US20150125637A1 - Visually Identifiable Electrical Structural Wiring System - Google Patents
Visually Identifiable Electrical Structural Wiring System Download PDFInfo
- Publication number
- US20150125637A1 US20150125637A1 US14/397,727 US201314397727A US2015125637A1 US 20150125637 A1 US20150125637 A1 US 20150125637A1 US 201314397727 A US201314397727 A US 201314397727A US 2015125637 A1 US2015125637 A1 US 2015125637A1
- Authority
- US
- United States
- Prior art keywords
- cable sheath
- armored cable
- tape
- sheath
- visual indicia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/36—Insulated conductors or cables characterised by their form with distinguishing or length marks
- H01B7/366—Insulated conductors or cables characterised by their form with distinguishing or length marks being a tape, thread or wire extending the full length of the conductor or cable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/11—Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
- F16L11/118—Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having arrangements for particular purposes, e.g. electrically conducting
- F16L11/1185—Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having arrangements for particular purposes, e.g. electrically conducting electrically conducting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/34—Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables
- H01B13/342—Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables by applying marked tape, thread or wire on the full length of the conductor or cable
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/04—Protective tubing or conduits, e.g. cable ladders or cable troughs
- H02G3/0462—Tubings, i.e. having a closed section
- H02G3/0468—Corrugated
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G2200/00—Indexing scheme relating to installation of electric cables or lines covered by H02G
- H02G2200/20—Identification of installed cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
Definitions
- the present invention pertains to the field of electrical structural wiring elements, and in particular to providing a visually distinctive armored cable sheaths with visibility features in low light.
- Armored cables typically include a metal sheath enclosing one or more individually insulated conductors.
- the sheath may be formed of a helically interlocked continuous strip of metal, or of smooth or corrugated continuous metal tubing.
- the construction of an armored cable sheath is well known in the art.
- Armored cable is used in wiring homes and commercial buildings. During installation, appropriate lengths of armored cable are cut from a main supply (e.g., a spool, coil, or reel) and pulled or routed through the walls and ceilings of the building.
- a main supply e.g., a spool, coil, or reel
- each end of the armored cable is typically connected to a metal terminal box using a metal connector or a plastic connector with a metal pathway that connects the armor to the box.
- the metal of the connector touches both the exterior of the metal sheath and the terminal box, and thus provides an electrical path from sheath to ground.
- Armored cable permits orderly wiring for various applications within a building (e.g., fire protection devices, healthcare, lighting). For example, wires of different sizes serving different applications may be grouped within different armored cables. Because the cables typically are installed near to each other, and because the cables look identical or similar, it is difficult to distinguish the different cables which serve different applications.
- Examples of identifiable armored cables are available in prior art, however they are subject to a number of deficiencies. In some applications, they do not maintain desired conductivity characteristics as the entire armored sheath is applied with visual indicia with no exposed metal to allow for electrical grounding. Another deficiency, seen in separate prior art, is that the interval used for visual indicia is not consistent throughout the entire length of the cable. This becomes significant in scenarios where walls are breached to gain access to the armored cables; at the specific breach of the wall, there may not be any visual indicia to identify the type of cable as the identification is not consistent at every point along the cable.
- an identifiable armored cable sheath comprising: an armored cable sheath having an outer surface, and visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, wherein the visual indicia is distinct from the armored cable sheath, and wherein the visual indicia includes material which is visible in low light.
- an identifiable armored cable sheath comprising: an armored cable sheath having an outer surface, and a visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, wherein the visual indicia possesses visibility features in low light.
- a method of making an identifiable armored cable sheath comprising: providing an armored cable sheath, and applying a visually distinctive tape to the outer surface of the sheath in a patterned arrangement.
- a visually identifiable electrical structural system comprising: material which is visible in low light comprising luminescent, fluorescent, and/or UV-visible materials applied to an electrical structural element selected from the group consisting of electrical boxes, electrical switches, pull-stations, breaker boxes, electric meters, hydro meters, energy meters, and/or any combination thereof.
- FIG. 1 provides exemplary conductivity characteristics for an armored cable sheath
- FIG. 2 illustrates an armored cable sheath with a flexible helical coiled sheath
- FIG. 3 illustrates an armored cable sheath with smooth tubing
- FIG. 4 illustrates an armored cable sheath with corrugated tubing
- FIG. 5 illustrates an armored cable sheath with a flexible helical coiled sheath, with a helical patterning arrangement
- FIG. 6 illustrates an armored cable sheath with a flexible helical coiled sheath, with a reverse helical patterning arrangement
- FIG. 7 illustrates an armored cable sheath with a flexible helical coiled sheath, with a longitudinal patterning arrangement
- the term “about” refers to a +/ ⁇ 10% variation from the nominal value. It is to be understood that such a variation is always included in a given value provided herein, whether or not it is specifically referred to.
- the present invention provides an identifiable armored cable sheath and a method of making an identifiable armored cable sheath comprising an armored cable sheath having an outer surface, and tape applied on the outer surface of the armoured cable sheath in a patterned arrangement. Additionally, the visual indicia is further described comprising ink, dye, powder, paint, or any combination thereof which contain visibility features in low light.
- the present invention may utilize any variety of armored cable sheath.
- the properties of the sheath must comply with provided conductivity characteristics throughout the entire length of the sheath set out in the table in FIG. 71 .
- AWG American Wire Gauge
- This table reflects the conductivity characteristics which should be preserved after application of visual indicia to the armored cable.
- the sheath is formed of a helically interlocked continuous strip of metal as shown in FIG. 2 . This design promotes flexibility of the sheath and may be adapted for a multitude of non-linear armored cable applications.
- the sheath is formed of smooth metal tubing as shown in FIG. 3 . This design promotes cost-effectiveness and is ideal for pre-planned application where there is little need for flexible armored cable.
- the sheath is corrugated continuous metal tubing as shown in FIG. 4 .
- the material used for the sheath may comprise a variety of materials. For metallic materials that provide desired continuous conductivity characteristics, the required resistance requirements are set out in FIG. 71 .
- the sheath is constructed from aluminum. In one embodiment, the sheath is constructed from steel. In one embodiment, the sheath is constructed from copper. In one embodiment, the sheath is constructed from brass.
- the sheath may be constructed from non-metallic materials such as, but not limited to, plastics, rubbers, and/or ceramics.
- visual indicia are applied to the outer surface of the cable sheath. This may include, but is not limited to, application of ink, dye, powder, paint, tape, or any combination thereof.
- the indicia is applied to be distinct from the armored cable sheath to provide a visual distinction such that an individual can identify the type of armored cable used and the application of that particular cable using purely sight. Therefore, the use of color to represent the type of cable, and application of cable is implemented.
- the distinct colors of the visual indicia used correspond to industry standards, for example the UL (Underwriters Laboratories) standards utilized in the United States, and the CSA (Canadian Standards Association) utilized in Canada.
- fluorescent, luminescent, and/or UV-visible material in the tape are utilized such that the armored cable may be identified in low light settings such as during power outages.
- the visual indicia may be applied to various utility housing and emergency equipment related to electrical structural wiring.
- Equipment may include, but is not limited to, electrical boxes, electrical switches, pull-stations, breaker boxes, electric meters, hydro meters, energy meters, and/or any combination thereof. This is particularly useful in situations where power outages occur and emergency and power equipment are still identifiable in low-light environments to assist persons in locating the correct resources (i.e. fire alarm pull station).
- the visual indicia applied to a metallic armored cable sheath with electrical grounding functionality has a width that, upon application, a portion of the sheath remains exposed to allow for continuous conductivity throughout the length of the armored cable.
- Exemplary conductivity characteristics are as set out in FIG. 71 .
- the patterning of specific visual indicia may take any form. In a metallic sheath which desires electric grounding capability, the patterning allows for continuous conductivity requirements, as shown in FIG. 71 , along the entire length of the cable.
- the arrangement of the visual indicia may be a helical pattern relative to the cable sheath; one example of which is shown in FIG. 5 .
- the arrangement of the visual indicia is a reverse helical pattern relative to the cable sheath; one example of which is shown in FIG. 6 .
- the arrangement of the visual indicia is longitudinal relative to the cable sheath; one example of which is shown in FIG. 7 .
- the visual indicia are provided by application of a visually distinctive tape to the outer surface of the cable sheath to give a distinct appearance from the armored cable.
- the tape applied has self-adhesive properties without need for extraneous bonding mechanisms. In one embodiment, the tape applied requires extraneous treatment, for example, in a heat chamber, or application of an adhesive agent to assist adherence to the armored cable sheath.
- Visual indicia can be provided on the tape through a number of mechanisms.
- the tape is coated with ink
- the tape is impregnated with dye.
- the tape is coated with paint.
- the tape is coated with powder.
- the visual indicia comprises printed information applied on the tape.
- the tape may undergo a printing process using conventional printing techniques to apply different patterns, words, colors, information to the tape prior to application. Examples of information applied include, but are not limited to, company information, color legend, armor cable type, armor cable model line, and/or industry standards (e.g. UL number, CSA number).
- the tape itself may have no color, but information printed in color on the tape provides the visual indicia.
- the printed tape may contain printed color and printed information.
- a few of the benefits of using printed tape as a form for visual cable indicia include ease of application and cost-efficency. Firstly, the application of the information is more easily accomplished by printing the information onto tape and applying the printed tape onto the cable sheath than applying paint or dye directly onto the cable sheath. Conventional industrial printers are fully compatible with tape allowing for efficient application. Secondly, the cost of applying the information to tape prior to subsequent application may be less than other mechanisms such as applying paint directly to the cable sheath which requires specialized precision machinery.
- Some embodiments utilize fluorescent, luminescent, and/or UV-visible material in the tape such that the armored cable may be identified in low light settings such as during power outages.
- the tape is a composite tape comprised of at least two layers adhered together.
- the composite tape is formed of two layers.
- the first layer is a polyester film which forms the outer layer of the composite tape
- the underlying layer is an ethylene acrylic acid (EAA) copolymer film.
- EAA ethylene acrylic acid
- the visual indicia are provided on the polyester film layer by the application of paint.
- the paint is applied to the film by conventional paint application mechanisms known in the art.
- the EAA film provides strong adhesion to the armored cable sheath due to its intrinsic composition as it bonds stronger to metallic surfaces than non-metallic surfaces.
- the top layer and bottom layer may be of distinct compositions.
- the bottom layer will be void of visual indicia, while the top layer will be applied with the visual indicia.
- the top layer will be void of visual indicia, while the bottom layer will be applied with visual indicia.
- both layers will have visual indicia applied.
- the tape applied to the armored cable sheath has a width such that, upon application, a portion of the sheath remains exposed to allow for continuous conductivity throughout the length of the armored cable.
- Exemplary conductivity characteristics are set out in FIG. 71 .
- the patterned arrangement of the tape may be of any design. In metallic applications where conductivity is required, the patterning allows for continuous conductivity requirement along the entire length of the cable. Exemplary conductivity characteristics are measured by a maximum allowable resistance which are set out in FIG. 71 .
- the patterned arrangement of the tape is applied along the length of the armored cable.
- the patterned arrangement of tape is helically wrapped, relative to the cable sheath, along the outer surface of the armored cable sheath as displayed in FIG. 5 .
- the patterned arrangement of tape is reverse helically wound, relative to the cable sheath, along the outer surface of the armored cable sheath as shown in FIG. 6 .
- the patterned arrangement of tape is longitudinally arranged relative to the cable sheath, as shown in FIG. 7 .
- the patterned arrangement of the tape on the armored cable sheath may be applied by conventional equipment used for tape application.
- the tape is wrapped around the cable as the cable is pulled through the tape applicator.
- This may include, but is not limited to, layer-wound, pancake type, reverse wound, and traverse wound mechanisms.
- the tape application machinery wraps the tape at an adjusted setting through tension regulation devices. Tape packages can be concentric where the cable travels through the center of the tape pad, or eccentric where tape packages are rotated about the cable.
- the tape wrapping application is done in close control with the cable pulling function (dictated by speed).
- the wrapped cable sheath is inserted into a heated chamber in order to assist adhesion to the metallic outer surface of the armored cable.
- heating is used to help the tape to adhere to the metallic surface.
- Such a heating step is particularly useful for tapes without any innate adhesive properties under normal room temperature, for example, tapes having “shrink wrap” characteristics.
- the chamber is heated to a temperature from about 50° C. to about 200° C. In one embodiment, the chamber is heated to a temperature from about 70° C. to about 130° C. In one embodiment, the chamber is heated to a temperature from about 80° C. to about 120° C. In one embodiment, the chamber is heated to a temperature from about 90° C. to about 110° C.
- the heated chamber employs re-circulated air to maintain the required temperature.
- the temperature may be reduced while duration of exposure may increase.
- conventional heating systems known in the art may provide the necessary temperature to aid adhesion.
- the tape used for application is compatible with residual oil presence on the helical coiled armored sheath.
- residual oil may be present as a manufacturing by-product during production of the helical coiled armored sheaths.
- This example provides an armored cable with visual indicia suitable for fire alarm application.
- the cable sheath is constructed of aluminum and is a helically interlocked continuous strip of metal seen in FIG. 2 .
- the tape used for the armored cable sheath is a compound tape with general width of 0.5 inches to 0.75 inches.
- the top layer of the compound tape which provides the distinct visual indicia, is a polyester film with thickness of approximately 0.00092 inches.
- the bottom layer of the compound tape which adheres to the metal sheath, is an ethyl acetoacetate film with thickness 0.0007 inches.
- the tape is compatible with maintaining an adhesive bond with the residual oil which remains on the outer shell of the armored cable sheath.
- the top layer of the compound tape is combined with a mixture of red ink and luminescent materials to give the top layer of the compound tape reddish visual indicia consistent with UL and CSA standards utilized in the United States and Canada regarding fire-alarm/emergency related cables.
- the tape is then applied to the armored cable sheath by means of a conventional mechanical tape applicator.
- the patterned arrangement of the tape follows a reverse round helical pattern with the tape helically wound at the opposite angle of the wind of the aluminum sheath seen in FIG. 6 .
- the entire length of the armored cable sheath is applied with this patterned arrangement of tape.
- the armored cable sheath is then input into a heating chamber, with re-circulated air, at a temperature of 150° C. for 2 minutes.
- the armored cable sheath is then removed from the heated chamber with full adhesion of the tape to the outer surface of the sheath.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Insulated Conductors (AREA)
Abstract
The present invention provides an identifiable armored cable sheath. In accordance with an aspect of the present invention, there is provided an identifiable armored cable sheath comprising: an armored cable sheath having an outer surface, and a visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, wherein the visual indicia possesses visibility features in low light. Another aspect of the present invention provides a method of making an identifiable armored cable sheath comprising: providing an armored cable sheath, and applying a visually distinctive tape to the outer surface of the sheath in a patterned arrangement.
Description
- The present invention pertains to the field of electrical structural wiring elements, and in particular to providing a visually distinctive armored cable sheaths with visibility features in low light.
- This invention relates to electrical structural wiring elements including armored cables. Armored cables typically include a metal sheath enclosing one or more individually insulated conductors. The sheath may be formed of a helically interlocked continuous strip of metal, or of smooth or corrugated continuous metal tubing. The construction of an armored cable sheath is well known in the art.
- Armored cable is used in wiring homes and commercial buildings. During installation, appropriate lengths of armored cable are cut from a main supply (e.g., a spool, coil, or reel) and pulled or routed through the walls and ceilings of the building.
- It is desirable in certain applications to maintain an uninterrupted conductive path along the metal sheath from one end of the cable to the other. During installation, each end of the armored cable is typically connected to a metal terminal box using a metal connector or a plastic connector with a metal pathway that connects the armor to the box. The metal of the connector touches both the exterior of the metal sheath and the terminal box, and thus provides an electrical path from sheath to ground.
- Armored cable permits orderly wiring for various applications within a building (e.g., fire protection devices, healthcare, lighting). For example, wires of different sizes serving different applications may be grouped within different armored cables. Because the cables typically are installed near to each other, and because the cables look identical or similar, it is difficult to distinguish the different cables which serve different applications.
- There is therefore a need for a visually distinctive guise for armored cable sheaths. With a visually distinctive guise, one would be able to distinguish certain wires from others by visual indicia. However, in applicable circumstances, the visual indicia must not jeopardize the desired conductivity characteristics of the sheath such that the sheath may still be used to ground voltage.
- Visually distinctive armored cables have great application during urgent scenarios where time is of the essence; for example a building fire. One could easily determine the purpose of each armored cable and act accordingly without the need to electrically probe each wire or check schematics/building blueprints.
- Examples of identifiable armored cables are available in prior art, however they are subject to a number of deficiencies. In some applications, they do not maintain desired conductivity characteristics as the entire armored sheath is applied with visual indicia with no exposed metal to allow for electrical grounding. Another deficiency, seen in separate prior art, is that the interval used for visual indicia is not consistent throughout the entire length of the cable. This becomes significant in scenarios where walls are breached to gain access to the armored cables; at the specific breach of the wall, there may not be any visual indicia to identify the type of cable as the identification is not consistent at every point along the cable.
- With these deficiencies in mind, it is apparent that there is a need, not just for visually distinctive armored cable sheaths, but visually distinctive armored cable sheaths which have consistent indicia throughout the length of the cable, maintain conductivity, and add visual indicia efficiently.
- This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
- In accordance with an aspect of the present invention, there is provided an identifiable armored cable sheath comprising: an armored cable sheath having an outer surface, and visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, wherein the visual indicia is distinct from the armored cable sheath, and wherein the visual indicia includes material which is visible in low light.
- In accordance with another aspect of the present invention, there is provided an identifiable armored cable sheath comprising: an armored cable sheath having an outer surface, and a visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, wherein the visual indicia possesses visibility features in low light.
- In accordance with another aspect of the present invention, there is provided a method of making an identifiable armored cable sheath comprising: providing an armored cable sheath, and applying a visually distinctive tape to the outer surface of the sheath in a patterned arrangement.
- In accordance with another aspect of the present invention, there is provided a visually identifiable electrical structural system comprising: material which is visible in low light comprising luminescent, fluorescent, and/or UV-visible materials applied to an electrical structural element selected from the group consisting of electrical boxes, electrical switches, pull-stations, breaker boxes, electric meters, hydro meters, energy meters, and/or any combination thereof.
-
FIG. 1 provides exemplary conductivity characteristics for an armored cable sheath; -
FIG. 2 illustrates an armored cable sheath with a flexible helical coiled sheath; -
FIG. 3 illustrates an armored cable sheath with smooth tubing; -
FIG. 4 illustrates an armored cable sheath with corrugated tubing; -
FIG. 5 illustrates an armored cable sheath with a flexible helical coiled sheath, with a helical patterning arrangement; -
FIG. 6 illustrates an armored cable sheath with a flexible helical coiled sheath, with a reverse helical patterning arrangement; -
FIG. 7 illustrates an armored cable sheath with a flexible helical coiled sheath, with a longitudinal patterning arrangement; - As used herein, the term “about” refers to a +/−10% variation from the nominal value. It is to be understood that such a variation is always included in a given value provided herein, whether or not it is specifically referred to.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
- The present invention provides an identifiable armored cable sheath and a method of making an identifiable armored cable sheath comprising an armored cable sheath having an outer surface, and tape applied on the outer surface of the armoured cable sheath in a patterned arrangement. Additionally, the visual indicia is further described comprising ink, dye, powder, paint, or any combination thereof which contain visibility features in low light.
- The present invention may utilize any variety of armored cable sheath. In applications where the sheath is utilized as an electrical ground, the properties of the sheath must comply with provided conductivity characteristics throughout the entire length of the sheath set out in the table in
FIG. 71 . For example, if American Wire Gauge (AWG) size of the armored cable is 10, the corresponding maximum resistance per 100 feet is 0.56 Ohms. This table reflects the conductivity characteristics which should be preserved after application of visual indicia to the armored cable. - In one embodiment, the sheath is formed of a helically interlocked continuous strip of metal as shown in
FIG. 2 . This design promotes flexibility of the sheath and may be adapted for a multitude of non-linear armored cable applications. - In one embodiment, the sheath is formed of smooth metal tubing as shown in
FIG. 3 . This design promotes cost-effectiveness and is ideal for pre-planned application where there is little need for flexible armored cable. - In one embodiment, the sheath is corrugated continuous metal tubing as shown in
FIG. 4 . - The material used for the sheath may comprise a variety of materials. For metallic materials that provide desired continuous conductivity characteristics, the required resistance requirements are set out in
FIG. 71 . In one embodiment, the sheath is constructed from aluminum. In one embodiment, the sheath is constructed from steel. In one embodiment, the sheath is constructed from copper. In one embodiment, the sheath is constructed from brass. - The sheath may be constructed from non-metallic materials such as, but not limited to, plastics, rubbers, and/or ceramics.
- In some embodiments, visual indicia are applied to the outer surface of the cable sheath. This may include, but is not limited to, application of ink, dye, powder, paint, tape, or any combination thereof.
- The indicia is applied to be distinct from the armored cable sheath to provide a visual distinction such that an individual can identify the type of armored cable used and the application of that particular cable using purely sight. Therefore, the use of color to represent the type of cable, and application of cable is implemented.
- Where appropriate, the distinct colors of the visual indicia used correspond to industry standards, for example the UL (Underwriters Laboratories) standards utilized in the United States, and the CSA (Canadian Standards Association) utilized in Canada.
- In preferred embodiments, fluorescent, luminescent, and/or UV-visible material in the tape are utilized such that the armored cable may be identified in low light settings such as during power outages.
- In some embodiments, the visual indicia may be applied to various utility housing and emergency equipment related to electrical structural wiring. Equipment may include, but is not limited to, electrical boxes, electrical switches, pull-stations, breaker boxes, electric meters, hydro meters, energy meters, and/or any combination thereof. This is particularly useful in situations where power outages occur and emergency and power equipment are still identifiable in low-light environments to assist persons in locating the correct resources (i.e. fire alarm pull station).
- In preferred embodiments, the visual indicia applied to a metallic armored cable sheath with electrical grounding functionality has a width that, upon application, a portion of the sheath remains exposed to allow for continuous conductivity throughout the length of the armored cable. Exemplary conductivity characteristics are as set out in
FIG. 71 . - The patterning of specific visual indicia may take any form. In a metallic sheath which desires electric grounding capability, the patterning allows for continuous conductivity requirements, as shown in
FIG. 71 , along the entire length of the cable. In one embodiment, the arrangement of the visual indicia may be a helical pattern relative to the cable sheath; one example of which is shown inFIG. 5 . In one embodiment, the arrangement of the visual indicia is a reverse helical pattern relative to the cable sheath; one example of which is shown inFIG. 6 . In one embodiment, the arrangement of the visual indicia is longitudinal relative to the cable sheath; one example of which is shown inFIG. 7 . - In some embodiments, the visual indicia are provided by application of a visually distinctive tape to the outer surface of the cable sheath to give a distinct appearance from the armored cable.
- In one embodiment, the tape applied has self-adhesive properties without need for extraneous bonding mechanisms. In one embodiment, the tape applied requires extraneous treatment, for example, in a heat chamber, or application of an adhesive agent to assist adherence to the armored cable sheath.
- Visual indicia can be provided on the tape through a number of mechanisms. In one embodiment, the tape is coated with ink In one embodiment, the tape is impregnated with dye. In one embodiment, the tape is coated with paint. In one embodiment, the tape is coated with powder.
- In one embodiment, the visual indicia comprises printed information applied on the tape. The tape may undergo a printing process using conventional printing techniques to apply different patterns, words, colors, information to the tape prior to application. Examples of information applied include, but are not limited to, company information, color legend, armor cable type, armor cable model line, and/or industry standards (e.g. UL number, CSA number). In one embodiment of printed tape, the tape itself may have no color, but information printed in color on the tape provides the visual indicia. In one embodiment, the printed tape may contain printed color and printed information.
- A few of the benefits of using printed tape as a form for visual cable indicia, include ease of application and cost-efficency. Firstly, the application of the information is more easily accomplished by printing the information onto tape and applying the printed tape onto the cable sheath than applying paint or dye directly onto the cable sheath. Conventional industrial printers are fully compatible with tape allowing for efficient application. Secondly, the cost of applying the information to tape prior to subsequent application may be less than other mechanisms such as applying paint directly to the cable sheath which requires specialized precision machinery.
- Some embodiments utilize fluorescent, luminescent, and/or UV-visible material in the tape such that the armored cable may be identified in low light settings such as during power outages.
- In one embodiment, the tape is a composite tape comprised of at least two layers adhered together.
- In one embodiment, the composite tape is formed of two layers. In a preferred embodiment, the first layer is a polyester film which forms the outer layer of the composite tape, and the underlying layer is an ethylene acrylic acid (EAA) copolymer film. In such an embodiment, the visual indicia are provided on the polyester film layer by the application of paint. The paint is applied to the film by conventional paint application mechanisms known in the art. The EAA film provides strong adhesion to the armored cable sheath due to its intrinsic composition as it bonds stronger to metallic surfaces than non-metallic surfaces.
- The top layer and bottom layer may be of distinct compositions. In one embodiment, the bottom layer will be void of visual indicia, while the top layer will be applied with the visual indicia. In one embodiment, the top layer will be void of visual indicia, while the bottom layer will be applied with visual indicia. In one embodiment, both layers will have visual indicia applied.
- In metallic applications where conductivity is required, the tape applied to the armored cable sheath has a width such that, upon application, a portion of the sheath remains exposed to allow for continuous conductivity throughout the length of the armored cable. Exemplary conductivity characteristics are set out in
FIG. 71 . - The patterned arrangement of the tape may be of any design. In metallic applications where conductivity is required, the patterning allows for continuous conductivity requirement along the entire length of the cable. Exemplary conductivity characteristics are measured by a maximum allowable resistance which are set out in
FIG. 71 . The patterned arrangement of the tape is applied along the length of the armored cable. - In one embodiment the patterned arrangement of tape is helically wrapped, relative to the cable sheath, along the outer surface of the armored cable sheath as displayed in
FIG. 5 . In one embodiment the patterned arrangement of tape is reverse helically wound, relative to the cable sheath, along the outer surface of the armored cable sheath as shown inFIG. 6 . In one embodiment the patterned arrangement of tape is longitudinally arranged relative to the cable sheath, as shown inFIG. 7 . - The patterned arrangement of the tape on the armored cable sheath may be applied by conventional equipment used for tape application.
- In conventional tape application machinery, the tape is wrapped around the cable as the cable is pulled through the tape applicator. This may include, but is not limited to, layer-wound, pancake type, reverse wound, and traverse wound mechanisms. The tape application machinery wraps the tape at an adjusted setting through tension regulation devices. Tape packages can be concentric where the cable travels through the center of the tape pad, or eccentric where tape packages are rotated about the cable. The tape wrapping application is done in close control with the cable pulling function (dictated by speed).
- In one embodiment, after the cable sheath has been wrapped in tape, the wrapped cable sheath is inserted into a heated chamber in order to assist adhesion to the metallic outer surface of the armored cable. In such an embodiment, heating is used to help the tape to adhere to the metallic surface. Such a heating step is particularly useful for tapes without any innate adhesive properties under normal room temperature, for example, tapes having “shrink wrap” characteristics.
- In one embodiment, the chamber is heated to a temperature from about 50° C. to about 200° C. In one embodiment, the chamber is heated to a temperature from about 70° C. to about 130° C. In one embodiment, the chamber is heated to a temperature from about 80° C. to about 120° C. In one embodiment, the chamber is heated to a temperature from about 90° C. to about 110° C.
- In one embodiment, the heated chamber employs re-circulated air to maintain the required temperature. In one embodiment, the temperature may be reduced while duration of exposure may increase. In one embodiment, conventional heating systems known in the art may provide the necessary temperature to aid adhesion.
- In some embodiments, the tape used for application is compatible with residual oil presence on the helical coiled armored sheath. Such residual oil may be present as a manufacturing by-product during production of the helical coiled armored sheaths.
- The invention will now be described with reference to specific examples. It will be understood that the following examples are intended to describe embodiments of the invention and are not intended to limit the invention in any way.
- This example provides an armored cable with visual indicia suitable for fire alarm application.
- The cable sheath is constructed of aluminum and is a helically interlocked continuous strip of metal seen in
FIG. 2 . - The tape used for the armored cable sheath is a compound tape with general width of 0.5 inches to 0.75 inches. The top layer of the compound tape, which provides the distinct visual indicia, is a polyester film with thickness of approximately 0.00092 inches. The bottom layer of the compound tape, which adheres to the metal sheath, is an ethyl acetoacetate film with thickness 0.0007 inches. The tape is compatible with maintaining an adhesive bond with the residual oil which remains on the outer shell of the armored cable sheath.
- The top layer of the compound tape is combined with a mixture of red ink and luminescent materials to give the top layer of the compound tape reddish visual indicia consistent with UL and CSA standards utilized in the United States and Canada regarding fire-alarm/emergency related cables.
- The tape is then applied to the armored cable sheath by means of a conventional mechanical tape applicator. The patterned arrangement of the tape follows a reverse round helical pattern with the tape helically wound at the opposite angle of the wind of the aluminum sheath seen in
FIG. 6 . The entire length of the armored cable sheath is applied with this patterned arrangement of tape. - The armored cable sheath is then input into a heating chamber, with re-circulated air, at a temperature of 150° C. for 2 minutes. The heat shrink-wraps the tape and bonds the bottom ethyl acetoacetate layer to the aluminum.
- The armored cable sheath is then removed from the heated chamber with full adhesion of the tape to the outer surface of the sheath.
- It is obvious that the foregoing embodiments of the invention are examples and can be varied in many ways. Such present or future variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims (20)
1. An identifiable armored cable sheath comprising:
an armored cable sheath having an outer surface, and visual indicia applied on the outer surface of the cable sheath in a patterned arrangement, and wherein the visual indicia is distinct from the armored cable sheath, and wherein the visual indicia includes material which is visible in low light.
2. The armored cable sheath defined in claim 1 , wherein the visual indicia comprise ink, dye, powder, paint, or any combination thereof.
3. The armored cable sheath defined in claim 1 , wherein the visual indicia comprise luminescent, fluorescent, and/or UV-visible materials.
4. The armored cable sheath defined in claim 1 , wherein the indicia is helically patterned relative to the armored cable sheath or reverse helically patterned relative to the armored cable sheath.
5. The armored cable sheath defined in claim 1 , wherein the patterning is applied along the length of the armored cable sheath.
6. The armored cable sheath defined in claim 1 , wherein the sheath is formed of a metallic material and wherein the pattern provides an exposed portion of the metallic sheath to maintain electrical grounding functionality throughout the entire sheath.
7. An identifiable armored cable sheath comprising:
an armored cable sheath having an outer surface, and tape applied on the outer surface of the cable sheath in a patterned arrangement, and wherein the tape is visually distinctive from the armored cable sheath by means of a visual indicia.
8. The armored cable sheath defined in claim 7 , wherein the visual indicia comprises ink, dye, powder, paint, or any combination thereof.
9. The armored cable sheath defined in claim 7 , wherein the visual indicia comprises printed information applied on the tape.
10. The armored cable sheath defined in claim 7 , wherein the visual indicia comprises luminescent, fluorescent, and/or UV-visible materials.
11. The armored cable sheath defined in claim 7 , wherein the tape is a composite tape comprising at least two layers of film.
12. The armored cable sheath defined in claim 7 , wherein the tape is helically wound relative to the armored cable sheath or reverse helically wound relative to the armored cable sheath.
13. The armored cable sheath defined in claim 7 , wherein the tape is applied along the length of the armored cable sheath.
14. The armored cable sheath defined in claim 7 , wherein the sheath is formed of a metallic material and wherein the pattern provides an exposed portion of the metallic sheath to maintain electrical grounding functionality throughout the entire sheath.
15. A method of making an identifiable armored cable sheath comprising:
providing an armored cable sheath, and applying a tape to the outer surface of the sheath in a patterned arrangement, wherein the tape is visually distinctive from the armored cable sheath by means of a visual indicia.
16. The method according to claim 15 , wherein the tape is applied using a conventional tape application device.
17. The method according to claim 15 , wherein the tape is applied along the length of the armored cable sheath.
18. The method according to claim 15 , further comprising a step of heating the cable sheath after the application of the tape.
19. A visually identifiable electrical structural system comprising: an electrical structural element selected from the group consisting of electrical boxes, electrical switches, pull-stations, cable shealths, breaker boxes, electric meters, hydro meters, energy meters, and/or any combination thereof, and visual indicia which is visible in low light comprising luminescent, fluorescent, and/or UV-visible materials, wherein the visual indicia is applied to the electrical structural element.
20. The system of claim 19 , wherein the visual indicia comprises tape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/397,727 US20150125637A1 (en) | 2012-04-30 | 2013-04-25 | Visually Identifiable Electrical Structural Wiring System |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261640489P | 2012-04-30 | 2012-04-30 | |
US14/397,727 US20150125637A1 (en) | 2012-04-30 | 2013-04-25 | Visually Identifiable Electrical Structural Wiring System |
PCT/CA2013/050316 WO2013163753A1 (en) | 2012-04-30 | 2013-04-25 | A visually identifiable electrical structural wiring system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2013/050316 A-371-Of-International WO2013163753A1 (en) | 2012-04-30 | 2013-04-25 | A visually identifiable electrical structural wiring system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/968,388 Division US10622119B2 (en) | 2012-04-30 | 2018-05-01 | Visually identifiable electrical structural wiring system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150125637A1 true US20150125637A1 (en) | 2015-05-07 |
Family
ID=49514151
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/397,727 Abandoned US20150125637A1 (en) | 2012-04-30 | 2013-04-25 | Visually Identifiable Electrical Structural Wiring System |
US15/968,388 Active 2033-08-25 US10622119B2 (en) | 2012-04-30 | 2018-05-01 | Visually identifiable electrical structural wiring system |
US16/725,573 Active 2033-07-09 US11145438B2 (en) | 2012-04-30 | 2019-12-23 | Visually identifiable electrical structural wiring system |
US17/365,747 Active 2033-05-03 US11942243B2 (en) | 2012-04-30 | 2021-07-01 | Visually identifiable electrical structural wiring system |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/968,388 Active 2033-08-25 US10622119B2 (en) | 2012-04-30 | 2018-05-01 | Visually identifiable electrical structural wiring system |
US16/725,573 Active 2033-07-09 US11145438B2 (en) | 2012-04-30 | 2019-12-23 | Visually identifiable electrical structural wiring system |
US17/365,747 Active 2033-05-03 US11942243B2 (en) | 2012-04-30 | 2021-07-01 | Visually identifiable electrical structural wiring system |
Country Status (3)
Country | Link |
---|---|
US (4) | US20150125637A1 (en) |
CA (1) | CA2871949C (en) |
WO (1) | WO2013163753A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11670438B2 (en) * | 2013-08-23 | 2023-06-06 | Southwire Company, Llc | System and method of printing indicia onto armored cable |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628271A (en) * | 1969-09-26 | 1971-12-21 | Hc Ind | Fluorescent marking |
US5468914A (en) * | 1992-04-08 | 1995-11-21 | Monogram Industries Inc. | Armored cable |
US20100283007A1 (en) * | 2009-05-08 | 2010-11-11 | John Russell Robinson | Flexible luminescent paints |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2732120B1 (en) * | 1995-03-24 | 1997-04-30 | Alcatel Cable | OPTICAL FIBER CABLE |
FR2753562B1 (en) * | 1996-09-17 | 1998-10-30 | Telecommunications Sa | TELECOMMUNICATION CABLE FOR HIGH SPEED SIGNALS |
JP4988383B2 (en) * | 2007-03-02 | 2012-08-01 | スリーエム イノベイティブ プロパティズ カンパニー | (Meth) acrylic colored film, marking film, receptor sheet, and method for producing the same |
US8347533B2 (en) * | 2007-10-11 | 2013-01-08 | Southwire Company | Machine applied labels to armored cable |
US7812259B2 (en) * | 2008-10-24 | 2010-10-12 | Southwire Company | Metal-clad cable with foraminous coded label |
US8680400B2 (en) * | 2009-11-17 | 2014-03-25 | At&T Intellectual Property I, L.P. | Visual cable identification |
CN201886811U (en) | 2010-11-19 | 2011-06-29 | 宜昌华润红旗电缆有限公司 | Cable sheath |
-
2013
- 2013-04-25 CA CA2871949A patent/CA2871949C/en active Active
- 2013-04-25 US US14/397,727 patent/US20150125637A1/en not_active Abandoned
- 2013-04-25 WO PCT/CA2013/050316 patent/WO2013163753A1/en active Application Filing
-
2018
- 2018-05-01 US US15/968,388 patent/US10622119B2/en active Active
-
2019
- 2019-12-23 US US16/725,573 patent/US11145438B2/en active Active
-
2021
- 2021-07-01 US US17/365,747 patent/US11942243B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628271A (en) * | 1969-09-26 | 1971-12-21 | Hc Ind | Fluorescent marking |
US5468914A (en) * | 1992-04-08 | 1995-11-21 | Monogram Industries Inc. | Armored cable |
US20100283007A1 (en) * | 2009-05-08 | 2010-11-11 | John Russell Robinson | Flexible luminescent paints |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11670438B2 (en) * | 2013-08-23 | 2023-06-06 | Southwire Company, Llc | System and method of printing indicia onto armored cable |
US20230274860A1 (en) * | 2013-08-23 | 2023-08-31 | Southwire Company, Llc | System and method of printing indicia onto armored cable |
Also Published As
Publication number | Publication date |
---|---|
WO2013163753A1 (en) | 2013-11-07 |
US20180247739A1 (en) | 2018-08-30 |
CA2871949C (en) | 2019-09-24 |
CA2871949A1 (en) | 2013-11-07 |
US11145438B2 (en) | 2021-10-12 |
US10622119B2 (en) | 2020-04-14 |
US20200135364A1 (en) | 2020-04-30 |
US20210327611A1 (en) | 2021-10-21 |
US11942243B2 (en) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110100674A1 (en) | High performance, high temperature wire or cable | |
US20160196899A1 (en) | Metal sheathed cable with jacketed, cabled conductor subassembly | |
US10347395B1 (en) | Power and control cable for healthcare facilities | |
US20090188694A1 (en) | Flexible conduit with visual identification | |
US11942243B2 (en) | Visually identifiable electrical structural wiring system | |
CN203225123U (en) | Fireproof environment-friendly variable frequency tensile cable for ship | |
CN203839071U (en) | High-voltage-resistant highly insulating composite flat cable | |
CN101281802A (en) | Flame-proof self-extinguishing type thin film mica tape | |
US20130299210A1 (en) | Cable and method of manufacturing a cable | |
CN202917219U (en) | High-temperature-resisting signal cable | |
CN204303392U (en) | A kind of environment-friendly type electric wire | |
CN203787163U (en) | Environment-friendly water-resistant fireproof insulated cable | |
CN106205865A (en) | Lv power cable production method | |
CN203013349U (en) | Protection type railway signal lead | |
RU176852U1 (en) | ELECTRIC FIRE RESISTANT CABLE | |
CN221927533U (en) | Special medium-voltage cable for ship | |
CN204375467U (en) | A kind of copper-covered aluminum-core flame-retardant fire-resistant control cable | |
CN103943228A (en) | Environment-friendly type watertight and fireproof insulated cable | |
CN211062487U (en) | Flexible mineral substance fireproof cable | |
CN201845583U (en) | Composite fluoroplastic insulated strong-corrosion resistance cable | |
CN202210427U (en) | Fireproof cable | |
CN210443292U (en) | High-flame-retardant and high-weather-resistance cable | |
CN202443799U (en) | Capacity-increasing energy-saving flame-retarding power cable | |
RU82374U1 (en) | CONTROL CABLE, NOT DISTRIBUTING COMBUSTION, RESERVED | |
CN203102997U (en) | Flame-retardant photoelectric composite low-voltage cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NORTHERN CABLES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRUNNER, JOSEF;BACON, SHELLEY;CHARLEBOIS, KEVIN;REEL/FRAME:034531/0435 Effective date: 20141210 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |