US20150136277A1 - Apparatus for detecting the three-dimensional structure of a log - Google Patents

Apparatus for detecting the three-dimensional structure of a log Download PDF

Info

Publication number
US20150136277A1
US20150136277A1 US14/606,109 US201514606109A US2015136277A1 US 20150136277 A1 US20150136277 A1 US 20150136277A1 US 201514606109 A US201514606109 A US 201514606109A US 2015136277 A1 US2015136277 A1 US 2015136277A1
Authority
US
United States
Prior art keywords
log
detecting
detection
carriage
rotate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/606,109
Inventor
Federico Giudiceandrea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microtec SRL
Original Assignee
Microtec SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microtec SRL filed Critical Microtec SRL
Priority to US14/606,109 priority Critical patent/US20150136277A1/en
Publication of US20150136277A1 publication Critical patent/US20150136277A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B31/00Arrangements for conveying, loading, turning, adjusting, or discharging the log or timber, specially designed for saw mills or sawing machines
    • B27B31/06Adjusting equipment, e.g. using optical projection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B1/00Methods for subdividing trunks or logs essentially involving sawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B31/00Arrangements for conveying, loading, turning, adjusting, or discharging the log or timber, specially designed for saw mills or sawing machines
    • B27B31/04Turning equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/46Wood

Definitions

  • the present invention relates to a method and an apparatus for detecting the three-dimensional structure of a log.
  • the present invention is advantageously applied in log cutting lines ( FIG. 1 ), where the logs T are fed in sequence, positioned transversally to their direction of extension, to a band saw S.
  • a line L feeds one log T at a time to a movable carriage C which then moves it against the band saw S.
  • the log T is subjected to a three-dimensional scan upstream of the feed line. Therefore, in the station X, the three-dimensional structure of the log is detected and the control system can identify the best cutting pattern which can be applied. Consequently, when the log T arrives on the carriage C, only its position in space needs to be identified to allow correct application of the best cutting pattern previously identified.
  • FIG. 2 shows the portion of the plant indicated by the arrow II in FIG. 1 .
  • the cutting plant does not comprise the scanning station upstream which in contrast is present in the solution in FIG. 1 .
  • Apparatuses for detecting the three-dimensional structure of logs may be divided into two large families, those in which the log remains stationary, and those in which the log is fed along its main direction of extension.
  • the lateral surface is usually detected using cross-sections one after another as the log gradually passes through a detection station where two or more radial detectors detect each cross-section.
  • the disadvantages are linked both to the need to provide two or more detectors (although smaller) and, above all, the fact that it is impossible to apply the technique to compact, high productivity production lines in which the logs must be fed positioned perpendicularly to the feed direction (if not rotating each log).
  • the technical purpose which forms the basis of the present invention is to provide a method and an apparatus for detecting the three-dimensional structure of a log which overcome the above-mentioned disadvantages.
  • the present invention has for a technical purpose to provide a method and an apparatus for detecting the three-dimensional structure of a log which may be used in lines in which the log is fed positioned perpendicularly to its own direction of extension.
  • the present invention also has for a technical purpose to provide a method and an apparatus for detecting the three-dimensional structure of a log which allows the use of even a single detection device for detecting the entire lateral surface of the log.
  • FIG. 1 is a schematic plan view of a log cutting plant made according to the prior art
  • FIG. 2 is a detail of a different log cutting plant made according to the prior art
  • FIG. 3 is a front view of an apparatus for detecting the three-dimensional structure of a log made according to the present invention
  • FIG. 4 is a bottom view of the apparatus of FIG. 3 ;
  • FIG. 5 illustrates a log cutting plant equipped with an apparatus for detecting the three-dimensional structure of a log made according to the present invention
  • FIG. 6 illustrates a first embodiment of a detecting step which is part of the method according to the present invention
  • FIG. 7 illustrates a second embodiment of a detecting step which is part of the method according to the present invention.
  • FIG. 8 illustrates a third embodiment of a detecting step which is part of the method according to the present invention.
  • FIG. 9 illustrates a fourth embodiment of a detecting step which is part of the method according to the present invention.
  • FIG. 10 illustrates a fifth embodiment of a detecting step which is part of the method according to the present invention.
  • FIG. 11 illustrates a sixth embodiment of a detecting step which is part of the method according to the present invention.
  • the numeral 1 denotes as a whole an apparatus for detecting the three-dimensional structure of a log 2 in accordance with the present invention.
  • the apparatus 1 comprises firstly supporting means 3 forming a holder 4 for a log 2 to be examined and means 5 for detecting the log 2 lateral surface structure which are pointing towards the holder 4 .
  • the supporting means 3 also form means 6 for making the log 2 rotate about two or more axes of rotation (described in more detail below) which are substantially parallel with the log 2 main direction of extension D.
  • this is achieved by making the supporting means 3 with at least one pair of motor-driven supporting chains 7 angled at the two sides of the holder 4 and converging below it (in front view).
  • the pair of supporting chains 7 therefore form V-shaped supports.
  • the chains 7 which form each pair may also be spaced out, and they may or may not form a V shape when seen from the front.
  • the supporting means 3 comprise two pairs of chains 7 , but in general they may comprise a plurality of them distributed along the length of the holder 4 to support the log 2 at several points.
  • the supporting chains 7 are looped around respective feed/return rollers 8 and, as illustrated in FIG. 3 , may be driven in a synchronised fashion and in the same direction to make the log 2 rotate.
  • the log 2 is schematically illustrated as a circle, therefore after rotation of the chains 7 it is rotated about an axis of rotation passing through the centre of the circle.
  • the log 2 has an irregular cross-section, meaning that depending on the portion of the section resting on each chain 7 , the instantaneous axis of rotation varies, although it always remains substantially parallel with the log 2 main axis of extension (except for small angles due to the different irregularity, such as irregularity or bump 2 a in FIG. 5 , of the individual sections resting on the support means 3 at each moment).
  • the supporting and rotating means 3 may be made differently to what is described above.
  • the detection means 5 are positioned on only one side of the holder 4 (above it in FIG. 3 ) so that they can always see only one part of the lateral surface of the log 2 .
  • the detection means 5 may have any structure.
  • the detection means 5 may be means for detecting by laser triangulation, by detecting the texture of the surface of the log 2 , etc.
  • the control and processing means are operatively connected to the detection means 5 for controlling their activation, for receiving detection step results from them and for reconstructing the log 2 overall surface structure, according to the methods described below.
  • the control and processing means are also operatively connected to the means 6 for making the log rotate, to control their operation.
  • control and processing means are programmed to carry out the operating steps of the method forming the subject matter of the present invention described in detail below.
  • control and processing means are programmed to detect the entire lateral surface of the log 2 in a plurality of steps one after another, during each of which only a portion of the surface is detected.
  • each portion detected is detected in such a way that it is at least partly superposed on at least one other portion detected, or to be detected, so that the overall surface may be reconstructed by superposing the individual portions which were individually detected.
  • the apparatus 1 may comprise one or more detectors 14 which are positioned in such a way that they can detect one or both of the log 2 end surfaces, and operatively connected to the control and processing means for operating according to the methods indicated in detail below.
  • the control and processing means are programmed to activate the detectors 14 simultaneously with the detection means 5 at least for a plurality of lateral surface detection steps, so as to provide an overall detection step result consisting of the portion of lateral surface and one or both end surfaces. If this is done for all of the lateral surface detection steps, it is not necessary for the lateral portions detected to be partly superposed, since the end surfaces always are. Consequently, the reconstructions can be performed entirely or partly based on the information relating to the end surfaces.
  • the present invention also relates to a log 2 cutting plant 9 comprising a band saw 10 , a carriage 11 for supporting a log 2 to be cut and able to move between a first, pick up position where a log 2 can be loaded on the carriage, and a second, cutting position where the band saw 10 can cut a log 2 positioned on the carriage, and a line 12 for feeding logs 2 to be cut to the carriage 11 located in the pick up position.
  • the plant 9 also comprises an apparatus 1 for detecting the three-dimensional structure of the log 2 made according to what is described above and preferably positioned downstream of the feed line 12 .
  • the apparatus 1 may either be positioned between the feed line 12 and the carriage 11 to form a kind of loader for the carriage 11 , or it may be mounted directly on the carriage 11 (or may even form the carriage 11 itself).
  • the apparatus 1 is an integral part of a log cutting plant 9 , there may also advantageously be means for positioning the log 2 in the optimum cutting position (not illustrated). Said means are controlled by the control and processing means and are designed to position the log 2 on the carriage 11 in the optimum cutting position decided in the meantime, according to known methods, by the control and processing means, after the log 2 has been completely detected. In particular, when the apparatus 1 is mounted directly on the carriage 11 , or coincides with it, the apparatus also forms the positioning means.
  • the positioning means may be either devices able to transfer the log 2 from the apparatus 1 to the carriage 11 with a predetermined rigid motion (such as a robot), or, more simply means for applying on the log 2 a visual positioning reference (such as a diametral line on an end face of the log 2 ). In the latter case, correct log cutting positioning is determined by the operator who rotates the log 2 to align the visual reference relative to a predetermined orientation (for example vertical).
  • the method according to the present invention generally comprises firstly the operating step of making the log 2 rotate about two or more axes of rotation which are substantially parallel with the log main direction of extension D.
  • the method used to carry out the step for example, depending on the structure and operation of the apparatus 1 supporting means 3 as described above).
  • the method involves detecting the relative surface structure of the log 2 at least at one lateral surface portion 13 .
  • the term “relative” surface structure refers to a reference system outside the log 2 (in practice usually integral with the detection means 5 ).
  • the first reference system Y integral with it may, relative to the second system Y, be subject to not just a rotation, but also a series of translations, for example after the irregularity of its surface which gradually rests on the supporting means 3 described above.
  • the detection step is repeated a plurality of times, thus detecting at least once the relative surface structure of substantially all of the points of the lateral surface of the log 2 , and, at the same time, so that, at the end of all of the repetitions, each surface portion 13 detected shares at least several points with at least one other surface portion 13 detected.
  • surface portion 13 refers to a set of real points of the surface of the log 2
  • relative surface structure refers to detection of the surface trend of a predetermined surface portion 13 .
  • the final basic step of the method disclosed involves combining the relative surface structures detected to reconstruct an overall surface structure for the log 2 , and in particular combining them so that the points shared by the various relative surface structures are made to coincide with each other.
  • the detection steps are repeated in such a way that during each detection step points of the lateral surface of the log 2 are detected which are adjacent to those detected during the previous detection step. In this way, the entire lateral surface of the log 2 can be detected during a single log 2 rotation over itself.
  • the detection steps are generally carried out by projecting a beam of light (preferably laser) on the surface of the log 2 and practically instantly detecting the surface structure of the illuminated zone using the triangulation technique.
  • detection is carried out by detecting the log 2 surface texture (that is to say, its outer appearance). It is known that the three-dimensional appearance of an irregular object can be reconstructed according to how the appearance of the same zone of the surface of the object varies with variations in the reciprocal positioning between the point of observation (detection) and the zone of the surface detected.
  • the log surface can also be detected using the “time of flight” technique, in which the position of the surface points is obtained by measuring the time taken by a light pulse to reach the log and return to a detection sensor (this technique is of the known type and therefore not described in detail).
  • this technique is of the known type and therefore not described in detail.
  • to check the entire surface of the log rotary mirrors may be used, combined with interferometric techniques.
  • FIGS. 6 to 10 show five possible embodiments for each detection step (with reference to the positioning of FIG. 3 , FIGS. 6 to 11 show a top view of the log 2 ) according to the first embodiment of the method disclosed, described here.
  • each portion 13 detected consists of the set of linear intersections between the surface of the log 2 and a plurality of separate planes incident on it (in the accompanying drawings all of the planes are perpendicular to the drawing plane, but in general they could also be at an angle to it).
  • the separate planes are parallel with each other and, respectively, substantially parallel with the log 2 main direction of extension D, and at an angle to it. Whilst in the former case each point of each portion 13 is detected a number of times equal to the number of parallel planes (four in FIG.
  • the distance between the different planes and the relative angle relative to the axis of the log 2 must be such that for each intersection at least several points can be detected during a subsequent detection step.
  • FIG. 7 that situation is shown by the dashed line which shows how each point at it is detected during three separate detection steps.
  • the portion 13 of the lateral surface of the log 2 detected consists of the linear intersection between the surface and a second plurality of separate planes which are at an angle both to the surface and to each other.
  • the second plurality of planes may be divided into a first group and a second group of parallel planes, the planes of the first group being at an angle to the planes of the second group.
  • the portion 13 detected forms a grid and all of the surface points are detected more than once.
  • the detection planes are positioned side by side so that each surface portion 13 is a longitudinal band of the log 2 surface.
  • the portion 13 of the log 2 lateral surface detected consists of the linear intersection between the surface itself and one or more first planes substantially parallel with the main direction of extension (D) of the log ( 2 ) (or at least positioned in such a way that they cover the entire length of the log) and one or more second planes substantially perpendicular to the main direction of extension (D) of the log ( 2 ).
  • each second plane always covers the same log circumference and, with each detection step, half of its is acquired, which can easily be superposed on the half detected during the next acquisition, from which it differs only by several points.
  • this is preferably carried out with a substantially constant speed and in such a way that after a complete rotation the log 2 is substantially in the starting absolute position in space. As indicated, this may advantageously be achieved by supporting the log 2 using means 6 for making it rotate, such as those illustrated in FIGS. 3 and 4 .
  • all of the detection steps are carried out by observing the log 2 from the same absolute position relative to the means 6 for making it rotate.
  • the step of combining the relative surface structures may be implemented by taking the results of one detection step as the starting point and referring all of the others to it.
  • the starting relative structure has been set (and therefore the corresponding starting surface portion 13 )
  • a first reference system integral with the starting relative surface structure is set and the coordinates of all of the other relative surface structures are transformed into coordinates belonging to said first reference system. Experts in the field will not have any difficulty determining the transformation formulas to be applied by means of a comparison of the various relative surface structures detected.
  • the method according to the present invention may also comprise an additional operating step of observing at least one end face of the log 2 , as illustrated in FIGS. 4 and 11 (where the face is observed by a suitable detector 14 ).
  • the end surface detection steps are associated with at least several of the relative surface structure detection steps.
  • the method disclosed may involve, simultaneously with at least a plurality of log 2 relative surface structure detection steps (advantageously all of them), the operating step of detecting at least one log end surface (preferably both).
  • the technique linked to the texture described above is preferably used.
  • the step of combining relative surface structures is also carried out based on a comparison of the end surfaces that were detected at all or several of the relative surface structures. This is because a comparison of the different orientations in space detected for the same end surface allows one to infer the movement performed by the log even between the two steps for detecting the corresponding relative surface structures.
  • the second preferred embodiment of the method according to this invention differs from the first embodiment described above only in the fact that one or both of the end surfaces is detected for each relative surface structure detection step, and the fact that there is no need for each relative surface structure (referred to the log 2 lateral surface) to share parts with the others.
  • the detection step is in fact repeated in such a way that at least several points are shared by the results of two detection steps of one or both end surfaces of the log which have been carried out simultaneously with two corresponding detection steps for the relative surface structures.
  • the reconstruction is performed exclusively based on superposing the end surfaces gradually detected.
  • the present invention brings important advantages.
  • the method and the apparatus for detecting the three-dimensional structure of a log according to the present invention may be used in lines in which the log is fed positioned perpendicularly to its own direction of extension.
  • the present invention may be inserted in log cutting plants which use a band saw, in particular between the log feed line and the cutting carriage.

Abstract

An apparatus for detecting the three-dimensional structure of a log including supporting means (3) forming a holder (4) for a log (2); means (5) for detecting the log (2) lateral surface structure positioned only on one side of the log (2) placed on the holder (4); and control and processing means for receiving detection step results from them and for reconstructing the log (2) overall surface structure; and means (6) for making the log (2) rotate about one or more axes of rotation which are substantially parallel with the log (2) main direction of extension (D), the control and processing means also being operatively connected to the means (6) for making the log rotate, controlling their operation.

Description

  • The present invention relates to a method and an apparatus for detecting the three-dimensional structure of a log.
  • In particular, the present invention is advantageously applied in log cutting lines (FIG. 1), where the logs T are fed in sequence, positioned transversally to their direction of extension, to a band saw S. In more detail, a line L feeds one log T at a time to a movable carriage C which then moves it against the band saw S.
  • In plants of that type, cutting must be carried out in such a way as to optimise the result based on the characteristics of the log. To do that, the precise structure of the log must therefore be known.
  • According to a first known technology (schematically illustrated in FIG. 1), the log T is subjected to a three-dimensional scan upstream of the feed line. Therefore, in the station X, the three-dimensional structure of the log is detected and the control system can identify the best cutting pattern which can be applied. Consequently, when the log T arrives on the carriage C, only its position in space needs to be identified to allow correct application of the best cutting pattern previously identified.
  • However, that solution is relatively complicated to produce, since it requires a suitable detection station X in which the log must be stopped and observed on each side with suitable three-dimensional scanners.
  • Alternatively, the most widespread solution involves examination of the log T when it is already on the band saw S carriage C using a detector R. This solution is schematically illustrated in FIG. 2, which shows the portion of the plant indicated by the arrow II in FIG. 1. Obviously, in the solution in FIG. 2, the cutting plant does not comprise the scanning station upstream which in contrast is present in the solution in FIG. 1.
  • However, this latter solution also has disadvantages. Although it is simpler to produce, it has the significant limitation that the presence of the carriage C only allows examination of one side of the log T (as illustrated in FIG. 2). Consequently, the structure of the other side must be assumed.
  • Apart from the disadvantages of the apparatuses used in cutting plants which use band saws, it should be noticed that all prior art apparatuses of this type have disadvantages.
  • Apparatuses for detecting the three-dimensional structure of logs may be divided into two large families, those in which the log remains stationary, and those in which the log is fed along its main direction of extension.
  • In the former type of apparatuses, the main disadvantage is linked to the need to provide a large number of detection devices in order to be able to simultaneously detect the entire lateral surface of the log. Consequently, that type of apparatus is relatively expensive.
  • In contrast, in the latter case, the lateral surface is usually detected using cross-sections one after another as the log gradually passes through a detection station where two or more radial detectors detect each cross-section. In this latter case, the disadvantages are linked both to the need to provide two or more detectors (although smaller) and, above all, the fact that it is impossible to apply the technique to compact, high productivity production lines in which the logs must be fed positioned perpendicularly to the feed direction (if not rotating each log).
  • In this situation, the technical purpose which forms the basis of the present invention is to provide a method and an apparatus for detecting the three-dimensional structure of a log which overcome the above-mentioned disadvantages.
  • In particular, the present invention has for a technical purpose to provide a method and an apparatus for detecting the three-dimensional structure of a log which may be used in lines in which the log is fed positioned perpendicularly to its own direction of extension.
  • The present invention also has for a technical purpose to provide a method and an apparatus for detecting the three-dimensional structure of a log which allows the use of even a single detection device for detecting the entire lateral surface of the log.
  • The technical purpose specified and the aims indicated are substantially achieved by a method and an apparatus for detecting the three-dimensional structure of a log as described in the appended claims.
  • Further features and advantages of the present invention are more apparent in the detailed description below, with reference to several preferred, non-limiting embodiments of a method and an apparatus for detecting the three-dimensional structure of a log, described with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic plan view of a log cutting plant made according to the prior art;
  • FIG. 2 is a detail of a different log cutting plant made according to the prior art;
  • FIG. 3 is a front view of an apparatus for detecting the three-dimensional structure of a log made according to the present invention;
  • FIG. 4 is a bottom view of the apparatus of FIG. 3;
  • FIG. 5 illustrates a log cutting plant equipped with an apparatus for detecting the three-dimensional structure of a log made according to the present invention;
  • FIG. 6 illustrates a first embodiment of a detecting step which is part of the method according to the present invention;
  • FIG. 7 illustrates a second embodiment of a detecting step which is part of the method according to the present invention;
  • FIG. 8 illustrates a third embodiment of a detecting step which is part of the method according to the present invention;
  • FIG. 9 illustrates a fourth embodiment of a detecting step which is part of the method according to the present invention;
  • FIG. 10 illustrates a fifth embodiment of a detecting step which is part of the method according to the present invention; and
  • FIG. 11 illustrates a sixth embodiment of a detecting step which is part of the method according to the present invention.
  • With reference to the accompanying drawings, the numeral 1 denotes as a whole an apparatus for detecting the three-dimensional structure of a log 2 in accordance with the present invention.
  • The apparatus 1 comprises firstly supporting means 3 forming a holder 4 for a log 2 to be examined and means 5 for detecting the log 2 lateral surface structure which are pointing towards the holder 4.
  • In more detail, the supporting means 3 also form means 6 for making the log 2 rotate about two or more axes of rotation (described in more detail below) which are substantially parallel with the log 2 main direction of extension D. In the preferred embodiment, this is achieved by making the supporting means 3 with at least one pair of motor-driven supporting chains 7 angled at the two sides of the holder 4 and converging below it (in front view). As shown in FIG. 3, the pair of supporting chains 7 therefore form V-shaped supports. However, in other embodiments, the chains 7 which form each pair may also be spaced out, and they may or may not form a V shape when seen from the front. In the embodiment illustrated, the supporting means 3 comprise two pairs of chains 7, but in general they may comprise a plurality of them distributed along the length of the holder 4 to support the log 2 at several points.
  • The supporting chains 7 are looped around respective feed/return rollers 8 and, as illustrated in FIG. 3, may be driven in a synchronised fashion and in the same direction to make the log 2 rotate. In FIG. 3 the log 2 is schematically illustrated as a circle, therefore after rotation of the chains 7 it is rotated about an axis of rotation passing through the centre of the circle. In contrast, in real conditions, the log 2 has an irregular cross-section, meaning that depending on the portion of the section resting on each chain 7, the instantaneous axis of rotation varies, although it always remains substantially parallel with the log 2 main axis of extension (except for small angles due to the different irregularity, such as irregularity or bump 2 a in FIG. 5, of the individual sections resting on the support means 3 at each moment). It shall be understood that in other embodiments the supporting and rotating means 3 may be made differently to what is described above.
  • According to the present invention, the detection means 5 are positioned on only one side of the holder 4 (above it in FIG. 3) so that they can always see only one part of the lateral surface of the log 2. Depending on requirements, the detection means 5 may have any structure. In particular, according to what is also described below, the detection means 5 may be means for detecting by laser triangulation, by detecting the texture of the surface of the log 2, etc. Moreover, the control and processing means are operatively connected to the detection means 5 for controlling their activation, for receiving detection step results from them and for reconstructing the log 2 overall surface structure, according to the methods described below. The control and processing means are also operatively connected to the means 6 for making the log rotate, to control their operation.
  • In order to be able to detect the entire lateral surface of the log 2, the control and processing means are programmed to carry out the operating steps of the method forming the subject matter of the present invention described in detail below. However, very briefly, the control and processing means are programmed to detect the entire lateral surface of the log 2 in a plurality of steps one after another, during each of which only a portion of the surface is detected. However, each portion detected is detected in such a way that it is at least partly superposed on at least one other portion detected, or to be detected, so that the overall surface may be reconstructed by superposing the individual portions which were individually detected.
  • In a more complete embodiment, the apparatus 1 may comprise one or more detectors 14 which are positioned in such a way that they can detect one or both of the log 2 end surfaces, and operatively connected to the control and processing means for operating according to the methods indicated in detail below. However, to summarise, it may be said that in this case the control and processing means are programmed to activate the detectors 14 simultaneously with the detection means 5 at least for a plurality of lateral surface detection steps, so as to provide an overall detection step result consisting of the portion of lateral surface and one or both end surfaces. If this is done for all of the lateral surface detection steps, it is not necessary for the lateral portions detected to be partly superposed, since the end surfaces always are. Consequently, the reconstructions can be performed entirely or partly based on the information relating to the end surfaces.
  • Before examining the method according to this invention in detail, it must be emphasised that the present invention also relates to a log 2 cutting plant 9 comprising a band saw 10, a carriage 11 for supporting a log 2 to be cut and able to move between a first, pick up position where a log 2 can be loaded on the carriage, and a second, cutting position where the band saw 10 can cut a log 2 positioned on the carriage, and a line 12 for feeding logs 2 to be cut to the carriage 11 located in the pick up position. According to the present invention, the plant 9 also comprises an apparatus 1 for detecting the three-dimensional structure of the log 2 made according to what is described above and preferably positioned downstream of the feed line 12. In particular, the apparatus 1 may either be positioned between the feed line 12 and the carriage 11 to form a kind of loader for the carriage 11, or it may be mounted directly on the carriage 11 (or may even form the carriage 11 itself).
  • If the apparatus 1 is an integral part of a log cutting plant 9, there may also advantageously be means for positioning the log 2 in the optimum cutting position (not illustrated). Said means are controlled by the control and processing means and are designed to position the log 2 on the carriage 11 in the optimum cutting position decided in the meantime, according to known methods, by the control and processing means, after the log 2 has been completely detected. In particular, when the apparatus 1 is mounted directly on the carriage 11, or coincides with it, the apparatus also forms the positioning means. In contrast, when the apparatus 1 is located directly upstream of the carriage, the positioning means may be either devices able to transfer the log 2 from the apparatus 1 to the carriage 11 with a predetermined rigid motion (such as a robot), or, more simply means for applying on the log 2 a visual positioning reference (such as a diametral line on an end face of the log 2). In the latter case, correct log cutting positioning is determined by the operator who rotates the log 2 to align the visual reference relative to a predetermined orientation (for example vertical).
  • The method according to the present invention generally comprises firstly the operating step of making the log 2 rotate about two or more axes of rotation which are substantially parallel with the log main direction of extension D. In practice, that depends, as already indicated, on the methods used to carry out the step (for example, depending on the structure and operation of the apparatus 1 supporting means 3 as described above).
  • Secondly, during said rotation, the method involves detecting the relative surface structure of the log 2 at least at one lateral surface portion 13. The term “relative” surface structure refers to a reference system outside the log 2 (in practice usually integral with the detection means 5).
  • It should be noticed that if two reference systems are assigned, the first Y to the detection means 5 and the second X to the log 2, after log 2 rotation the first reference system Y integral with it may, relative to the second system Y, be subject to not just a rotation, but also a series of translations, for example after the irregularity of its surface which gradually rests on the supporting means 3 described above.
  • Also, according to a first embodiment of this invention the detection step is repeated a plurality of times, thus detecting at least once the relative surface structure of substantially all of the points of the lateral surface of the log 2, and, at the same time, so that, at the end of all of the repetitions, each surface portion 13 detected shares at least several points with at least one other surface portion 13 detected. It should be noticed that the term surface portion 13 refers to a set of real points of the surface of the log 2, whilst the term relative surface structure refers to detection of the surface trend of a predetermined surface portion 13.
  • The final basic step of the method disclosed involves combining the relative surface structures detected to reconstruct an overall surface structure for the log 2, and in particular combining them so that the points shared by the various relative surface structures are made to coincide with each other.
  • In the preferred embodiment of the method according to the invention, the detection steps are repeated in such a way that during each detection step points of the lateral surface of the log 2 are detected which are adjacent to those detected during the previous detection step. In this way, the entire lateral surface of the log 2 can be detected during a single log 2 rotation over itself.
  • Any methods may be used for carrying out the detection steps and they are not described in detail here, being of the known type. However, in the preferred embodiments, the detection steps are generally carried out by projecting a beam of light (preferably laser) on the surface of the log 2 and practically instantly detecting the surface structure of the illuminated zone using the triangulation technique. In contrast, in other embodiments, detection is carried out by detecting the log 2 surface texture (that is to say, its outer appearance). It is known that the three-dimensional appearance of an irregular object can be reconstructed according to how the appearance of the same zone of the surface of the object varies with variations in the reciprocal positioning between the point of observation (detection) and the zone of the surface detected. In other embodiments, the log surface can also be detected using the “time of flight” technique, in which the position of the surface points is obtained by measuring the time taken by a light pulse to reach the log and return to a detection sensor (this technique is of the known type and therefore not described in detail). Advantageously, to check the entire surface of the log rotary mirrors may be used, combined with interferometric techniques.
  • FIGS. 6 to 10 show five possible embodiments for each detection step (with reference to the positioning of FIG. 3, FIGS. 6 to 11 show a top view of the log 2) according to the first embodiment of the method disclosed, described here.
  • In general, each portion 13 detected consists of the set of linear intersections between the surface of the log 2 and a plurality of separate planes incident on it (in the accompanying drawings all of the planes are perpendicular to the drawing plane, but in general they could also be at an angle to it). In particular, in the case of FIGS. 6 and 7 the separate planes are parallel with each other and, respectively, substantially parallel with the log 2 main direction of extension D, and at an angle to it. Whilst in the former case each point of each portion 13 is detected a number of times equal to the number of parallel planes (four in FIG. 6), in the latter case the distance between the different planes and the relative angle relative to the axis of the log 2 must be such that for each intersection at least several points can be detected during a subsequent detection step. In FIG. 7 that situation is shown by the dashed line which shows how each point at it is detected during three separate detection steps.
  • In contrast, in the case in FIG. 8, the portion 13 of the lateral surface of the log 2 detected consists of the linear intersection between the surface and a second plurality of separate planes which are at an angle both to the surface and to each other. The second plurality of planes may be divided into a first group and a second group of parallel planes, the planes of the first group being at an angle to the planes of the second group. In this way the portion 13 detected forms a grid and all of the surface points are detected more than once. In the case in FIG. 9, the detection planes are positioned side by side so that each surface portion 13 is a longitudinal band of the log 2 surface.
  • Finally, in the case in FIG. 10, the portion 13 of the log 2 lateral surface detected consists of the linear intersection between the surface itself and one or more first planes substantially parallel with the main direction of extension (D) of the log (2) (or at least positioned in such a way that they cover the entire length of the log) and one or more second planes substantially perpendicular to the main direction of extension (D) of the log (2). In this way, each second plane always covers the same log circumference and, with each detection step, half of its is acquired, which can easily be superposed on the half detected during the next acquisition, from which it differs only by several points.
  • Returning to the step of making the log 2 rotate, it should also be noticed that this is preferably carried out with a substantially constant speed and in such a way that after a complete rotation the log 2 is substantially in the starting absolute position in space. As indicated, this may advantageously be achieved by supporting the log 2 using means 6 for making it rotate, such as those illustrated in FIGS. 3 and 4.
  • Moreover, advantageously, all of the detection steps are carried out by observing the log 2 from the same absolute position relative to the means 6 for making it rotate.
  • Finally, the step of combining the relative surface structures may be implemented by taking the results of one detection step as the starting point and referring all of the others to it. In particular, once the starting relative structure has been set (and therefore the corresponding starting surface portion 13), it is possible to superpose on it the other relative structures corresponding to the surface portions 13 sharing points with the starting surface portion 13, making the shared points coincide. In other words, a first reference system integral with the starting relative surface structure is set and the coordinates of all of the other relative surface structures are transformed into coordinates belonging to said first reference system. Experts in the field will not have any difficulty determining the transformation formulas to be applied by means of a comparison of the various relative surface structures detected.
  • In a more complex embodiment, the method according to the present invention may also comprise an additional operating step of observing at least one end face of the log 2, as illustrated in FIGS. 4 and 11 (where the face is observed by a suitable detector 14).
  • Advantageously, the end surface detection steps are associated with at least several of the relative surface structure detection steps. Preferably, the method disclosed may involve, simultaneously with at least a plurality of log 2 relative surface structure detection steps (advantageously all of them), the operating step of detecting at least one log end surface (preferably both). Advantageously, to detect the end surfaces the technique linked to the texture described above is preferably used.
  • Since the appearance of the end surface is usually well defined, knowledge of it simplifies reconstruction of the log 1 overall lateral surface.
  • According to the method of implementation described here, the step of combining relative surface structures is also carried out based on a comparison of the end surfaces that were detected at all or several of the relative surface structures. This is because a comparison of the different orientations in space detected for the same end surface allows one to infer the movement performed by the log even between the two steps for detecting the corresponding relative surface structures.
  • In particular, since the whole of the end surface is advantageously detected, a comparison between two subsequent detection step results reveals both the rotation to which the end surface was subjected and any translation of the end surface transversally to the axis of rotation. This addition to the first embodiment is particularly advantageous in the case of lateral surfaces which are too regular and which therefore do not provide sufficient references for correctly superposing the various detection step results, or, in the opposite case of surfaces that are too ragged and irregular and so produce a lot of “noise” in the detection step results. The second preferred embodiment of the method according to this invention differs from the first embodiment described above only in the fact that one or both of the end surfaces is detected for each relative surface structure detection step, and the fact that there is no need for each relative surface structure (referred to the log 2 lateral surface) to share parts with the others. The detection step is in fact repeated in such a way that at least several points are shared by the results of two detection steps of one or both end surfaces of the log which have been carried out simultaneously with two corresponding detection steps for the relative surface structures. The reconstruction is performed exclusively based on superposing the end surfaces gradually detected.
  • However, preferably, for a more accurate assessment of the log 2, it is preferable to observe both end surfaces, since the combination of their movements allows five of the six degrees of freedom of the log to be described. The only degree of freedom which cannot be obtained is the log movement along its main axis of extension (that is to say, perpendicularly to the end surfaces).
  • However, that information can be obtained by means of the detection steps on the lateral surface, by assessing where the log 2 ends. But in general, log movements in this direction are relatively rare.
  • The present invention brings important advantages. First, the method and the apparatus for detecting the three-dimensional structure of a log according to the present invention may be used in lines in which the log is fed positioned perpendicularly to its own direction of extension.
  • Secondly, they also allow the use of a single detection device for detecting the entire lateral surface of the log, during of a single rotation of the log.
  • Also, the present invention may be inserted in log cutting plants which use a band saw, in particular between the log feed line and the cutting carriage.
  • It should also be noticed that the present invention is relatively easy to produce and even the cost linked to implementation of the invention is not very high.
  • The invention described above may be modified and adapted in several ways without thereby departing from the scope of the inventive concept.
  • All details of the invention may be substituted by other technically equivalent elements and, in practice, all of the materials used, as well as the shapes and dimensions of the various components, may vary according to requirements.

Claims (18)

1-15. (canceled)
16. An apparatus for detecting the three-dimensional structure of a log comprising:
supporting means (3) forming a holder (4) for a log (2);
means (5) for detecting the log (2) lateral surface structure which during operation are pointing towards a log (2) placed on the holder (4); and
control and processing means operatively connected to the detection means (5) for receiving detection step results from them and for reconstructing the log (2) overall surface structure;
the apparatus being characterised in that the detection means (5) are positioned only on one side of the log (2) placed on the holder (4) and in that it also comprises means (6) for making the log (2) rotate about one or more axes of rotation which are substantially parallel with the log (2) main direction of extension (D).
17. The apparatus according to claim 16, characterised in that the supporting means (3) also form the means (6) for making the log rotate.
18. The apparatus according to claim 16, characterised in that the control and processing means are programmed to implement a method for detecting the three-dimensional structure of a log, comprising the operating steps of:
making the log (2) rotate;
during said rotation, detecting the relative surface structure of the log (2) at least at one lateral surface portion (13) using detection means (5);
repeating the detection step a plurality of times, thus detecting at least once the relative surface structure of substantially all of the points at least of the lateral surface of the log (2); and,
combining the relative surface structures detected to reconstruct an overall surface structure at least for the lateral surface the log (2);
the method being characterised in that the lop (2) is made to rotate about two or more axes of rotation which are substantially parallel with its main direction of extension (D);
the step of rotating the log (2) is carried out by resting the lateral surface of the log (2) on means (6) for making the log rotate, so that the instantaneous axis of rotation varies depending on the portion of the section of the log (2) resting on the means (6) for making it rotate, in such a way that after log (2) rotation a first reference system integral with it may, relative to the second reference system integral with the detection means (5), be subject to both a rotation and translations due to the irregularity of its surface which rests on the means (6) for making it rotate;
the detection step being repeated in such a way that each surface portion (13) detected shares several points with at least one other surface portion (13) detected, and/or in such a way that at least several points are shared by the results of two detection steps of one or both end surfaces of the log which may have been carried out simultaneously with two corresponding detection steps for the relative surface structures;
and also being characterised in that the step of combining the relative surface structures is carried out in such a way that the points shared by the various relative surface structures and/or the various detection step results of the end surfaces are made to coincide.
19. The apparatus according to claim 18, characterised in that the method comprises the operating step of also detecting at least one log end surface simultaneously with each of the steps for detecting the log (2) relative surface structure at least at one lateral surface portion (13), the step of combining the relative surface structures also or only being carried out based on a comparison between the end surfaces gradually detected.
20. The apparatus according to claim 16, characterised in that the supporting means (3) comprise at least one pair of motor-driven supporting chains (7) which are set at an angle at the two sides of the holder (4).
21. The apparatus according to claim 20, characterised in that it comprises a plurality of pairs of supporting chains (7) distributed along the holder (4).
22. The apparatus according to claim 21, characterised in that the pairs of supporting chains (7) form V-shaped supports.
23. The apparatus according to claim 16, characterised in that it also comprises one or more detectors (14) for detecting at least one end surface of the log (2), said detectors being operatively connected to the control and processing means for performing the detection simultaneously with the detection means (5).
24. A log cutting plant comprising:
a band saw (10);
a carriage (11) for supporting a log (2) to be cut and able to move between a first, pick up position where a log (2) can be loaded on the carriage, and a second, cutting position where the band saw (10) can cut a log (2) positioned on the carriage; and
a line (12) for feeding logs (2) to be cut to the carriage (11) located in the pick up position;
an apparatus (1) according to claim 16 for detecting the three-dimensional structure of a log (2) to be cut,
positioned downstream of the feed line (12).
25. The plant according to claim 24, characterised in that the apparatus (1) is positioned between the feed line (12) and the carriage (11).
26. The plant according to claim 24, characterised in that the apparatus (1) is mounted on the carriage (11).
27. The plant according to claim 24, characterised in that it also comprises means for positioning the log (2) in the optimum cutting position, the positioning means being operatively connected to the apparatus (1) and to the carriage (11).
28. The apparatus according to claim 16, characterised in that the supporting means (3) comprise at least one motor-driven supporting chain (7) at a side of the holder (4).
29. The apparatus according to claim 28, characterised in that it comprises a plurality of supporting chains (7) distributed along the holder (4).
30. The apparatus according to claim 16, characterised in that the control and processing means are operatively connected to the detection means (5) also for controlling their activation.
31. The apparatus according to claim 16, characterised in that the control and processing means are also operatively connected to the means (6) for making the log rotate, controlling their operation.
32. The plant according to claim 27, characterised in that the apparatus also forms the positioning means.
US14/606,109 2009-06-11 2015-01-27 Apparatus for detecting the three-dimensional structure of a log Abandoned US20150136277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/606,109 US20150136277A1 (en) 2009-06-11 2015-01-27 Apparatus for detecting the three-dimensional structure of a log

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP09425228 2009-06-11
EP09425228.5 2009-06-11
EP10153383.4 2010-02-11
EP10153383.4A EP2261597B1 (en) 2009-06-11 2010-02-11 Method and apparatus for detecting the three-dimensional structure of a log
US12/796,095 US8973626B2 (en) 2009-06-11 2010-06-08 Method and apparatus for detecting the three-dimensional structure of a log
US14/606,109 US20150136277A1 (en) 2009-06-11 2015-01-27 Apparatus for detecting the three-dimensional structure of a log

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/796,095 Division US8973626B2 (en) 2009-06-11 2010-06-08 Method and apparatus for detecting the three-dimensional structure of a log

Publications (1)

Publication Number Publication Date
US20150136277A1 true US20150136277A1 (en) 2015-05-21

Family

ID=41210417

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/796,095 Active 2032-05-14 US8973626B2 (en) 2009-06-11 2010-06-08 Method and apparatus for detecting the three-dimensional structure of a log
US14/606,109 Abandoned US20150136277A1 (en) 2009-06-11 2015-01-27 Apparatus for detecting the three-dimensional structure of a log

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/796,095 Active 2032-05-14 US8973626B2 (en) 2009-06-11 2010-06-08 Method and apparatus for detecting the three-dimensional structure of a log

Country Status (3)

Country Link
US (2) US8973626B2 (en)
EP (1) EP2261597B1 (en)
CA (1) CA2705885C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012003653B4 (en) * 2012-02-10 2016-07-28 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Harvester unit for a harvester and harvester
ES2683364T3 (en) * 2012-11-07 2018-09-26 Artec Europe S.A.R.L. Method to monitor linear dimensions of three-dimensional objects
WO2015008820A1 (en) * 2013-07-19 2015-01-22 株式会社ニコン Shape measurement device, structural object production system, shape measurement method, structural object production method, shape measurement program, and recording medium
DE102022207178A1 (en) 2022-07-14 2024-01-25 alpiscan srls Method, device and computer program product for detecting unevenness in a tree trunk and system for processing tree trunks

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE325522B (en) * 1964-07-28 1970-06-29 Mo Och Domsjoe Ab
US3513321A (en) * 1967-08-03 1970-05-19 Weyerhaeuser Co Log tally system with minimum diameter measuring means
US4294149A (en) * 1977-12-01 1981-10-13 Saab-Scania Ab Apparatus for measuring and orienting logs for sawing
US5257101A (en) * 1992-06-01 1993-10-26 Board Of Regents Of The University Of Ok Apparatus and method for selecting a log orientation and pattern for sawing
US5421385A (en) * 1993-10-29 1995-06-06 The Coe Manufacturing Company Method and apparatus for processing log for sawmill including end dogging carriage which rotationally repositions log to cutting position determined by computer after non-rotational scanning
US5538056A (en) * 1994-12-16 1996-07-23 Beloit Technologies, Inc. Log conditioning before mechanical debarking
US6858826B2 (en) * 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
US6628819B1 (en) * 1998-10-09 2003-09-30 Ricoh Company, Ltd. Estimation of 3-dimensional shape from image sequence
US7046838B1 (en) * 1999-03-30 2006-05-16 Minolta Co., Ltd. Three-dimensional data input method and apparatus
DE60310226T2 (en) * 2002-06-12 2007-10-04 Spatial Integrated Systems, Inc. METHOD FOR LINEAR ROOM SENSING AND DEVICE FOR GENERATING A NUMERICAL 3D MODEL
RU2435661C2 (en) * 2006-08-30 2011-12-10 Юснр/Кокамс Канкар Компани Scanner system of loading device
ITVR20070019A1 (en) * 2007-02-02 2008-08-03 Microtec Srl PROCEDURE FOR DETECTING THE THREE-DIMENSIONAL STRUCTURE OF AN OBJECT AND EQUIPMENT TO IMPLEMENT THIS PROCEDURE

Also Published As

Publication number Publication date
CA2705885C (en) 2017-04-25
CA2705885A1 (en) 2010-12-11
EP2261597A1 (en) 2010-12-15
US8973626B2 (en) 2015-03-10
US20100314002A1 (en) 2010-12-16
EP2261597B1 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US20150136277A1 (en) Apparatus for detecting the three-dimensional structure of a log
FI91677C (en) System for analyzing a body
CN102077052B (en) Vision system for scan planning of ultrasonic inspection
CN107615008A (en) The inspection method and device of bent axle
KR101158134B1 (en) Optical inspection for container lean
JPH01188302A (en) Lumbering optimizing device and method of confirming wood node section
JPH11509004A (en) Real-time online analysis of organic and inorganic compounds in foods, fertilizers and pharmaceutical products
JP2010513927A5 (en)
CN106767418B (en) Large-scale revolving body shape scanning and measuring device and method
CN103760180A (en) X-ray source array based real-time online industrial CT (computed tomography) detecting system
JPH0269172A (en) Method for inspecting cigarette
US20110274239A1 (en) Method for scanning the internal quality of logs
JPH11503827A (en) Opto-electronic metrology device for inspection of linear dimensions
EP2261643B1 (en) Method for grading food products able to roll on their outer surface, such as certain fruits and vegetables
CN103983650B (en) Multiple degrees of freedom, multi-angle rotary device
US8218722B2 (en) Method for scanning the internal quality of wooden elements having a main direction of extension, such as logs or planks
CA2821773C (en) Method for generating a 3d representation of an object
CN203720109U (en) Real-time online industrial CT (Computed Tomography) detection system based on X-ray source array
US20050223809A1 (en) Apparatus and methods for automated turbine component inspections
EP2769176B1 (en) Optical device and method for measuring a complexly formed object
US11215448B2 (en) Measuring device and measuring method for a grooved axially symmetric body
Lopez-Hawa et al. Automated scanning techniques using UR5
US11525789B2 (en) Apparatus and method for performing a computed tomography scan of an object which has an elongate shape, in particular wooden boards
JPH01299447A (en) Detecting method of defect in log
US20230040571A1 (en) Method and device for determining an angular orientation of a log

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION