US20150159151A1 - Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use - Google Patents
Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use Download PDFInfo
- Publication number
- US20150159151A1 US20150159151A1 US14/409,229 US201314409229A US2015159151A1 US 20150159151 A1 US20150159151 A1 US 20150159151A1 US 201314409229 A US201314409229 A US 201314409229A US 2015159151 A1 US2015159151 A1 US 2015159151A1
- Authority
- US
- United States
- Prior art keywords
- adipose tissue
- stromal
- disorder
- stem cells
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000577 adipose tissue Anatomy 0.000 title claims abstract description 146
- 210000000130 stem cell Anatomy 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000002955 isolation Methods 0.000 title description 4
- 230000002792 vascular Effects 0.000 claims abstract description 62
- 210000002536 stromal cell Anatomy 0.000 claims abstract description 40
- 210000001789 adipocyte Anatomy 0.000 claims abstract description 9
- 239000000523 sample Substances 0.000 claims description 26
- 150000002632 lipids Chemical class 0.000 claims description 20
- 210000001519 tissue Anatomy 0.000 claims description 19
- 201000008482 osteoarthritis Diseases 0.000 claims description 13
- 208000012902 Nervous system disease Diseases 0.000 claims description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 12
- 208000027866 inflammatory disease Diseases 0.000 claims description 12
- 230000035899 viability Effects 0.000 claims description 10
- 206010016256 fatigue Diseases 0.000 claims description 9
- 239000000644 isotonic solution Substances 0.000 claims description 9
- 206010003246 arthritis Diseases 0.000 claims description 8
- 208000035475 disorder Diseases 0.000 claims description 8
- 210000003205 muscle Anatomy 0.000 claims description 8
- 208000023275 Autoimmune disease Diseases 0.000 claims description 6
- 208000020084 Bone disease Diseases 0.000 claims description 6
- 206010061762 Chondropathy Diseases 0.000 claims description 6
- 208000019693 Lung disease Diseases 0.000 claims description 6
- 208000020307 Spinal disease Diseases 0.000 claims description 6
- 208000015100 cartilage disease Diseases 0.000 claims description 6
- 230000002757 inflammatory effect Effects 0.000 claims description 6
- 210000004072 lung Anatomy 0.000 claims description 6
- 210000004872 soft tissue Anatomy 0.000 claims description 6
- 238000004113 cell culture Methods 0.000 claims description 3
- 238000006911 enzymatic reaction Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 99
- 239000012530 fluid Substances 0.000 description 37
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 27
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 27
- 210000002744 extracellular matrix Anatomy 0.000 description 27
- 239000008188 pellet Substances 0.000 description 20
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 17
- 230000006872 improvement Effects 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 238000005119 centrifugation Methods 0.000 description 13
- 210000004623 platelet-rich plasma Anatomy 0.000 description 12
- 238000007443 liposuction Methods 0.000 description 11
- 230000000630 rising effect Effects 0.000 description 11
- 238000010253 intravenous injection Methods 0.000 description 10
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000002203 pretreatment Methods 0.000 description 9
- 208000003947 Knee Osteoarthritis Diseases 0.000 description 8
- 208000002193 Pain Diseases 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 210000003127 knee Anatomy 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 210000002381 plasma Anatomy 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 230000003833 cell viability Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 238000002525 ultrasonication Methods 0.000 description 6
- 210000005167 vascular cell Anatomy 0.000 description 6
- 210000001772 blood platelet Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 102000029816 Collagenase Human genes 0.000 description 4
- 108060005980 Collagenase Proteins 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 229960002424 collagenase Drugs 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 208000014094 Dystonic disease Diseases 0.000 description 2
- 208000007353 Hip Osteoarthritis Diseases 0.000 description 2
- 241000508269 Psidium Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 210000000593 adipose tissue white Anatomy 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000012832 cell culture technique Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 208000010118 dystonia Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000011541 total hip replacement Methods 0.000 description 2
- JJPWJEGNCRGGGA-UHFFFAOYSA-N 4-[[2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]acetyl]amino]benzoic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)NC1=CC=C(C(=O)O)C=C1 JJPWJEGNCRGGGA-UHFFFAOYSA-N 0.000 description 1
- UCTWMZQNUQWSLP-UHFFFAOYSA-N Adrenaline Natural products CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 208000037149 Facioscapulohumeral dystrophy Diseases 0.000 description 1
- 102100027286 Fanconi anemia group C protein Human genes 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000860395 Homo sapiens Galactocerebrosidase Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101001001810 Homo sapiens Pleckstrin homology domain-containing family M member 3 Proteins 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101001001809 Mus musculus Pleckstrin homology domain-containing family M member 3 Proteins 0.000 description 1
- 206010028391 Musculoskeletal Pain Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 206010034701 Peroneal nerve palsy Diseases 0.000 description 1
- 102100036332 Pleckstrin homology domain-containing family M member 3 Human genes 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 208000007613 Shoulder Pain Diseases 0.000 description 1
- 201000002661 Spondylitis Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 206010048669 Terminal state Diseases 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000003486 adipose tissue brown Anatomy 0.000 description 1
- 229940102884 adrenalin Drugs 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- -1 demineralized bone Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 208000029444 double vision Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 208000008570 facioscapulohumeral muscular dystrophy Diseases 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003871 intestinal function Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000004493 neutrocyte Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 210000000513 rotator cuff Anatomy 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001148 spastic effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 230000007103 stamina Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/35—Fat tissue; Adipocytes; Stromal cells; Connective tissues
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/06—Lysis of microorganisms
- C12N1/066—Lysis of microorganisms by physical methods
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0667—Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2521/00—Culture process characterised by the use of hydrostatic pressure, flow or shear forces
- C12N2521/10—Sound, e.g. ultrasounds
Definitions
- the present invention relates to methods of utilizing stem cell preparations.
- the invention has been developed primarily for the non-enzymatic isolation of stromal/stem cells from adipose tissue and will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited to this particular field of use.
- Adipose tissue in addition to containing mature adipocytes, also contains stem cells that can be differentiated into a variety of cell lineages (Zuk et al. Tissue Eng. 2001; 7: 211-228; Hicok et al. Tissue Eng. 2004; 10: 371-380; Erickson et al. Biochem Biophys Res Commun. 2002; 290: 763-769; Cousin et al. Biochem Biophys Res Commun. 2003; 301: 1016-1022; Safford et al. Biochem Biophys Res Commun. 2002; 294: 371-379; Miranville et al. Circulation. 2004; 1 10: 349-355; Planat-Benard et al.
- the stem cells are adhesive and can proliferate in culture. Accordingly, a large number of stem cells can be obtained from a small amount of adipose tissue.
- adipose tissue with ultrasonic cavitation breaks up the adipose tissue and lyses mature adipocytes, resulting in a stromal vascular fraction comprising viable stem/stromal cells and extra cellular matrix.
- the present invention relates to isolating a stromal vascular fraction comprising viable stromal/stem cells and extracellular matrix from adipose tissue, the method comprising treating the adipose tissue with ultrasonic cavitation for a time, amplitude and cycle sufficient to break up the tissue and lyse mature adipocytes while maintaining the viability of the stromal/stem cells.
- the ultrasonic cavitation amplitude and cycle settings may be variable and are dependent on the quantity of adipose tissue and timing of the process to maintain cell viability.
- the cell viability temperature range should not be exceeded.
- the temperature of the adipose tissue during ultrasonic cavitation is maintained at a temperature that ensures the viability of the stromal/stem cells.
- the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- the adipose tissue is treated with ultrasonic cavitation for a period of about 10 seconds to about 10 min with an ultrasonic device set at amplitude about 20 to about 75% and cycle about 0.2 to about 0.9.
- an ultrasonic cavitation device probe is placed the adipose tissue, amplitude is set at about 50%, the cycle is set at about 0.4 to about 0.5 and the probe is raised and lowered through the adipose tissue for about 1 minute and 30 seconds to about 1 minute and 40 seconds; and wherein the temperature of the adipose tissue is maintained at a temperature lower than about 43° C. to about 45° C.
- the present invention relates to a stromal vascular fraction comprising viable stem cells isolated according to the method of the invention.
- the stromal vascular fraction comprises viable cells other than stem cells.
- the present invention relates to adipose tissue-derived stem cells isolated according to the method of the invention.
- the present invention relates to a method of treating osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder in a subject comprising administering to the subject adipose tissue-derived stromal/stem cell preparations according to the invention.
- the present invention relates to use of adipose tissue-derived stromal/stem cell preparations according to the invention for the manufacture of a medicament for treating osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- the present invention relates to adipose tissue-derived stromal/stem cell preparations according to the invention for use in the treatment of osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with ultrasonic cavitation for about 1 minute and 30 seconds to about 1 minute and 40 seconds with an ultrasonic device set at an amplitude and cycle that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with an ultrasonic device set at an amplitude of about 50%, wherein the device is set at a cycle and applied for a time that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with an ultrasonic device set at a cycle about 0.4 to about 0.5, wherein the device is set at an amplitude and applied for a time that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with ultrasonic cavitation for about 1 minute and 30 seconds to about 1 minute and 40 seconds with an ultrasonic probe set at amplitude about 50% and cycle about 0.4 to about 0.5.
- the present invention relates to a method for maintaining viability of stromal/stem cells in the stromal vascular fraction isolated from adipose tissue by ultrasonic cavitation, wherein time, amplitude and cycle of ultrasonic cavitation are selected such that the stromal/stem cells are viable after 48 hours cell culture.
- the term “adipose tissue” refers to any fat tissue.
- the adipose tissue may be brown or white adipose tissue.
- the adipose tissue is subcutaneous white adipose tissue.
- the adipose tissue may be from any organism having fat tissue.
- the adipose tissue is mammalian, most preferably the adipose tissue is human.
- a convenient source of human adipose tissue is that derived from liposuction surgery or other surgery. However, the source of adipose tissue or the method of isolation of adipose tissue is not critical to the invention.
- stromal vascular fraction refers to a fraction, comprising cells, derived from blood vessels and surrounding tissue found in adipose tissue.
- the fraction may comprise different cell types including, by way of example, mesenchymal stem cells, early mesenchymal/stromal precursor cells, adipose tissue-derived stem cells, Muse-AT cells, hematopoietic cells, hematopoietic stem cells, platelets, Kupffer cells, osteoclasts, megakaryocytes, granulocytes, NK cells, endothelial precursor or progenitor cells, pluripotent cells, CD34+ cells, Stro-1+ cells, Stro-3+ cells, CD29+ cells, CD166+ cells, Thy-1+ or CD90+ stem cells, CD44+ cells, immune cells such as monocytes, leukocytes, lymphocytes, Band T cells, NK cells, macrophages, neutrophil leukocytes, neutrophils, neutrophil granulocytes, and the
- the stromal vascular fraction also includes cells expressing any of the markers or any combination thereof disclosed herein.
- stromal vascular fraction includes within its scope terms such as “mesenchymal vascular fraction”, “mesenchymal fraction”, “stromal fraction” and the like.
- meenchymal stem cell refers to stromal or mesenchymal cells or early mesenchymal/stromal precursor or adipose tissue-derived stromal/stem cells which are multipotent and can serve as stem cell-like precursors to a variety of different cell types such as but not limited to adipocytes, osteocytes, chondrocytes, muscle and neuronal/glial cell lineages.
- Mesenchymal stem cells make up a subset population derivable from, for example, adipose tissue and bone marrow.
- the term “mesenchymal stem cell” includes within its scope terms such as “stromal stem cell”, “marrow stromal cell”, “multipotent stromal cell”, “mesenchymal precursor cell”, “Muse-AT”, adipose tissue-derived stromal/stem cells and the like.
- differentiated refers to a cell that has achieved a terminal state of maturation such that the cell has developed fully and demonstrates biological specialization and/or adaptation to a specific environment and/or function.
- a differentiated cell is characterized by expression of genes that encode differentiation-associated proteins in that cell. For example expression of GALC in a leukocyte is a typical example of a terminally differentiated leukocyte.
- progenitor cell and “stem cell” are used interchangeably in the art and herein and refer either to a pluripotent, or lineage-uncommitted, progenitor cell, which is potentially capable of an unlimited number of mitotic divisions to either renew itself or to produce progeny cells which will differentiate into the desired cell type.
- pluripotent stem cells lineage-committed progenitor cells are generally considered to be incapable of giving rise to numerous cell types that phenotypically differ from each other. Instead, progenitor cells give rise to one or possibly two lineage-committed cell types.
- multipotent As used herein, the terms “multipotent”, “multipotential” or “multipotentiality” are meant to refer to the capability of a stem cell to differentiate into more than one type of cell.
- allogeneic is meant to refer to any material derived from a different mammal of the same species.
- autologous is meant to refer to any material derived from an individual and re-introduced to the individual.
- cell preparation or “cell preparations” are meant to refer to preparations comprising cells but may contain other substances, such as growth factors, extracellular matrix, etc.
- FIG. 1 The P-layer.
- FIG. 2 Giemsa stained colonies of plastic adherent cells from the stromal vascular fraction grown from ultrasonic cavitation treated adipose tissue.
- FIG. 3 Cell culture of mesenchymal stem cells grown from ultrasonic cavitation treated adipose tissue.
- FIG. 4 Effect of ultrasonic cavitation amplitude settings on temperature of adipose tissue —20 grams of adipose tissue treated for 1 1/2 minutes with cycle setting 0.4.
- FIG. 5 Effect of ultrasonic cavitation cycle settings on temperature of adipose tissue—20 grams of adipose tissue treated for 1 1/2 minutes with amplitude setting 50%.
- FIG. 6 Effect of ultrasonic cavitation amplitude on stromal vascular fraction cell viability —20 grams of adipose tissue treated for 1 1/2 minutes with cycle setting 0.4.
- FIG. 7 Flow cytometry analysis of cells obtained from ultrasonic cavitation treated adipose tissue—cell count by fluorescent nuclei of 40 grams of adipose tissue separated by ultrasonic cavitation
- the method of the invention uses an ultrasonic cavitation device having a probe that is placed into contact with the adipose tissue so as to explode or lyse fat cells in the adipose tissue and release the stromal vascular fraction.
- the particular ultrasonic cavitation device used is not critical to the invention.
- One suitable selection is the HIELSCHLER ultrasonic processors which is a technologically advanced high intensity ultrasonic processor. This device can safely process a wide range of organic and inorganic materials—from microlitres to litres.
- Other devices which may be used include Vibra-CellTM device (Sonics), VASER (SoltaMedical) or QSonica ultrasonic processors.
- adipose tissue in a biologic solution may be placed into a chilled environment (the tissue/cells should not fall below about 2° C.).
- An ultrasonic cavitation device probe is placed into the adipose tissue and the amplitude is set at about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, cycle at about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, for about 10 seconds, about 20 seconds, about 30 seconds, about 40 seconds, about 50 seconds, about 60 seconds, about 1 minute 10 seconds, about 1 minute 20 seconds, about 1 minute 30 seconds, about 1 minute 40 seconds, about 1 minute 50 seconds, about 2 minutes, about 3 minutes, about 4 minutes, about 5 minutes, about 6 minutes, about 7 minutes, about 8 minutes, about 9 minutes, about 10 minutes.
- the amplitude is set at about 50%, cycle about 0.4-0.5.
- the probe may be adjusted in at different positions in the tube during the operation.
- the procedure may be conducted in a chilled environment or at room temperature with the amplitude, cycle and time are adjusted to prevent the temperature of the adipose tissue rising above about 43° C. to about 45° C., preferably not rising above 37° C.
- the duration of the ultrasonic cavitation may operate for a sequenced period of time dependent on the quantity of the adipose tissue, e.g., the probe is raised and lowered for about 1 minute and then for about 40 seconds at two different locations in the tube for larger amounts of adipose tissue, or the probe is raised and lowered for about 1 minute and then for about 30 seconds at the top of the tube or the probe is inserted into the adipose tissue for about 30 seconds, stopped for about 10 seconds, then repeated, then raised the top of the adipose tissue for about 30 seconds for smaller amounts of adipose tissue.
- the sequence and timing of ultrasonic cavitation may vary but is determined to the extent of ensuring the optimal cell numbers and viability of the stem cells in the stromal vascular fraction by preventing the adipose tissue temperature from rising above ideally 37° C. or no more than about 43° C. to about 45° C. These parameters can be easily determined by simple trial and error.
- the amplitude is about 50%
- the cycle is about 0.4 to about 0.5
- the time is about one minute and 30 seconds. If amplitude is increased, the cycle or time can be consequently decreased (or vice versa) to ensure that the temperature of the adipose tissue does not rise above about 43° C. to about 45°.
- this treatment does not include the addition of collagenase or equivalent enzyme intended to break down collagen as cell dissociation is instead accomplished by ultrasonic cavitation. After ultrasonication there is a thick solution in the tube (which cannot be filtered or easily separated into the stromal vascular fraction) and may be centrifuged.
- Centrifugation results in 3 layers—the top lipid layer, the middle floating layer (called the P-layer) containing extracellular matrix, adipose cells and stromal vascular cells, and a bottom layer of fluid.
- the top lipid layer is removed (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and discarded and the remaining contents of the tube mixed well and a solution, typically 0.9% saline, PBS or any other isotonic solution, is added to the tube. Further centrifugation brings about the cells and extra-cellular matrix to fall out and pellet at the bottom, the remaining adipose cells rise to the top of the tube.
- the pellet contains extracellular matrix and stromal vascular fraction comprising viable and functional stromal/stem cells (including mesenchymal stem cells).
- the pellet may be filtered through a filter to remove any large debris.
- the cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid. A sample may be removed for cell counting.
- Cell viability and functionality may be determined by cell culture techniques as those familiar with the art. Cells may be counted using a FACs instrument and a fluorescent nucleic binding dye i.e., Guava PCA system and Guava Viacount.
- cell numbers derived from 20 g of adipose tissue using this method are between about 40-200 million cells, i.e., about 2-10 million cells/gram, which is greater than that from collagenase separation which typically results in about 0.5 million cells/gram of adipose tissue.
- the method comprises the following steps:
- an ultrasonic cavitation device probe is placed into about 40 g adipose tissue and the amplitude is set at about 50% and the cycle set about 0.4-0.5;
- the probe is raised and lowered through the adipose tissue for about 1 minute and then for about 40 seconds at two different locations in the adipose tissue;
- the adipose tissue is centrifuged at 800 g/5 min;
- the top lipid layer is discarded and the adipose tissue is mixed;
- an isotonic solution is added and the adipose tissue is centrifuged at 800 g/5 min;
- the resultant cell pellet comprises extracellular matrix and a stromal vascular fraction comprising viable stem cells.
- the method comprises the following steps:
- an ultrasonic cavitation device probe is placed into about 40 g adipose tissue and the amplitude is set at about 50% and the cycle set at about 0.4-0.5;
- the probe is raised and lowered through the adipose tissue for about 1 minute and then for about 30 seconds at the top of the adipose tissue;
- the adipose tissue is centrifuged at 800 g/5 min;
- the top lipid layer is discarded and the adipose tissue is mixed;
- an isotonic solution is added and the adipose tissue is centrifuged at 800 g/5 min;
- the resultant cell pellet comprises extracellular matrix and a stromal vascular fraction comprising viable stem cells.
- the stem cells are autologous or allogeneic.
- the stromal vascular fraction or stromal/stem cells may be directly infused in subjects in need thereof by traditional administration routes, such as intravenous injection or intra-articular injection, or it can be further processed to purify (and expand in culture if desired) desired cell types such as mesenchymal stem cells, or STRO-1+ cells prior to administration.
- stem cells can be isolated, purified or enriched from the stromal vascular fraction by fractionation using unique cell surface antigens and fluorescence activated call sorting (FACS) for expansion in vitro.
- FACS fluorescence activated call sorting
- the stromal vascular fraction or stromal/stem cells may be cultured with or without differentiation using standard cell culture techniques.
- the cells may be cultured to a suitable point and viability and yield assessed by standard methods.
- the stromal vascular fraction or stromal/stem cells may be stored for later implantation/infusion (e.g., by cryopreservation). Moderate to long-term storage in a cell bank is also within the scope of this invention.
- the stromal vascular fraction or stromal/stem cells may be loaded into a delivery device, such as a syringe or IV bag, for administration to the recipient by either subcutaneous, intravenous, intramuscular, or intraperitoneal techniques.
- a delivery device such as a syringe or IV bag
- cells may be placed into the patient by any means known to persons of ordinary skill in the art, for example, they may be injected into blood vessels for systemic or local delivery, into tissue (e.g., cardiac muscle, or skeletal muscle), into the dermis (subcutaneous), into tissue space (e.g., pericardium or peritoneum), or into tissues (e.g., periurethral emplacement), or other location.
- Preferred embodiments include placement by needle or catheter, or by direct surgical implantation in association with additives such as a preformed matrix or adipose tissue-derived or stromal-derived extra-cellular matrix.
- the stromal vascular fraction or stromal/stem cells may be applied alone or in combination with other cells, tissue, tissue fragments, demineralized bone, growth factors such as insulin or drugs such as members of the thiaglitazone family, biologically active or inert compounds, resorbable plastic scaffolds, adipose tissue-derived or stromal-derived lattice and/or extra cellular matrix or other additive intended to enhance the delivery, efficacy, tolerability, or function of the population.
- the cells are administered to a patient with one or more cellular differentiation agents, such as cytokines and growth factors.
- the cells are treated with platelet-rich plasma.
- the stromal vascular fraction or stromal/stem cells are administered to a subject to treat or prevent a disease or disorder in the subject.
- the disease or disorder is osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- Tumescent solution containing, in one litre of normal saline, 1 mg adrenalin, 400 mg to 800 mg lignocaine and 10 mLs of a 8.4% sodium bicarbonate solution
- cannulae having, for example, 2-3 mm of inner diameter (made of metal with aspirator) was used for the liposuction operation.
- Liposuction operations are well known in the art, and for example, can be referred to in Biyo Seikei Shujutsu Practice 2 (Cosmetic Operation Practice 2), ed. Masanari ICHIDA, Ryusaburo TANINO, and Yoshiaki HOSAKA, published by BUNKODO, pp. 429-469, which is incorporated herein by reference in its entirety.
- Aspirated fat was washed with saline. About 50 ml to ten litres of washed aspirate may be generated, and the resultant adipose tissue derived cellular materials used for derivation of stromal vascular fractions.
- Fat tissue is obtained by surgery from human subjects who had given their informed consent.
- Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 40 ml of adipose tissue.
- 3) (Optional) The tube is placed into a chilled environment and care taken to ensure that the temperature of the tissue/cells does not fall below 2° C.
- the ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.5.
- the probe is raised and lowered for 1 minute and then for 40 seconds at two different locations in the tube (i.e., bottom and top of the tube), rested for 3 minutes and optionally the process repeated. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C. 5) After ultrasonication a thick solution is observed in the tube and is centrifuged at 300 g/5 min. 6) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
- the top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
- An isotonic solution typically 0.9% saline or PBS
- PBS saline
- the pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris. 10)
- the cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid.
- FIG. 1 Flow cytometry analysis of the isolated stromal vascular fraction shows the presence of viable cells ( FIG. 1 ).
- the probe is raised and lowered for 1 minute and then for 30 seconds at the top for each tube. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C. 5) After ultrasonication a thick solution is observed in the tube and is centrifuged at 300 g/5 min. 6) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid. 7) The top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
- An isotonic solution typically 0.9% saline or PBS
- PBS phosphatidylcholine
- An isotonic solution is added to the tube to 50 ml and the tube centrifuged at 600 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
- a large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells.
- the pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
- the cell solution can be used as is, or further concentrated by further centrifugation and removal of excess fluid.
- Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 40 ml of adipose tissue.
- the ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.4.
- the probe is raised and lowered for 1 minute and then for 40 seconds at two different locations in the tube (i.e., middle and top of the tube), care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C. 4) After ultrasonication a thick solution is observed in the tube and is centrifuged at 800 g/5 min. 5) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
- the top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
- An isotonic solution typically 0.9% saline or PBS
- PBS saline
- the pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris. 9)
- the cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid.
- An isotonic solution typically 0.9% saline or PBS
- PBS phosphatidylcholine
- An isotonic solution is added to the tube to 50 ml and the tube centrifuged at 800 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
- a large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells.
- the pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
- the cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid.
- Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 20 ml of adipose tissue.
- the ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.4. The probe is raised and lowered for 1 minute and then for 30 seconds at the top for each tube. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
- the top lipid layer After ultrasonication a thick solution is observed in the tube and is centrifuged at 800 g/5 min. 5) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells (the P layer), and a bottom layer of fluid ( FIG. 1 ). 9) The top lipid layer and bottom fluid layer is removed and the middle P-layer is collected using a mixing cannula.
- the P-layer solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid or diluted with an isotonic solution.
- Example 3 Cells obtained by the method of Example 3 or Example 4 were cultured without differentiation using standard cell culture medium (e.g., alphaMEM typically supplemented with foetal calf serum, human serum or serum free medium). Primary cultures are plated at 1 ⁇ 10 6 /100 mm and the cells were expanded for 1-2 passages in 5% CO 2 or hypoxic environment.
- standard cell culture medium e.g., alphaMEM typically supplemented with foetal calf serum, human serum or serum free medium.
- Primary cultures are plated at 1 ⁇ 10 6 /100 mm and the cells were expanded for 1-2 passages in 5% CO 2 or hypoxic environment.
- Cultures of the isolated stromal vascular fraction from Example 3 shows that viable cells may be grown and expanded ( FIG. 2 ) which have the morphology of mesenchymal stem cells ( FIG. 3 ).
- ACD-A acid citrate dextrose
- BD vacutainer 2 ⁇ 9 mL acid citrate dextrose (ACD-A) blood collection tubes (BD vacutainer) are filled with blood (by vacuum pressure). The blood is drawn using an 18 G needle or larger to avoid activating the platelets by shearing. The contents of the blood tubes are mixed by inverting the tubes 3-4 times. 2) The ACD-A blood filled tubes are centrifuged at 450 g ⁇ 10 min. 3) The plasma layer (the top layer) is removed from each tube with the same transfer pipette and placed into a 15 mL sterile tube. The blood should not be disturbed and the thin layer of white cells resting on the blood should be avoided. It is best to leave a 5 mm layer of plasma above the red blood cells.
- ACD-A acid citrate dextrose
- This plasma containing enriched platelets can be used as is or further treated as below.
- the tube containing the plasma is centrifuged for 2000 g/10 min—a small pellet of platelets at the bottom of the tube should form.
- the top platelet poor plasma should be removed with a transfer pipette down to 1.5 mL and discarded. The pellet should be resuspended in the remaining 1.5 mL using the same transfer pipette. This is the platelet-rich plasma (PRP).
- PRP may be used as is or if desired clotted with 150 ⁇ l of the calcium gluconate (1 mL syringe and needle) added to the PRP and mixed well.
- the tube should be placed in the warm water bath (37° C.—without shaking) or left at room temperature for longer period of time.
- the PRP should form a solid gel. 7) After solidification, the PRP can be left at either 37° C. (to speed up the process) or room temperature to partially dissolve over the next 1-2 hr for when you are ready to add it the cells—this is now known as plasma rich growth factors (PRGF).
- PRGF plasma rich growth factors
- the cells obtained by the methods of examples 3 to 9 may be treated with PRP or PRGF prior to injection.
- the PRGF typically 2.5 ml is added directly to the cell pellet prior to injection.
- the cells and PRGF are applied as example 12. If PRP is to be used with the stromal/stem cells (typically 5 mls) it may be added with the cells just prior to injection as it may start to initiate a solid gel or it may be injected separately just after stromal vascular fraction administration.
- WOMAC Western Ontario and McMaster Universities Arthritis Index
- the WOMAC is among the most widely used assessments in arthritis research.
- the WOMAC measures five items for pain (score range 0-20), two for stiffness (score range 0-8), and 17 for functional limitation (score range 0-68).
- An arthritic pain scoring system ranging from 0—no pain/disability to 96—most severe pain/disability
- the WOMAC consists of 24 items divided into 3 subscales:
- HOOS Hip dysfunction and Osteoarthritis Outcome Score
- OA hip osteoarthritis
- THR total hip replacement
- HOOS is intended to be used for hip disability with or without osteoarthritis (OA).
- HOOS consists of 5 subscales; Pain, other Symptoms, Function in daily living (ADL), Function in sport and recreation (Sport/Rec) and hip related Quality of life (QOL).
- the stromal vascular fraction of adipose tissue was prepared according to Example 3, treated with PRGF and administered by intra-articular injection into each hip (84 ⁇ 10 6 cells) and intravenous injection (130 ⁇ 10 6 cells).
- the patient's pre-treatment HOOS score was 102 pre-treatment and at 5 weeks post-treatment the HOOS score was reduced to 23—an improvement of 77%.
- the stromal vascular fraction of adipose tissue was prepared according to Example 3, treated with PRGF and administered by intra-articular injection into each knee (100 ⁇ 10 6 cells) and intravenous injection (79 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 59 and at 4 weeks post-treatment the WOMAC score had reduced to 28—an improvement of 61%.
- the stromal vascular fraction of adipose tissue was prepared according to Example 3 except settings were amplitude 90% and cycle 0.9 for 3 minutes (adipose tissue cooled with 20° C. gel packs to prevent temperature rising above 43° C.), treated with PRGF and administered by intra-articular injection into each knee (100 ⁇ 10 6 cells) and intravenous injection (236 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 37 and at 11 weeks post-treatment the WOMAC score had reduced to 7—an improvement of 81%.
- the stromal vascular fraction of adipose tissue was prepared according to Example 4, treated with PRP and administered by intra-articular injection into each knee (86 ⁇ 10 6 cells) and intravenous injection (86 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 39 and six weeks post-treatment the WOMAC score had reduced to 17—an improvement of 56%.
- the stromal vascular fraction of adipose tissue was prepared according to Example 6, and administered by intra-articular injection into each knee (175 ⁇ 10 6 cells) and intravenous injection (150 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 38 and 2 months post-treatment the WOMAC score had reduced to 8—an improvement of 78%.
- the stromal vascular fraction of adipose tissue was prepared according to Example 5, and administered by intra-articular injection into each knee (85 ⁇ 10 6 cells) and intravenous injection (85 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 56 and 7 months post-treatment the WOMAC score had reduced to 28—an improvement of 50%.
- P-layer cells (5 ml) were prepared according to Example 7 and administered by intra-articular injection the knee and intravenous injection (170 ⁇ 10 9 cells).
- the patient's pre-treatment WOMAC score was 58 and 3 months post-treatment the WOMAC score had reduced to 10—an improvement of 82%
- P-layer cells (2.5 ml) were prepared according to Example 7 and administered by intra-articular injection the left knee and intravenous injection (200 ⁇ 10 6 cells).
- the patient's pre-treatment WOMAC score was 37 and 2 months post-treatment the WOMAC score had reduced to 2—an improvement of 94%
- the stromal vascular fraction of adipose tissue was prepared according to Example 5 (with the following alterations—amplitude 90%, cycle 0.2, 4 minutes) and administered by intravenous injection (276 ⁇ 10 7 cells).
- Example 5 Motor Neurone IV 130 ⁇ 10 6 with repeat weight stable 11 months from Disease injections of treatment and walking improved. cryopreserved cells Feels well in himself
- Example 5 11 Acute Tear Anterior IA 169 ⁇ 10 6 Second IA Re-attachment and complete Cruciate Ligament injection 6 months later heal of the torn ligament back to (ACL) 91 ⁇ 10 6 cycling running etc marathons
- Example 5 Rotator Cuff And IA 23 ⁇ 10 6 each Next night slept well as no Dystonia shoulder & 100 ⁇ 10 6 IV. shoulder pain and with the right 2nd IV 5 months later hand open.
- Example 6 Muscular Dystrophy IV 100 ⁇ 10 6 then weekly 2 months later improved 7 ⁇ 113 ⁇ 10 6 strength, walking better (balance) and has more muscle tone.
- Example 6 19 Scleraderma IV 111 ⁇ 10 6 then Felt stronger 2 days post op, monthly IV treatments 55 ⁇ lethargy was shown to also 10 6 improve
- Example 5 Chronic Fatigue IV 1.9 ⁇ 10 9 More energy noted 2 days post op, one month later energy levels have fluctuated
- Example 6 21 Anklylosing 1 ⁇ 10 6 IV and .5 ⁇ 10 6 Shoulders improved, fatigue no Spondylitis, Chronic IA each shoulder improvement Fatigue Syndrome
- Example 6 22 Cerebrospinal Ataxia IV 200 ⁇ 10 6 followed Double vision did not change in 5.3 ⁇ 10 6 IA by 100 ⁇ first 3 months.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Rheumatology (AREA)
- Immunology (AREA)
- Physical Education & Sports Medicine (AREA)
- Virology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Tropical Medicine & Parasitology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- This application claims priority from Australian Provisional Application No 2012902719 filed 26 Jun. 2012, the contents of which are incorporated herein by reference in their entirety.
- The present invention relates to methods of utilizing stem cell preparations.
- The invention has been developed primarily for the non-enzymatic isolation of stromal/stem cells from adipose tissue and will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited to this particular field of use.
- Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of the common general knowledge in the field.
- Adipose tissue, in addition to containing mature adipocytes, also contains stem cells that can be differentiated into a variety of cell lineages (Zuk et al. Tissue Eng. 2001; 7: 211-228; Hicok et al. Tissue Eng. 2004; 10: 371-380; Erickson et al. Biochem Biophys Res Commun. 2002; 290: 763-769; Cousin et al. Biochem Biophys Res Commun. 2003; 301: 1016-1022; Safford et al. Biochem Biophys Res Commun. 2002; 294: 371-379; Miranville et al. Circulation. 2004; 1 10: 349-355; Planat-Benard et al. Circ Res. 2004; 94: 223-229; Planat-Benard et al. Circulation. 2004; 1 09: 656-663). The stem cells are adhesive and can proliferate in culture. Accordingly, a large number of stem cells can be obtained from a small amount of adipose tissue.
- Presently in order to isolate stem cells from adipose tissue, enzymes such as collagenase are typically used to dissolves the bonds in the collagen that hold together the adipose tissue (see, e.g., Zuk, et al. Mol Biol Cell. 2002; 13: 4279-4295; Zuk, et al. Tissue Eng. 2001; 7: 211-228). While collagenase is effective, it can be unsuitable for preparing stem cells as:
-
- enzyme treatment results in a high level of cell death, thereby reducing numbers of isolated stem cells and resulting in more cellular debris;
- enzymes may damage and destroy unique cell types;
- contamination of isolated stem cells with enzymes may make them unsuitable for transplantation; and
- regulatory bodies may consider that the use of enzymes in the isolation of stem cells results in a cellular product requiring drug approval.
- It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
- Surprisingly, the present inventors have found that treating adipose tissue with ultrasonic cavitation breaks up the adipose tissue and lyses mature adipocytes, resulting in a stromal vascular fraction comprising viable stem/stromal cells and extra cellular matrix.
- In one aspect, the present invention relates to isolating a stromal vascular fraction comprising viable stromal/stem cells and extracellular matrix from adipose tissue, the method comprising treating the adipose tissue with ultrasonic cavitation for a time, amplitude and cycle sufficient to break up the tissue and lyse mature adipocytes while maintaining the viability of the stromal/stem cells.
- The ultrasonic cavitation amplitude and cycle settings may be variable and are dependent on the quantity of adipose tissue and timing of the process to maintain cell viability. The cell viability temperature range should not be exceeded.
- In another aspect, the temperature of the adipose tissue during ultrasonic cavitation is maintained at a temperature that ensures the viability of the stromal/stem cells.
- In another aspect, the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- In another aspect, the adipose tissue is treated with ultrasonic cavitation for a period of about 10 seconds to about 10 min with an ultrasonic device set at amplitude about 20 to about 75% and cycle about 0.2 to about 0.9.
- In another aspect, an ultrasonic cavitation device probe is placed the adipose tissue, amplitude is set at about 50%, the cycle is set at about 0.4 to about 0.5 and the probe is raised and lowered through the adipose tissue for about 1 minute and 30 seconds to about 1 minute and 40 seconds; and wherein the temperature of the adipose tissue is maintained at a temperature lower than about 43° C. to about 45° C.
- In another aspect, the present invention relates to a stromal vascular fraction comprising viable stem cells isolated according to the method of the invention.
- In another aspect, the stromal vascular fraction comprises viable cells other than stem cells.
- In another aspect, the present invention relates to adipose tissue-derived stem cells isolated according to the method of the invention.
- In another aspect, the present invention relates to a method of treating osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder in a subject comprising administering to the subject adipose tissue-derived stromal/stem cell preparations according to the invention.
- In another aspect, the present invention relates to use of adipose tissue-derived stromal/stem cell preparations according to the invention for the manufacture of a medicament for treating osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- In another aspect, the present invention relates to adipose tissue-derived stromal/stem cell preparations according to the invention for use in the treatment of osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- In another aspect, the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with ultrasonic cavitation for about 1 minute and 30 seconds to about 1 minute and 40 seconds with an ultrasonic device set at an amplitude and cycle that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- In another aspect, the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with an ultrasonic device set at an amplitude of about 50%, wherein the device is set at a cycle and applied for a time that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- In another aspect, the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with an ultrasonic device set at a cycle about 0.4 to about 0.5, wherein the device is set at an amplitude and applied for a time that ensures that the temperature of the adipose tissue does not exceed about 43° C. to about 45° C.
- In another aspect, the present invention relates to a method of isolating a stromal vascular fraction comprising viable stromal/stem cells from adipose tissue comprising treating the adipose tissue with ultrasonic cavitation for about 1 minute and 30 seconds to about 1 minute and 40 seconds with an ultrasonic probe set at amplitude about 50% and cycle about 0.4 to about 0.5.
- In another aspect, the present invention relates to a method for maintaining viability of stromal/stem cells in the stromal vascular fraction isolated from adipose tissue by ultrasonic cavitation, wherein time, amplitude and cycle of ultrasonic cavitation are selected such that the stromal/stem cells are viable after 48 hours cell culture.
- As used herein, the term “adipose tissue” refers to any fat tissue. The adipose tissue may be brown or white adipose tissue. Preferably, the adipose tissue is subcutaneous white adipose tissue. The adipose tissue may be from any organism having fat tissue. Preferably the adipose tissue is mammalian, most preferably the adipose tissue is human. A convenient source of human adipose tissue is that derived from liposuction surgery or other surgery. However, the source of adipose tissue or the method of isolation of adipose tissue is not critical to the invention.
- As used herein the term “stromal vascular fraction” refers to a fraction, comprising cells, derived from blood vessels and surrounding tissue found in adipose tissue. The fraction may comprise different cell types including, by way of example, mesenchymal stem cells, early mesenchymal/stromal precursor cells, adipose tissue-derived stem cells, Muse-AT cells, hematopoietic cells, hematopoietic stem cells, platelets, Kupffer cells, osteoclasts, megakaryocytes, granulocytes, NK cells, endothelial precursor or progenitor cells, pluripotent cells, CD34+ cells, Stro-1+ cells, Stro-3+ cells, CD29+ cells, CD166+ cells, Thy-1+ or CD90+ stem cells, CD44+ cells, immune cells such as monocytes, leukocytes, lymphocytes, Band T cells, NK cells, macrophages, neutrophil leukocytes, neutrophils, neutrophil granulocytes, and the like. The stromal vascular fraction also includes cells expressing any of the markers or any combination thereof disclosed herein. As used herein, the term “stromal vascular fraction” includes within its scope terms such as “mesenchymal vascular fraction”, “mesenchymal fraction”, “stromal fraction” and the like.
- As used herein, the term “mesenchymal stem cell” refers to stromal or mesenchymal cells or early mesenchymal/stromal precursor or adipose tissue-derived stromal/stem cells which are multipotent and can serve as stem cell-like precursors to a variety of different cell types such as but not limited to adipocytes, osteocytes, chondrocytes, muscle and neuronal/glial cell lineages.
- Mesenchymal stem cells make up a subset population derivable from, for example, adipose tissue and bone marrow. As used herein, the term “mesenchymal stem cell” includes within its scope terms such as “stromal stem cell”, “marrow stromal cell”, “multipotent stromal cell”, “mesenchymal precursor cell”, “Muse-AT”, adipose tissue-derived stromal/stem cells and the like.
- As used herein, the term “differentiated” refers to a cell that has achieved a terminal state of maturation such that the cell has developed fully and demonstrates biological specialization and/or adaptation to a specific environment and/or function. Typically, a differentiated cell is characterized by expression of genes that encode differentiation-associated proteins in that cell. For example expression of GALC in a leukocyte is a typical example of a terminally differentiated leukocyte.
- The terms “precursor cell”, “progenitor cell” and “stem cell” are used interchangeably in the art and herein and refer either to a pluripotent, or lineage-uncommitted, progenitor cell, which is potentially capable of an unlimited number of mitotic divisions to either renew itself or to produce progeny cells which will differentiate into the desired cell type. In contrast to pluripotent stem cells, lineage-committed progenitor cells are generally considered to be incapable of giving rise to numerous cell types that phenotypically differ from each other. Instead, progenitor cells give rise to one or possibly two lineage-committed cell types.
- As used herein, the terms “multipotent”, “multipotential” or “multipotentiality” are meant to refer to the capability of a stem cell to differentiate into more than one type of cell.
- As used herein, the term “allogeneic” is meant to refer to any material derived from a different mammal of the same species.
- As used herein, the term “autologous” is meant to refer to any material derived from an individual and re-introduced to the individual.
- As used herein, the term “cell preparation” or “cell preparations” are meant to refer to preparations comprising cells but may contain other substances, such as growth factors, extracellular matrix, etc.
- Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.
-
FIG. 1 : The P-layer. -
FIG. 2 : Giemsa stained colonies of plastic adherent cells from the stromal vascular fraction grown from ultrasonic cavitation treated adipose tissue. -
FIG. 3 : Cell culture of mesenchymal stem cells grown from ultrasonic cavitation treated adipose tissue. -
FIG. 4 : Effect of ultrasonic cavitation amplitude settings on temperature of adipose tissue —20 grams of adipose tissue treated for 11/2 minutes with cycle setting 0.4. -
FIG. 5 : Effect of ultrasonic cavitation cycle settings on temperature of adipose tissue—20 grams of adipose tissue treated for 11/2 minutes with amplitude setting 50%. -
FIG. 6 : Effect of ultrasonic cavitation amplitude on stromal vascular fraction cell viability —20 grams of adipose tissue treated for 11/2 minutes with cycle setting 0.4. -
FIG. 7 : Flow cytometry analysis of cells obtained from ultrasonic cavitation treated adipose tissue—cell count by fluorescent nuclei of 40 grams of adipose tissue separated by ultrasonic cavitation - In one embodiment, the method of the invention uses an ultrasonic cavitation device having a probe that is placed into contact with the adipose tissue so as to explode or lyse fat cells in the adipose tissue and release the stromal vascular fraction. The particular ultrasonic cavitation device used is not critical to the invention. One suitable selection is the HIELSCHLER ultrasonic processors which is a technologically advanced high intensity ultrasonic processor. This device can safely process a wide range of organic and inorganic materials—from microlitres to litres. Other devices which may be used include Vibra-Cell™ device (Sonics), VASER (SoltaMedical) or QSonica ultrasonic processors.
- In another embodiment, adipose tissue in a biologic solution (e.g., phosphate buffered saline solution or normal saline solution) may be placed into a chilled environment (the tissue/cells should not fall below about 2° C.). An ultrasonic cavitation device probe is placed into the adipose tissue and the amplitude is set at about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, cycle at about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, for about 10 seconds, about 20 seconds, about 30 seconds, about 40 seconds, about 50 seconds, about 60 seconds, about 1 minute 10 seconds, about 1
minute 20 seconds, about 1minute 30 seconds, about 1minute 40 seconds, about 1minute 50 seconds, about 2 minutes, about 3 minutes, about 4 minutes, about 5 minutes, about 6 minutes, about 7 minutes, about 8 minutes, about 9 minutes, about 10 minutes. Preferably the amplitude is set at about 50%, cycle about 0.4-0.5. The probe may be adjusted in at different positions in the tube during the operation. The procedure may be conducted in a chilled environment or at room temperature with the amplitude, cycle and time are adjusted to prevent the temperature of the adipose tissue rising above about 43° C. to about 45° C., preferably not rising above 37° C. The duration of the ultrasonic cavitation may operate for a sequenced period of time dependent on the quantity of the adipose tissue, e.g., the probe is raised and lowered for about 1 minute and then for about 40 seconds at two different locations in the tube for larger amounts of adipose tissue, or the probe is raised and lowered for about 1 minute and then for about 30 seconds at the top of the tube or the probe is inserted into the adipose tissue for about 30 seconds, stopped for about 10 seconds, then repeated, then raised the top of the adipose tissue for about 30 seconds for smaller amounts of adipose tissue. The sequence and timing of ultrasonic cavitation (specifically, the amplitude, cycles and time of application) may vary but is determined to the extent of ensuring the optimal cell numbers and viability of the stem cells in the stromal vascular fraction by preventing the adipose tissue temperature from rising above ideally 37° C. or no more than about 43° C. to about 45° C. These parameters can be easily determined by simple trial and error. Typically, the amplitude is about 50%, the cycle is about 0.4 to about 0.5 and the time is about one minute and 30 seconds. If amplitude is increased, the cycle or time can be consequently decreased (or vice versa) to ensure that the temperature of the adipose tissue does not rise above about 43° C. to about 45°. As noted this treatment does not include the addition of collagenase or equivalent enzyme intended to break down collagen as cell dissociation is instead accomplished by ultrasonic cavitation. After ultrasonication there is a thick solution in the tube (which cannot be filtered or easily separated into the stromal vascular fraction) and may be centrifuged. - Centrifugation results in 3 layers—the top lipid layer, the middle floating layer (called the P-layer) containing extracellular matrix, adipose cells and stromal vascular cells, and a bottom layer of fluid. The top lipid layer is removed (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and discarded and the remaining contents of the tube mixed well and a solution, typically 0.9% saline, PBS or any other isotonic solution, is added to the tube. Further centrifugation brings about the cells and extra-cellular matrix to fall out and pellet at the bottom, the remaining adipose cells rise to the top of the tube. The pellet contains extracellular matrix and stromal vascular fraction comprising viable and functional stromal/stem cells (including mesenchymal stem cells). The pellet may be filtered through a filter to remove any large debris. The cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid. A sample may be removed for cell counting.
- Cell viability and functionality may be determined by cell culture techniques as those familiar with the art. Cells may be counted using a FACs instrument and a fluorescent nucleic binding dye i.e., Guava PCA system and Guava Viacount.
- Typically cell numbers derived from 20 g of adipose tissue using this method are between about 40-200 million cells, i.e., about 2-10 million cells/gram, which is greater than that from collagenase separation which typically results in about 0.5 million cells/gram of adipose tissue.
- In another embodiment, the method comprises the following steps:
- (a) an ultrasonic cavitation device probe is placed into about 40 g adipose tissue and the amplitude is set at about 50% and the cycle set about 0.4-0.5;
(b) the probe is raised and lowered through the adipose tissue for about 1 minute and then for about 40 seconds at two different locations in the adipose tissue;
(c) the adipose tissue is centrifuged at 800 g/5 min;
(d) the top lipid layer is discarded and the adipose tissue is mixed;
(e) an isotonic solution is added and the adipose tissue is centrifuged at 800 g/5 min;
(f) the resultant cell pellet comprises extracellular matrix and a stromal vascular fraction comprising viable stem cells. - In another embodiment, the method comprises the following steps:
- (a) an ultrasonic cavitation device probe is placed into about 40 g adipose tissue and the amplitude is set at about 50% and the cycle set at about 0.4-0.5;
(b) the probe is raised and lowered through the adipose tissue for about 1 minute and then for about 30 seconds at the top of the adipose tissue;
(c) the adipose tissue is centrifuged at 800 g/5 min;
(d) the top lipid layer is discarded and the adipose tissue is mixed;
(e) an isotonic solution is added and the adipose tissue is centrifuged at 800 g/5 min;
(f) the resultant cell pellet comprises extracellular matrix and a stromal vascular fraction comprising viable stem cells. - In another embodiment, the stem cells are autologous or allogeneic.
- The stromal vascular fraction or stromal/stem cells may be directly infused in subjects in need thereof by traditional administration routes, such as intravenous injection or intra-articular injection, or it can be further processed to purify (and expand in culture if desired) desired cell types such as mesenchymal stem cells, or STRO-1+ cells prior to administration.
- In some embodiments, stem cells can be isolated, purified or enriched from the stromal vascular fraction by fractionation using unique cell surface antigens and fluorescence activated call sorting (FACS) for expansion in vitro.
- In some embodiments the stromal vascular fraction or stromal/stem cells may be cultured with or without differentiation using standard cell culture techniques. The cells may be cultured to a suitable point and viability and yield assessed by standard methods.
- In other embodiments, the stromal vascular fraction or stromal/stem cells may be stored for later implantation/infusion (e.g., by cryopreservation). Moderate to long-term storage in a cell bank is also within the scope of this invention.
- At the end of processing, the stromal vascular fraction or stromal/stem cells may be loaded into a delivery device, such as a syringe or IV bag, for administration to the recipient by either subcutaneous, intravenous, intramuscular, or intraperitoneal techniques. In other words, cells may be placed into the patient by any means known to persons of ordinary skill in the art, for example, they may be injected into blood vessels for systemic or local delivery, into tissue (e.g., cardiac muscle, or skeletal muscle), into the dermis (subcutaneous), into tissue space (e.g., pericardium or peritoneum), or into tissues (e.g., periurethral emplacement), or other location. Preferred embodiments include placement by needle or catheter, or by direct surgical implantation in association with additives such as a preformed matrix or adipose tissue-derived or stromal-derived extra-cellular matrix.
- The stromal vascular fraction or stromal/stem cells may be applied alone or in combination with other cells, tissue, tissue fragments, demineralized bone, growth factors such as insulin or drugs such as members of the thiaglitazone family, biologically active or inert compounds, resorbable plastic scaffolds, adipose tissue-derived or stromal-derived lattice and/or extra cellular matrix or other additive intended to enhance the delivery, efficacy, tolerability, or function of the population. In certain embodiments of the invention, the cells are administered to a patient with one or more cellular differentiation agents, such as cytokines and growth factors. In other embodiments, the cells are treated with platelet-rich plasma.
- In another embodiment, the stromal vascular fraction or stromal/stem cells are administered to a subject to treat or prevent a disease or disorder in the subject.
- In another embodiment, the disease or disorder is osteoarthritis, a joint-related inflammatory disorder, an inflammatory arthritis disorder, soft-tissue damage or tears, a cartilage disorder, a bone disorder, an auto-immune disorder, muscle dystrophy, chronic fatigue, a lung disorder, a lung inflammatory disorder, a nervous system disorder, a spinal disorder or a neurological disorder.
- The present invention will now be described in more detail with reference to specific but non-limiting examples describing specific compositions and methods of use. It is to be understood, however, that the detailed description of specific procedures, compositions and methods is included solely for the purpose of exemplifying the present invention. It should not be understood in any way as a restriction on the broad description of the inventive concept as set out above.
- An excess amount of Tumescent solution (containing, in one litre of normal saline, 1 mg adrenalin, 400 mg to 800 mg lignocaine and 10 mLs of a 8.4% sodium bicarbonate solution), which exceeds the amount of liposuction to be aspirated prior to the liposuction operation, was infused into hypodermic fat layer (tumescent method), and thereafter cannulae having, for example, 2-3 mm of inner diameter (made of metal with aspirator) was used for the liposuction operation. Liposuction operations are well known in the art, and for example, can be referred to in Biyo Seikei Shujutsu Practice 2 (Cosmetic Operation Practice 2), ed. Masanari ICHIDA, Ryusaburo TANINO, and Yoshiaki HOSAKA, published by BUNKODO, pp. 429-469, which is incorporated herein by reference in its entirety.
- Aspirated fat was washed with saline. About 50 ml to ten litres of washed aspirate may be generated, and the resultant adipose tissue derived cellular materials used for derivation of stromal vascular fractions.
- Fat tissue is obtained by surgery from human subjects who had given their informed consent.
- Separation was conducted with techniques well known in the art. Briefly, human fat tissue was aseptically separated from fat tissue suctioned from human subjects who had given their informed consent. The resultant adipose tissue derived cellular materials are used for derivation of stromal vascular fractions.
- 1) Adipose tissue derived from liposuction aspirates and 45 ml placed into a 50 ml tube.
2) Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 40 ml of adipose tissue.
3) (Optional) The tube is placed into a chilled environment and care taken to ensure that the temperature of the tissue/cells does not fall below 2° C.
4) The ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.5. The probe is raised and lowered for 1 minute and then for 40 seconds at two different locations in the tube (i.e., bottom and top of the tube), rested for 3 minutes and optionally the process repeated. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
5) After ultrasonication a thick solution is observed in the tube and is centrifuged at 300 g/5 min.
6) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
7) The top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
8) An isotonic solution (typically 0.9% saline or PBS) is added to the tube to 50 ml and the tube centrifuged at 600 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
9) A large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells. The pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
10) The cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid. - Flow cytometry analysis of the isolated stromal vascular fraction shows the presence of viable cells (
FIG. 1 ). - 1) Adipose tissue derived from liposuction aspirates and 25 ml placed into 2×50 ml centrifuge tubes
2) Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 20 ml of adipose tissue.
3) (Optional) The tube is placed into a chilled environment or at room temperature and care taken to ensure that the temperature of the tissue/cells does not fall below 2° C.
4) The ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.5. The probe is raised and lowered for 1 minute and then for 30 seconds at the top for each tube. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
5) After ultrasonication a thick solution is observed in the tube and is centrifuged at 300 g/5 min.
6) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
7) The top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
8) An isotonic solution (typically 0.9% saline or PBS) is added to the tube to 50 ml and the tube centrifuged at 600 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
9) A large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells. The pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
10) The cell solution can be used as is, or further concentrated by further centrifugation and removal of excess fluid. - 1) Adipose tissue derived from liposuction aspirates and 45 ml placed into a 50 ml tube.
2) Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 40 ml of adipose tissue.
3) The ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.4. The probe is raised and lowered for 1 minute and then for 40 seconds at two different locations in the tube (i.e., middle and top of the tube), care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
4) After ultrasonication a thick solution is observed in the tube and is centrifuged at 800 g/5 min.
5) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
6) The top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
7) An isotonic solution (typically 0.9% saline or PBS) is added to the tube to 50 ml and the tube centrifuged at 800 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
8) A large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells. The pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
9) The cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid. - 1) Adipose tissue derived from liposuction aspirates and 25 ml placed into 2×50 ml centrifuge tubes
2) Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 20 ml of adipose tissue.
3) The ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.4. The probe is raised and lowered for 1 minute and then for 30 seconds at the top for each tube. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
4) After ultrasonication a thick solution is observed in the tube and is centrifuged at 800 g/5 min.
5) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells, and a bottom layer of fluid.
6) The top lipid layer is removed and discarded using a mixing cannula and syringe (removal of the lipid layer permits a separation of cells when isotonic fluid is added) and the remaining contents of the tube mixed well to further disrupt the extra-cellular matrix.
7) An isotonic solution (typically 0.9% saline or PBS) is added to the tube to 50 ml and the tube centrifuged at 800 g/5 mins initiating the cells and extra-cellular matrix to fall out and pellet at the bottom.
8) A large pellet is observed at the bottom of tube containing extracellular matrix and the stromal vascular fraction comprising viable and functional stem cells. The pellet is then removed using a mixing cannula and syringe with approximately 15 ml of fluid, and filtered through a 100 um filter to remove any large debris.
9) The cell solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid. - 1) Adipose tissue derived from liposuction aspirates and 25 ml placed into 2×50 ml centrifuge tubes.
2) Excess fluid is removed by centrifuged at 200 g/2 minutes to separate out the excess fluid and adipose tissue. The excess fluid at the base of the tube is removed, typically leaving 20 ml of adipose tissue.
3) The ultrasonic cavitation device probe Hielschler UP200S is placed into the adipose tissue and the amplitude is set at 50%, cycle 0.4. The probe is raised and lowered for 1 minute and then for 30 seconds at the top for each tube. Care is taken to prevent the adipose tissue temperature from rising above 43° C., preferably not above 37° C.
4) After ultrasonication a thick solution is observed in the tube and is centrifuged at 800 g/5 min.
5) After centrifugation there are 3 layers—the top lipid layer, the middle floating layer containing extracellular matrix and stromal vascular cells (the P layer), and a bottom layer of fluid (FIG. 1 ).
9) The top lipid layer and bottom fluid layer is removed and the middle P-layer is collected using a mixing cannula. - The P-layer solution can be used as is, or further concentrated by a further centrifugation and removal of excess fluid or diluted with an isotonic solution.
- Cells obtained by the method of Example 3 or Example 4 were cultured without differentiation using standard cell culture medium (e.g., alphaMEM typically supplemented with foetal calf serum, human serum or serum free medium). Primary cultures are plated at 1×106/100 mm and the cells were expanded for 1-2 passages in 5% CO2 or hypoxic environment.
- Cultures of the isolated stromal vascular fraction from Example 3 shows that viable cells may be grown and expanded (
FIG. 2 ) which have the morphology of mesenchymal stem cells (FIG. 3 ). - Experiments were performed to assess the effect of ultrasonic cavitation amplitude and cycle on adipose tissue temperature (
FIGS. 4 and 5 ). The results demonstrated that the temperature of the adipose tissue rose above 43° C. at: -
- amplitudes above 50% (at cycles 0.4 and
time 1minute 30 seconds)—seeFIG. 4 ; and - cycles above 0.5 (at
amplitude 50% andtime 1minute 30 seconds)—seeFIG. 5 .
- amplitudes above 50% (at cycles 0.4 and
- Experiments were also performed to assess the effect of ultrasonic cavitation amplitude on cell viability immediately following cavitation and after 48 hours of culture. While increased amplitude did not have a noticeable effect on cell viability immediately following cavitation (
FIGS. 6 and 7 ), the viability of cultured cells at 48 hours decreased significantly with amplitudes over 50% (FIG. 6 ). - 1) Blood is collected prior to anaesthetic. 2×9 mL acid citrate dextrose (ACD-A) blood collection tubes (BD vacutainer) are filled with blood (by vacuum pressure). The blood is drawn using an 18 G needle or larger to avoid activating the platelets by shearing. The contents of the blood tubes are mixed by inverting the tubes 3-4 times.
2) The ACD-A blood filled tubes are centrifuged at 450 g×10 min.
3) The plasma layer (the top layer) is removed from each tube with the same transfer pipette and placed into a 15 mL sterile tube. The blood should not be disturbed and the thin layer of white cells resting on the blood should be avoided. It is best to leave a 5 mm layer of plasma above the red blood cells. This plasma containing enriched platelets (PRP) can be used as is or further treated as below.
4) The tube containing the plasma is centrifuged for 2000 g/10 min—a small pellet of platelets at the bottom of the tube should form.
5) The top platelet poor plasma should be removed with a transfer pipette down to 1.5 mL and discarded. The pellet should be resuspended in the remaining 1.5 mL using the same transfer pipette. This is the platelet-rich plasma (PRP).
6) PRP may be used as is or if desired clotted with 150 μl of the calcium gluconate (1 mL syringe and needle) added to the PRP and mixed well. The tube should be placed in the warm water bath (37° C.—without shaking) or left at room temperature for longer period of time. The PRP should form a solid gel.
7) After solidification, the PRP can be left at either 37° C. (to speed up the process) or room temperature to partially dissolve over the next 1-2 hr for when you are ready to add it the cells—this is now known as plasma rich growth factors (PRGF). - The cells obtained by the methods of examples 3 to 9 may be treated with PRP or PRGF prior to injection. The PRGF typically 2.5 ml is added directly to the cell pellet prior to injection. The cells and PRGF are applied as example 12. If PRP is to be used with the stromal/stem cells (typically 5 mls) it may be added with the cells just prior to injection as it may start to initiate a solid gel or it may be injected separately just after stromal vascular fraction administration.
- The Western Ontario and McMaster Universities Arthritis Index (WOMAC) is a widely used, proprietary set of standardized questionnaires used by health professionals to evaluate the condition of patients with osteoarthritis of the knee and hip, including pain, stiffness, and physical functioning of the joints.
- The WOMAC is among the most widely used assessments in arthritis research. The WOMAC measures five items for pain (score range 0-20), two for stiffness (score range 0-8), and 17 for functional limitation (score range 0-68). An arthritic pain scoring system ranging from 0—no pain/disability to 96—most severe pain/disability
- The WOMAC consists of 24 items divided into 3 subscales:
-
- Pain (5 items): during walking, using stairs, in bed, sitting or lying, and standing
- Stiffness (2 items): after first waking and later in the day
- Physical Function (17 items): stair use, rising from sitting, standing, bending, walking, getting in/out of a car, shopping, putting on/taking off socks, rising from bed, lying in bed, getting in/out of bath, sitting, getting on/off toilet, heavy household duties, light household duties.
- Hip dysfunction and Osteoarthritis Outcome Score (HOOS) contains measurement qualities to evaluate patients with hip osteoarthritis (OA) or total hip replacement (THR). HOOS is intended to be used for hip disability with or without osteoarthritis (OA). HOOS consists of 5 subscales; Pain, other Symptoms, Function in daily living (ADL), Function in sport and recreation (Sport/Rec) and hip related Quality of life (QOL).
- The stromal vascular fraction of adipose tissue was prepared according to Example 3, treated with PRGF and administered by intra-articular injection into each hip (84×106 cells) and intravenous injection (130×106 cells). The patient's pre-treatment HOOS score was 102 pre-treatment and at 5 weeks post-treatment the HOOS score was reduced to 23—an improvement of 77%.
- The stromal vascular fraction of adipose tissue was prepared according to Example 3, treated with PRGF and administered by intra-articular injection into each knee (100×106 cells) and intravenous injection (79×106 cells). The patient's pre-treatment WOMAC score was 59 and at 4 weeks post-treatment the WOMAC score had reduced to 28—an improvement of 61%.
- The stromal vascular fraction of adipose tissue was prepared according to Example 3 except settings were amplitude 90% and cycle 0.9 for 3 minutes (adipose tissue cooled with 20° C. gel packs to prevent temperature rising above 43° C.), treated with PRGF and administered by intra-articular injection into each knee (100×106 cells) and intravenous injection (236×106 cells). The patient's pre-treatment WOMAC score was 37 and at 11 weeks post-treatment the WOMAC score had reduced to 7—an improvement of 81%.
- The stromal vascular fraction of adipose tissue was prepared according to Example 4, treated with PRP and administered by intra-articular injection into each knee (86×106 cells) and intravenous injection (86×106 cells). The patient's pre-treatment WOMAC score was 39 and six weeks post-treatment the WOMAC score had reduced to 17—an improvement of 56%.
- The stromal vascular fraction of adipose tissue was prepared according to Example 6, and administered by intra-articular injection into each knee (175×106 cells) and intravenous injection (150×106 cells). The patient's pre-treatment WOMAC score was 38 and 2 months post-treatment the WOMAC score had reduced to 8—an improvement of 78%.
- The stromal vascular fraction of adipose tissue was prepared according to Example 5, and administered by intra-articular injection into each knee (85×106 cells) and intravenous injection (85×106 cells). The patient's pre-treatment WOMAC score was 56 and 7 months post-treatment the WOMAC score had reduced to 28—an improvement of 50%.
- P-layer cells (5 ml) were prepared according to Example 7 and administered by intra-articular injection the knee and intravenous injection (170×109 cells). The patient's pre-treatment WOMAC score was 58 and 3 months post-treatment the WOMAC score had reduced to 10—an improvement of 82%
- P-layer cells (2.5 ml) were prepared according to Example 7 and administered by intra-articular injection the left knee and intravenous injection (200×106 cells). The patient's pre-treatment WOMAC score was 37 and 2 months post-treatment the WOMAC score had reduced to 2—an improvement of 94%
- The stromal vascular fraction of adipose tissue was prepared according to Example 5 (with the following alterations—amplitude 90%, cycle 0.2, 4 minutes) and administered by intravenous injection (276×107 cells). First week patient felt well but then rheumatoid arthritis reflared. Patient felt more alert.
-
Cell number and Method ID Condition delivery Results Example 5 10 Motor Neurone IV 130 × 106 with repeat weight stable 11 months from Disease injections of treatment and walking improved. cryopreserved cells Feels well in himself Example 5 11 Acute Tear Anterior IA 169 × 106 Second IA Re-attachment and complete Cruciate Ligament injection 6 months later heal of the torn ligament back to (ACL) 91 × 106 cycling running etc marathons Example 5 12 Rotator Cuff And IA 23 × 106 each Next night slept well as no Dystonia shoulder & 100 × 106 IV. shoulder pain and with the right 2nd IV 5 months later hand open. Dystonia improved 250 × 106 cells after 2nd injection at 3 months Example 5 13 Multiple Sclerosis IV 389 × 106 & IA 150 × Improvement in bladder function 106 and sleeping better, more energy and stamina Example 5 14 Facioscapulohumeral IV 180 × 106 multiple treatments performed a Dystrophy (FSHD) week apart, no improvements seen Example 5 15 Spastic Parapleger IV 80 × 106 arm/hand strength have both improved at 1-2 month stage Example 6 16 Rheumatoid Arthritis IV 10 × 106 Pain eased off, RF dropped, off all medications. Lasted for a month. Temporary improvement Example 6 17 Multiple Sclerosis IV 200 × 106 Two weeks later was stronger physically and had improved bladder/bowel function. 6 months later maintaining progress Example 6 18 Muscular Dystrophy IV 100 × 106 then weekly 2 months later improved 7 × 113 × 106 strength, walking better (balance) and has more muscle tone. Example 6 19 Scleraderma IV 111 × 106 then Felt stronger 2 days post op, monthly IV treatments 55 ×lethargy was shown to also 106 improve Example 5 20 Chronic Fatigue IV 1.9 × 109 More energy noted 2 days post op, one month later energy levels have fluctuated Example 6 21 Anklylosing 1 × 106 IV and .5 × 106 Shoulders improved, fatigue no Spondylitis, Chronic IA each shoulder improvement Fatigue Syndrome Example 6 22 Cerebrospinal Ataxia IV 200 × 106 followed Double vision did not change in 5.3 × 106 IA by 100 × first 3 months. After 2nd and 3rd 106 at 3 and 4 months an improvement seen in a number of symptoms Example 6 23 Nerve Damage IV 463 × 106 2 months later movement has improved and has regained some sensation Example 6 24 Bilateral Foot Drop IV 100 × 106 IA 50 × 106Some movement in the legs next each knee. 2nd injection day, After second injection IA 74 × 106 2 months tingling in legs later Example 6 25 Asthma IV 200 × 106 IA 200 × Sputum coming up easier, 1 106 month later, continued joint improvements and breathing easier.
Claims (16)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2012902719A AU2012902719A0 (en) | 2012-06-26 | Preparations comprising adipose tissue-derived stem cells and methods of their use | |
| AU2012902719 | 2012-06-26 | ||
| PCT/AU2013/000686 WO2014000031A1 (en) | 2012-06-26 | 2013-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2013/000686 A-371-Of-International WO2014000031A1 (en) | 2012-06-26 | 2013-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/019,171 Continuation US11236324B2 (en) | 2012-06-26 | 2018-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150159151A1 true US20150159151A1 (en) | 2015-06-11 |
Family
ID=49781945
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/409,229 Abandoned US20150159151A1 (en) | 2012-06-26 | 2013-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
| US16/019,171 Active 2034-01-15 US11236324B2 (en) | 2012-06-26 | 2018-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/019,171 Active 2034-01-15 US11236324B2 (en) | 2012-06-26 | 2018-06-26 | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US20150159151A1 (en) |
| EP (1) | EP2864477A4 (en) |
| JP (1) | JP2015526065A (en) |
| KR (1) | KR20150056522A (en) |
| CN (2) | CN113583951A (en) |
| AU (1) | AU2013284340B2 (en) |
| CA (1) | CA2877019A1 (en) |
| MY (1) | MY178152A (en) |
| WO (1) | WO2014000031A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150080300A1 (en) * | 2013-09-17 | 2015-03-19 | Bestop Group Holdings Limited | Growth factor concentrate and the use thereof |
| US10456419B2 (en) | 2017-02-27 | 2019-10-29 | Payman Sadeghi | Method for treating migraine headaches |
| US10932711B2 (en) | 2017-02-27 | 2021-03-02 | Payman Sadeghi | Method and system for neurohydrodissection |
| US11278565B2 (en) * | 2017-12-04 | 2022-03-22 | Medicine Park Co., Ltd. | Compositions for treating joint or connective tissue disease comprising dextran or poloxamer |
| WO2022104069A1 (en) * | 2020-11-13 | 2022-05-19 | Advanced Therapeutic Lab, Inc. | Therapeutic methods and compositions utilizing stromal vascular fraction derived from adipose tissue |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014153614A1 (en) * | 2013-03-28 | 2014-10-02 | Cell-Innovations Pty Ltd | Improved methods for osteoarthritis therapy |
| US10329533B2 (en) | 2014-02-19 | 2019-06-25 | Synova Life Sciences, Inc. | Regenerative cell and adipose-derived stem cell processing system and method |
| EP3872164B1 (en) | 2016-03-17 | 2023-10-04 | Synova Life Sciences, Inc. | Isolating stem cells from adipose tissue |
| EP3239286A1 (en) | 2016-04-26 | 2017-11-01 | Ludwig Boltzmann Gesellschaft | Non-enzymatic method and milling device |
| IL301622A (en) * | 2017-08-14 | 2023-05-01 | Zynerba Pharmaceuticals Inc | Methods for treating degenerative joint disease with cannabidiol gel through the skin |
| JP6865933B2 (en) * | 2018-02-23 | 2021-04-28 | 株式会社Meis Technology | Erectile dysfunction treatment |
| CZ2018190A3 (en) * | 2018-04-19 | 2019-04-10 | Národní Centrum Tkání A Buněk A.S. | A method of preparation of stromal vascular fraction of adipose tissue cells |
| JP7704512B2 (en) * | 2018-12-07 | 2025-07-08 | 慶應義塾 | Cell processing device and cell processing method |
| CN112251400A (en) * | 2019-07-22 | 2021-01-22 | 宠爱细胞科技股份有限公司 | Method for pre-treatment and culture of adipose-derived mesenchymal stem cells without enzymes |
| CN114761113B (en) * | 2019-10-02 | 2025-03-04 | 微声系统公司 | Methods and systems for dissociating biological tissue into single cells using ultrasonic energy |
| US20210177906A1 (en) * | 2019-12-11 | 2021-06-17 | Roger S. Hogue | Adipose tissue particle processing, transfer and storage system |
| IT202000010879A1 (en) * | 2020-05-13 | 2021-11-13 | Genlife Sagl | Equipment for the treatment of biological material |
| US20220025316A1 (en) | 2020-07-22 | 2022-01-27 | Prim Sigma Technologies, Inc. | Trituration devices for tissue disaggregation |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SG146691A1 (en) * | 2003-10-08 | 2008-10-30 | Vet Stem Inc | Methods of preparing and using stem cell compositions and kits comprising the same |
| US20060051865A1 (en) * | 2004-08-31 | 2006-03-09 | Higgins Joel C | Systems and methods for isolating stromal cells from adipose tissue and uses thereof |
| US8518681B2 (en) * | 2009-12-04 | 2013-08-27 | Sound Surgical Technologies Llc | Selective lysing of cells using ultrasound |
| CN201752668U (en) * | 2010-05-12 | 2011-03-02 | 宁波新芝生物科技股份有限公司 | Ultrasonic cell crusher |
| US8440440B2 (en) * | 2010-12-27 | 2013-05-14 | Intellicell Biosciences Inc. | Ultrasonic cavitation derived stromal or mesenchymal vascular extracts and cells derived therefrom obtained from adipose tissue and use thereof |
-
2013
- 2013-06-26 US US14/409,229 patent/US20150159151A1/en not_active Abandoned
- 2013-06-26 KR KR1020157001924A patent/KR20150056522A/en not_active Ceased
- 2013-06-26 CA CA2877019A patent/CA2877019A1/en not_active Abandoned
- 2013-06-26 WO PCT/AU2013/000686 patent/WO2014000031A1/en active Application Filing
- 2013-06-26 EP EP13810843.6A patent/EP2864477A4/en not_active Withdrawn
- 2013-06-26 CN CN202110913723.0A patent/CN113583951A/en active Pending
- 2013-06-26 MY MYPI2014703813A patent/MY178152A/en unknown
- 2013-06-26 AU AU2013284340A patent/AU2013284340B2/en active Active
- 2013-06-26 CN CN201380044693.8A patent/CN104704111A/en active Pending
- 2013-06-26 JP JP2015518723A patent/JP2015526065A/en active Pending
-
2018
- 2018-06-26 US US16/019,171 patent/US11236324B2/en active Active
Non-Patent Citations (2)
| Title |
|---|
| Hielscher UP200S Product Information, pages 1-4, retrieved from the internet, 2/22/2017: www.hielscher.com/200s_p.htm * |
| Hielscher UP200S/ UP400S Instruction Manual, pages 1-36, retrieved from the internet 2/23/2017: www.bendarygroup.com/images/instruction_manual_up200_400s_2007_ultrasonics.pdf * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150080300A1 (en) * | 2013-09-17 | 2015-03-19 | Bestop Group Holdings Limited | Growth factor concentrate and the use thereof |
| US10456419B2 (en) | 2017-02-27 | 2019-10-29 | Payman Sadeghi | Method for treating migraine headaches |
| US10932711B2 (en) | 2017-02-27 | 2021-03-02 | Payman Sadeghi | Method and system for neurohydrodissection |
| US12089944B2 (en) | 2017-02-27 | 2024-09-17 | Payman Sadeghi | Method and system for neurohydrodissection |
| US11278565B2 (en) * | 2017-12-04 | 2022-03-22 | Medicine Park Co., Ltd. | Compositions for treating joint or connective tissue disease comprising dextran or poloxamer |
| US11801260B2 (en) | 2017-12-04 | 2023-10-31 | Medicine Park Co., Ltd | Compositions for treating joint or connective tissue disease comprising dextran or poloxamer |
| WO2022104069A1 (en) * | 2020-11-13 | 2022-05-19 | Advanced Therapeutic Lab, Inc. | Therapeutic methods and compositions utilizing stromal vascular fraction derived from adipose tissue |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2013284340A1 (en) | 2015-01-22 |
| JP2015526065A (en) | 2015-09-10 |
| US20190002867A1 (en) | 2019-01-03 |
| US11236324B2 (en) | 2022-02-01 |
| KR20150056522A (en) | 2015-05-26 |
| CN113583951A (en) | 2021-11-02 |
| CA2877019A1 (en) | 2014-01-03 |
| MY178152A (en) | 2020-10-05 |
| WO2014000031A1 (en) | 2014-01-03 |
| EP2864477A4 (en) | 2016-02-17 |
| AU2013284340B2 (en) | 2019-03-07 |
| CN104704111A (en) | 2015-06-10 |
| EP2864477A1 (en) | 2015-04-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11236324B2 (en) | Isolation of stem cells from adipose tissue by ultrasonic cavitation, and methods of use | |
| CN103340904B (en) | Compositions for the treatment of osteoarthritis | |
| US10206956B2 (en) | Compositions and methods for reducing frequency and/or severity of headache | |
| TW201130977A (en) | Mesenchymal stem cells (MSCs) isolated from mobilized peripheral blood | |
| JP6622189B2 (en) | Method for using adipose tissue-derived cells in the regulation of pain and / or fibrosis | |
| CN104707140A (en) | Composition for treating osteoarthritis | |
| EP1776126B1 (en) | Methods of using regenerative cells in the treatment of stroke and related diseases and disorders | |
| WO2014179834A1 (en) | Compositions and methods for the treatment of tinnitus | |
| KR101843952B1 (en) | Methods for isolation adipose-derived stromal vascular fraction from fat tissues | |
| Ikeguchi et al. | Recipient bone marrow‐derived stromal cells prolong graft survival in a rat hind limb allotransplantation model | |
| CN120384049A (en) | Cell population and method for obtaining the same | |
| Yu et al. | The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants | |
| US10751371B2 (en) | Use of allogeneic interstitial vessel-layer cell and allogeneic mesenchymal progenitor cell for preventing or treating osteoarthritis | |
| US20160051701A1 (en) | Improved methods for osteoarthritis therapy | |
| WO2014090111A1 (en) | Use of stromal vascular fraction cells and mesenchymal progenitor cells for prevention or treatment of rheumatoid arthritis | |
| US20200038451A1 (en) | Stem cells as an individualized maternal therapy for prevention of prematurity | |
| CN103961374A (en) | Application of allogenic stromal vascular fraction cells and allogenic mesenchymal progenitor cells in prevention or treatment of rheumatoid arthritis | |
| US20150037303A1 (en) | Cells, compositions, and treatment methods for stimulation of hematopoiesis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TAVID PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMAS, WAYNE;REEL/FRAME:036045/0234 Effective date: 20150529 Owner name: AMBERDALE ENTERPRISES PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HANSEN, BRUCE;REEL/FRAME:036045/0209 Effective date: 20150529 |
|
| AS | Assignment |
Owner name: TAVID PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMAS, WAYNE;REEL/FRAME:036723/0647 Effective date: 20150529 Owner name: AMBERDALE ENTERPRISES PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HANSEN, BRUCE;REEL/FRAME:036723/0514 Effective date: 20150529 Owner name: RUSTY PROPERTY HOLDINGS PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRIGHT, RALPH;BRIGHT, PELIN;REEL/FRAME:036723/0652 Effective date: 20150812 |
|
| AS | Assignment |
Owner name: TAVID PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUSTY PROPERTY HOLDINGS PTY LTD;REEL/FRAME:038338/0357 Effective date: 20150423 Owner name: AMBERDALE ENTERPRISES PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUSTY PROPERTY HOLDINGS PTY LTD;REEL/FRAME:038338/0357 Effective date: 20150423 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |