US20150163004A1 - Multiple co-located multi-user-mimo access points - Google Patents

Multiple co-located multi-user-mimo access points Download PDF

Info

Publication number
US20150163004A1
US20150163004A1 US14/097,765 US201314097765A US2015163004A1 US 20150163004 A1 US20150163004 A1 US 20150163004A1 US 201314097765 A US201314097765 A US 201314097765A US 2015163004 A1 US2015163004 A1 US 2015163004A1
Authority
US
United States
Prior art keywords
beams
access points
antenna
antenna array
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/097,765
Other versions
US9042276B1 (en
Inventor
Haim Harel
Stuart S. Jeffery
Kenneth Kludt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnolia Broadband Inc
Original Assignee
Magnolia Broadband Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnolia Broadband Inc filed Critical Magnolia Broadband Inc
Priority to US14/097,765 priority Critical patent/US9042276B1/en
Assigned to MAGNOLIA BROADBAND INC. reassignment MAGNOLIA BROADBAND INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAREL, HAIM, JEFFERY, STUART S., KLUDT, KENNETH
Assigned to MAGNOTOD LLC reassignment MAGNOTOD LLC SECURITY INTEREST Assignors: MAGNOLIA BROADBAND, INC.
Application granted granted Critical
Publication of US9042276B1 publication Critical patent/US9042276B1/en
Publication of US20150163004A1 publication Critical patent/US20150163004A1/en
Assigned to MAGNOTOD LLC reassignment MAGNOTOD LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGNOLIA BROADBAND, INC.
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.
  • RF radio frequency
  • MIMO multiple-input-multiple-output
  • Wi-Fi may be implemented with a limited amount of frequency resources that use techniques of collision avoidance to allow multiple user equipments (UE's) to share the same channel.
  • UE user equipments
  • BTS Cellular Base Stations
  • AP Wi-Fi access points
  • Co-located AP's otherwise known as multi-beam access points (MBAP's)
  • MBAP's multi-beam access points
  • Wi-Fi multi-beam antennas may need to be addressed in order to provide signals to multiple UE's on the same frequency.
  • WiFi is a time division multiplex system (TDD)
  • the transmitting and receiving functions may use the same channel.
  • Unsynchronized operation between APs means a transmitting AP's signal may interfere with the reception of another AP that uses the same channel unless sufficient isolation (e.g., 125 dB) is provided between the transmitting and receiving functions.
  • Some solutions for providing sufficient isolation may involve using physically separated antenna arrays for transmit and receive functions. Other solutions may provide cancellation of each transmitted signal within the receiver processing functions. Another limitation of multi-beam antennas is that they may not offer complete separation of coverage from one beam to other adjacent beams. Systems and methods may be needed to mitigate the performance effects of overlapping beams of adjacent antennas. In addition to overlapping beams, sidelobe radiation from a beam may introduce extraneous radiation in other beams, causing further interference.
  • a wireless communication system may include a plurality of N co-located Wi-Fi access points, each configured to communicate with at least one user equipment.
  • the system may further include a beamformer coupled to each of the access points and coupled to at least one antenna array.
  • the antenna array may include a plurality of antenna elements and may be configured to provide a plurality of M spatially uncorrelated beams for a coverage area of each of the N access points.
  • FIG. 1 is a schematic of a multi-beam access point system, according to embodiments of the invention.
  • FIG. 2 is a diagram of sector coverage by a multi-beam access point system, according to embodiments of the invention.
  • FIG. 3 is a schematic of a multi-beam access point using a in some embodiments of the invention.
  • FIG. 4 is a schematic illustration of a radiation pattern of a multi-beam system in accordance with embodiments of the invention.
  • FIGS. 5A and 5B are diagrams of dual polarized antenna arrays, according to embodiments of the invention.
  • FIG. 6 is an illustration of antenna patterns for two antenna arrays on a multi-beam access point, according to embodiments of the invention.
  • FIG. 7 is an illustration of antenna patterns for a multi-beam access point using a cluster beam covering sidelobes, according to embodiments of the invention.
  • FIG. 8 illustrates the components for a SU-MU-Array assembled that uses an analog beamformer, according to embodiments of the invention.
  • FIG. 9 is a diagram of how an adaptive analog BFN (Beam Forming Network) can be implemented, according to embodiments of the invention.
  • BFN Beam Forming Network
  • FIG. 10 illustrates the components for a SU-MU-Array assembled that uses a digital-only beamformer, according to embodiments of the invention.
  • FIGS. 11A and 11B are diagrams of an antenna configuration, according to embodiments of the invention.
  • AP is an acronym for Access Point and is used herein to define a WiFi station that is an attachment point for UE.
  • UE is an acronym for User Equipment and is used herein to define the WiFi station that attaches to an AP.
  • MIMO is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
  • MBAP is an acronym for multi-beam access point.
  • a MBAP may include multiple AP operating simultaneously on the same radio channel where directive beams and other technology enable the operation of co-located AP's.
  • SU MIMO is an acronym for Single User Multiple Input Multiple Output and is used herein to define a technique to establish multiple spatial streams between a single Access Point (AP) and a single UE (User Equipment) so as to improve the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
  • AP Access Point
  • UE User Equipment
  • MU MIMO is an acronym for Multi User Multiple Input Multiple Output and is used herein to define a technique to establish multiple spatial streams e.g. MU_MIMO 802.11 ac protocol.
  • uncorrelated refers to the statistical independence of the RF environment as intercepted by different antennas so as to be able to support independent radio streams.
  • a correlation value of 0.0 means there is no statistical dependence between the antennas, while a correlation value of 1.0 means there a statistical relationship between the antennas.
  • a correlation value of 0.3 or less may support two independent RF streams as required by SU or MU MIMO and may referred to as “uncorrelated”.
  • beamformer refers to RF and/or digital circuitry that implements beamforming and includes combiners and phase shifters or delays and in some cases amplifiers and/or attenuators to adjust the weights of signals to or from each antenna in an antenna array.
  • Digital beamformers may be implemented in digital circuitry such as a digital signal processor (DSP), field-programmable gate array (FPGA), microprocessors or the CPU of a computer to set the weights (phases and amplitudes) of the above signals.
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • microprocessors or the CPU of a computer to set the weights (phases and amplitudes) of the above signals.
  • Various techniques may be used to implement beamforming including a Butler matrix, Blass Matrix and Rotman Lens. In general, most approaches may attempt to provide simultaneous coverage within a sector using multiple beams.
  • Base Band Processor refers to a processor for encoding data and decoding data so as to create the required WiFi baseband signal for all versions of the 802.11 protocol.
  • Each access point may include a BBP to communicate with UE's.
  • Embodiments of the invention may be described in reference to the IEEE (Institute of Electrical and Electronics Engineer) 802.11 standard for implementing wireless local area networks (WLAN).
  • the IEEE 802.11 standard may also be known as the Wi-Fi standard.
  • “802.11xx” may refer to any version of the 802.11 standard, such as 802.11a, 802.11g, or 802.11ac, for example. Versions of the 802.11 standard may operate using a technique called Collision Sense Multiple Access/Collision Avoidance (CSMA/CA), a networking method which aims to prevent transmission collisions before they occur. While embodiments of the invention are described in terms of the 802.11 protocol, other network protocols built on the CSMA/CA concept may be used.
  • CSMA/CA Collision Sense Multiple Access/Collision Avoidance
  • Access points using a CSMA/CA wireless network, including IEEE 802.11 WiFi networks, may determine whether a radio channel is clear, prior to broadcasting or transmitting data in the channel.
  • the AP may do this by performing a clear channel assessment (CCA), which includes two functions: listening to received energy on an RF interface (termed “energy detection”), or detecting and decoding an incoming Wi-Fi signal preamble from a nearby AP.
  • CCA clear channel assessment
  • a MBAP which may act as a Wi-Fi base station, may include a cluster or plurality of co-located Wi-Fi access points, each access point with independent transmit and receive capabilities.
  • Each access point may use directive antennas to focus the radio energy on an azimuth covering an intended user on a user equipment (UE), enabling one or the same radio frequency or frequency channel (e.g., the same or overlapping frequency spectrum) to be used simultaneously or concurrently on a different azimuth beam which points to a different UE.
  • Access points may be co-located if, under ordinary usage of the CSMA/CA technique, data transmission from one transceiver prevents simultaneous data transmission from another transceiver on the same channel or frequency.
  • the transceivers' co-location or proximity to each other may cause, for example, RF interference or a busy CCA signal.
  • the coverage of a MBAP may be termed a sector.
  • the coverage of adjacent beams of a multi-beam antenna may overlap. This may present a potential for interference when adjacent beams illuminate the same area on the same frequency.
  • different channels for adjacent beams may be used to reduce the interference from one subsector beam to another. Even so, the possibility may still exists that UE's in the region where beams overlap may register with an AP/frequency that is assigned to a beam that does not provide the best coverage for the UE. This may happen because UE's may inspect a channel and stop searching after they detect the first AP that satisfies their registration needs.
  • Embodiments of the invention may provide a method that detects such cases and provides the means to assign the UE to a more suitable serving AP.
  • SL Sidelobes
  • Various techniques may employed to reduce the sidelobe interference, the most common being tapering the gain of the antenna elements differently depending on their position in the antenna array. Typically, the gain of antenna elements may be lower as the antenna position is further from the center of an MBAP. Such gain tapering may be described by Taylor weighting, for example.
  • a limitation of tapering is that acceptable performance requires antenna arrays with a fairly large number of antenna elements.
  • Embodiments of the invention may provide methods to produce usable directivity with a four-element array, instead of relying on a larger-element array with tapering.
  • Embodiments of the invention described herein may be for a SU and/or MU MIMO scheme, such as four-stream MBAP, where a plurality of streams are transmitted or received for each access point.
  • a four-stream MBAP for example, one or more antenna arrays may be required to generate four spatially uncorrelated beams for each coverage area that is provided by each of the co-located access points in a MBAP.
  • a two-stream MBAP may be required to generate two spatially uncorrelated beams for each coverage area provided by each of the co-located access points.
  • Spatial uncorrelation may mean a configuration where beams are uncorrelated for purposes of a MIMO scheme, and the uncorrelation may be achieved through spatial or physical separation of antenna arrays. The following sections will first describe the implementation of a single antenna for each coverage area, followed by a description of how the single antenna may be expanded to produce four uncorrelated antenna for each coverage area.
  • FIG. 1 is a block diagram of a multi-beam access point, according to embodiments of the invention.
  • a multi-beam access point 100 may include a plurality or a number of access points 101 that are each configured to communicate with at least one UE 107 .
  • the communication with UE may be in a data format compliant with versions of the IEEE 802.11 standard.
  • the access points 101 may be coupled to a beamformer 103 and antenna array 102 to create a number of beams 104 to form a multi-beam access point system using phased array technology.
  • Each beam 104 may be capable of serving (e.g., transmitting signals to and receiving signals from) a UE 107 .
  • beams 104 may refer to both transmitting beams and receiving beams that are used or provided by each access point 101 .
  • Each beams' 104 transmitting beams and receiving beams (not shown here) may be described in more detail in FIGS. 3 and 8 - 10 , for example.
  • UE's 107 may be a cell phone, smart phone, tablet or any device with Wi-Fi capability and able to communicate with a Wi-Fi access point, or another wireless capable device.
  • Access points 101 may each operate according to the IEEE 802.11 protocol, or other protocol using CSMA/CA, and may each include a processor 101 a and memory 101 b .
  • Processors 101 a may be a general purpose processor configured to perform embodiments of the invention by for example executing code or software stored in memory 116 , or may be other processors, e.g. a dedicated processor, such as a baseband processor.
  • the beamformer 103 may be a FPGA (field-programmable gate array), a configurable integrated circuit.
  • the output from the AP into the FPGA may be in digital format and the output from the FPGA may be converted to analog signals in the radios 105 , up-converted and then radiated in antennas 102 to create radiated beams 104 .
  • the process may be reversed. Signals received on beams 104 to antennas 102 may be amplified, down-converted and digitized in the radios 105 .
  • the digitized IF intermediate frequency
  • the output from the AP may be analog for input to the beamformer 103 and all further signal processing is done in the analog domain. For receiving signals, the process is reversed. Signals received on beams 104 to antennas 102 may be amplified, then down-converted in the radios 305 . The analog IF may then be processed in the analog beamformer 103 to isolate the individual received beam signals and routed to the appropriate AP 101 . Beamforming may also be implemented in other configurations.
  • a digital approach may provide more control in electrically tilting the antennas and may provide the ability of applying tailoring (or other forms of tapering) after the electrical tilting has been applied.
  • Electrical tilting may involve adjusting the phase between antenna elements of an antenna array to adjust the directionality of a beam. While this technique may also be possible with an analog beamformer, greater precision and control may be achieved with a FPGA.
  • the ability to apply electrical tilting may enable the antenna array to be three dimensional, where beam patterns may be controlled in the vertical dimension as well as the horizontal dimension
  • FIG. 2 is a diagram of a multi-beam access point's beam coverage area, according to embodiments of the invention.
  • a multi-beam access point may include four co-located AP's 201 - 204 which provides coverage in four sub-sectors, each sub-sector served by a beam transmitted or received by AP's 201 - 204 .
  • Each beam may provide communication for access points 201 to 204 to one or more UEs 211 through 216 .
  • Beam C 223 may provide communication between AP 203 and UE 216 as shown.
  • Beam B may provide coverage between AP 202 and UE's 211 and 212 .
  • Beam B may also provide coverage to UE 213 according to some embodiments of the invention if it is efficient and practical to do so.
  • embodiments of the invention may include one or more antenna arrays which provide a plurality of spatially uncorrelated beams for a coverage area of each of the access points.
  • the plurality of spatially uncorrelated beams may be provided in accordance with MEMO Wi-Fi protocols, for example.
  • FIG. 3 is a schematic of a multi-beam access point with separated transmit and receive functions.
  • Wi-Fi employs a TDD protocol
  • the same frequency resources may be used for transmit and receive functions. Normally, this may not be a problem because a single isolated access point may never transmit and receive at the same time.
  • one access point may be transmitting while another is receiving.
  • Transmitted signals from one AP may be coupled to the receiving circuits of another and create interference to the receiving AP. Such coupling may be due to inadequate isolation between transmit and receive circuits and signal return attenuation due to antenna mismatches.
  • a multi-beam access point may include a plurality of N access points 301 to generate transmit signals to N beamformers 305 which drive a plurality of M transmitting antenna arrays 306 .
  • Each transmitting antenna array 306 may have up to L separate antenna elements.
  • Each of the M transmitting antenna arrays 306 may be positioned so that the transmitting antenna arrays 306 each produce N antenna azimuth beams 307 that are uncorrelated from each of the other azimuth beams 307 produced by other transmitting antenna arrays 306 .
  • This uncorrelation may be achieved by physical separation between each of the transmitting antenna arrays of nominally 0.5 wavelength, or more, or by orthogonally polarized antenna feeds. The effect of this may be to produce a total of N ⁇ M beams which may each be uncorrelated from each other.
  • a plurality or number N of receive beams 304 are created by M receiving antenna arrays 303 , each of which may have up to L separate antenna elements.
  • each of the M receiving antenna arrays 302 is designed to have uncorrelated receiving beams for each AP 301 , by reporting received signal parameters to a controller 308 .
  • the receiving antenna arrays may provide a plurality of M spatially uncorrelated receiving beams for each area served by each access point 301 .
  • the antenna arrays that comprise the arrays labeled “1 . . . N” in 307 and in 304 may be configured to operate adaptively in order to optimize spatial separation obtained by segmenting the transmit and receive beams in the horizontal dimensions (e.g., the plane of the coverage area).
  • the transmitting and receiving antenna arrays arrays labeled “1 . . . M” in 306 and 303 may each be physically separated by at least 0.5 wavelengths or more so as to create effective antennas that are uncorrelated with each other.
  • MIMO operation requires the number of uncorrelated beams must be equal to or less than the number of antenna elements L in each array.
  • each antenna array which each provide N transmitting or receiving beams (depending on the respective transmitting or receiving array), one beam for each of the coverage areas served by each of the N access points.
  • alternating radio channels across the access points may be used, so that the effective maximal frequency reutilization factor of the MBAP may be N/2 ⁇ M simultaneous co-frequency streams.
  • Implementation may be performed with either analog or digital beamformers as described in FIG. 1 , but digital beamforming may enable the arrays' vertical beam pattern to be more precisely adjusted.
  • FIG. 4 is a radiation pattern for an eight element, eight beam array, according to embodiments of the invention.
  • the array may use standard (e.g., Butler) beamforming techniques.
  • the eight beams may be divided into alternate clusters where each cluster operates on the same radio channel. For example, beam 401 and 402 and 403 will operate on the same radio channel.
  • Each beam has a set of side which can be reduced by tapering.
  • the ratio of beam peaks 403 to the first sidelobe peak 404 is approximately 13 dB, which may be achieved by tapering (e.g., Taylor weighted). Tapering and other techniques can be used to reduce the further out sidelobes to more than 25 dB. Other weighing can be used.
  • FIGS. 5A and 5B are diagrams of dual polarized antenna arrays, according to embodiments of the invention.
  • a SU-MU-MIMO array for 802.11AC four stream MBAP requires four spatially uncorrelated beams.
  • Four uncorrelated beams may be accomplished by using a combination of cross polarized antenna elements in the array and by including a separate, physically separated array. This concept may apply for both transmitting and receiving antenna arrays.
  • an antenna array 502 may include eight cross dipole antenna elements 504 mounted to produce +45° linear polarization in one direction 506 a and ⁇ 45° linear polarization in another direction 506 b .
  • antenna element outputs L from the antenna array 502 there may be sixteen antenna element outputs L from the antenna array 502 , e.g., eight +45° and eight ⁇ 45°.
  • Antenna array 502 may produce N ⁇ L, or N ⁇ 8 in this case, uncorrelated beams, one for each coverage area of the N access points.
  • antenna element outputs may be doubled with two antenna arrays 508 a and 508 b mounted above each other, with a spacing 510 of about 0.7 lambda (or wavelength).
  • the two antenna arrays 508 a and 508 b may be separated by 0.5 times wavelength.
  • Each of the antenna arrays 508 a and 508 b may include eight cross dipole antenna elements 504 , with each antenna element 504 producing +45° linear polarization in one direction 509 a and ⁇ 45° linear polarization in another direction 509 b .
  • FIG. 5 b is but one possible configuration of these two arrays.
  • Other arrangements include, but are not limited to different types of cross polarization, different number of antenna elements in each array and array mounting side by side or at different spacing.
  • FIG. 6 is an illustration of antenna patterns for two antenna arrays on a multi-beam access point, according to embodiments of the invention.
  • the beam pattern from the upper array 601 and the beam pattern from the lower array 602 are both aligned such that each respective beam in each coverage area covers the same azimuth sector 603 .
  • Beam A 604 from the upper array 601 a and Beam A 605 from the lower array 602 b may be arranged to cover the same azimuth sector for Beam A 606 in the combined antenna array configuration.
  • the outputs 604 from the antenna arrays 601 a and 602 a and the beamformer 608 coupled to four AP's 610 may be four sector beams (Beam A 606 , Beam B 607 , Beam C 608 and Beam D 609 ), with each beam including two spatially uncorrelated beams (e.g., one from the upper antenna array, and one from the lower antenna array).
  • an alternate, albeit physically larger, implementation of an array may have four uncorrelated antenna outputs for each beam.
  • the antenna configuration may include four arrays (instead of two arrays as illustrated in FIGS. 6 and 5 b ), stacked above each other. The four arrays may be aligned similarly to the two arrays in FIGS. 6 and 5 b so that respective beams cover the same azimuth sector, yet are uncorrelated outputs. In this configuration, antenna polarization diversity may not be required and in some configurations may produce more robust uncorrelated channels.
  • modulation of 64-QAM may be required. This means the system should provide at least a ⁇ 20 dB sidelobe ratio in order to achieve acceptable performance. As described above, antenna element tapering (e.g., Taylor weighting) may meet this requirement. However, even with ⁇ 20 dB sidelobes, when a UE is close to an AP, the UE may be detected on the sidelobes of adjacent beams. UEs that are detected on multiple directive beams may be assigned to a sector beam which is a cluster beam that covers sidelobes and may be less directive than the primary directive beams.
  • FIG. 7 is an illustration of antenna patterns for a multi-beam access point using a cluster beam covering sidelobes, according to embodiments of the invention.
  • An antenna array configuration may include an upper array 701 a and a lower array 702 a .
  • the beam pattern for the upper array 701 and the beam pattern for the lower array 702 may include four directive beams 704 and a cluster beam 706 to cover when a UE is detected on the sidelobes of adjacent directive beams.
  • the beam patterns from the upper 701 a and lower array 702 a may be aligned such that each respective beam covers the same azimuth sector 703 .
  • the outputs from the antenna arrays 701 a and 702 a and a beamformer 708 coupled to four AP's 710 and a cluster AP 712 may be a total of five sector beams (Beam A 712 , Beam B 714 , Beam C 718 , Beam D 720 , and cluster beam 722 ), with each beam including two uncorrelated antenna outputs (e.g., one from the upper antenna array, and one from the lower antenna array).
  • FIGS. 8 and 10 illustrate two ways of implementing an MBAP that supports MU-SU-MIMO, according to embodiments of the invention.
  • FIG. 8 illustrates an MBAP implemented using analog 1-D (1-dimensional) beamforming while FIG. 10 shows a digital implementation that can support either 1-D or 2-D beamforming Hybrid approaches that combine features from FIGS. 8 and 10 may also be implemented.
  • the MBAP described herein can support all of the widely deployed versions of 802.11 even though not all of the supported version can support MIMO.
  • the MBAP controller will dynamically configure the antenna structure as appropriate to the specific 802.11 version in use.
  • FIG. 8 illustrates the components for a SU-MU-Array that uses analog beamforming networks 1016 and 1017 , according to embodiments of the invention.
  • These analog beamforming network outputs 1016 are input to the Receiver Down Converter Module 1002 .
  • the output 1005 from the Receiver Down Converter Module 1002 may be input to the FPGA 1008 where various digital cancellation and other processing may be applied.
  • These other processing functions may include channel estimation, enhanced antenna side lobe cancellation and enhanced nulling of the associated transmitter signal using data provided to the controller 1014 and 1017 .
  • Physical separation of the between the Receiver Antenna Array 1001 and the Transmitter Antenna Array 1004 and careful design may result in a substantial portion of the required 100 dB isolation 1003 being achieved, while enhanced nulling may achieve the required remainder.
  • the output from the FPGA may be input to the BaseBand Processor (BBP) 1007 of an access point (not shown).
  • BBP BaseBand Processor
  • the BBP count may be N (one for each beam) plus 1 (for the sector or cluster antenna).
  • Each of the BBP receivers requires 1 to M uncorrelated antenna inputs 1006 , which are provided by the 1 to M vertically stacked arrays.
  • the M sets of adaptive analog 1D BFNs 1016 and 1017 may each be replaced by a single adaptive analog 2D BFN.
  • the number of antenna elements is L, so each of the two 2D BFN (receiver and transmitter) may have L inputs and N times M outputs, one for each of the N beams and one for each of the M stacked arrays.
  • the adaptive features enable adjustments of the beams in both the horizontal plane (e.g., the azimuth sector plane) and the vertical plane (e.g., up and down, perpendicular to the horizontal plane).
  • the digital processing function may be performed in the controller/database module 1013 .
  • Functions performed in the controller include coordination of signal flow between various BBP and may included tasking control and supplemental processing to support the digital processing 1008 .
  • the output from the N+1 BBP is input to the internet backbone 1009 and routed to the Internet or Intranet Backhaul 1010 , depending on the deployment.
  • the transmitting antenna array 1004 may accept the output from the Transmitter Up Converter Module 1011 .
  • the Transmitter Up Converter Module 1011 may include the functions of beamforming, up-converting the baseband to the radio band, and amplifying the signal.
  • the input to the Transmitter Up Converter 1012 are from the N+1 BBP.
  • Each BBP may produce up to M transmitter outputs which are input to the FPGA 1008 where various digital processing may occur, including pre-distortion to offset impairments detected by the receiver channel estimation block, enhanced antenna side lobe cancellation and input to the nulling of the associated transmitter signal.
  • the controller interfaces with the BBP 1014 , the digital processor 1008 , the Transmitter Up Converter 1011 and the Receiver Down Converters 1015 .
  • a controller/database 1013 may have bidirectional interfaces 1014 with all the BBP and bidirectional interfaces 1015 with the Receiver and Transmitter Converter Modules.
  • the data in and out of the cluster is also routed to the Controller 1013 where it is input to various scheduling and other resource assignment functions that may be implemented in the MBAP.
  • the interface between the Receiver and Transmitter Convert Module may support direct communication between their respective as required by processes such as enhanced nulling.
  • FIG. 9 is a diagram of how an adaptive analog BFN (Beam Forming Network) (e.g., BFN 1016 and 1017 in FIG. 8 ) can be implemented, according to embodiments of the invention.
  • Four antennas 901 - 904 may input received data to a first set of quadrature hybrids 911 and 912 .
  • the output of theses hybrids may be input to a second set of quadrature hybrids 921 and 922 , which produce 4 output beams 931 to 934 .
  • a set of 4 variable phase shifters 941 to 944 are provided in the paths that connect the first set of hybrids with the second set of hybrids. By adjusting the phase shift in these hybrids ( 911 , 912 , 921 , 922 ), the resulting patterns received at 931 to 934 (and produced as beams) may be adjusted.
  • FIG. 9 illustrates an adjustable analog 1D BFN with 4 sensor antennas, where the pattern change be changed in the horizontal plane.
  • 1D analog BFN may use a greater number of sensor antennas, provided that the number of beams must be equal to or greater than the number of sensor antennas.
  • the analog 1D BFN shown in FIG. 9 can be expanded to a 2D BFN, where the pattern can be adjusted in both horizontal and vertical planes. Other techniques for adjusting the analog BFN may be used.
  • FIG. 10 illustrates the components for a SU-MU-Array assembled that uses a digital-only beamformer, according to embodiments of the invention.
  • an antenna array 1101 may be composed of L elements where each element is down-converted and digitized into I/Q quadrature components in the receive down-converter 1102 .
  • the receiver channel may require one channel for each antenna element and produces L I/Q outputs 1105 .
  • These L outputs are input to the FPGA 1108 .
  • the FPGA may perform digital 1D or 2D beamforming as the input from all antenna sensors is provided. Other processing related to channel estimation, additional isolation processing, etc.
  • the FPGA may produces the same number of outputs as shown in FIG. 8 .
  • M ⁇ (N+1) outputs may be produced, where N is the output for each beam, the +1 is for the sector antenna and M is the number of uncorrelated antennas required for the level of MEMO stream being supported.
  • the output of the FPGA is input to the N+1 BBP.
  • Each BBP requires M uncorrelated receiver antennas, which the FPGA creates from the L digitized antenna inputs 1105 .
  • the balance of the receiver functions are the same functions as were described in FIG. 8 .
  • Each BBP may produce M transmitter outputs which are input 1106 to the FPGA 1108 , which produces L digitized antenna outputs 1112 that are converted to analog signals, up-converted, amplified 1111 and input to each element in the transmitter antenna array 1104 .
  • the FPGA 1108 processing produces N beams, 1 sector antenna and up to M vertical arrays as shown pictorially in 1104 .
  • the additional flexibility provided through the FPGA beamforming enables the FPGA 1108 to adaptively control the vertical pattern of the array. Vertical control may also be possible with the analog beamforming implementation in FIG. 8 , but the digital implementation shown in FIG. 9 may offer more precise control of beamforming.
  • the FPGA 1108 may accomplish the same operation mathematically as the BFN in FIG. 9 .
  • Each of “L” antennas from 1101 may be converted by the Receiver Down Converters 1102 to digital I/Q quadrature components 1109 .
  • These “L” I/Q digital signals are mathematically processed by the FPGA implementing digitally the BFN functions that are shown in FIG. 9 .
  • the precision and flexibility of digital processing enables more complex and more precise control of both 1D and 2D patterns in the FGPA than can be practically realized in analog BFN's.
  • FIG. 11A is a diagram of an antenna configuration, according to embodiments of the invention.
  • the embodiments illustrated in FIG. 8 or FIG. 10 may use an antenna configuration as shown in FIG. 11A , for example.
  • FIGS. 8 and 10 may also use other antenna arrangements.
  • FIG. 11B is a diagram of another antenna configuration, according to embodiments of the invention.
  • Two 2.4 GHz channel 802.11n arrays 1203 , 1204 can be inserted between the two vertical arrays illustrated in FIG. 11A .
  • the 2.4 GHz receiving array 1203 and the 2.4 GHz transmitting array 1204 may produce four directional beams with only four antennas. Because the 2.4 GHz array has half the number of elements as the 5 GHz arrays 1205 , they are both the same physical size. Further, the separation of the two 5 GHz arrays 1205 enables the 2.4 GHz array ( 1203 or 1204 ) to be installed between them without increasing the overall physical size of the 5 GHz array 1205 alone. Alternate designs, such as two single polarization arrays can also be implemented.
  • the array illustrated in FIG. 11B may support 2.4 GHz with two stream 801.11n and 802.11a.
  • the electronics behind the array can have either dedicated BBP for each band or shared BBP. If dedicated BBP is provided for each band, then the complete AP can support simultaneously four 802.11AC channels, each operating with up to 4 streams and four 2.4 GHz 802.11n channels, each operating with up to 2 streams.
  • aspects of the present invention may be embodied as a system, method or an apparatus.
  • any limitations commonly associated with the term “FPGA” should not be construed to be implementation technology specific; rather it can be embodied in any logical apparatus.
  • aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”

Abstract

A wireless communication system may include a plurality of N co-located Wi-Fi access points, each configured to communicate with at least one user equipment. The system may further include a beamformer coupled to each of the access points and coupled to at least one antenna array. The antenna array may include a plurality of antenna elements and may be configured to provide a plurality of M spatially uncorrelated beams for a coverage area of each of the N access points.

Description

    FIELD OF THE PRESENT INVENTION
  • The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.
  • BACKGROUND
  • Wi-Fi may be implemented with a limited amount of frequency resources that use techniques of collision avoidance to allow multiple user equipments (UE's) to share the same channel. As the numbers of UE's increase, the impact of collision avoidance restricts the ability of co-located Cellular Base Stations (BTS) or Wi-Fi access points (AP) to support many users without impacting the performance to and from each UE. Co-located AP's, otherwise known as multi-beam access points (MBAP's), may include a group of AP's with the ability to serve different UE's on the same frequency using directive signal beamformers with multi-beam antennas. However, several limitations of Wi-Fi multi-beam antennas may need to be addressed in order to provide signals to multiple UE's on the same frequency. First, since WiFi is a time division multiplex system (TDD), the transmitting and receiving functions may use the same channel. Unsynchronized operation between APs means a transmitting AP's signal may interfere with the reception of another AP that uses the same channel unless sufficient isolation (e.g., 125 dB) is provided between the transmitting and receiving functions.
  • Some solutions for providing sufficient isolation may involve using physically separated antenna arrays for transmit and receive functions. Other solutions may provide cancellation of each transmitted signal within the receiver processing functions. Another limitation of multi-beam antennas is that they may not offer complete separation of coverage from one beam to other adjacent beams. Systems and methods may be needed to mitigate the performance effects of overlapping beams of adjacent antennas. In addition to overlapping beams, sidelobe radiation from a beam may introduce extraneous radiation in other beams, causing further interference.
  • SUMMARY
  • A wireless communication system may include a plurality of N co-located Wi-Fi access points, each configured to communicate with at least one user equipment. The system may further include a beamformer coupled to each of the access points and coupled to at least one antenna array. The antenna array may include a plurality of antenna elements and may be configured to provide a plurality of M spatially uncorrelated beams for a coverage area of each of the N access points.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
  • FIG. 1 is a schematic of a multi-beam access point system, according to embodiments of the invention.
  • FIG. 2 is a diagram of sector coverage by a multi-beam access point system, according to embodiments of the invention.
  • FIG. 3 is a schematic of a multi-beam access point using a in some embodiments of the invention.
  • FIG. 4 is a schematic illustration of a radiation pattern of a multi-beam system in accordance with embodiments of the invention.
  • FIGS. 5A and 5B are diagrams of dual polarized antenna arrays, according to embodiments of the invention.
  • FIG. 6 is an illustration of antenna patterns for two antenna arrays on a multi-beam access point, according to embodiments of the invention.
  • FIG. 7 is an illustration of antenna patterns for a multi-beam access point using a cluster beam covering sidelobes, according to embodiments of the invention.
  • FIG. 8 illustrates the components for a SU-MU-Array assembled that uses an analog beamformer, according to embodiments of the invention.
  • FIG. 9 is a diagram of how an adaptive analog BFN (Beam Forming Network) can be implemented, according to embodiments of the invention.
  • FIG. 10 illustrates the components for a SU-MU-Array assembled that uses a digital-only beamformer, according to embodiments of the invention.
  • FIGS. 11A and 11B are diagrams of an antenna configuration, according to embodiments of the invention.
  • It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
  • DETAILED DESCRIPTION
  • In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well known features may be omitted or simplified in order not to obscure the present invention.
  • Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.
  • The term “AP” is an acronym for Access Point and is used herein to define a WiFi station that is an attachment point for UE.
  • The term “UE” is an acronym for User Equipment and is used herein to define the WiFi station that attaches to an AP.
  • The term “MIMO” as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
  • The term MBAP is an acronym for multi-beam access point. A MBAP may include multiple AP operating simultaneously on the same radio channel where directive beams and other technology enable the operation of co-located AP's.
  • The term “SU MIMO” is an acronym for Single User Multiple Input Multiple Output and is used herein to define a technique to establish multiple spatial streams between a single Access Point (AP) and a single UE (User Equipment) so as to improve the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.
  • The term “MU MIMO” is an acronym for Multi User Multiple Input Multiple Output and is used herein to define a technique to establish multiple spatial streams e.g. MU_MIMO 802.11 ac protocol.
  • The term “uncorrelated” as used herein refers to the statistical independence of the RF environment as intercepted by different antennas so as to be able to support independent radio streams. A correlation value of 0.0 means there is no statistical dependence between the antennas, while a correlation value of 1.0 means there a statistical relationship between the antennas. For example, a correlation value of 0.3 or less may support two independent RF streams as required by SU or MU MIMO and may referred to as “uncorrelated”.
  • The term “beamformer” as used herein refers to RF and/or digital circuitry that implements beamforming and includes combiners and phase shifters or delays and in some cases amplifiers and/or attenuators to adjust the weights of signals to or from each antenna in an antenna array. Digital beamformers may be implemented in digital circuitry such as a digital signal processor (DSP), field-programmable gate array (FPGA), microprocessors or the CPU of a computer to set the weights (phases and amplitudes) of the above signals. Various techniques may be used to implement beamforming including a Butler matrix, Blass Matrix and Rotman Lens. In general, most approaches may attempt to provide simultaneous coverage within a sector using multiple beams.
  • The term Base Band Processor (BBP) as used herein refers to a processor for encoding data and decoding data so as to create the required WiFi baseband signal for all versions of the 802.11 protocol. Each access point may include a BBP to communicate with UE's.
  • Embodiments of the invention may be described in reference to the IEEE (Institute of Electrical and Electronics Engineer) 802.11 standard for implementing wireless local area networks (WLAN). The IEEE 802.11 standard may also be known as the Wi-Fi standard. “802.11xx” may refer to any version of the 802.11 standard, such as 802.11a, 802.11g, or 802.11ac, for example. Versions of the 802.11 standard may operate using a technique called Collision Sense Multiple Access/Collision Avoidance (CSMA/CA), a networking method which aims to prevent transmission collisions before they occur. While embodiments of the invention are described in terms of the 802.11 protocol, other network protocols built on the CSMA/CA concept may be used. Access points (AP's) using a CSMA/CA wireless network, including IEEE 802.11 WiFi networks, may determine whether a radio channel is clear, prior to broadcasting or transmitting data in the channel. The AP may do this by performing a clear channel assessment (CCA), which includes two functions: listening to received energy on an RF interface (termed “energy detection”), or detecting and decoding an incoming Wi-Fi signal preamble from a nearby AP.
  • According to embodiments of the invention, a MBAP, which may act as a Wi-Fi base station, may include a cluster or plurality of co-located Wi-Fi access points, each access point with independent transmit and receive capabilities. Each access point may use directive antennas to focus the radio energy on an azimuth covering an intended user on a user equipment (UE), enabling one or the same radio frequency or frequency channel (e.g., the same or overlapping frequency spectrum) to be used simultaneously or concurrently on a different azimuth beam which points to a different UE. Access points may be co-located if, under ordinary usage of the CSMA/CA technique, data transmission from one transceiver prevents simultaneous data transmission from another transceiver on the same channel or frequency. The transceivers' co-location or proximity to each other may cause, for example, RF interference or a busy CCA signal.
  • The coverage of a MBAP may be termed a sector. In order to provide continuous coverage throughout a sector, the coverage of adjacent beams of a multi-beam antenna may overlap. This may present a potential for interference when adjacent beams illuminate the same area on the same frequency. To mitigate against interference, different channels for adjacent beams may be used to reduce the interference from one subsector beam to another. Even so, the possibility may still exists that UE's in the region where beams overlap may register with an AP/frequency that is assigned to a beam that does not provide the best coverage for the UE. This may happen because UE's may inspect a channel and stop searching after they detect the first AP that satisfies their registration needs. This can also happen as a UE moves from one beam to the next, commonly referred to as “roaming” The issue is more severe for UE's nearer to a MBAP, because those UE's may traverse each AP's beams more quickly and because registration in the “wrong” beam is more likely due to their proximity to the antennas and detection of stronger signals from more beams. Embodiments of the invention may provide a method that detects such cases and provides the means to assign the UE to a more suitable serving AP.
  • Another limitation of non-ideal beam directivity is sidelobe radiation. Sidelobes (SL) introduce radiation in directions other than the directions intended to be covered by the beam. This sidelobe radiation can produce a source of interference to those directions when transmitting in those other directions. When receiving a UE within a beam, the sidelobes may also receive energy from UE's that are not within the beam. Various techniques may employed to reduce the sidelobe interference, the most common being tapering the gain of the antenna elements differently depending on their position in the antenna array. Typically, the gain of antenna elements may be lower as the antenna position is further from the center of an MBAP. Such gain tapering may be described by Taylor weighting, for example. A limitation of tapering is that acceptable performance requires antenna arrays with a fairly large number of antenna elements. Embodiments of the invention may provide methods to produce usable directivity with a four-element array, instead of relying on a larger-element array with tapering.
  • Embodiments of the invention described herein may be for a SU and/or MU MIMO scheme, such as four-stream MBAP, where a plurality of streams are transmitted or received for each access point. To support a four-stream MBAP, for example, one or more antenna arrays may be required to generate four spatially uncorrelated beams for each coverage area that is provided by each of the co-located access points in a MBAP. In another example, a two-stream MBAP may be required to generate two spatially uncorrelated beams for each coverage area provided by each of the co-located access points. Spatial uncorrelation may mean a configuration where beams are uncorrelated for purposes of a MIMO scheme, and the uncorrelation may be achieved through spatial or physical separation of antenna arrays. The following sections will first describe the implementation of a single antenna for each coverage area, followed by a description of how the single antenna may be expanded to produce four uncorrelated antenna for each coverage area.
  • FIG. 1 is a block diagram of a multi-beam access point, according to embodiments of the invention. A multi-beam access point 100 may include a plurality or a number of access points 101 that are each configured to communicate with at least one UE 107. The communication with UE may be in a data format compliant with versions of the IEEE 802.11 standard. The access points 101 may be coupled to a beamformer 103 and antenna array 102 to create a number of beams 104 to form a multi-beam access point system using phased array technology. Each beam 104 may be capable of serving (e.g., transmitting signals to and receiving signals from) a UE 107. As used herein, beams 104 may refer to both transmitting beams and receiving beams that are used or provided by each access point 101. Each beams' 104 transmitting beams and receiving beams (not shown here) may be described in more detail in FIGS. 3 and 8-10, for example. UE's 107 may be a cell phone, smart phone, tablet or any device with Wi-Fi capability and able to communicate with a Wi-Fi access point, or another wireless capable device. Access points 101 may each operate according to the IEEE 802.11 protocol, or other protocol using CSMA/CA, and may each include a processor 101 a and memory 101 b. Processors 101 a may be a general purpose processor configured to perform embodiments of the invention by for example executing code or software stored in memory 116, or may be other processors, e.g. a dedicated processor, such as a baseband processor.
  • If the beamformer 103 is implemented digitally, the beamformer may be a FPGA (field-programmable gate array), a configurable integrated circuit. When transmitting signals to UE's 107, the output from the AP into the FPGA may be in digital format and the output from the FPGA may be converted to analog signals in the radios 105, up-converted and then radiated in antennas 102 to create radiated beams 104. For receiving signals from UE's 107, the process may be reversed. Signals received on beams 104 to antennas 102 may be amplified, down-converted and digitized in the radios 105. The digitized IF (intermediate frequency) may then be processed in the FPGA 103 to isolate the individual received beam signals and subsequently routed to the appropriate AP 101.
  • If the beamformer 103 is implemented in analog, the output from the AP may be analog for input to the beamformer 103 and all further signal processing is done in the analog domain. For receiving signals, the process is reversed. Signals received on beams 104 to antennas 102 may be amplified, then down-converted in the radios 305. The analog IF may then be processed in the analog beamformer 103 to isolate the individual received beam signals and routed to the appropriate AP 101. Beamforming may also be implemented in other configurations.
  • Although either digital or analog beamforming can be implemented as described above, implementing the beamformer in FPGA may result in improved cross talk over implementing the beamformer in an analog manner. A digital approach may provide more control in electrically tilting the antennas and may provide the ability of applying tailoring (or other forms of tapering) after the electrical tilting has been applied. Electrical tilting may involve adjusting the phase between antenna elements of an antenna array to adjust the directionality of a beam. While this technique may also be possible with an analog beamformer, greater precision and control may be achieved with a FPGA. The ability to apply electrical tilting may enable the antenna array to be three dimensional, where beam patterns may be controlled in the vertical dimension as well as the horizontal dimension
  • FIG. 2 is a diagram of a multi-beam access point's beam coverage area, according to embodiments of the invention. A multi-beam access point may include four co-located AP's 201-204 which provides coverage in four sub-sectors, each sub-sector served by a beam transmitted or received by AP's 201-204. Each beam may provide communication for access points 201 to 204 to one or more UEs 211 through 216. For example, Beam C 223 may provide communication between AP 203 and UE 216 as shown. In another example, Beam B may provide coverage between AP 202 and UE's 211 and 212. Beam B may also provide coverage to UE 213 according to some embodiments of the invention if it is efficient and practical to do so. As further explained below, embodiments of the invention may include one or more antenna arrays which provide a plurality of spatially uncorrelated beams for a coverage area of each of the access points. The plurality of spatially uncorrelated beams may be provided in accordance with MEMO Wi-Fi protocols, for example.
  • FIG. 3 is a schematic of a multi-beam access point with separated transmit and receive functions. As described above, since Wi-Fi employs a TDD protocol, the same frequency resources may be used for transmit and receive functions. Normally, this may not be a problem because a single isolated access point may never transmit and receive at the same time. However, in a multi-beam system as described, one access point may be transmitting while another is receiving. Transmitted signals from one AP may be coupled to the receiving circuits of another and create interference to the receiving AP. Such coupling may be due to inadequate isolation between transmit and receive circuits and signal return attenuation due to antenna mismatches.
  • In a system with separated transmit and receive functions, a multi-beam access point may include a plurality of N access points 301 to generate transmit signals to N beamformers 305 which drive a plurality of M transmitting antenna arrays 306. Each transmitting antenna array 306 may have up to L separate antenna elements. Each of the M transmitting antenna arrays 306 may be positioned so that the transmitting antenna arrays 306 each produce N antenna azimuth beams 307 that are uncorrelated from each of the other azimuth beams 307 produced by other transmitting antenna arrays 306. This uncorrelation may be achieved by physical separation between each of the transmitting antenna arrays of nominally 0.5 wavelength, or more, or by orthogonally polarized antenna feeds. The effect of this may be to produce a total of N×M beams which may each be uncorrelated from each other.
  • For receiving data from UE's, the operation is reversed. A plurality or number N of receive beams 304 are created by M receiving antenna arrays 303, each of which may have up to L separate antenna elements. As with the transmitter antenna structure described above, each of the M receiving antenna arrays 302 is designed to have uncorrelated receiving beams for each AP 301, by reporting received signal parameters to a controller 308. Thus, the receiving antenna arrays may provide a plurality of M spatially uncorrelated receiving beams for each area served by each access point 301.
  • The antenna arrays that comprise the arrays labeled “1 . . . N” in 307 and in 304 may be configured to operate adaptively in order to optimize spatial separation obtained by segmenting the transmit and receive beams in the horizontal dimensions (e.g., the plane of the coverage area). The transmitting and receiving antenna arrays arrays labeled “1 . . . M” in 306 and 303 may each be physically separated by at least 0.5 wavelengths or more so as to create effective antennas that are uncorrelated with each other. In general, MIMO operation requires the number of uncorrelated beams must be equal to or less than the number of antenna elements L in each array. The maximum number of beams that can be produced from a beamformer with L antenna element inputs/outputs is N where N<=L.
  • As described above, there are M antenna arrays which each provide N transmitting or receiving beams (depending on the respective transmitting or receiving array), one beam for each of the coverage areas served by each of the N access points. In practice, alternating radio channels across the access points may be used, so that the effective maximal frequency reutilization factor of the MBAP may be N/2×M simultaneous co-frequency streams. Implementation may be performed with either analog or digital beamformers as described in FIG. 1, but digital beamforming may enable the arrays' vertical beam pattern to be more precisely adjusted.
  • FIG. 4 is a radiation pattern for an eight element, eight beam array, according to embodiments of the invention. The array may use standard (e.g., Butler) beamforming techniques. The eight beams may be divided into alternate clusters where each cluster operates on the same radio channel. For example, beam 401 and 402 and 403 will operate on the same radio channel. Each beam has a set of side which can be reduced by tapering. In the figure that the ratio of beam peaks 403 to the first sidelobe peak 404 is approximately 13 dB, which may be achieved by tapering (e.g., Taylor weighted). Tapering and other techniques can be used to reduce the further out sidelobes to more than 25 dB. Other weighing can be used.
  • FIGS. 5A and 5B are diagrams of dual polarized antenna arrays, according to embodiments of the invention. As was previously stated, a SU-MU-MIMO array for 802.11AC four stream MBAP requires four spatially uncorrelated beams. Four uncorrelated beams may be accomplished by using a combination of cross polarized antenna elements in the array and by including a separate, physically separated array. This concept may apply for both transmitting and receiving antenna arrays. In FIG. 5A, an antenna array 502 may include eight cross dipole antenna elements 504 mounted to produce +45° linear polarization in one direction 506 a and −45° linear polarization in another direction 506 b. Total, there may be sixteen antenna element outputs L from the antenna array 502, e.g., eight +45° and eight −45°. In this configuration, the antenna array 502 may provide M=2 spatially uncorrelated beams for a coverage area of each of the access points that feed data into (or receive data from) the antenna array 502. Antenna array 502 may produce N≦L, or N≦8 in this case, uncorrelated beams, one for each coverage area of the N access points. In FIG. 5B, antenna element outputs may be doubled with two antenna arrays 508 a and 508 b mounted above each other, with a spacing 510 of about 0.7 lambda (or wavelength). At minimum, the two antenna arrays 508 a and 508 b may be separated by 0.5 times wavelength. Each of the antenna arrays 508 a and 508 b may include eight cross dipole antenna elements 504, with each antenna element 504 producing +45° linear polarization in one direction 509 a and −45° linear polarization in another direction 509 b. Thus, there may 32 outputs from the two antenna arrays 508 a and 508 b. FIG. 5 b is but one possible configuration of these two arrays. Other arrangements include, but are not limited to different types of cross polarization, different number of antenna elements in each array and array mounting side by side or at different spacing.
  • FIG. 6 is an illustration of antenna patterns for two antenna arrays on a multi-beam access point, according to embodiments of the invention. In an antenna array configuration using two antenna arrays including an upper array 601 a and a lower array 602 a, such as the one illustrated in FIG. 5 b, the beam pattern from the upper array 601 and the beam pattern from the lower array 602 are both aligned such that each respective beam in each coverage area covers the same azimuth sector 603. For example, Beam A 604 from the upper array 601 a and Beam A 605 from the lower array 602 b may be arranged to cover the same azimuth sector for Beam A 606 in the combined antenna array configuration. The outputs 604 from the antenna arrays 601 a and 602 a and the beamformer 608 coupled to four AP's 610 may be four sector beams (Beam A 606, Beam B 607, Beam C 608 and Beam D 609), with each beam including two spatially uncorrelated beams (e.g., one from the upper antenna array, and one from the lower antenna array). This configuration of two antenna arrays, with single polarized antenna array elements, may provide M=2 spatially uncorrelated beams for each coverage area (e.g., Beam A, Beam B, Beam C, Beam D). In another embodiment, with two physical antenna arrays as shown, each having dual polarization, the two-array configuration may provide an effective M=4 spatially uncorrelated beams for each coverage area as described in FIG. 3.
  • An alternate, albeit physically larger, implementation of an array may have four uncorrelated antenna outputs for each beam. For example, the antenna configuration may include four arrays (instead of two arrays as illustrated in FIGS. 6 and 5 b), stacked above each other. The four arrays may be aligned similarly to the two arrays in FIGS. 6 and 5 b so that respective beams cover the same azimuth sector, yet are uncorrelated outputs. In this configuration, antenna polarization diversity may not be required and in some configurations may produce more robust uncorrelated channels. For four physical arrays, if only a single polarization antenna element output is considered, the array may have an effective M=4 as described in FIG. 3. In the same physical space, dual polarization may be used, and the four antenna array configuration may have an effective M=8.
  • In order to support the maximum capability for WiFi, modulation of 64-QAM may be required. This means the system should provide at least a −20 dB sidelobe ratio in order to achieve acceptable performance. As described above, antenna element tapering (e.g., Taylor weighting) may meet this requirement. However, even with −20 dB sidelobes, when a UE is close to an AP, the UE may be detected on the sidelobes of adjacent beams. UEs that are detected on multiple directive beams may be assigned to a sector beam which is a cluster beam that covers sidelobes and may be less directive than the primary directive beams.
  • FIG. 7 is an illustration of antenna patterns for a multi-beam access point using a cluster beam covering sidelobes, according to embodiments of the invention. An antenna array configuration may include an upper array 701 a and a lower array 702 a. The beam pattern for the upper array 701 and the beam pattern for the lower array 702 may include four directive beams 704 and a cluster beam 706 to cover when a UE is detected on the sidelobes of adjacent directive beams. The beam patterns from the upper 701 a and lower array 702 a may be aligned such that each respective beam covers the same azimuth sector 703. The outputs from the antenna arrays 701 a and 702 a and a beamformer 708 coupled to four AP's 710 and a cluster AP 712 may be a total of five sector beams (Beam A 712, Beam B 714, Beam C 718, Beam D 720, and cluster beam 722), with each beam including two uncorrelated antenna outputs (e.g., one from the upper antenna array, and one from the lower antenna array).
  • FIGS. 8 and 10 illustrate two ways of implementing an MBAP that supports MU-SU-MIMO, according to embodiments of the invention. MIMO requires M uncorrelated antennas for each data stream and the design shown described how up to M=8 can be supported. FIG. 8 illustrates an MBAP implemented using analog 1-D (1-dimensional) beamforming while FIG. 10 shows a digital implementation that can support either 1-D or 2-D beamforming Hybrid approaches that combine features from FIGS. 8 and 10 may also be implemented.
  • The MBAP described herein can support all of the widely deployed versions of 802.11 even though not all of the supported version can support MIMO. For example, 802.11 a,b and g can support only 1 antenna input (M=1); 802.11n can support up to 2 antenna input (M=2); and 802.11AC can support up to 8 antenna inputs (M=8), but more typically 4 antenna inputs (M=4). The MBAP controller will dynamically configure the antenna structure as appropriate to the specific 802.11 version in use.
  • FIG. 8 illustrates the components for a SU-MU-Array that uses analog beamforming networks 1016 and 1017, according to embodiments of the invention. The receiving antenna array 1001 may consist of multiple antenna arrays similar to the array shown in FIG. 3. Shown are 1 to M arrays, each of which has an analog 1D beamformer with N outputs each. Each of these N beams is aligned on a different left and right azimuth (in 1D) and may be a beam that is uncorrelated from the other beams, resulting in N uncorrelated antennas from each antenna array. If the antenna elements are a dual polarized (typically linear at +45° and −45°), each polarization may also be uncorrelated, enabling each array to produce 2×N correlated outputs. Alternately arrays may be vertically stacked as shown in FIG. 6 and FIG. 7, with or without using cross polarization to achieve M, where M=1 to 8 uncorrelated antenna outputs.
  • These analog beamforming network outputs 1016 are input to the Receiver Down Converter Module 1002. The output 1005 from the Receiver Down Converter Module 1002 may be input to the FPGA 1008 where various digital cancellation and other processing may be applied. These other processing functions may include channel estimation, enhanced antenna side lobe cancellation and enhanced nulling of the associated transmitter signal using data provided to the controller 1014 and 1017. Physical separation of the between the Receiver Antenna Array 1001 and the Transmitter Antenna Array 1004 and careful design may result in a substantial portion of the required 100 dB isolation 1003 being achieved, while enhanced nulling may achieve the required remainder.
  • The output from the FPGA may be input to the BaseBand Processor (BBP) 1007 of an access point (not shown). There may be M×(N+1) total outputs, indicating the number of N antenna beams, the plus 1 is for the sector antenna and M is the number of MIMO streams being supported. Thus the BBP count may be N (one for each beam) plus 1 (for the sector or cluster antenna). Each of the BBP receivers requires 1 to M uncorrelated antenna inputs 1006, which are provided by the 1 to M vertically stacked arrays.
  • In another embodiment the M sets of adaptive analog 1D BFNs 1016 and 1017 may each be replaced by a single adaptive analog 2D BFN. The number of antenna elements is L, so each of the two 2D BFN (receiver and transmitter) may have L inputs and N times M outputs, one for each of the N beams and one for each of the M stacked arrays. The adaptive features enable adjustments of the beams in both the horizontal plane (e.g., the azimuth sector plane) and the vertical plane (e.g., up and down, perpendicular to the horizontal plane).
  • The digital processing function may be performed in the controller/database module 1013. Functions performed in the controller include coordination of signal flow between various BBP and may included tasking control and supplemental processing to support the digital processing 1008.
  • The output from the N+1 BBP is input to the internet backbone 1009 and routed to the Internet or Intranet Backhaul 1010, depending on the deployment.
  • For transmitting, the transmitting antenna array 1004 may accept the output from the Transmitter Up Converter Module 1011. The Transmitter Up Converter Module 1011 may include the functions of beamforming, up-converting the baseband to the radio band, and amplifying the signal. The input to the Transmitter Up Converter 1012 are from the N+1 BBP. Each BBP may produce up to M transmitter outputs which are input to the FPGA 1008 where various digital processing may occur, including pre-distortion to offset impairments detected by the receiver channel estimation block, enhanced antenna side lobe cancellation and input to the nulling of the associated transmitter signal.
  • The controller interfaces with the BBP 1014, the digital processor 1008, the Transmitter Up Converter 1011 and the Receiver Down Converters 1015.
  • The operation to discover a co-located AP operating on the same channel may be coordinated by the MBAP. A controller/database 1013 may have bidirectional interfaces 1014 with all the BBP and bidirectional interfaces 1015 with the Receiver and Transmitter Converter Modules. The data in and out of the cluster is also routed to the Controller 1013 where it is input to various scheduling and other resource assignment functions that may be implemented in the MBAP. The interface between the Receiver and Transmitter Convert Module may support direct communication between their respective as required by processes such as enhanced nulling.
  • FIG. 9 is a diagram of how an adaptive analog BFN (Beam Forming Network) (e.g., BFN 1016 and 1017 in FIG. 8) can be implemented, according to embodiments of the invention. Four antennas 901-904 may input received data to a first set of quadrature hybrids 911 and 912. The output of theses hybrids may be input to a second set of quadrature hybrids 921 and 922, which produce 4 output beams 931 to 934. A set of 4 variable phase shifters 941 to 944 are provided in the paths that connect the first set of hybrids with the second set of hybrids. By adjusting the phase shift in these hybrids (911, 912, 921, 922), the resulting patterns received at 931 to 934 (and produced as beams) may be adjusted.
  • FIG. 9 illustrates an adjustable analog 1D BFN with 4 sensor antennas, where the pattern change be changed in the horizontal plane. Other implementations of 1D analog BFN may use a greater number of sensor antennas, provided that the number of beams must be equal to or greater than the number of sensor antennas. The analog 1D BFN shown in FIG. 9 can be expanded to a 2D BFN, where the pattern can be adjusted in both horizontal and vertical planes. Other techniques for adjusting the analog BFN may be used.
  • FIG. 10 illustrates the components for a SU-MU-Array assembled that uses a digital-only beamformer, according to embodiments of the invention. On the receiver side, an antenna array 1101 may be composed of L elements where each element is down-converted and digitized into I/Q quadrature components in the receive down-converter 1102. The receiver channel may require one channel for each antenna element and produces L I/Q outputs 1105. These L outputs are input to the FPGA 1108. The FPGA may perform digital 1D or 2D beamforming as the input from all antenna sensors is provided. Other processing related to channel estimation, additional isolation processing, etc. The FPGA may produces the same number of outputs as shown in FIG. 8. Specifically, M×(N+1) outputs may be produced, where N is the output for each beam, the +1 is for the sector antenna and M is the number of uncorrelated antennas required for the level of MEMO stream being supported. The output of the FPGA is input to the N+1 BBP. Each BBP requires M uncorrelated receiver antennas, which the FPGA creates from the L digitized antenna inputs 1105. The balance of the receiver functions are the same functions as were described in FIG. 8.
  • The transmitter functions may be analogous to the receiver functions described above. Each BBP may produce M transmitter outputs which are input 1106 to the FPGA 1108, which produces L digitized antenna outputs 1112 that are converted to analog signals, up-converted, amplified 1111 and input to each element in the transmitter antenna array 1104. The FPGA 1108 processing produces N beams, 1 sector antenna and up to M vertical arrays as shown pictorially in 1104. The additional flexibility provided through the FPGA beamforming enables the FPGA 1108 to adaptively control the vertical pattern of the array. Vertical control may also be possible with the analog beamforming implementation in FIG. 8, but the digital implementation shown in FIG. 9 may offer more precise control of beamforming.
  • The FPGA 1108 may accomplish the same operation mathematically as the BFN in FIG. 9. Each of “L” antennas from 1101 may be converted by the Receiver Down Converters 1102 to digital I/Q quadrature components 1109. These “L” I/Q digital signals are mathematically processed by the FPGA implementing digitally the BFN functions that are shown in FIG. 9. The precision and flexibility of digital processing enables more complex and more precise control of both 1D and 2D patterns in the FGPA than can be practically realized in analog BFN's.
  • FIG. 11A is a diagram of an antenna configuration, according to embodiments of the invention. The embodiments illustrated in FIG. 8 or FIG. 10 may use an antenna configuration as shown in FIG. 11A, for example. There may be two receiver arrays 1201 one stacked above the other and two transmitter arrays 1202. Since each array may have orthogonal dual polarization output, there may be a total of four uncorrelated outputs and four uncorrelated inputs for each beam. In this manner, four stream MU or SU 802.11AC is supported by this array. This same array may be used for two channel 802.11n and one channel 802.11a.
  • The embodiments shown in FIGS. 8 and 10 may also use other antenna arrangements.
  • FIG. 11B is a diagram of another antenna configuration, according to embodiments of the invention. Two 2.4 GHz channel 802.11 n arrays 1203, 1204 can be inserted between the two vertical arrays illustrated in FIG. 11A. The 2.4 GHz receiving array 1203 and the 2.4 GHz transmitting array 1204 may produce four directional beams with only four antennas. Because the 2.4 GHz array has half the number of elements as the 5 GHz arrays 1205, they are both the same physical size. Further, the separation of the two 5 GHz arrays 1205 enables the 2.4 GHz array (1203 or 1204) to be installed between them without increasing the overall physical size of the 5 GHz array 1205 alone. Alternate designs, such as two single polarization arrays can also be implemented.
  • The array illustrated in FIG. 11B may support 2.4 GHz with two stream 801.11n and 802.11a. The electronics behind the array can have either dedicated BBP for each band or shared BBP. If dedicated BBP is provided for each band, then the complete AP can support simultaneously four 802.11AC channels, each operating with up to 4 streams and four 2.4 GHz 802.11n channels, each operating with up to 2 streams.
  • As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. As such, any limitations commonly associated with the term “FPGA” should not be construed to be implementation technology specific; rather it can be embodied in any logical apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”
  • Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.

Claims (20)

1. A wireless communication system, comprising:
a plurality of N co-located Wi-Fi access points, each configured to communicate with at least one user equipment; and
a beamformer coupled to each of the access points and coupled to at least one antenna array, the antenna array including a plurality of antenna elements, wherein the at least one antenna array is configured to provide a plurality of M spatially uncorrelated beams for a coverage area of each of the N access points,
wherein the at least one antenna array includes antenna elements that are dual polarized,
wherein the beamformer is coupled to two arrays of dual polarized antenna elements, thereby providing M greater or equal to 4 spatially uncorrelated beams for a coverage area of each of the N access points, and
wherein the arrays are physically separated by at least 0.5 wavelengths.
2. The wireless communication system of claim 1, wherein the at least one antenna array is configured to provide N×M uncorrelated beams.
3. The wireless communication system of claim 2, wherein each of the N×M uncorrelated beams include transmitting beams and receiving beams.
4. The wireless communication system of claim 1, wherein each antenna array is configured to provide N beams, one for each coverage area of the N access points.
5. The wireless communication system of claim 1, wherein the at least one antenna array includes antenna elements for transmitting data to the at least one user equipment and antenna elements for receiving data from the at least one user equipment.
6. The wireless communication system of claim 1, wherein, for each coverage area of the N access points, the M spatially uncorrelated beams are respectively aligned to cover the same azimuth sector.
7. (canceled)
8. The wireless communication system of claim 1, wherein the at least one array provides a maximum of M=2 spatially uncorrelated beams for a coverage area of each of the N access points.
9. (canceled)
10. A wireless communication method, comprising:
communicating with at least one user equipment, by a plurality of N co-located Wi-Fi access points; and
providing, by two receiving antenna arrays and two transmitting antenna arrays, each including a plurality of antenna elements, a plurality of M spatially uncorrelated beams for a coverage area of each of the N access points, wherein a beamformer is coupled to each of the access points and coupled to the at least one antenna array, wherein the transmitting antenna arrays are separated by at least 0.5 wavelengths and the receiving antenna arrays are separated by at least 0.5 wavelengths.
11. The wireless communication method of claim 10, comprising providing, by the at least one antenna array, N×M uncorrelated beams.
12. The wireless communication method of claim 10, comprising providing, by each of the antenna arrays, N beams, one for each coverage area of the N access points.
13. The wireless communication method of claim 10, comprising aligning the M spatially uncorrelated beams to cover the same azimuth sector, for each coverage area of the N access points.
14. The wireless communication method of claim 10, comprising providing, by each antenna array, a maximum of M=2 spatially uncorrelated beams for each coverage area of each of the N access points, wherein each antenna array includes antenna elements that are dual polarized.
15. The wireless communication method of claim 10, comprising providing a plurality of M spatially uncorrelated beams according to a Single-User-MIMO process, Multi-User-MIMO process, or both simultaneously.
16. A communication device, comprising:
a plurality of Wi-Fi access points to exchange data with a beamformer;
at least one transmitting antenna array and at least one receiving antenna array, each coupled to the beamformer, wherein the at least one transmitting antenna array is able to transmit data from the beamformer to a user equipment via a plurality of spatially uncorrelated transmit beams for each area served by the access points, wherein the at least one receiving antenna array is able to receive data from a user equipment via a plurality of spatially uncorrelated receive beams for each area served by the access points, wherein the at least one transmitting antenna array comprise two transmitting antenna arrays separated by at least 0.5 wavelengths and the at least one receiving antenna array comprise two receiving antenna arrays separated by at least 0.5 wavelengths; and
a controller to allow said spatially uncorrelated beams based on a Single-User-MIMO process, Multi-User-MIMO process, or both simultaneously.
17. The communication device of claim 16, wherein the transmitting antenna array and the receiving antenna array each include dual polarized antenna elements.
18. The communication device of claim 16, wherein the controller is to align the plurality of spatially uncorrelated transmit beams and the plurality of spatially uncorrelated receive beams to cover the same azimuth sector in each of the areas served by the access points.
19. (canceled)
20. The communication device of claim 16, wherein the at least one transmitting antenna array provides a transmit beam for each of the access points and the at least one receive antenna array provides a receive beam for each of the access points, each transmit beam and receive uncorrelated from each other.
US14/097,765 2013-12-05 2013-12-05 Multiple co-located multi-user-MIMO access points Expired - Fee Related US9042276B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/097,765 US9042276B1 (en) 2013-12-05 2013-12-05 Multiple co-located multi-user-MIMO access points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/097,765 US9042276B1 (en) 2013-12-05 2013-12-05 Multiple co-located multi-user-MIMO access points

Publications (2)

Publication Number Publication Date
US9042276B1 US9042276B1 (en) 2015-05-26
US20150163004A1 true US20150163004A1 (en) 2015-06-11

Family

ID=53176400

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/097,765 Expired - Fee Related US9042276B1 (en) 2013-12-05 2013-12-05 Multiple co-located multi-user-MIMO access points

Country Status (1)

Country Link
US (1) US9042276B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338662B2 (en) * 2014-05-30 2016-05-10 Electronics And Telecommunications Research Instit Method for inter-beam interference reduction using cross polarization and method for transmitting/receiving signal
WO2017157087A1 (en) * 2016-03-14 2017-09-21 Corbett Rowell Hybrid beam-forming antenna array using selection matrix for antenna phase calibration
US10256894B2 (en) * 2017-09-11 2019-04-09 Qualcomm Incorporated Hybrid beam former
US10447360B2 (en) * 2015-03-19 2019-10-15 China Academy Of Telecommunications Technology Massive digital-analog hybrid antenna, channel state information feedback method and channel state information feedback device
US11943818B2 (en) 2016-01-27 2024-03-26 Starry, Inc. Nodes for high frequency fixed wireless access network

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125185A1 (en) * 2011-03-15 2012-09-20 Intel Corporation Mm-wave phased array antenna with beam tilting radiation pattern
US10014916B2 (en) * 2014-11-10 2018-07-03 Samsung Electronics Co., Ltd. 2D active antenna array operation for wireless communication systems
US9906285B2 (en) * 2015-05-26 2018-02-27 Maxlinear, Inc. Method and system for hybrid radio frequency digital beamforming
US11303346B2 (en) 2015-08-25 2022-04-12 Cellium Technologies, Ltd. Systems and methods for transporting signals inside vehicles
US10484074B2 (en) * 2015-08-25 2019-11-19 Cellium Technologies, Ltd. Systems and methods for maximizing data transmission rates in conjunction with a spatial-multiplexing transmission
CN106658515B (en) * 2015-10-29 2020-04-21 华为技术有限公司 Communication method and device
EP3413477B1 (en) * 2016-02-05 2020-10-21 NTT DoCoMo, Inc. Radio communication device
EP3631999A1 (en) 2017-05-31 2020-04-08 Telefonaktiebolaget LM Ericsson (publ) A wireless communication system node with fixed beams
TWI725234B (en) * 2017-09-21 2021-04-21 智邦科技股份有限公司 Communication device and method
US10425214B2 (en) * 2017-10-11 2019-09-24 Skyriver Communications, Inc. Method and apparatus for millimeter-wave hybrid beamforming to form subsectors
KR20190118792A (en) * 2018-04-11 2019-10-21 삼성전자주식회사 Apparatus and method for controlling by using lens in wireless communication system
US10727911B2 (en) * 2018-08-20 2020-07-28 Nokia Solutions And Networks Oy Beamforming in MIMO radio networks
US11171424B2 (en) * 2019-08-21 2021-11-09 Samsung Electronics Co., Ltd. Solution for beam tilting associated with dual-polarized MM-wave antennas in 5G terminals
US11431390B2 (en) * 2019-12-19 2022-08-30 Qualcomm Incorporated Higher rank multiple input multiple output enhancements in millimeter wave and sub-Terahertz bands
US11362721B2 (en) 2020-04-23 2022-06-14 Corning Research & Development Corporation Grid of beams (GoB) adaptation in a wireless communications circuit, particularly for a wireless communications system (WCS)

Family Cites Families (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044359A (en) 1962-01-09 1977-08-23 General Electric Company Multiple intermediate frequency side-lobe canceller
US4628320A (en) 1964-04-29 1986-12-09 General Electric Company Cancellation of scatter jamming
US5363104A (en) 1974-02-28 1994-11-08 Lockheed Sanders, Inc. Jamming signal cancellation system
US6297772B1 (en) 1974-09-23 2001-10-02 The United States Of America As Represented By The Secretary Of The Navy Predicting coherent sidelobe canceller
US4359738A (en) 1974-11-25 1982-11-16 The United States Of America As Represented By The Secretary Of The Navy Clutter and multipath suppressing sidelobe canceller antenna system
US5162805A (en) 1975-02-19 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Frequency diversity sidelobe canceller
US4079318A (en) 1975-06-23 1978-03-14 Nippon Electric Company, Ltd. Space diversity receiving system with phase-controlled signal combining at intermediate frequency stage
US4540985A (en) 1978-05-23 1985-09-10 Westinghouse Electric Corp. Angle width discriminator/altitude line detector radar
CA2041752A1 (en) 1990-05-02 1991-11-03 Roland E. Williams Private cellular telephone system
DE69229994T2 (en) 1991-03-07 2000-04-27 Masimo Corp DEVICE AND METHOD FOR SIGNAL PROCESSING
US5444762A (en) 1993-03-08 1995-08-22 Aircell, Inc. Method and apparatus for reducing interference among cellular telephone signals
US5668828A (en) 1992-05-08 1997-09-16 Sanconix, Inc. Enhanced frequency agile radio
US6101399A (en) 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
DE19506439A1 (en) 1995-02-24 1996-08-29 Sel Alcatel Ag Allocation of a carrier frequency in an SDMA radio system
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US6697633B1 (en) 1995-06-02 2004-02-24 Northrop Grummar Corporation Method permitting increased frequency re-use in a communication network, by recovery of transmitted information from multiple cochannel signals
US6975582B1 (en) 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
US6047165A (en) 1995-11-14 2000-04-04 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
JP2839014B2 (en) 1996-07-05 1998-12-16 日本電気株式会社 Transmission power control method for code division multiplexing cellular system
JP3816162B2 (en) 1996-10-18 2006-08-30 株式会社東芝 Beamwidth control method for adaptive antenna
EP0845877A3 (en) 1996-11-28 2002-03-27 Oki Electric Industry Co., Ltd. Mobile communication system for accomplishing handover with phase difference of frame sync signals corrected
JP2972639B2 (en) 1997-04-16 1999-11-08 日本電気アイシーマイコンシステム株式会社 Mobile communication system and mobile communication method thereof
US6167286A (en) 1997-06-05 2000-12-26 Nortel Networks Corporation Multi-beam antenna system for cellular radio base stations
US6046655A (en) 1997-11-10 2000-04-04 Datron/Transco Inc. Antenna feed system
SE515674C2 (en) 1997-12-05 2001-09-24 Ericsson Telefon Ab L M Noise reduction device and method
US5940033A (en) 1998-01-20 1999-08-17 The United States Of America As Represented By The Secretary Of The Army Apparatus, methods and computer program for evaluating multiple null forming antenna processors and jammers
US6226507B1 (en) 1998-02-03 2001-05-01 Ericsson Inc. Apparatus and method for selecting between a plurality of antennas utilized by a microcellular communications terminal for reception of a signal
JPH11301377A (en) 1998-04-24 1999-11-02 Harada Ind Co Ltd Automotive receiver control system
US6591084B1 (en) 1998-04-27 2003-07-08 General Dynamics Decision Systems, Inc. Satellite based data transfer and delivery system
US6862449B1 (en) 1998-05-14 2005-03-01 Fujitsu Limited Reducing interference in cellular mobile communications networks
JP2970656B1 (en) 1998-06-25 1999-11-02 日本電気株式会社 DS-CDMA multi-user interference canceller
JP2000023236A (en) 1998-06-29 2000-01-21 Nec Corp Terminal position tracking system, terminal position tracking method and recording medium
US6377783B1 (en) 1998-12-24 2002-04-23 At&T Wireless Services, Inc. Method for combining communication beams in a wireless communication system
JP3356707B2 (en) 1999-01-14 2002-12-16 株式会社東芝 Mobile communication terminal
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6914890B1 (en) 1999-08-05 2005-07-05 Nokia Corporation Apparatus, and associated method, for sequencing transmission of data
EP1081976B1 (en) 1999-09-06 2007-12-12 NTT DoCoMo, Inc. Control method of searching neighboring cells, mobile station, and mobile communication system
US7039441B1 (en) 1999-10-19 2006-05-02 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
EP1130792A1 (en) 2000-03-03 2001-09-05 Lucent Technologies Inc. A method and rake receiver for phasor estimation in communication systems
WO2001069824A1 (en) 2000-03-14 2001-09-20 Vyyo, Ltd. Low-complexity beam forming and antenna diversity receiver
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US6834073B1 (en) 2000-05-26 2004-12-21 Freescale Semiconductor, Inc. System and method for baseband removal of narrowband interference in ultra wideband signals
JP2002094318A (en) 2000-09-14 2002-03-29 Ntt Docomo Inc Method and device for extracting signal in radio communication system
IL139078A0 (en) 2000-10-16 2001-11-25 Wireless Online Inc Method and system for calibrating antenna towers to reduce cell interference
DE60107797T2 (en) 2000-10-31 2005-06-09 Kabushiki Kaisha Toshiba Wireless communication system, weighting control arrangement, and weight vector generation method
WO2002037754A2 (en) 2000-11-03 2002-05-10 At & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
US7173916B2 (en) 2001-01-19 2007-02-06 Raze Technologies, Inc. Wireless access system using multiple modulation formats in TDD frames and method of operation
US6870515B2 (en) 2000-12-28 2005-03-22 Nortel Networks Limited MIMO wireless communication system
US7046690B2 (en) 2001-01-16 2006-05-16 At&T Corp. Interference suppression methods for 802.11
US8396513B2 (en) 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US6546254B2 (en) 2001-02-06 2003-04-08 Ip Mobilenet, Inc. Method and apparatus for intelligent dynamic frequency reuse
EP1418779B1 (en) 2001-02-14 2007-10-03 NTT DoCoMo, Inc. Communication control method and apparatus in mobile communication system
WO2002071650A1 (en) 2001-03-02 2002-09-12 At & T Corp. Interference suppression methods for 802.11
EP1253736A3 (en) 2001-04-26 2003-12-10 NTT DoCoMo, Inc. Data link transmission control for mobile communications
US6996056B2 (en) 2001-05-31 2006-02-07 Nortel Networks Limited Method and apparatus for orthogonal code management in CDMA systems using smart antenna technology
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US7136361B2 (en) 2001-07-05 2006-11-14 At&T Corp. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US7190964B2 (en) 2001-08-20 2007-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Reverse link power control in 1xEV-DV systems
US7346357B1 (en) 2001-11-08 2008-03-18 At&T Corp. Frequency assignment for multi-cell IEEE 802.11 wireless networks
US20030087645A1 (en) 2001-11-08 2003-05-08 Kim Byoung-Jo J. Frequency assignment for multi-cell IEEE 802.11 wireless networks
US6667712B2 (en) 2001-11-20 2003-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Downlink load sharing by nulling, beam steering and beam selection
US6703976B2 (en) 2001-11-21 2004-03-09 Lockheed Martin Corporation Scaleable antenna array architecture using standard radiating subarrays and amplifying/beamforming assemblies
TW595857U (en) 2001-11-29 2004-06-21 Us 091219345
US7155231B2 (en) 2002-02-08 2006-12-26 Qualcomm, Incorporated Transmit pre-correction in a wireless communication system
US7046978B2 (en) 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US20030161410A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device with adaptive combination
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6871049B2 (en) 2002-03-21 2005-03-22 Cognio, Inc. Improving the efficiency of power amplifiers in devices using transmit beamforming
US6728517B2 (en) 2002-04-22 2004-04-27 Cognio, Inc. Multiple-input multiple-output radio transceiver
US20030206532A1 (en) 2002-05-06 2003-11-06 Extricom Ltd. Collaboration between wireless lan access points
US7181245B2 (en) 2002-06-27 2007-02-20 Nortel Networks Limited Wireless transmitter, transceiver and method
FI115808B (en) 2002-07-12 2005-07-15 Filtronic Comtek Oy Bypass arrangement for a low noise amplifier
JP4008301B2 (en) 2002-08-01 2007-11-14 株式会社エヌ・ティ・ティ・ドコモ Base station connection method, radio network control apparatus, and mobile station
US7697549B2 (en) 2002-08-07 2010-04-13 Extricom Ltd. Wireless LAN control over a wired network
US7031336B2 (en) 2002-08-26 2006-04-18 Colubris Networks, Inc. Space-time-power scheduling for wireless networks
US7245939B2 (en) 2002-09-09 2007-07-17 Interdigital Technology Corporation Reducing the effect of signal interference in null areas caused by overlapping antenna patterns
EP1546894A4 (en) 2002-09-17 2011-05-18 Broadcom Corp System and method for access point (ap) aggregation and resiliency in a hybrid wired/wireless local area network
US7876810B2 (en) 2005-04-07 2011-01-25 Rambus Inc. Soft weighted interference cancellation for CDMA systems
GB2394861A (en) 2002-10-30 2004-05-05 Hewlett Packard Co Dual-mode wireless local area network access point
WO2004042959A1 (en) 2002-11-04 2004-05-21 Vivato Inc Directed wireless communication
KR100673084B1 (en) 2002-12-10 2007-01-22 데이터 플로우 시스템즈 인코포레이션 Radio communication system employing spectral reuse transceivers
US7151951B2 (en) 2002-12-23 2006-12-19 Telefonktiebolaget Lm Ericsson (Publ) Using beamforming and closed loop transmit diversity in a multi-beam antenna system
US7184500B2 (en) 2002-12-30 2007-02-27 Magnolia Broadband Inc. Method and system for adaptively combining signals
US7154960B2 (en) 2002-12-31 2006-12-26 Lucent Technologies Inc. Method of determining the capacity of each transmitter antenna in a multiple input/multiple output (MIMO) wireless system
KR100594101B1 (en) 2003-01-20 2006-06-30 삼성전자주식회사 System and method for supporting multimedia broadcast/multicast service in non tracking area
US20040166902A1 (en) 2003-01-21 2004-08-26 Dan Castellano Method and system for reducing cell interference using advanced antenna radiation pattern control
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
JP3847722B2 (en) 2003-02-28 2006-11-22 富士通株式会社 Time division multi-sector wireless LAN device
US7646744B2 (en) 2003-04-07 2010-01-12 Shaolin Li Method of operating multi-antenna wireless data processing system
US7512083B2 (en) 2003-04-07 2009-03-31 Shaolin Li Single chip multi-antenna wireless data processor
US8014374B2 (en) 2003-04-07 2011-09-06 Bellow Bellows Llc System and method for achieving timing compatibility with multi-antenna wireless data protocols
US7933255B2 (en) 2003-04-07 2011-04-26 Bellow Bellows Llc Multi-antenna wireless data processing system
FI20030633A0 (en) 2003-04-25 2003-04-25 Nokia Corp Communication method, system and network element
JP4666890B2 (en) 2003-04-28 2011-04-06 ソニー株式会社 COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND COMMUNICATION DEVICE
KR20060007445A (en) 2003-05-27 2006-01-24 인터디지탈 테크날러지 코포레이션 Multi-mode radio with interference cancellation circuit
KR100586845B1 (en) 2003-06-24 2006-06-07 삼성전자주식회사 Method for enhancing transfer rate using DLP and multi-channel in DCF-based wireless LAN network, and wireless network system thereof
KR100546357B1 (en) 2003-07-30 2006-01-26 삼성전자주식회사 Method and apparatus for receiving digital television signals using space diversity and beamforming
US7453946B2 (en) 2003-09-03 2008-11-18 Intel Corporation Communication system and method for channel estimation and beamforming using a multi-element array antenna
US7724838B2 (en) 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
US6940452B2 (en) 2003-09-29 2005-09-06 Northrop Grumman Corporation Reducing co-channel interference in satellite communications systems by antenna re-pointing
WO2005034408A2 (en) 2003-10-01 2005-04-14 Board Of Regents Of The University Of Texas System Wireless network system and method
US7720509B2 (en) 2003-10-02 2010-05-18 Toshiba America Research, Inc. Harmonized adaptive arrays
WO2005057720A2 (en) 2003-12-02 2005-06-23 Motia, Inc. System and method for providing a smart antenna
US7260370B2 (en) 2003-12-10 2007-08-21 James June-Ming Wang Wireless communication system using a plurality of antenna elements with adaptive weighting and combining techniques
JP2005176048A (en) 2003-12-12 2005-06-30 Pioneer Electronic Corp Receiver, reception method, program for reception control, and recording medium
KR100590772B1 (en) 2003-12-26 2006-06-15 한국전자통신연구원 Apparatus and method of media access control processor for guaranteeing quality of service in wireless LAN
US7804762B2 (en) 2003-12-30 2010-09-28 Intel Corporation Method and apparatus for implementing downlink SDMA in a wireless network
US7443821B2 (en) 2004-01-08 2008-10-28 Interdigital Technology Corporation Method for clear channel assessment optimization in a wireless local area network
KR100800797B1 (en) 2004-01-28 2008-02-04 삼성전자주식회사 Method for transmitting/receiving data in communication system
KR100753073B1 (en) 2004-02-04 2007-08-31 후지쓰 텐 가부시키가이샤 Receiving apparatus
US7423989B2 (en) 2004-02-13 2008-09-09 Broadcom Corporation Preamble formats for MIMO wireless communications
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US20050250544A1 (en) 2004-05-07 2005-11-10 Stephen Grant Base station, mobile terminal device and method for implementing a selective-per-antenna-rate-control (S-PARC) technique in a wireless communications network
US7826431B2 (en) 2004-05-14 2010-11-02 Interdigital Technology Corporation Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage
US7746802B2 (en) 2004-06-01 2010-06-29 Samsung Electronics Co., Ltd. Method and apparatus for channel state feedback using arithmetic coding
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
US20080267142A1 (en) 2004-06-18 2008-10-30 Stellaris Ltd. Distributed Antenna Wlan Access-Point System and Method
WO2006012211A2 (en) 2004-06-24 2006-02-02 Meshnetworks, Inc. A system and method for adaptive rate selection for wireless networks
US7327983B2 (en) 2004-06-25 2008-02-05 Mitsubishi Electric Research Laboratories, Inc. RF-based antenna selection in MIMO systems
US8280443B2 (en) 2004-07-30 2012-10-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. WLAN access point with extended coverage area
US7529218B2 (en) 2004-08-25 2009-05-05 Cisco Technology, Inc. High density WLAN system
US7474676B2 (en) 2004-09-10 2009-01-06 Mitsubishi Electric Research Laboratories, Inc. Frame aggregation in wireless communications networks
US7586886B2 (en) 2004-10-06 2009-09-08 Broadcom Corporation Method and system for single weight antenna system for HSDPA
KR20060038131A (en) 2004-10-29 2006-05-03 삼성전자주식회사 Method for uplink scheduling in a communication system using frequency hopping ??orthogonal frequency division multiple access scheme
US8233907B1 (en) 2004-11-03 2012-07-31 At&T Mobility Ii Llc System and method for constructing a carrier to interference matrix based on subscriber calls
US7719993B2 (en) 2004-12-30 2010-05-18 Intel Corporation Downlink transmit beamforming
US20060264184A1 (en) 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
US20060203850A1 (en) 2005-03-14 2006-09-14 Johnson Walter L Method and apparatus for distributing timing information in an asynchronous wireless communication system
US7747234B2 (en) 2005-04-04 2010-06-29 Broadcom Corporation Gain control in a multiple RF transceiver integrated circuit
US8483200B2 (en) 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
JP4705808B2 (en) 2005-05-18 2011-06-22 株式会社日立製作所 RADIO COMMUNICATION SYSTEM, RADIO RELAY DEVICE, RADIO COMMUNICATION TERMINAL, AND RADIO COMMUNICATION METHOD
US7742000B2 (en) 2005-05-31 2010-06-22 Tialinx, Inc. Control of an integrated beamforming array using near-field-coupled or far-field-coupled commands
US7787401B2 (en) 2005-06-17 2010-08-31 Cisco Technology, Inc. Using mini-beacons in a wireless network
US7623481B2 (en) 2005-10-04 2009-11-24 Via Technologies, Inc. Hyper throughput method for wireless local area network
US8472877B2 (en) 2005-10-24 2013-06-25 Qualcomm Incorporated Iterative interference cancellation system and method
US7821996B2 (en) 2005-10-27 2010-10-26 Motorola Mobility, Inc. Mobility enhancement for real time service over high speed downlink packet access (HSDPA)
US8031661B2 (en) 2005-11-08 2011-10-04 Intellectual Ventures I Llc Symmetric transmit opportunity (TXOP) truncation
CN101185200B (en) 2005-11-14 2011-07-20 桥扬科技有限公司 Multiple-antenna system for cellular communication and broadcasting
JP5290580B2 (en) 2005-11-21 2013-09-18 日本電気株式会社 Mobile station, downlink transmission rate control method, and downlink transmission rate control program
EP1791278A1 (en) 2005-11-29 2007-05-30 Interuniversitair Microelektronica Centrum (IMEC) Device and method for calibrating MIMO systems
US20080051037A1 (en) 2005-12-29 2008-02-28 Molnar Karl J BASE STATION AND METHOD FOR SELECTING BEST TRANSMIT ANTENNA(s) FOR SIGNALING CONTROL CHANNEL INFORMATION
US7477204B2 (en) 2005-12-30 2009-01-13 Micro-Mobio, Inc. Printed circuit board based smart antenna
KR100728039B1 (en) 2006-01-05 2007-06-14 삼성전자주식회사 Method and apparatus for forwarding control frame to hidden node in wlan
US7634015B2 (en) 2006-02-10 2009-12-15 Intel Corporation Mobile station and method for channel sounding using a single radio frequency transmitter chain in a multiple-input multiple-output (MIMO) system
JP4753750B2 (en) 2006-03-06 2011-08-24 株式会社日立製作所 Wireless communication system and wireless base station apparatus
US7881258B2 (en) 2006-03-22 2011-02-01 Sibeam, Inc. Mechanism for streaming media data over wideband wireless networks
US8170546B2 (en) 2006-03-22 2012-05-01 Broadcom Corporation Client device characterization of other client device transmissions and reporting of signal qualities to access point(s)
US8103284B2 (en) 2006-03-24 2012-01-24 Alcatel Lucent Method for reporting uplink load measurements
EP1843485B1 (en) 2006-03-30 2016-06-08 Sony Deutschland Gmbh Multiple-input multiple-output (MIMO) spatial multiplexing system with dynamic antenna beam combination selection capability
US8275377B2 (en) 2006-04-20 2012-09-25 Qualcomm Incorporated Wireless handoffs between multiple networks
KR101119228B1 (en) 2006-04-27 2012-03-21 레이스팬 코포레이션 Antennas, devices and systems based on metamaterial structures
JP4356756B2 (en) 2006-04-27 2009-11-04 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
WO2008022243A2 (en) 2006-08-18 2008-02-21 Qualcomm Incorporated Feedback of precoding control indication (pci) and channel quality indication (cqi) in a wireless communication system
PL2276191T3 (en) 2006-09-26 2022-02-07 Optis Wireless Technology, Llc Communication Scheme for Channel Quality Information
US7904086B2 (en) 2006-10-02 2011-03-08 Board Of Regents, The University Of Texas System Method and computer program for handoff of mobile devices between wireless systems
US8520673B2 (en) 2006-10-23 2013-08-27 Telcordia Technologies, Inc. Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
ATE535115T1 (en) 2006-10-27 2011-12-15 Research In Motion Ltd ROAD QUALITY MEASUREMENTS BASED ON DATA RATE AND RECEIVE POWER LEVEL
JP4840088B2 (en) 2006-11-08 2011-12-21 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
GB0622411D0 (en) 2006-11-10 2006-12-20 Quintel Technology Ltd Phased array antenna system with electrical tilt control
US7606528B2 (en) 2006-11-10 2009-10-20 Northrop Grumman Corporation Distributed conformal adaptive antenna array for SATCOM using decision direction
US8670504B2 (en) 2006-12-19 2014-03-11 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
US8116294B2 (en) 2007-01-31 2012-02-14 Broadcom Corporation RF bus controller
JP5241254B2 (en) 2007-02-06 2013-07-17 パナソニック株式会社 Wireless communication method and wireless communication apparatus
JP2008199453A (en) 2007-02-15 2008-08-28 Mitsubishi Electric Corp Diversity receiver
US7898478B2 (en) 2007-02-28 2011-03-01 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US8787499B2 (en) 2007-03-27 2014-07-22 Qualcomm Incorporated Channel estimation with effective co-channel interference suppression
US8078109B1 (en) 2007-04-13 2011-12-13 Wireless Stategies, Inc. Concurrently coordinated microwave paths in coordinated frequency bands
JP5361870B2 (en) 2007-05-10 2013-12-04 アルカテル−ルーセント Method and apparatus for preprocessing data transmitted in a multiple input communication system
US7933562B2 (en) 2007-05-11 2011-04-26 Broadcom Corporation RF transceiver with adjustable antenna assembly
US20100150013A1 (en) 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
CN101682389B (en) 2007-05-29 2013-07-10 三菱电机株式会社 Digital broadcast receiver
CN101335910B (en) * 2007-06-29 2012-02-29 中国移动通信集团公司 Multiplexing antenna system and method of intelligent antenna and MIMO antenna
US20090034475A1 (en) 2007-07-17 2009-02-05 Viasat, Inc. Soft Handoff Using A Multi-Beam Antenna System
WO2009019526A1 (en) 2007-08-09 2009-02-12 Nokia Corporation Calibration ofsmart antenna systems
US7714781B2 (en) 2007-09-05 2010-05-11 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
EP2214439A1 (en) 2007-10-31 2010-08-04 Mitsubishi Electric Corporation Mobile communication system, base station, mobile station, and base station installation method
US8306012B2 (en) 2007-11-07 2012-11-06 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for synchronized cells in a cellular communication system
US20090121935A1 (en) 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. System and method of weighted averaging in the estimation of antenna beamforming coefficients
US8045922B2 (en) 2007-11-23 2011-10-25 Texas Instruments Incorporated Apparatus for and method of bluetooth and wireless local area network coexistence using a single antenna in a collocated device
US8254328B2 (en) 2007-12-17 2012-08-28 Nec Corporation Scheduling method for multi-user MIMO in which resource blocks are allocated based on priorities
WO2009093662A1 (en) 2008-01-25 2009-07-30 Sharp Kabushiki Kaisha Mobile station device and program
GB2457431A (en) 2008-01-28 2009-08-19 Fujitsu Lab Of Europ Ltd Interference mitigation method in a wireless network
JP2009182441A (en) 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device and calibration method
US8125959B2 (en) 2008-02-06 2012-02-28 Broadcom Corporation Handheld computing unit with power management
EP2088449B1 (en) 2008-02-07 2012-06-06 Saab Ab Side lobe suppression
US8311030B2 (en) 2008-03-10 2012-11-13 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced cell scanning
JP2009278444A (en) 2008-05-15 2009-11-26 Mitsubishi Electric Corp Distortion compensation device
EP2134123A1 (en) 2008-06-09 2009-12-16 Telefonaktiebolaget LM Ericsson (PUBL) Method and system and device for IF/IRAT measurement allocation
EP2364534A1 (en) 2008-06-13 2011-09-14 Nokia Siemens Networks OY Sub channel generation for a wireless mesh network
JP5146138B2 (en) 2008-06-19 2013-02-20 富士通株式会社 Wireless communication apparatus and transmission beam control method
JP5106275B2 (en) 2008-06-30 2012-12-26 株式会社東芝 Wireless communication apparatus and wireless communication method
WO2010002734A2 (en) 2008-06-30 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
US9078270B2 (en) 2008-07-03 2015-07-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
US8074133B2 (en) 2008-08-06 2011-12-06 Oracle America, Inc. Method and apparatus for testing delay faults
JP4539891B2 (en) 2008-08-11 2010-09-08 岩崎通信機株式会社 Wireless communication method, wireless communication system, and wireless communication apparatus using multi-antenna
CN101707505B (en) 2008-08-13 2013-08-28 华为技术有限公司 Method and device for time synchronization in passive optical network and passive optical network
EP2166800A1 (en) 2008-09-22 2010-03-24 Mitsubishi Electric R&D Centre Europe B.V. Method and a device for enabling a mobile terminal to access to a wireless cellular telecommunication network
KR101503842B1 (en) 2008-11-03 2015-03-18 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
US8693810B2 (en) 2008-11-05 2014-04-08 The Trustees Of Princeton University Optical counter-phase system and method of RF interference cancellation
US8193971B2 (en) 2008-11-10 2012-06-05 Motorola Mobility, Inc. Antenna reciprocity calibration
EP2214447B1 (en) 2009-01-29 2016-03-30 Stichting IMEC Nederland Access method and data frame structure for use in body area networks
JP5228951B2 (en) 2009-01-30 2013-07-03 沖電気工業株式会社 Packet relay system and wireless node
EP2392048B1 (en) 2009-02-02 2018-10-31 Commonwealth Scientific and Industrial Research Organisation Hybrid adaptive antenna array
US8306164B2 (en) 2009-02-11 2012-11-06 Alcatel Lucent Interference cancellation with a time-sliced architecture
US8295258B2 (en) 2009-02-17 2012-10-23 Wavion, Ltd Enhancing WLAN performance in the presence of interference
US8611288B1 (en) 2009-03-05 2013-12-17 Marvell International Ltd Systems and methods for link adaptation in wireless communication systems
US20100234071A1 (en) 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
US8406168B2 (en) 2009-03-13 2013-03-26 Harris Corporation Asymmetric broadband data radio network
EP2234355B1 (en) 2009-03-25 2012-10-31 IHP GmbH-Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik MIMO Transmission in IEEE802.11 WLAN Systems
US8086174B2 (en) 2009-04-10 2011-12-27 Nextivity, Inc. Short-range cellular booster
US8717914B2 (en) 2009-04-29 2014-05-06 Samsung Electronics Co., Ltd. Method for controlling interference
US7978130B1 (en) 2009-05-01 2011-07-12 Coherent Navigation, Inc. Practical method for upgrading existing GNSS user equipment with tightly integrated Nav-Com capability
US8380133B2 (en) 2009-05-11 2013-02-19 Nec Laboratories America, Inc. Beamforming methods and systems employing measured power at a receiver to perform channel estimation
EP2433442B1 (en) 2009-05-20 2016-07-06 Telefonaktiebolaget LM Ericsson (publ) Automatic detection of erroneous connections between antenna ports and radio frequency paths
US9060311B2 (en) 2009-05-22 2015-06-16 Broadcom Corporation Enterprise level management in a multi-femtocell network
US8933840B2 (en) 2009-06-08 2015-01-13 Nec Corporation Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US20110032849A1 (en) 2009-08-07 2011-02-10 Fimax Technology Limited Systems and methods for mitigating interference between access points
US8428105B2 (en) 2009-08-07 2013-04-23 Renda Trust Economical, RF transparent, selective code phased array antenna processor
US8358610B2 (en) 2009-11-09 2013-01-22 Broadcom Corporation Method and system for channel estimation processing for interference suppression
US8744511B2 (en) 2009-09-04 2014-06-03 Qualcomm Incorporated Output power control for advanced WLAN and bluetooth-amp systems
JP5210278B2 (en) 2009-10-05 2013-06-12 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus, mobile terminal apparatus and radio communication method
WO2011050866A1 (en) * 2009-10-28 2011-05-05 Telefonaktiebolaget Lm Ericsson (Publ) A method of designing weight vectors for a dual beam antenna with orthogonal polarizations
KR20120086329A (en) 2009-11-04 2012-08-02 알까뗄 루슨트 Method and apparatus for antenna calibration in tdd wireless communication system based on coordinated multi-point(comp)
US20110105036A1 (en) 2009-11-04 2011-05-05 Motorola, Inc. Method and apparatus for sensing presence of an incumbent signal on a secondary radio channel
WO2011060058A1 (en) 2009-11-10 2011-05-19 Montana State University Compact smart antenna for mobile wireless communications
TW201125416A (en) 2009-11-13 2011-07-16 Interdigital Patent Holdings Method and apparatus for providing VHT frequency reuse for WLANs
EP2326116B1 (en) 2009-11-20 2020-02-05 Deutsche Telekom AG Method and system related to quality of service in distributed wireless networks
CN102668638B (en) 2009-11-30 2015-04-29 国际商业机器公司 Packet communication system and communication method
KR101837706B1 (en) 2009-12-09 2018-03-13 마벨 월드 트레이드 리미티드 Frame padding for wireless communications
US8594684B2 (en) 2009-12-18 2013-11-26 Motorola Solutions, Inc. Method for bearer establishment in a radio access network
US20110249576A1 (en) 2009-12-21 2011-10-13 Qualcomm Incorporated Antenna selection based on performance metrics in a wireless device
US20110150050A1 (en) 2009-12-23 2011-06-23 Hafedh Trigui Digital integrated antenna array for enhancing coverage and capacity of a wireless network
US8294625B2 (en) 2010-02-04 2012-10-23 GM Global Technology Operations LLC Antenna diversity system
US8331312B2 (en) 2010-02-23 2012-12-11 Cisco Technology, Inc. Scheduling of isochronous traffic in time and frequency to reduce contention
CN102783079B (en) 2010-03-02 2015-09-02 维特赛半导体公司 Based on the distributed timestamp engine of bag
EP2567467A2 (en) 2010-05-04 2013-03-13 Celeno Communications Ltd. System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US20110281541A1 (en) 2010-05-12 2011-11-17 Renesas Electronics Corp. Reconfigurable Receiver Architectures
US8792836B2 (en) 2010-06-03 2014-07-29 Broadcom Corporation Front end module with compensating duplexer
CN102893537B (en) 2010-06-16 2016-06-22 马维尔国际贸易有限公司 Replacement feedback kind for descending multi-user MIMO configuration
US8989156B2 (en) 2010-06-18 2015-03-24 Sharp Kabushiki Kaisha Selecting a codeword and determining a symbol length for uplink control information
US8787248B2 (en) 2010-07-14 2014-07-22 Qualcomm Incorporated Method in a wireless repeater employing an antenna array including vertical and horizontal feeds for interference reduction
US8554261B2 (en) 2010-07-28 2013-10-08 Intel Corporation Power loading in MU-MIMO
US8712353B2 (en) 2010-07-29 2014-04-29 Intel Mobile Communications Technology GmbH Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US8521109B2 (en) 2010-07-29 2013-08-27 Intel Mobile Communications GmbH Radio communication devices, information providers, methods for controlling a radio communication device and methods for controlling an information provider
US8446971B2 (en) 2010-08-23 2013-05-21 Intel Corporation Communication station and method for efficiently providing channel feedback for MIMO communications
US9083408B2 (en) 2010-08-31 2015-07-14 Qualcomm Incorporated Implicit and explicit channel sounding for beamforming
WO2012035629A1 (en) 2010-09-15 2012-03-22 三菱電機株式会社 Communication device and delay detection method
JP2012070090A (en) 2010-09-21 2012-04-05 Toshiba Corp Radio communication apparatus
US9144012B2 (en) 2010-09-23 2015-09-22 Samsung Electronics Co., Ltd. Method and system of MIMO and beamforming transmitter and receiver architecture
WO2012044088A2 (en) 2010-09-29 2012-04-05 엘지전자 주식회사 Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas
WO2012054694A1 (en) 2010-10-21 2012-04-26 Mediatek Singapore Pte. Ltd. Integrity and quality monitoring and signaling for sounding and reduced feedback
US8588844B2 (en) 2010-11-04 2013-11-19 Extricom Ltd. MIMO search over multiple access points
US9185694B2 (en) 2010-11-08 2015-11-10 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
US9144069B2 (en) 2010-11-12 2015-09-22 Lg Electronics Inc. Method and device for transmitting and receiving downlink control channel for controlling inter-cell interference in wireless communication system
WO2012068159A1 (en) 2010-11-16 2012-05-24 Savi Technology, Inc. Rfid applications
CN103181206B (en) 2010-11-16 2016-05-18 日本电信电话株式会社 Wireless communication system and wireless communications method
US8873526B2 (en) 2010-12-17 2014-10-28 Cisco Technology, Inc. Collision avoidance for wireless networks
KR20120071894A (en) 2010-12-23 2012-07-03 한국전자통신연구원 Method and apparatus for transmitting/receiving in mobile wireless network
US8885468B2 (en) 2010-12-30 2014-11-11 Htc Corporation Apparatuses and methods for access point name (APN) based congestion control during a packet data protocol (PDP) context activation procedure
US10230419B2 (en) 2011-02-03 2019-03-12 The Board Of Trustees Of The Leland Stanford Junior University Adaptive techniques for full duplex communications
US20130190006A1 (en) 2011-02-15 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Enabling User Activity-Aware Positioning
US20120230380A1 (en) 2011-03-11 2012-09-13 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Method for determining beamforming parameters in a wireless communication system and to a wireless communication system
EP3944715B1 (en) 2011-06-24 2024-02-21 InterDigital Patent Holdings, Inc. Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
US8666319B2 (en) 2011-07-15 2014-03-04 Cisco Technology, Inc. Mitigating effects of identified interference with adaptive CCA threshold
US8934587B2 (en) 2011-07-21 2015-01-13 Daniel Weber Selective-sampling receiver
WO2013025820A2 (en) 2011-08-15 2013-02-21 Marvell World Trade Ltd. Long range wlan data unit format
US8542614B2 (en) 2011-08-30 2013-09-24 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Full-duplex wireless voice broadcasting apparatus with channel-changing and interference-resistance
US8767691B2 (en) 2011-09-19 2014-07-01 Alcatel Lucent Method and apparatus for scheduling transmissions for antenna arrays
US8843139B2 (en) 2011-09-26 2014-09-23 Blackberry Limited Method and system for small cell discovery in heterogeneous cellular networks
EP2581854B1 (en) 2011-10-13 2019-06-26 EM Microelectronic-Marin SA Transponder with receiving means having a low electrical consumption in a listening mode
US8761089B2 (en) 2011-10-18 2014-06-24 Brillio, Llc Frame acknowledgment in a communication network
US8817927B2 (en) 2011-10-21 2014-08-26 The Johns Hopkins University Adaptive interference canceller in a digital phase array
CN103858508B (en) 2011-11-23 2017-11-14 Lg电子株式会社 Method based on service window scheduling transceiving data in Wireless LAN system and the equipment for supporting this method
US9026099B2 (en) 2011-12-08 2015-05-05 Apple Inc. Mechanisms to improve mobile device roaming in wireless networks
US20130156016A1 (en) 2011-12-15 2013-06-20 Texas Instruments Incorporated Wireless network systems
US9077415B2 (en) 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
KR101635299B1 (en) 2012-01-26 2016-06-30 인터디지탈 패튼 홀딩스, 인크 Dynamic parameter adjustment for lte coexistence
EP2820909B1 (en) 2012-03-01 2017-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
KR101734484B1 (en) 2012-03-06 2017-05-11 인터디지탈 패튼 홀딩스, 인크 Supporting a large number of devices in wireless communications
GB2500208B (en) 2012-03-13 2017-04-12 Airspan Networks Inc Cooperative components in a wireless feeder network
US10098028B2 (en) 2012-03-16 2018-10-09 Qualcomm Incorporated System and method of offloading traffic to a wireless local area network
US8914055B2 (en) 2012-03-21 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference that results from direct device to device communications
US8737511B2 (en) * 2012-04-13 2014-05-27 Xr Communications, Llc Directed MIMO communications
US9345045B2 (en) 2012-04-24 2016-05-17 Intel Corporation Methods and arrangements for adaptive delay control
KR20160149295A (en) 2012-05-09 2016-12-27 인터디지탈 패튼 홀딩스, 인크 Multi-user multiple input multiple output communications in wireless local area networks and wireless transmit and receive units
US8599955B1 (en) 2012-05-29 2013-12-03 Magnolia Broadband Inc. System and method for distinguishing between antennas in hybrid MIMO RDN systems
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US20130331136A1 (en) 2012-06-07 2013-12-12 Kai Yang Method And Apparatus For Coordinated Beamforming
US9220023B2 (en) 2012-06-20 2015-12-22 Qualcomm Incorporated Methods for signaling a maximum number of MSDUs in a transmission
US9210652B2 (en) 2012-07-06 2015-12-08 Futurewei Technologies, Inc. System and method for active scanning in multi-channel Wi-Fi system
US9345026B2 (en) 2012-07-09 2016-05-17 Qualcomm Incorporated Methods and apparatus for requested reverse direction protocol
US9504032B2 (en) 2012-09-13 2016-11-22 Interdigital Patent Holdings, Inc. Method, wireless transmit/receive unit (WTRU) and base station for transferring small packets
KR101724977B1 (en) 2012-09-24 2017-04-07 인터디지탈 패튼 홀딩스, 인크 Channel quality measurement and transmit power allocation in a dynamic spectrum management system
US9226171B2 (en) 2012-09-26 2015-12-29 Futurewei Technologies, Inc. Method and apparatus for combined adaptive beamforming and MIMO in indoor wireless LAN
US8976761B2 (en) 2012-10-05 2015-03-10 Cisco Technology, Inc. High density deployment using transmit or transmit-receive interference suppression with selective channel dimension reduction/attenuation and other parameters
US9232502B2 (en) 2012-10-31 2016-01-05 Samsung Electronics Co., Ltd. Method and system for uplink multi-user multiple-input-multiple-output communication in wireless networks
US9313741B2 (en) 2012-12-29 2016-04-12 Intel Corporation Methods and arrangements to coordinate communications in a wireless network
US10200974B2 (en) 2013-01-08 2019-02-05 Intel IP Corporation Methods and arrangements to mitigate collisions in wireless networks
US8774150B1 (en) 2013-02-13 2014-07-08 Magnolia Broadband Inc. System and method for reducing side-lobe contamination effects in Wi-Fi access points
US20140241182A1 (en) 2013-02-27 2014-08-28 Research In Motion Limited Access Point And Channel Selection In A Wireless Network For Reduced RF Interference
US9712231B2 (en) 2013-04-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple narrow bandwidth channel access and MAC operation within wireless communications

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338662B2 (en) * 2014-05-30 2016-05-10 Electronics And Telecommunications Research Instit Method for inter-beam interference reduction using cross polarization and method for transmitting/receiving signal
US10447360B2 (en) * 2015-03-19 2019-10-15 China Academy Of Telecommunications Technology Massive digital-analog hybrid antenna, channel state information feedback method and channel state information feedback device
US11943818B2 (en) 2016-01-27 2024-03-26 Starry, Inc. Nodes for high frequency fixed wireless access network
WO2017157087A1 (en) * 2016-03-14 2017-09-21 Corbett Rowell Hybrid beam-forming antenna array using selection matrix for antenna phase calibration
US10256894B2 (en) * 2017-09-11 2019-04-09 Qualcomm Incorporated Hybrid beam former

Also Published As

Publication number Publication date
US9042276B1 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
US9042276B1 (en) Multiple co-located multi-user-MIMO access points
CN110959259B (en) Adaptive antenna configuration
EP3873000B1 (en) Method and apparatus for controlling equivalent isotropic radiated power
US9385793B2 (en) Multi-beam co-channel Wi-Fi access point
Koppenborg et al. 3D beamforming trials with an active antenna array
US8891647B2 (en) System and method for user specific antenna down tilt in wireless cellular networks
US9306270B2 (en) Antenna array and method for operating antenna array
US10439684B2 (en) Smart antenna platform for indoor wireless local area networks
CN107710507A (en) Orthogonal beams domain space multiple access radio communication system and associated aerial array
WO2017135389A1 (en) Wireless communication device
US10020866B2 (en) Wireless communication node with adaptive communication
CN106716714B (en) Stadium antenna
US10249961B2 (en) Transmit device and method thereof
WO2014170089A1 (en) Multiple beam formation for rf chip-based antenna array
JP2002208889A (en) Radio communication system, weight controller, weight vector generating method, control method for radio base station adaptive array and the adaptive array
US20200229003A1 (en) Access Point Device and Communication Method
US10425214B2 (en) Method and apparatus for millimeter-wave hybrid beamforming to form subsectors
CN106992802B (en) Signal receiving and transmitting device for user terminal, user terminal and signal transmission method
EP4044451A1 (en) Antenna device implementing spatial-polarization separation of beams using quad-polarized antenna module array
CN111247746B (en) Modifying the number of uplink or downlink information streams
Prasad et al. Multi-beam multi-channel secure communication using a mmWave analog phased array beamformer
WO2023191673A1 (en) Method and network node for handling a phased array antenna module of a network node of a wireless communication network
KR20220060498A (en) Radio transmission and reception apparatus and beam forming method threrof
Wongchampa DOA-assisted orthogonal beamforming without feedback information

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAGNOLIA BROADBAND INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAREL, HAIM;JEFFERY, STUART S.;KLUDT, KENNETH;REEL/FRAME:032275/0262

Effective date: 20131126

AS Assignment

Owner name: MAGNOTOD LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MAGNOLIA BROADBAND, INC.;REEL/FRAME:033720/0538

Effective date: 20140910

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: MAGNOTOD LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MAGNOLIA BROADBAND, INC.;REEL/FRAME:052761/0319

Effective date: 20200421

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230526