-axis currents, respectively; u α , u β are the stator voltages in the α-β coordinate system; f α , f β are the unknown disturbances of the α-axis and β-axis voltages, respectively; ψ r_change is the estimated Rotor flux linkage; R s_change is the estimated stator resistance; L s is the stator inductance; ω e is the electrical angular velocity of the rotor; θ is the rotor position angle; ε is the α-axis observation current The difference between i α and the measured current; is the derivative of f α ; α1, α2, δ are adjustable parameters of the fal function, which are used to achieve the required non-smooth feedback; β 01 and β 02 are adjustable parameters, and the best control effect is selected according to different motor parameters. figure of merit;
通过上述公式可得到α-β坐标系下电流观测值取电流观测值为扩张状态观测器的输出电流值;Through the above formula, the observed current value in the α-β coordinate system can be obtained Take current observations is the output current value of the expansion state observer;
优选地,为了防止趋于无限大,引起瞬时电流脉冲,应该对其进行限幅,在本发明的一个实例中采用: Preferably, in order to prevent tends to be infinite, causing instantaneous current pulses, which should be limited, in an example of the present invention:
扩张状态观测器方程中的fal函数为:The fal function in the extended state observer equation is:
当α<1时,fal函数具有:小误差,大增益;大误差,小增益的特性。When α<1, the fal function has the characteristics of: small error, large gain; large error, small gain.
所述步骤三中利用无差拍电流预测控制模型得到下一时刻的参考电压,具体包括:In the third step, the deadbeat current predictive control model is used to obtain the reference voltage at the next moment, which specifically includes:
式中,ud(k)、uq(k)为当前时刻定子电压;ud(k+1)、uq(k+1)为下一时刻参考电压;Ts为控制周期;iqref为q轴参考电流;ψr为电机转子磁链。In the formula, u d (k) and u q (k) are the stator voltages at the current moment; ud (k+1) and u q (k+1) are the reference voltages at the next moment; T s is the control period; i qref is the q-axis reference current; ψ r is the rotor flux linkage of the motor.
优选地,当计算得到的参考电压超出SVPWM的最大输出电压限制时,需要对输出参考电压进行调整,得到SVPWM输出范围内的参考电压:Preferably, when the calculated reference voltage exceeds the maximum output voltage limit of SVPWM, the output reference voltage needs to be adjusted to obtain the reference voltage within the output range of SVPWM:
式中,为d-q坐标系下修正后的SVPWM输出电压范围内的参考电压;Udc为直流母线电压。In the formula, is the reference voltage within the corrected SVPWM output voltage range under the dq coordinate system; U dc is the DC bus voltage.
图2示出了基于本发明的一个优选实例中,在ψr_change=1.5*ψr时,采用单电流传感器利用扩张状态观测器重构出的电流信息进行预测控制的电机转速、转矩、重构出的三相电流曲线图。从图2可以看出,在估计磁链为1.5倍实际磁链情况下,扩张状态观测器重构出的三相电流只有很小的电流波动,电流波形非常接近完美的正弦波;由电机的转速变化情况可以看出,利用扩张状态观测器重构出的三相电流进行电机的预测控制,转速能及时准确地跟随控制要求;由电机的转矩变化情况可以看出,利用扩张状态观测器重构出的三相电流进行电机的预测控制,电机仅有很小的转矩脉动(小于最大转矩的10%)。仿真结果表明,所提出的具有鲁棒性的单电流传感器预测控制方法,在电机模型参数不准确时,可以很好地重构出三相电流信息,且重构出的三相电流完全可以代替实际的三相电流作为闭环反馈量对电机进行控制。Fig. 2 shows a preferred example based on the present invention, when ψ r_change = 1.5*ψ r , using a single current sensor to perform predictive control using the current information reconstructed by the extended state observer to perform predictive control of the motor speed, torque, and weight Constructed three-phase current curve. It can be seen from Figure 2 that when the estimated flux linkage is 1.5 times the actual flux linkage, the three-phase current reconstructed by the expanded state observer has only a small current fluctuation, and the current waveform is very close to a perfect sine wave; It can be seen from the change of rotational speed that the three-phase current reconstructed by the expanded state observer is used to perform predictive control of the motor, and the rotational speed can follow the control requirements in a timely and accurate manner; it can be seen from the torque change of the motor that the expanded state observer is used The reconstructed three-phase current is used for predictive control of the motor, and the motor has only a small torque ripple (less than 10% of the maximum torque). The simulation results show that the proposed robust single-current sensor predictive control method can reconstruct the three-phase current information well when the motor model parameters are inaccurate, and the reconstructed three-phase current can completely replace the The actual three-phase current is used as the closed-loop feedback to control the motor.
应理解,本发明实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in the embodiments of the present invention does not imply the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present invention .
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011072126.1A CN112422002B (en) | 2020-10-09 | 2020-10-09 | Robust permanent magnet synchronous motor single current sensor prediction control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011072126.1A CN112422002B (en) | 2020-10-09 | 2020-10-09 | Robust permanent magnet synchronous motor single current sensor prediction control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112422002A true CN112422002A (en) | 2021-02-26 |
CN112422002B CN112422002B (en) | 2022-02-01 |
Family
ID=74854673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011072126.1A Active CN112422002B (en) | 2020-10-09 | 2020-10-09 | Robust permanent magnet synchronous motor single current sensor prediction control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112422002B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051608A (en) * | 2022-06-16 | 2022-09-13 | 西北工业大学 | Three-phase current reconstruction method based on bus current new axial positioning coordinate transformation |
CN115133832A (en) * | 2022-07-08 | 2022-09-30 | 北京理工大学 | A real-time parameter correction method of surface-mounted permanent magnet synchronous motor |
CN116073435A (en) * | 2023-03-30 | 2023-05-05 | 西安热工研究院有限公司 | A black start system and method for a diesel-engine combined combustion engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150194914A1 (en) * | 2013-03-15 | 2015-07-09 | Texas Instruments Incorporated | Automated motor control |
CN109687801A (en) * | 2019-02-21 | 2019-04-26 | 南京工程学院 | A kind of permanent magnetic linear synchronous motor dead beat current control method |
CN109713971A (en) * | 2019-03-01 | 2019-05-03 | 北京理工大学 | A kind of Disturbance Rejection method of permanent magnet synchronous motor |
CN111478636A (en) * | 2020-04-15 | 2020-07-31 | 北京理工大学 | A Single Current Sensor Predictive Control Method for Permanent Magnet Synchronous Motors |
-
2020
- 2020-10-09 CN CN202011072126.1A patent/CN112422002B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150194914A1 (en) * | 2013-03-15 | 2015-07-09 | Texas Instruments Incorporated | Automated motor control |
CN109687801A (en) * | 2019-02-21 | 2019-04-26 | 南京工程学院 | A kind of permanent magnetic linear synchronous motor dead beat current control method |
CN109713971A (en) * | 2019-03-01 | 2019-05-03 | 北京理工大学 | A kind of Disturbance Rejection method of permanent magnet synchronous motor |
CN111478636A (en) * | 2020-04-15 | 2020-07-31 | 北京理工大学 | A Single Current Sensor Predictive Control Method for Permanent Magnet Synchronous Motors |
Non-Patent Citations (2)
Title |
---|
CHUN HE ET AL.: "Finite Control Set Model Predictive Current Control for PMSM based on Extended State Observer", 《2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA)》 * |
吕炜杰: "永磁同步电机无差拍预测控制研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051608A (en) * | 2022-06-16 | 2022-09-13 | 西北工业大学 | Three-phase current reconstruction method based on bus current new axial positioning coordinate transformation |
CN115051608B (en) * | 2022-06-16 | 2024-03-08 | 西北工业大学 | Three-phase current reconstruction method based on new axial positioning coordinate transformation of bus current |
CN115133832A (en) * | 2022-07-08 | 2022-09-30 | 北京理工大学 | A real-time parameter correction method of surface-mounted permanent magnet synchronous motor |
CN115133832B (en) * | 2022-07-08 | 2024-04-05 | 北京理工大学 | A real-time parameter correction method for surface-mounted permanent magnet synchronous motor |
CN116073435A (en) * | 2023-03-30 | 2023-05-05 | 西安热工研究院有限公司 | A black start system and method for a diesel-engine combined combustion engine |
CN116073435B (en) * | 2023-03-30 | 2023-07-18 | 西安热工研究院有限公司 | Black start system and method for diesel-engine combined combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN112422002B (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110350835B (en) | A position sensorless control method for permanent magnet synchronous motor | |
CN111342720B (en) | Adaptive Continuous Sliding Mode Control Method for Permanent Magnet Synchronous Motor Based on Torque Observation | |
CN113691186B (en) | Position angle compensation method for rotor control without position sensor of permanent magnet synchronous motor | |
CN111478636B (en) | A Single Current Sensor Predictive Control Method for Permanent Magnet Synchronous Motors | |
CN110198150B (en) | Permanent magnet synchronous motor multi-parameter online identification method | |
CN108092567B (en) | A speed control system and method for a permanent magnet synchronous motor | |
CN109660170B (en) | A high-reliability current predictive control method and system for a permanent magnet synchronous motor | |
CN109560736A (en) | Method for controlling permanent magnet synchronous motor based on second-order terminal sliding formwork | |
CN112422002B (en) | Robust permanent magnet synchronous motor single current sensor prediction control method | |
CN109495048A (en) | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer | |
CN110022106B (en) | A position sensorless control method of permanent magnet synchronous motor based on high frequency signal injection | |
CN113364377B (en) | A method of automatic disturbance rejection position servo control of permanent magnet synchronous motor | |
CN104104301B (en) | Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor | |
CN111193448B (en) | Permanent magnet synchronous motor load torque observation method based on extended Kalman filter | |
CN106026803A (en) | Speed sensorless control method based on sliding-mode observer | |
CN111181458A (en) | Surface-mounted permanent magnet synchronous motor rotor flux linkage observation method based on extended Kalman filter | |
CN112865646A (en) | Dead-beat prediction control method for single current sensor of permanent magnet synchronous motor | |
CN113315440A (en) | Permanent magnet synchronous motor model-free prediction current control method based on current difference full update | |
CN110798116A (en) | Motor vector composite controller based on armature model independent feedforward compensation | |
CN112511059A (en) | High-precision position estimation method for permanent magnet synchronous motor | |
CN111711392B (en) | Single current sensor predictive control and parameter disturbance suppression method for permanent magnet synchronous motor | |
CN110557069A (en) | rotor operation parameter estimation method, motor control system and active disturbance rejection controller | |
CN106385216A (en) | Permanent-magnet synchronous motor current predictive control steady-state error elimination method and system | |
CN111628689A (en) | A deadbeat current predictive control method based on voltage feedforward compensation method | |
CN110620534B (en) | Nonlinear Softening and Variable Structure Sliding Mode Control of Permanent Magnet Synchronous Motors for Speed Stabilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |