US20150129495A1 - Low energy reverse osmosis process - Google Patents
Low energy reverse osmosis process Download PDFInfo
- Publication number
- US20150129495A1 US20150129495A1 US14/601,788 US201514601788A US2015129495A1 US 20150129495 A1 US20150129495 A1 US 20150129495A1 US 201514601788 A US201514601788 A US 201514601788A US 2015129495 A1 US2015129495 A1 US 2015129495A1
- Authority
- US
- United States
- Prior art keywords
- water
- reverse osmosis
- cleaning
- membrane
- removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 79
- 230000008569 process Effects 0.000 title abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 85
- 239000012528 membrane Substances 0.000 claims abstract description 75
- 238000004140 cleaning Methods 0.000 claims abstract description 60
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 53
- 230000004907 flux Effects 0.000 claims abstract description 43
- 238000005265 energy consumption Methods 0.000 claims description 35
- 239000012466 permeate Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 21
- 241000894006 Bacteria Species 0.000 claims description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 12
- 229910052801 chlorine Inorganic materials 0.000 claims description 12
- 239000000460 chlorine Substances 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 241000700605 Viruses Species 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 238000005342 ion exchange Methods 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims 4
- 238000000746 purification Methods 0.000 claims 2
- 230000007423 decrease Effects 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 230000001172 regenerating effect Effects 0.000 claims 1
- 239000013535 sea water Substances 0.000 abstract description 12
- 239000002243 precursor Substances 0.000 abstract 1
- 230000003204 osmotic effect Effects 0.000 description 18
- 238000013461 design Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000005660 chlorination reaction Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 230000002459 sustained effect Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 235000015097 nutrients Nutrition 0.000 description 6
- 239000002352 surface water Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000032770 biofilm formation Effects 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 5
- 238000009300 dissolved air flotation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- PQVHMOLNSYFXIJ-UHFFFAOYSA-N 4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]pyrazole-3-carboxylic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(N1CC2=C(CC1)NN=N2)=O)C(=O)O PQVHMOLNSYFXIJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/04—Backflushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/06—Use of osmotic pressure, e.g. direct osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/14—Use of concentrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/22—Electrical effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/24—Treatment of water, waste water, or sewage by flotation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/20—Total organic carbon [TOC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/14—Maintenance of water treatment installations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/20—Prevention of biofouling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Definitions
- Embodiments of the invention relate to methods, systems, and processes for desalination using reverse osmosis.
- SWRO seawater reverse osmosis
- membranes should be kept in clean condition with minimum differential pressure across membranes. As the differential pressure increases it becomes difficult to clean the membranes and regain the original performance when the membrane was in its clean condition. It is also known that with higher differential pressure, permeate quality deteriorates. Beyond a point, cleaning conditions become much more aggressive and cleaning chemicals must be used for a longer time to reestablish clean membrane performance. As a matter of fact, some part of the fouling becomes irreversible and permanent. Many chemical cleanings are not practical to perform under aggressive conditions because membranes lose performance. Moreover disposal of cleaning chemicals need elaborate treatment and neutralization, which consumes additional chemicals.
- FIG. 1 shows a block flow diagram of a low energy SWRO process of one embodiment of the invention.
- FIG. 2 shows a comparative graph of RO unit pressure drop performance under various conditions with and without additional pretreatment and osmotic cleaning.
- FIG. 3 shows an RO Unit performance graph when operated with ultrafiltration (“UF”) only.
- FIG. 4 shows an RO Unit performance graph when operated with UF and a biofoulant removal unit.
- FIG. 5 shows RO Unit Performance with a new RO membrane with an embodiment of the devised process and osmotic cleaning.
- FIG. 6 shows a graph of flux vs. feed pressure.
- FIG. 7 shows a graph of flux vs. power.
- FIG. 8 shows RO feed water temperature vs. feed pressure.
- FIG. 9 shows RO feed water temperature vs. permeate total dissolved solids.
- Typical embodiments include an ultrafiltration pretreatment step.
- Ultrafiltration membranes may give more than 6 log reduction of bacteria and 1-2 log reduction of virus load when used to treat typical seawater or brackish water.
- the ultrafiltration membrane will have a molecular weight cutoff of approximately 100,000 and a membrane pore size less than 0.1 micron. More preferably the membrane pore size is between 0.02 and 0.05 micron.
- the ultrafiltration permeate provides a silt density index (“SDI”) of less than 3, and very often between 1-2.
- UF is able to remove majority of the colloidal particles, which are positively charged in nature. It also removes some biofoulants, but it is not able to remove all contaminants that may cause biofouling on membranes.
- the UF should receive water of turbidity around 5-8 Nephelometric Turbidity Units (“NTU”), preferably 6-7 NTU.
- NTU Nephelometric Turbidity Units
- Optional treatment of water upstream of UF may be designed to achieve these parameters. This may be accomplished by one of skill in the art with the benefit of this disclosure and based on water analysis and site conditions. This level of inlet turbidity will deliver a product quality of UF permeate to around 0.06-0.08 NTU and SDI values of less than 3. If the UF performance is not calibrated, there will be excessive load on the downstream system, and it will not perform at a preferred level. Use of feed water at this level of turbidity also ensures the downstream system is not going to experience any colloidal load of positively charged particles which would soak up capacity that should be made available to remove leftover charged biofoulants.
- biofoulant removal step removes a majority of nutrients that are potential biofilm formers. This includes, for example, humic acids, polysaccharides, proteins, amino acids, carbohydrates, bacteria, viruses, and other potential bio film formers.
- ultra-filtration membranes provide the filtered water properties mentioned above, UF does not reduce all types of TOC. Since the pre-filtered water goes through the ultrafiltration membranes before going through the biofoulant removal filter, the biofoulant removal filter will deliver large quantities of treated water with much more reduced turbidities and SDI while removing a majority of biofilm formers relative to untreated or conventionally treated water.
- the biofoulant filter will further provide 6 log reduction of bacteria and 1-4 log reduction of virus. Therefore, the downstream water will be virtually disinfected without use of any chemicals, and will be without biofoulants to serve as nutrients for bacteria. This diminishes the chances of any biofilm formation on a membrane surface.
- the typical SDI value at the outlet of a biofoulant filter is less than 1 and typically close to 0.6-0.8.
- the process highlights the importance of treating biofoulants downstream of UF treatment, which is critical for eliminating or minimizing biofilm formation at reduced flux of RO.
- biofoulant or nutrient removal There are multiple options for biofoulant or nutrient removal. They operate under a wide range of TDS and provide TOC reduction of at least 40-60%, preferably at least 60-80%, most preferably at least 80%, on an overall basis, but remove the bulk of the negatively charged TOC. Suitable biofoulant or nutrient removal can be accomplished through, for example, ion exchange materials, positively charged media or electro-chemical or electrodes based methods. Cleaning, disinfection or regeneration improves the bio foulant media performance. This is done by chemical or electro chemical methods. This is an optional feature of this scheme. It should be herein that total organic carbon, or “TOC,” is used throughout this disclosure as a measure of biofoulants.
- TOC total organic carbon
- This is range of flux is around 6-8 GFD (gallons/square foot/day) for SWRO and could be around 10-12 for BWRO and 6-8 GFD, or, in some embodiments, 8-10 GFD for waste water RO. This is based on feed water quality, permeate quality requirement and temperature range. This is done through a low flux reverse osmosis (RO) process.
- the flux can be marginally increased for lower total dissolved solids (TDS) or low fouling waters. For example, it might be increased by 5-10% more than what is stated above.
- a flux of less than 6-8 may be used for SWRO, typically but below this flux there could deterioration in permeate quality and also does not provide any energy savings.
- this level of 6-8 GFD flux there is reduction in the concentration of bacteria and nutrients over the membrane surface and this reduces the buildup of differential pressure to minimum.
- operating pressures reduce significantly. For example, operating pressure may be reduced by about 10-20%. So this flux was determined to be the best for SWRO for providing the low energy service with minimum bio fouling. Similarly lower level fluxes were determined for other sources of water also.
- the operation at reduced flux is not merely an example of optimization of flux to reduce energy consumption.
- the reduced flux was unexpectedly determined to lead to a reduced energy consumption on a sustained basis by virtue of the inclusion of the ultrafiltration and biofoulant removal filter. This process of low flux works at minimum energy consumption on a sustained basis in combination with ultrafiltration and biofoulant filtration in combination.
- any biofilm is dislodged from the membrane surface.
- the plant has been designed at lower flux and also the feed water has been filtered through UF and passed through a biofilm filter or device, the buildup of any biofilm pressure drop is reduced and can be easily cleaned through this cleaning.
- This process should be controlled through regulated flows and concentration on both feed and permeate side using plant produced reject and permeate water.
- the permeate flow under these conditions is purely a function of concentration gradient and pressure drop built in the membranes due to fouling, but feed side flow is maintained by circulation of brine at a minimum flow which can overcome dilution due to permeate entry and also maintain dynamic conditions in the feed side. Therefore it possible to maintain clean membrane pressure drop conditions by using this cleaning technique and prevent any increase in feed pressure or membrane differential pressure.
- the loose debris can be then flushed out into the reject by at higher velocity pretreated Seawater rinsing.
- This cleaning methodology is based on a concept that biofilm formation should be removed as fast as it is formed or prevented from building up. This can be achieved by shorter cleaning cycles, typically of 10-15 minutes each on a manual mode, done frequently or based on predetermined differential pressure increases over start up conditions or measurement of biofilm formation by biofilm sensors upstream of the reverse osmosis membranes. Normally the differential pressure builds up at from 0.1 kg/cm 2 per day to 0.3 kg/cm 2 a day over 24 hours operation depending on site conditions and plant design. This process will typically not allow any buildup of differential pressure and the membrane will operate at clean membrane conditions.
- This cleaning process is not very effective when carried out on a delayed basis at a higher differential pressure, or it may require frequent stoppages if the pretreatment has not been done to remove all bio fouling contaminants.
- This cleaning process can be practically and successfully employed only because the biofouling ability of water is virtually minimized in the pretreatment mentioned above. Therefore, any residual foulants can cause only minimum fouling, and their rate of buildup is insignificant and at this level.
- Osmotic cleaning process is very effective and virtually can keep the membranes clean.
- This process has a further advantage that it does not require use of any cleaning chemicals on a daily basis, but instead uses brine generated in the reject of SWRO or BWRO plants.
- a chemical cleaning option can be exercised to handle any upset conditions, but typically is used very infrequently.
- the option of adjusting brine concentration can be exercised to control the effectiveness of cleaning process.
- One more advantage of this process is the water consumption in cleaning is minimum. The quantity of water consumption is approximately 0.2-2.0 litres/m 2 of membrane area.
- Osmotic gradient may be, for example, 40 to 180. Osmotic gradient is defined as the ratio of the RO reject and permeate TDS.
- the combination of steps mentioned above will ensure that design conditions of low power consumption will remain and the system will deliver sustained power efficiency and water production on a continuous basis.
- the overall process combines membrane process design for low energy and low fouling with pretreatment and cleaning processes which will mitigate fouling at the first place and further clean any fouling before it builds up without using any chemicals.
- pretreatment and cleaning processes which will mitigate fouling at the first place and further clean any fouling before it builds up without using any chemicals.
- the flow scheme shown in FIG. 1 includes a preconditioning of seawater after it is received through the intake system through an intake pump.
- a clarifier or DAF unit is installed to remove suspended solids.
- UF membranes are backwashed by the UF permeate water through a backwash pump.
- the frequency of backwash can be 10-20 minutes. Chlorine and caustic soda may be used infrequently to provide chemically enhanced backwash.
- the backwash outlet is taken to the clarifier or DAF, or directly to waste water based on the plant configuration.
- the UF permeate is taken to a biofoulant removal filter after dechlorination.
- This filter feeds into the suction of a high-pressure pump, which further feeds into a low flux RO membrane unit.
- the RO permeate is taken into a permeate tank that always maintains a minimum level to provide low TDS water for cleaning requirements, and additional water is pumped for beneficial use.
- the reject from RO is taken through an energy recovery device. For example, a pressure exchanger may be used.
- the energy is transferred to water coming out of a biofoulants removal filter. After energy recovery the reject is discharged into waste after retaining a certain level of water in a clean in place tank, or “CIP” tank for the purpose of cleaning.
- This configuration generates permeate water as needed at very low energy depending on the seawater TDS and temperature conditions.
- the sustainability of low energy is possible because of level of pretreatment through UF and biofoulant removal filters and cleaning methodology ensures that differential pressure does not build up by removal of any bio film or scaling build up on a frequent basis. Chemical consumption in pretreatment as well as later use of cleaning chemical is eliminated or minimized.
- ZLD processes typically have thermal evaporators downstream of the reverse osmosis unit. These will benefit from the low energy consumption and sustained plant operation without loss of water production. These factors help lead to reliable operation in a ZLD system.
- RO reverse osmosis
- FIG. 2 shows comparative behavior of pressure drop increase under different conditions. Based on this data it is very clear that with the devised process, one can achieve sustained plant operation at lower energies.
- ultrafiltration membranes and biofoulant removal filters were obtained from Qua Group.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Patent Application No. 61/636,930, filed on Apr. 23, 2012, and incorporated by reference herein.
- 1. Field of the Invention
- Embodiments of the invention relate to methods, systems, and processes for desalination using reverse osmosis.
- 2. Background of the Related Art
- Water desalination is growing to meet industrial and drinking water demand worldwide. Although both thermal desalination (multi effect distillation or “MED”, and multi stage flash evaporation or “MSF”) and membrane based seawater reverse osmosis (“SWRO”) processes are used in these plants, SWRO has grown predominantly over the last 15-20 years. SWRO has become very cost effective and efficient in terms of energy consumption as compared to where the technology was few years ago.
- In conjunction with the ascendance of SWRO, there have been several developments related to low energy membranes and energy recovery devices designed to reduce energy consumption. At the same time, energy costs have been increasing more steeply, and there is a continuous need for reduced energy consumption in SWRO plants to offset the energy costs and maintain cost of water. This challenge is mostly experienced with seawater plants due to higher energy consumption, but there has been elevated attention on brackish water plants as well, due to significant increases in energy costs. These energy costs are further exacerbated by escalation of energy costs due to fouling problems during plant operation.
- One challenge with plant management is that once the plant has been designed for some energy consumption, the plant's energy consumption does not remain steady and consistent once the water production starts. This may be due to several reasons, but predominantly it is because of fouling, scaling or membrane compaction. Out of these three, scaling may be the biggest contributor to energy consumption in brackish water, but fouling is the biggest cause of energy consumption in seawater and surface water-based RO plants. Moreover, due to heavy emphasis on recycling and reuse of water, it has become typical to design RO brackish water plants at as high as 97-98% recovery, which makes the fouling and scaling problems much more challenging. Sometimes the water itself may not be scaling but due to initiation that has already happened due to some other reasons scaling salts may start precipitating.
- Another serious problem that RO plants encounter is bio-fouling, which reduces productivity of water, increases the differential pressure and increases power consumption. This problem is compounded in plants where there are open intakes and where water temperature increases during summer. Chlorine treatment makes this worse due to formation of oxidized products, which provide potent feed for the residual bacteria right on the membrane surface where they are rejected along with the bacteria after the de-chlorination process. Chlorination typically cannot be considered as a sustainable process option to control bio fouling, because the balance bacteria left after chlorination multiply much faster after de-chlorination with the potent nutrients as food for bacteria. Therefore it is not prudent to depend on chlorination to control bio-fouling on membranes. Moreover chlorinated organic products may be undesirable due to formation of carcinogens. Alternative techniques to control, minimize or eliminate bio-fouling are of significant interest.
- Other chemical approaches like biocide treatment have found limited success and are too expensive. There have been several approaches which plants have adopted by optimizing chlorination and de-chlorination dosing, their locations and frequency including shock chlorination in the pretreatment section. These approaches have improved productivity and reduced the magnitude of this problem but have not provided a sustainable solution for plant productivity and power consumption efficiency. So there is a need to improve bio-fouling performance of SWRO and surface water and recycle reuse RO plants. Bio-fouling increases the power consumption so a low energy membrane design cannot work alone without a comprehensive approach on bio fouling control.
- In an effort to maintain healthy operational efficiency in terms of water production and energy consumption, membranes should be kept in clean condition with minimum differential pressure across membranes. As the differential pressure increases it becomes difficult to clean the membranes and regain the original performance when the membrane was in its clean condition. It is also known that with higher differential pressure, permeate quality deteriorates. Beyond a point, cleaning conditions become much more aggressive and cleaning chemicals must be used for a longer time to reestablish clean membrane performance. As a matter of fact, some part of the fouling becomes irreversible and permanent. Many chemical cleanings are not practical to perform under aggressive conditions because membranes lose performance. Moreover disposal of cleaning chemicals need elaborate treatment and neutralization, which consumes additional chemicals.
- We present a novel RO desalination process that focuses on achieving low energy consumption, at least in part by reducing biofouling on the membrane through process design, and integrating a cleaning methodology that prevents buildup of any residual biofilm on the membrane surface. To achieve sustainable lower energy consumption it is important to ensure the membranes do not foul and the differential pressure does not increase. A cleaning methodology should be available to clean membranes in a very initial phase of bio-fouling formation, before it impacts differential pressure, and before any fouling becomes permanent and starts impacting plant performance in terms of water production, power consumption and product quality.
- Our process offers a number of advantages. Where typical processes encounter substantial biofouling when flux is reduced, our combination of ultrafiltration and biofoulant removers at low flux operation reduces both the amount and severity of biofouling and energy consumption. The combination of these features provides a unique low energy and low fouling process. Further, by decreasing the severity of the biofouling, we are able to provide an effective low-pressure differential osmotic cleaning mechanism that is low-cost, low-chemical, and effective, and that makes sure sustained low energy operation can be continued.
- FIG. 1 shows a block flow diagram of a low energy SWRO process of one embodiment of the invention.
-
FIG. 2 shows a comparative graph of RO unit pressure drop performance under various conditions with and without additional pretreatment and osmotic cleaning. -
FIG. 3 shows an RO Unit performance graph when operated with ultrafiltration (“UF”) only. -
FIG. 4 shows an RO Unit performance graph when operated with UF and a biofoulant removal unit. -
FIG. 5 shows RO Unit Performance with a new RO membrane with an embodiment of the devised process and osmotic cleaning. -
FIG. 6 shows a graph of flux vs. feed pressure. -
FIG. 7 shows a graph of flux vs. power. -
FIG. 8 shows RO feed water temperature vs. feed pressure. -
FIG. 9 shows RO feed water temperature vs. permeate total dissolved solids. - We present a novel RO desalination process that focuses on achieving low energy consumption by reducing biofouling by design on the membrane surface and integrating a cleaning methodology that prevents buildup of any residual biofilm on the membrane surface. This is made possible by the following an innovative process approach that may include one or more of the following aspects.
- Ultrafiltration.
- Typical embodiments include an ultrafiltration pretreatment step. Ultrafiltration membranes may give more than 6 log reduction of bacteria and 1-2 log reduction of virus load when used to treat typical seawater or brackish water.
- In a preferred embodiment the ultrafiltration membrane will have a molecular weight cutoff of approximately 100,000 and a membrane pore size less than 0.1 micron. More preferably the membrane pore size is between 0.02 and 0.05 micron. The ultrafiltration permeate provides a silt density index (“SDI”) of less than 3, and very often between 1-2.
- UF is able to remove majority of the colloidal particles, which are positively charged in nature. It also removes some biofoulants, but it is not able to remove all contaminants that may cause biofouling on membranes.
- To calibrate the performance of UF, the UF should receive water of turbidity around 5-8 Nephelometric Turbidity Units (“NTU”), preferably 6-7 NTU. Optional treatment of water upstream of UF may be designed to achieve these parameters. This may be accomplished by one of skill in the art with the benefit of this disclosure and based on water analysis and site conditions. This level of inlet turbidity will deliver a product quality of UF permeate to around 0.06-0.08 NTU and SDI values of less than 3. If the UF performance is not calibrated, there will be excessive load on the downstream system, and it will not perform at a preferred level. Use of feed water at this level of turbidity also ensures the downstream system is not going to experience any colloidal load of positively charged particles which would soak up capacity that should be made available to remove leftover charged biofoulants.
- Biofoulant Removal.
- Further treatment happens through a biofoulant removal step. This step removes a majority of nutrients that are potential biofilm formers. This includes, for example, humic acids, polysaccharides, proteins, amino acids, carbohydrates, bacteria, viruses, and other potential bio film formers. Although ultra-filtration membranes provide the filtered water properties mentioned above, UF does not reduce all types of TOC. Since the pre-filtered water goes through the ultrafiltration membranes before going through the biofoulant removal filter, the biofoulant removal filter will deliver large quantities of treated water with much more reduced turbidities and SDI while removing a majority of biofilm formers relative to untreated or conventionally treated water. The biofoulant filter will further provide 6 log reduction of bacteria and 1-4 log reduction of virus. Therefore, the downstream water will be virtually disinfected without use of any chemicals, and will be without biofoulants to serve as nutrients for bacteria. This diminishes the chances of any biofilm formation on a membrane surface.
- The typical SDI value at the outlet of a biofoulant filter is less than 1 and typically close to 0.6-0.8. The process highlights the importance of treating biofoulants downstream of UF treatment, which is critical for eliminating or minimizing biofilm formation at reduced flux of RO.
- There are multiple options for biofoulant or nutrient removal. They operate under a wide range of TDS and provide TOC reduction of at least 40-60%, preferably at least 60-80%, most preferably at least 80%, on an overall basis, but remove the bulk of the negatively charged TOC. Suitable biofoulant or nutrient removal can be accomplished through, for example, ion exchange materials, positively charged media or electro-chemical or electrodes based methods. Cleaning, disinfection or regeneration improves the bio foulant media performance. This is done by chemical or electro chemical methods. This is an optional feature of this scheme. It should be herein that total organic carbon, or “TOC,” is used throughout this disclosure as a measure of biofoulants.
- Reduced Flux.
- System Design and plant operation are done at lower flux than conventional reverse osmosis systems. Although typical reverse osmosis is conducted at 10-20 GFD, our process uses flux at an energy efficient point where reduction of flux does not reduce energy consumption. In preferred embodiment the flux that is used (alternatively referred to as the “operating flux”) is at a level where further reduction of flux does not reduce energy consumption by more than 5% relative to the energy consumption at the prior flux level.
- This is range of flux is around 6-8 GFD (gallons/square foot/day) for SWRO and could be around 10-12 for BWRO and 6-8 GFD, or, in some embodiments, 8-10 GFD for waste water RO. This is based on feed water quality, permeate quality requirement and temperature range. This is done through a low flux reverse osmosis (RO) process. The flux can be marginally increased for lower total dissolved solids (TDS) or low fouling waters. For example, it might be increased by 5-10% more than what is stated above.
- Although a flux of less than 6-8 may be used for SWRO, typically but below this flux there could deterioration in permeate quality and also does not provide any energy savings. At this level of 6-8 GFD flux there is reduction in the concentration of bacteria and nutrients over the membrane surface and this reduces the buildup of differential pressure to minimum. Moreover at this reduced flux operating pressures reduce significantly. For example, operating pressure may be reduced by about 10-20%. So this flux was determined to be the best for SWRO for providing the low energy service with minimum bio fouling. Similarly lower level fluxes were determined for other sources of water also.
- It must be emphasized that the operation at reduced flux is not merely an example of optimization of flux to reduce energy consumption. At reduced flux alone without UF and biofoulant or even with UF and without bio foulant removal filter one may be able to achieve low energy consumption to start with but can not sustain low energy operation due to bio fouling problems as evidenced in the exampled provided below. To the contrary, the reduced flux was unexpectedly determined to lead to a reduced energy consumption on a sustained basis by virtue of the inclusion of the ultrafiltration and biofoulant removal filter. This process of low flux works at minimum energy consumption on a sustained basis in combination with ultrafiltration and biofoulant filtration in combination.
- Use of low flux provides additional advantages by providing a minimum variation in difference in operating pressure with variation of feed water temperatures. When the design flux is higher as per the conventional process, there is significant variation at operating pressures at minimum and maximum pressures. This requires sophisticated controls to adjust or control the pressures but this still results in loss of energy when the actual temperatures are higher than design pressures. Alternatively speed control devices have to be installed to adjust pump RPM for changes in water temperatures which still result in some loss of energy but make the system complex and expensive. Operation at low flux design avoids this complication and reduces energy consumption by 20%. In some embodiments one or more of pressure control and speed control devices for adjustment of pump flow may be excluded, though in many cases for reasons of safety or flexibility they might still be present unless specifically excluded by the claims.
- To provide one embodiment of the invention we conducted a detailed analysis of 35000 ppm TDS water to determine if our novel method might reduce energy consumption. For example, for 35000 PPM TDS, if the system is designed at 9-10 GFD, the power consumption is around 2 KWH/M3 for the RO pump and energy recovery system. If the same system is designed at 6 GFD the power consumption reduces to 1.7 KWH/M3 (
FIG. 7 ) and reduces feed pressure from 55 kg/cm2 to 46 kg/cm2 (FIG. 6 ). At this level variation in pressure due to feed water temperature within a wide range of 25-40° C. is only 0.5-0.7 kg/cm2 (FIG. 8 ) for different types of membranes and provides TDS within acceptable limits even at the highest possible temperature (FIG. 9 ). The energy consumption has been calculated based on 85-86% efficiency of pumps and more than 96% efficiency of motors. - This data is more of less consistent for different membrane makes available from different membrane manufacturers. The difference if any is very small. It is evident from these studies that at these levels of flux the energy consumption is at best levels, can handle wide range of temperature with minimum variation in power and also provides acceptable range of permeate TDS. But the biggest benefit is at this level of flux the biofilm formation is reduced to insignificant levels, especially when it is pretreated with UF and with a biofoulants removal device as mentioned above. This makes sure that energy consumption design is not only minimum to start with but also remains low on a sustained basis due to reduced or insignificant bio fouling.
- Over a period of a day operation the increase of differential pressure less than 0.1 kg/cm2 and more often less than any detection limits. Also, due to reduced driving pressure across the membrane whatever fouling happens is not firmly attached to membrane surface due to lack of a charge. Therefore it can be easily removed under mild cleaning conditions. If one fakes certain precautions in pretreatment as described below, the residual foulants are not able to adhere to the membrane surface, which is reflected on the trend of increase of differential pressure.
- Some of these concepts are similar for surface water or brackish water and waste water recycle based RO plants, including some low TDS waters, where severe fouling happens on reverse osmosis and energy consumption creeps and water production eventually drops. It has been seen that bio fouling alone can increase the differential pressures across RO stages to more than 4-5 kg/cm2, which results in loss of energy. This may happen even if we have a pretreatment, which includes UF system. This can be mitigated by managing flux, calibrating and regulating pretreatment as described above, and by and stopping buildup of biofouling as mentioned below. However these sources of water may include additional pretreatment steps to mitigate hardness and silica scaling as appropriate.
- Osmotic Cleaning.
- To further augment the process described above with a cleaning mechanism to overcome any biofouling right before it initiates, we present a unique methodology of cleaning. The method is based on natural osmotic pressure differential between reject and permeate water. When the system is stopped on a manual mode of operation with a continued regulated flow in the feed side, which allows the reject water to remain in the feed side, there is a steady flow of water from the permeate side to the feed side. The permeate flow continues to the feed side due to concentration differential. The concentration differential is maintained by makeup reject water flow to the feed side through a clean in place system. In automatic mode of operation the system does not stop but shifts into a cleaning mode but water production may stop from the complete train or part of the train. After the completion of osmotic cleaning the system shifts into water production mode. In manual mode the process may take around 10-15 minutes and automatic mode the process may take maximum of 5 minutes. This duration can be adjusted for every site.
- If one allows this process to continue for few minutes for example 10-15 minutes, any biofilm is dislodged from the membrane surface. As the plant has been designed at lower flux and also the feed water has been filtered through UF and passed through a biofilm filter or device, the buildup of any biofilm pressure drop is reduced and can be easily cleaned through this cleaning.
- This process should be controlled through regulated flows and concentration on both feed and permeate side using plant produced reject and permeate water. The permeate flow under these conditions is purely a function of concentration gradient and pressure drop built in the membranes due to fouling, but feed side flow is maintained by circulation of brine at a minimum flow which can overcome dilution due to permeate entry and also maintain dynamic conditions in the feed side. Therefore it possible to maintain clean membrane pressure drop conditions by using this cleaning technique and prevent any increase in feed pressure or membrane differential pressure. The loose debris can be then flushed out into the reject by at higher velocity pretreated Seawater rinsing.
- This cleaning methodology is based on a concept that biofilm formation should be removed as fast as it is formed or prevented from building up. This can be achieved by shorter cleaning cycles, typically of 10-15 minutes each on a manual mode, done frequently or based on predetermined differential pressure increases over start up conditions or measurement of biofilm formation by biofilm sensors upstream of the reverse osmosis membranes. Normally the differential pressure builds up at from 0.1 kg/cm2 per day to 0.3 kg/cm2 a day over 24 hours operation depending on site conditions and plant design. This process will typically not allow any buildup of differential pressure and the membrane will operate at clean membrane conditions.
- This cleaning process is not very effective when carried out on a delayed basis at a higher differential pressure, or it may require frequent stoppages if the pretreatment has not been done to remove all bio fouling contaminants. This cleaning process can be practically and successfully employed only because the biofouling ability of water is virtually minimized in the pretreatment mentioned above. Therefore, any residual foulants can cause only minimum fouling, and their rate of buildup is insignificant and at this level. Osmotic cleaning process is very effective and virtually can keep the membranes clean.
- This process has a further advantage that it does not require use of any cleaning chemicals on a daily basis, but instead uses brine generated in the reject of SWRO or BWRO plants. A chemical cleaning option can be exercised to handle any upset conditions, but typically is used very infrequently. The option of adjusting brine concentration can be exercised to control the effectiveness of cleaning process. One more advantage of this process is the water consumption in cleaning is minimum. The quantity of water consumption is approximately 0.2-2.0 litres/m2 of membrane area. Osmotic gradient may be, for example, 40 to 180. Osmotic gradient is defined as the ratio of the RO reject and permeate TDS.
- In this process chlorine dosing is almost eliminated or minimized to upstream of UF for any clarifier or DAF (dissolved air flotation) etc., and to UF for chemical enhanced backwash based on local conditions. But frequent or regular use of chlorine can be avoided. Any chlorine usage is restricted to offline conditions and chlorine as far as possible is not allowed to become a part of the system. In some embodiments of the invention the need for chemical addition for pretreatment of the RO feedwater is eliminated entirely.
- The combination of steps mentioned above will ensure that design conditions of low power consumption will remain and the system will deliver sustained power efficiency and water production on a continuous basis. The overall process combines membrane process design for low energy and low fouling with pretreatment and cleaning processes which will mitigate fouling at the first place and further clean any fouling before it builds up without using any chemicals. Of course, those of skill in the art will recognize that additional treatment steps may be added as desired.
- The flow scheme shown in
FIG. 1 includes a preconditioning of seawater after it is received through the intake system through an intake pump. Depending on the seawater analysis and seasonal variations, a clarifier or DAF unit is installed to remove suspended solids. In case the seawater does not contain high level of suspended solids, one can take water through a strainer to the UF membranes. UF membranes are backwashed by the UF permeate water through a backwash pump. The frequency of backwash can be 10-20 minutes. Chlorine and caustic soda may be used infrequently to provide chemically enhanced backwash. The backwash outlet is taken to the clarifier or DAF, or directly to waste water based on the plant configuration. - The UF permeate is taken to a biofoulant removal filter after dechlorination. This filter feeds into the suction of a high-pressure pump, which further feeds into a low flux RO membrane unit. The RO permeate is taken into a permeate tank that always maintains a minimum level to provide low TDS water for cleaning requirements, and additional water is pumped for beneficial use. The reject from RO is taken through an energy recovery device. For example, a pressure exchanger may be used. The energy is transferred to water coming out of a biofoulants removal filter. After energy recovery the reject is discharged into waste after retaining a certain level of water in a clean in place tank, or “CIP” tank for the purpose of cleaning.
- This configuration generates permeate water as needed at very low energy depending on the seawater TDS and temperature conditions. The sustainability of low energy is possible because of level of pretreatment through UF and biofoulant removal filters and cleaning methodology ensures that differential pressure does not build up by removal of any bio film or scaling build up on a frequent basis. Chemical consumption in pretreatment as well as later use of cleaning chemical is eliminated or minimized.
- Although reported in the context of seawater recovery, this methodology can also be used in high recovery BWRO (brackish water reverse osmosis) where the potential for Bio fouling exists and the osmotic gradient of the reject water can be used to keep the membrane clean and reduce energy consumption.
- Those of skill in the art will also recognize, with the benefit of this disclosure, that the processes described herein may be particularly suitable for use of reverse osmosis in zero liquid discharge, or “ZLD” processes. ZLD processes typically have thermal evaporators downstream of the reverse osmosis unit. These will benefit from the low energy consumption and sustained plant operation without loss of water production. These factors help lead to reliable operation in a ZLD system.
- Certain embodiments of the invention may be better understood with reference to various examples and comparative examples as are set forth below.
- To benchmark base performance, a reverse osmosis (RO) unit with 2.3 m3/hr flow rate was operated for 17 months on surface water having TOC level of 5-10 ppm without any biofoulant removal unit at the upstream of RO unit. This source of water was selected due to its history of biofouling for several years. Based on the original plant design, the surface water was passed through an ultrafiltration (UF) unit before feeding into an RO Unit. We maintained the silt density index (SDI) below 5, most of the time below 3. The RO unit pressure drop was monitored and its results are shown in
FIG. 3 . - During 17 months of RO unit operation, we cleaned the unit seven times to maintain the pressure drop of the RO Unit. It was observed that the average service cycle length of the RO Unit was around 700 hrs, and it required chemical cleaning for maintaining the pressure drop, product quality and energy consumption. Operating hours of this RO unit in different service cycles are shown in Table 1. Progressively the operating hours were adjusted so that after every chemical cleaning original starting pressure drop conditions could be regained. During this operation it was very clear that even with UF pretreatment pressure drop across RO build up was visible within days and sometimes within hours during rainy seasons and after a very elaborate cleaning process original pressure was not regained.
-
TABLE 1 RO Unit operating hours vs. service cycle RO Unit Initial Pressure Final Pressure Operating Drop of RO Drop of RO RO Unit Service Cycles Hours Unit (kg/cm2) Unit (kg/cm2) 1st Service Cycle length 1201 3.9 7.4 2nd Service Cycle length 717 5.3 8.1 3rd Service Cycle length 296 5.5 6.5 4th Service Cycle length 650 5.5 7.0 5th Service Cycle length 859 5.2 6.3 6th Service Cycle length 687 4.7 5.5 7th Service Cycle length 462 3.6 5.0 Average Service cycle 696 hours length - In this experiment, a biofoulant removal unit was installed in the UF product line, and we monitored the TOC and turbidity removal across the biofoulant removal unit. The results of TOC & Turbidity are shown in Table 2. TOC of water was analyzed on Shimadzo-TOC analyzer, and the turbidity was checked by HACH-turbidity analyzer. In this experiment the biofilter was made up of electro positive media material.
-
TABLE 2 Bio-Foulant Bio-Foulant Removal unit UF Product Removal unit UF Product Outlet TOC Turbidity Outlet Turbidity TOC (ppm) (ppm) (NTU) (NTU) 5.13 3.83 0.069 0.054 5.17 3.92 0.065 0.059 5.16 3.88 0.067 0.064 5.20 2.84 0.069 0.061 5.68 3.98 0.068 0.065 4.38 1.08 0.068 0.06 5.16 3.98 0.066 0.06 5.16 3.27 0.071 0.059 5.28 3.31 0.073 0.063 5.48 3.38 0.066 0.058 5.13 3.05 0.069 0.065 5.26 3.59 0.065 0.058 5.06 3.81 0.067 0.06 4.98 3.02 0.064 0.060 5.13 3.68 0.065 0.061 5.36 3.82 0.066 0.059 5.86 3.02 0.066 0.060 5.02 3.12 0.068 0.060 4.82 3.30 0.070 0.060 5.68 3.82 0.068 0.055 4.58 1.62 0.069 0.059 5.03 2.91 0.068 0.063 4.28 2.03 0.069 0.056 5.21 2.91 0.066 0.059 4.28 2.06 0.065 0.057 4.32 2.12 0.065 0.057 - This indicates that the biofoulant removal unit removed around 40% to 60% of TOC from the product water of UF unit. Outlet turbidity of water was always around 0.060 NTU, which directly helps in maintaining the SDI level below 3 in RO Unit, and sometimes between 1-2, minimizing the biofouling in the RO Unit.
- In another set of experiments, the same RO unit of the previous examples was operated for nine months with the inclusion of biofoulant removal unit along with UF at the upstream at the upstream of RO unit and its effect was clearly observed with respect to longer service cycle length. RO unit was operated for around 1425 hours without any cleaning, which is almost twice the previous average service cycles length of
Experiment 1. In this experiment the RO unit was cleaned only once after the operation of six months. RO unit performance with bio-foulant removal unit is shown inFIG. 4 . During this operation it was observed that for more than 3 months there was very insignificant increase in differential pressure but once it started increasing gradually subsequent fouling rate started accelerating and progressively started increasing. - Even though the biofoulant removal unit minimized the pressure drop rise & biofouling in RO unit, still the pressure drop gradually increased over a period of six month. The main reason for this was the gradual deposition of a fine biofilm on the RO membrane surface on a day-to-day basis. The intensity of biofouling was very low, as indicated by longer service length.
- At this stage after the normal chemical cleaning of RO unit, and bringing back its pressure drop to normal level (3.8 kg/cm2), osmotic cleaning process as described in one type of the embodiment was implemented, and every day one natural osmotic cleaning cycle were performed on the RO Unit by RO Reject water for 10-15 minutes. The impact of natural osmotic cleaning was clearly observed, and the pressure drop remained unchanged at 3.8 kg/cm2 for next 500 hrs, of operation as shown in
FIG. 2 . Due to the unchanged pressure drop of the RO Unit, its energy consumption remained the same, and no increase was observed. During this time no increase of differential pressure was seen. - It became clear at this stage that with proper feed conditions of UF and biofoulant removal filter and daily proactive osmotic cleaning clean membrane conditions can be maintained, which means no biofouling and no increase in energy.
FIG. 2 shows comparative behavior of pressure drop increase under different conditions. Based on this data it is very clear that with the devised process, one can achieve sustained plant operation at lower energies. - In this experiment, the natural osmotic cleaning process was implemented on fresh RO membranes with low flux design having a UF and Biofoulant filter at the upstream of RO. The Experiment 3 membranes were not used because they were two and half years old. In this trial TOC rich surface water was first passed through the UF unit followed by biofoulant removal unit and then feed to RO unit. Natural osmotic cleaning was performed at osmotic gradient of around 40 and above after every 8-16 hours of operation on the RO Unit by RO reject water for 10-15 minutes. The RO Unit was operated for 150 hours, and it was observed that the pressure drop of RO unit remained unchanged as shown in
FIG. 5 . - This demonstrates that the RO Unit, when operated with UF followed by bio-foulant removal unit at upstream with natural osmotic cleaning at regular interval by RO unit reject water, allowed the RO unit pressure drop to remain unchanged. Its increase was minimized significantly, and the energy consumption of the RO unit was maintained to its original level.
- This further demonstrated that if one constructs a RO plant for low energy based on low flux RO, as provided herein, and further if one provides pretreatment and cleaning conditions as described above, one can achieve low energy consumption in the beginning of operation. That level of energy consumption may then be sustained throughout the life of the plant.
- In the above examples, ultrafiltration membranes and biofoulant removal filters were obtained from Qua Group.
- Although embodiments of the invention have been discussed herein in the context of certain aspects and advantages, those of skill in the art will appreciate that various modifications may be made within the scope and spirit of the claims.
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/601,788 US20150129495A1 (en) | 2012-04-23 | 2015-01-21 | Low energy reverse osmosis process |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261636930P | 2012-04-23 | 2012-04-23 | |
| US13/989,939 US8980100B2 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
| PCT/US2013/037744 WO2013163146A1 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
| US14/601,788 US20150129495A1 (en) | 2012-04-23 | 2015-01-21 | Low energy reverse osmosis process |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/989,939 Continuation US8980100B2 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
| PCT/US2013/037744 Continuation WO2013163146A1 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150129495A1 true US20150129495A1 (en) | 2015-05-14 |
Family
ID=49483818
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/989,939 Active US8980100B2 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
| US14/601,788 Abandoned US20150129495A1 (en) | 2012-04-23 | 2015-01-21 | Low energy reverse osmosis process |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/989,939 Active US8980100B2 (en) | 2012-04-23 | 2013-04-23 | Low energy reverse osmosis process |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US8980100B2 (en) |
| CN (2) | CN106564990B (en) |
| WO (1) | WO2013163146A1 (en) |
Families Citing this family (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9168469B2 (en) * | 2004-12-22 | 2015-10-27 | Chemtor, Lp | Method and system for production of a chemical commodity using a fiber conduit reactor |
| US10526299B2 (en) | 2004-12-22 | 2020-01-07 | Chemtor, Lp | Fiber conduit reactor with a heat exchange medium inlet and a heat exchange medium outlet |
| US9707520B2 (en) | 2012-01-18 | 2017-07-18 | Nch Corporation | Composition, system, and method for treating water systems |
| US9738553B2 (en) * | 2012-03-16 | 2017-08-22 | Aquatech International, Llc | Process for purification of produced water |
| US9969638B2 (en) | 2013-08-05 | 2018-05-15 | Gradiant Corporation | Water treatment systems and associated methods |
| US10308537B2 (en) | 2013-09-23 | 2019-06-04 | Gradiant Corporation | Desalination systems and associated methods |
| CN103979642B (en) * | 2014-05-14 | 2015-04-29 | 海南大学 | Gas-accelerated raw water impact pressure reverse osmosis water treatment method |
| EP2985069B1 (en) * | 2014-08-15 | 2017-05-10 | Grundfos Holding A/S | Control method for a filter system |
| US10167218B2 (en) | 2015-02-11 | 2019-01-01 | Gradiant Corporation | Production of ultra-high-density brines |
| US10308526B2 (en) | 2015-02-11 | 2019-06-04 | Gradiant Corporation | Methods and systems for producing treated brines for desalination |
| WO2017019944A1 (en) | 2015-07-29 | 2017-02-02 | Gradiant Corporation | Osmotic desalination methods and associated systems |
| HK1250961A1 (en) * | 2015-08-10 | 2019-01-18 | 水技术国际有限责任公司 | Method and apparatus for mitigating bio fouling in reverse osmosis membranes |
| US10301198B2 (en) | 2015-08-14 | 2019-05-28 | Gradiant Corporation | Selective retention of multivalent ions |
| US10245555B2 (en) | 2015-08-14 | 2019-04-02 | Gradiant Corporation | Production of multivalent ion-rich process streams using multi-stage osmotic separation |
| CA3010098A1 (en) | 2016-01-22 | 2017-07-27 | Gradiant Corporation | Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers |
| US10689264B2 (en) | 2016-02-22 | 2020-06-23 | Gradiant Corporation | Hybrid desalination systems and associated methods |
| CN105903355A (en) * | 2016-06-06 | 2016-08-31 | 上海知勉环境技术有限公司 | Method for preventing and treating pollution through reverse osmosis membrane or nano filter membrane system |
| SG11201900728SA (en) * | 2016-08-15 | 2019-02-27 | Nch Corp | Composition, system, and method for treating water systems |
| EP3512813B1 (en) | 2016-09-15 | 2024-11-06 | Fluence Water Israel Ltd | Containerized desalination system |
| EP3580180B1 (en) | 2017-02-09 | 2025-08-06 | OceanWell Co. | Brine dispersal system |
| ES2708126B2 (en) | 2017-10-06 | 2019-09-18 | Moro Maria Teresa Bergaz | METHOD FOR THE TREATMENT OF SALOBRE OR SEA WATER THROUGH REVERSE OSMOSIS |
| CN107789989B (en) * | 2017-11-24 | 2021-06-01 | 内蒙古农业大学 | A whole-process preventive sterilization method for reverse osmosis membrane |
| IT201800005080A1 (en) * | 2018-05-04 | 2019-11-04 | PROCESS AND PLANT FOR THE PURIFICATION OF WASHING WATER OF CHEMICAL PLANTS | |
| SG11202101293TA (en) | 2018-08-22 | 2021-03-30 | Gradiant Corp | Liquid solution concentration system comprising isolated subsystem and related methods |
| EP4157495A4 (en) * | 2020-06-02 | 2024-09-18 | Synauta Inc. | APPARATUS AND METHODS FOR CLEANING REVERSE OSMOSIS SYSTEMS |
| AU2021383601A1 (en) | 2020-11-17 | 2023-06-08 | Gradiant Corporaton | Osmotic methods and systems involving energy recovery |
| US12371641B2 (en) | 2021-08-02 | 2025-07-29 | Ecolab Usa Inc. | Booster composition for cleaning fermentation equipment and methods of use |
| US20230280266A1 (en) * | 2022-03-07 | 2023-09-07 | Colorado School Of Mines | Optical concentrate monitoring for membrane scaling mitigation |
| US11502322B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell with heat pump |
| US11502323B1 (en) | 2022-05-09 | 2022-11-15 | Rahul S Nana | Reverse electrodialysis cell and methods of use thereof |
| EP4619641A1 (en) | 2022-11-15 | 2025-09-24 | Nana, Rahul S. | Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof |
| US11855324B1 (en) | 2022-11-15 | 2023-12-26 | Rahul S. Nana | Reverse electrodialysis or pressure-retarded osmosis cell with heat pump |
| US12040517B2 (en) | 2022-11-15 | 2024-07-16 | Rahul S. Nana | Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4724079A (en) * | 1985-01-11 | 1988-02-09 | Gloria Stephan Sale | Water purification process |
| US20050006295A1 (en) * | 2003-02-10 | 2005-01-13 | Upen Bharwada | Water treatment system |
| US20050051488A1 (en) * | 2003-07-24 | 2005-03-10 | Lnsp Nagghappan | System and method for treatment of acidic wastewater |
| US20060144789A1 (en) * | 2004-12-06 | 2006-07-06 | Cath Tzahi Y | Systems and methods for purification of liquids |
| US20070215474A1 (en) * | 2003-10-27 | 2007-09-20 | Bruce Batchelder | Electrodialysis System and Process |
| US20080190849A1 (en) * | 2007-02-14 | 2008-08-14 | Dxv Water Technologies, Llc | Depth exposed membrane for water extraction |
| US7658852B2 (en) * | 2004-06-21 | 2010-02-09 | Membrane Recovery Ltd | RO membrane cleaning method |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU1205880A1 (en) | 1984-07-20 | 1986-01-23 | Всесоюзный Заочный Институт Пищевой Промышленности | Method of producing powder of mineral water salts |
| US5244579A (en) * | 1992-10-09 | 1993-09-14 | Zenon Environmental Inc. | Transportable reverse osmosis water purification unit |
| RU2033976C1 (en) * | 1993-03-09 | 1995-04-30 | Александр Сергеевич Клецов | Method for purification of natural water |
| AU700335B2 (en) * | 1995-03-22 | 1998-12-24 | Mechano Chemical Research Institute Ltd. | Method for desalinating salts-containing water and apparatus therefor |
| CN1552643A (en) * | 2003-12-18 | 2004-12-08 | 天津市海跃水处理高科技有限公司 | Desalination process for high recovery ratio seawater (brackish water) |
| US7491337B2 (en) * | 2004-04-23 | 2009-02-17 | Jeffbrad Investments Pty Limited | Method and apparatus for removing contaminants from water |
| UA72675C2 (en) * | 2004-08-10 | 2005-03-15 | Mykola Andriiovych Yankovskyi | A method for obtaining the clarified water |
| JP4831480B2 (en) * | 2006-06-21 | 2011-12-07 | 三浦工業株式会社 | Membrane filtration system |
| JP2008183510A (en) * | 2007-01-30 | 2008-08-14 | Toray Ind Inc | Purified water production method and apparatus |
| US7473362B1 (en) * | 2008-02-21 | 2009-01-06 | Nohren Jr John E | Water treatment system |
| CN102159508A (en) * | 2008-08-05 | 2011-08-17 | 水技术国际公司 | Reverse osmosis enhanced recovery hybrid process |
| WO2011042704A1 (en) * | 2009-10-08 | 2011-04-14 | Filter Clear Limited | Multi layered particulate filter for reducing the turbidity and sdi of water filter |
| CN102050538A (en) * | 2009-11-10 | 2011-05-11 | 虞建忠 | Process method/device adopting RO membrane to perform water treatment |
| WO2011133159A2 (en) * | 2010-04-22 | 2011-10-27 | Geopure Hydrotechnologies, Llc | Wastewater purification system and method |
| CN102020380B (en) * | 2010-12-15 | 2013-07-10 | 佛山市三水区碧源环保工程有限公司 | Sewage treatment device |
-
2013
- 2013-04-23 CN CN201610983362.6A patent/CN106564990B/en active Active
- 2013-04-23 CN CN201380000380.2A patent/CN103502158B/en active Active
- 2013-04-23 WO PCT/US2013/037744 patent/WO2013163146A1/en active Application Filing
- 2013-04-23 US US13/989,939 patent/US8980100B2/en active Active
-
2015
- 2015-01-21 US US14/601,788 patent/US20150129495A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4724079A (en) * | 1985-01-11 | 1988-02-09 | Gloria Stephan Sale | Water purification process |
| US20050006295A1 (en) * | 2003-02-10 | 2005-01-13 | Upen Bharwada | Water treatment system |
| US20050051488A1 (en) * | 2003-07-24 | 2005-03-10 | Lnsp Nagghappan | System and method for treatment of acidic wastewater |
| US20070215474A1 (en) * | 2003-10-27 | 2007-09-20 | Bruce Batchelder | Electrodialysis System and Process |
| US7658852B2 (en) * | 2004-06-21 | 2010-02-09 | Membrane Recovery Ltd | RO membrane cleaning method |
| US20060144789A1 (en) * | 2004-12-06 | 2006-07-06 | Cath Tzahi Y | Systems and methods for purification of liquids |
| US20080190849A1 (en) * | 2007-02-14 | 2008-08-14 | Dxv Water Technologies, Llc | Depth exposed membrane for water extraction |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140076807A1 (en) | 2014-03-20 |
| CN106564990B (en) | 2022-04-15 |
| CN106564990A (en) | 2017-04-19 |
| WO2013163146A1 (en) | 2013-10-31 |
| US8980100B2 (en) | 2015-03-17 |
| CN103502158B (en) | 2016-12-14 |
| CN103502158A (en) | 2014-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8980100B2 (en) | Low energy reverse osmosis process | |
| US10576428B2 (en) | Self-adaptive control and optimization of membrane filtration | |
| Belkacem et al. | Groundwater treatment by reverse osmosis | |
| US20110315612A1 (en) | Desalination apparatus and method of cleaning the same | |
| US20150375174A1 (en) | Integrated ultrafiltration and reverse osmosis desalination systems | |
| US20190039022A1 (en) | Method for controlling operation of reverse osmosis membrane apparatus and reverse osmosis membrane treatment system | |
| US20240075428A1 (en) | Reverse osmosis or nanofiltration process for cleaning water | |
| Wang et al. | Study of integrated membrane systems for the treatment of wastewater from cooling towers | |
| US11890577B2 (en) | Reverse osmosis or nanofiltration process for cleaning water | |
| JP2012192380A (en) | Membrane filtration system, and operation method therefor | |
| JP2006122787A (en) | Seawater desalination method | |
| Galvañ et al. | Direct pre-treatment of surface water through submerged hollow fibre ultrafiltration membranes | |
| Chian et al. | Reverse osmosis technology for desalination | |
| HK1235761A1 (en) | Low energy reverse osmosis process | |
| HK1235761B (en) | Low energy reverse osmosis process | |
| Ali et al. | Reverse osmosis as one-step wastewater treatment: a case study on groundwater pollution | |
| EP2218494A1 (en) | Method and device for the purification of an aqueous fluid | |
| Bartels et al. | Wastewater reuse RO plant: road from troubled to stable operation | |
| US20240181392A1 (en) | Improved reverse osmosis or nanofiltration process for cleaning water | |
| Voittonen | Minimization of Fouling for Treatment of Municipal Wastewater with Membrane Filtration | |
| KR101544407B1 (en) | Method for preventing fouling of reverse osmosis membrane | |
| US20220323909A1 (en) | Systems and methods for treatment of elevated organic content streams | |
| US20240025780A1 (en) | Method for eliminating the use of chemical products in pre-treatment in seawater desalination plants based on reverse osmosis | |
| Hassan et al. | New approach to membrane and thermal seawater desalination processes using nanofiltration membranes(Part 1) | |
| Boyd et al. | Assessing and maintaining membrane performance in a post-sedimentation ultrafiltration process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AQUATECH INTERNATIONAL CORPORATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHIDAMBARAN, RAVI;REEL/FRAME:034781/0968 Effective date: 20131106 |
|
| AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: ACKNOWLEDGEMENT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:AQUATECH INTERNATIONAL CORPORATION;QUA GROUP, LLC;AQUATECH INTERNATIONAL SALES CORPORATION;REEL/FRAME:036089/0047 Effective date: 20140307 |
|
| AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: AMENDED AND RESTATED PATENT, TRADEMARK AND COPYRIGHT SECURITY AGREEMENT;ASSIGNORS:AQUATECH INTERNATIONAL, LLC;QUA GROUP, LLC;AQUATECH INTERNATIONAL SALES CORPORATION;AND OTHERS;REEL/FRAME:041380/0058 Effective date: 20161222 |
|
| AS | Assignment |
Owner name: AQUATECH INTERNATIONAL, LLC, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:AQUATECH INTERNATIONAL CORPORATION;REEL/FRAME:043072/0139 Effective date: 20160608 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: SECOND AMENDED AND RESTATED PATENT, TRADEMARK AND COPYRIGHT SECURITY AGREEMENT;ASSIGNORS:AQUATECH INTERNATIONAL, LLC;QUA GROUP, LLC;AQUATECH INTERNATIONAL SALES CORPORATION;AND OTHERS;REEL/FRAME:055736/0491 Effective date: 20210216 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |