US20150116803A1 - Optical reflecting device - Google Patents

Optical reflecting device Download PDF

Info

Publication number
US20150116803A1
US20150116803A1 US14/591,267 US201514591267A US2015116803A1 US 20150116803 A1 US20150116803 A1 US 20150116803A1 US 201514591267 A US201514591267 A US 201514591267A US 2015116803 A1 US2015116803 A1 US 2015116803A1
Authority
US
United States
Prior art keywords
oscillation parts
oscillation
pair
reflecting device
optical reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/591,267
Other versions
US9025228B1 (en
Inventor
Toshiaki Horie
Shinsuke Nakazono
Soichiro Hiraoka
Shigeo Furukawa
Yuta Yamamoto
Kazuki Komaki
Masaki Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US14/591,267 priority Critical patent/US9025228B1/en
Publication of US20150116803A1 publication Critical patent/US20150116803A1/en
Application granted granted Critical
Publication of US9025228B1 publication Critical patent/US9025228B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/004Angular deflection
    • B81B3/0045Improve properties related to angular swinging, e.g. control resonance frequency
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0163Spring holders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

An optical reflecting device includes a fixed frame, a pair of first oscillation parts, a movable frame, a pair of second oscillation parts, and a mirror part. One-side ends of the first oscillation parts are connected to the inside of the fixed frame. The movable frame is connected to and held by the other-side ends of the pair of first oscillation parts to be pivotable. One-side ends of the pair of second oscillation parts are connected to the inside of the movable frame and the pair of second oscillation parts are disposed to be substantially perpendicular to the pair of first oscillation parts. The mirror part is connected to and held by the other-side ends of the pair of second oscillation parts to be pivotable. The first oscillation parts have a meandering shape in which a plurality of straight portions and a plurality of folded portions are formed, and a stepped structure portion is provided in part of the folded portion.

Description

    BACKGROUND
  • 1. Technical Field
  • The present invention relates to an optical reflecting device used for a display apparatus or the like.
  • 2. Background Art
  • Conventional optical reflecting device 1 is shown in FIG. 10. As shown in FIG. 10, conventional optical reflecting device 1 includes fixed frame 2, one pair of first oscillation parts 3 and 4, movable frame 5, one pair of second oscillation parts 6 and 7, and mirror part 8. One-side ends of one pair of first oscillation parts 3 and 4 are connected to the inside of fixed frame 2. Movable frame 5 is connected to and held by the other-side ends of one pair of first oscillation parts 3 and 4. One-side ends of one pair of second oscillation parts 6 and 7 are connected to the inside of movable frame 5 and are disposed to be substantially perpendicular to one pair of first oscillation parts 3 and 4. Mirror part 8 is connected to and held by the other-side ends of one pair of second oscillation parts 6 and 7 to be pivotable. Movable frame 5 is pivoted around the X axis (X1 axis) which is passing through the substantial center of mirror part 8 and along one pair of first oscillation parts 3 and 4. Mirror part 8 is pivoted around the Y axis (Y1 axis) which is passing through its center and along one pair of second oscillation parts 6 and 7. Thus, optical reflecting device 1 scans a light flux (light spot) radiated and reflected from mirror part 8 in the X and Y axis directions and projects an image onto a screen.
  • FIG. 11 is an enlarged perspective view illustrating second oscillation part 7. As shown in FIG. 11, second oscillation part 7 has a so-called meandering shape in which a beam is folded a plurality of times. Second oscillation part 7 includes a plurality of straight portions 9 a and a plurality of folded portions 9 b formed by folding the plurality of straight portions 9 a.
  • A driving element such as a piezoelectric body is formed in each of the plurality of straight portions 9 a. In second oscillation part 7, large displacement of mirror part 8 is realized by driving the driving elements so that the phases of the driving elements are opposite to each other and by displacing and bending straight portions 9 a in arrow directions so that the amount of displacement accumulates according to the number of straight portions 9 a, as shown in FIG. 12.
  • For example, the optical reflecting device of the application is disclosed in, for example, PLT 1.
  • To improve the resolution of a projected image, the scanning speed of a light flux (light spot) needs to be increased by increasing a driving frequency while maintaining the amount of displacement of each oscillation part. In this case, however, there is a problem that stress is focused on the folded portions of each oscillation part and thus crack or the like easily occurs.
  • CITATION LIST Patent Literature
  • PLT 1 Unexamined Japanese Patent Publication No. 2008-040240
  • SUMMARY
  • An optical reflecting device according to the present invention includes a fixed frame, a pair of first oscillation parts, a movable frame, a pair of second oscillation parts, and a mirror part. One-side ends of the first oscillation parts are connected to the inside of the fixed frame. The movable frame is connected to and held by the other-side ends of the pair of first oscillation parts to be pivotable. One-side ends of the pair of second oscillation parts are connected to the inside of the movable frame and the pair of second oscillation parts are disposed to be substantially perpendicular to the pair of first oscillation parts. The mirror part is connected to and held by the other-side ends of the pair of second oscillation parts to be pivotable. The first oscillation parts have a meandering shape in which a plurality of straight portions and a plurality of folded portions are formed, and a stepped structure portion is provided in part of the folded portion.
  • In the optical reflecting device according to the present invention, since a mechanical strength of the folded portions of each oscillation part can be improved, the mirror part can be driven at a large pivotal angle (amount of displacement) and at a high frequency.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a perspective view illustrating an optical reflecting device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating the vicinity of a mirror part of the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view illustrating a straight portion of a second oscillation part of the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 4 is a partial sectional perspective view illustrating the second oscillation part of the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 5 is a front view when viewed from an A direction of FIG. 4.
  • FIG. 6 is a perspective view illustrating the detailed configuration of a first oscillation part of the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 7 is a partial sectional perspective view illustrating the first oscillation part of the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 8 is a front view when viewed from an A direction of FIG. 7.
  • FIG. 9 is a diagram illustrating the configuration of an example of an image projecting apparatus using the optical reflecting device according to the first embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a conventional optical reflecting device.
  • FIG. 11 is an enlarged perspective view illustrating second oscillation parts of the conventional optical reflecting device.
  • FIG. 12 is an enlarged perspective view for an operation of the second oscillation part of the conventional optical reflecting device.
  • DESCRIPTION OF EMBODIMENTS First Exemplary Embodiment
  • Hereinafter, an optical reflecting device according to a first embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a perspective view illustrating the optical reflecting device according to the first embodiment of the present invention. As shown in FIG. 1, optical reflecting device 10 according to this embodiment includes fixed frame 11, one pair of first oscillation parts 12 a and 12 b, movable frame 13, one pair of second oscillation parts 14 a and 14 b, and mirror part 15. One-side ends of one pair of first oscillation parts 12 a and 12 b are connected to and held by the inside of fixed frame 11. Movable frame 13 is connected to and held by the other-side ends of one pair of first oscillation parts 12 a and 12 b to be pivotable around an S2 axis. One-side ends of one pair of second oscillation parts 14 a and 14 b are connected to and held by the inside of movable frame 13. Second oscillation parts 14 a and 14 b are disposed to be substantially perpendicular to first oscillation parts 12 a and 12 b. Mirror part 15 is connected to and held by the other-side ends of one pair of second oscillation parts 14 a and 14 b to be pivotable around an S1 axis.
  • Fixed frame 11 according to this embodiment has a rectangular shape and a uniformly continuous shape surrounding the four sides of mirror part 15 and movable frame 13. However, movable frame 11 may have a circular or triangular shape or have a shape with one side open, as necessary. The same applies to movable frame 13.
  • One pair of first oscillation parts 12 a and 12 b are symmetric with respect to the Y axis (S1 axis) passing through the center of mirror part 15. The connection positions at which first oscillation parts 12 a and 12 b are connected to movable frame 13 and the connection positions at which first oscillation parts 12 a and 12 b are connected to fixed frame 11 are diagonally opposite to each other. That is, the connection positions at which first oscillation parts 12 a and 12 b are connected to fixed frame 11 are diagonally opposite to the connection portions at which first oscillation parts 12 a and 12 b are connected to movable frame 13. In this configuration, the pivotal axis along which movable frame 13 is actually pivoted can match the S2 axis. As a result, the inertia moment can be minimized when movable frame 13 is driven, and thus a driving efficiency can be improved.
  • Likewise, one pair of second oscillation parts 14 a and 14 b are symmetric with respect to the X axis (S2 axis) passing through the center of mirror part 15. Therefore, the intersection point between the S1 axis and the S2 axis is preferably located at center of mirror part 15.
  • FIG. 2 is an enlarged perspective view illustrating the vicinity of the mirror part of the optical reflecting device according to the first embodiment of the present invention. FIG. 2 is the enlarged perspective view illustrating mirror part 15 in addition to movable frame 13. One pair of second oscillation parts 14 a and 14 b each have a meandering shape formed of a plurality of straight portions 16 (portions inside dotted lines in the drawing) and folded portions 17 having curvature and formed by folding ends of the plurality of straight portions 16. Thus, since second oscillation parts 14 a and 14 b have such a meandering shape, second oscillation parts 14 a and 14 b can be actually lengthened. Therefore, by combining the amounts of displacement of straight portions 16, the amount of rotation of mirror part 15 can be increased.
  • In this embodiment, folded portions 17 have curvature. However, for example, the ends of parallel straight portions 16 may be connected to each other as straight lines parallel to the Y axis. Here, second oscillation parts 14 a and 14 b driving mirror part 15 will be described in detail.
  • FIG. 3 is a sectional view of one straight portion of the second oscillation part of the optical reflecting device according to the first embodiment of the present invention. FIG. 3 is the sectional view illustrating second oscillation parts 14 a and 14 b (see FIG. 1).
  • Second oscillation parts 14 a and 14 b include common silicon substrate 18 formed as the lowermost layer, silicon oxide film 19 formed on silicon substrate 18, and piezoelectric actuator 20 formed on silicon oxide film 19.
  • Piezoelectric actuator 20 includes lower electrode layer 21, piezoelectric layer 22 laminated on lower electrode layer 21, and upper electrode layer 23 commonly laminated on piezoelectric layer 22.
  • Lower electrode layer 21 is made of platinum, upper electrode layer 23 is made of gold, and piezoelectric layer 22 is made of a piezoelectric material such as lead zirconium titanate (Pb(Zx,Ti1-x)O3, where x=0.525). Such a piezoelectric material can be thinned by evaporation, a sol-gel method, CVD, sputtering, or the like.
  • By applying a predetermined voltage to lower electrode layer 21 and upper electrode layer 23, piezoelectric layer 22 can be bended, and thus second oscillation parts 14 a and 14 b are displaced. The amounts of displacement occurring in straight portions 16 adjacent to each other to be parallel with folded portions 17 interposed therebetween are combined, and consequently the amount of rotation of mirror part 15 can be enlarged.
  • When the amounts of displacement are combined, a voltage with the same phase may be applied to every other straight portion 16 adjacent to each other to be parallel with folded portion 17 interposed therebetween. Further, when there is room for the width of straight portion 16, upper electrode layer 23, which alternately applies voltages with positive and negative phases to adjacent straight portions 16, may be provided. Further, when straight portions 16 are narrow, common upper electrode layer 23 of straight portions 16 can be displaced in the same direction by alternately reversing the polarization direction of piezoelectric layer 22 with respect to adjacent straight portions 16. Thus, the displacement can be further combined by alternately applying the voltages with reverse phases to adjacent straight portions 16 or alternately reversing the polarization direction of piezoelectric layer 22 with respect to adjacent straight portions 16, compared to a case in which every other straight portion is displaced.
  • Next, folded portions 17, which are the main feature of the present invention, will be described in detail below.
  • FIG. 4 is a partial sectional perspective view illustrating the second oscillation part of the optical reflecting device according to the first embodiment of the present invention. FIG. 4 shows the configuration of folded portion 17 and straight portions 16 connected to folded portion 17. As shown in FIG. 4, folded portion 17 is configured to be thicker than straight portions 16 by providing stepped structure portion 24 below folded portion 17. At this time, when thickness h1 of straight portions 16 is less than width W1 of straight portion 16, thickness h2 of stepped structure portion 24 preferably satisfies the following relation.

  • h1+h2<W1
  • This is because when the total thickness of folded portion 17 and stepped structure portion 24 is greater than width W1 of straight portion 16, a resonant frequency of second oscillation parts 14 a and 14 b may decrease, compared to a conventional configuration in which stepped structure portion 24 is not provided.
  • Stepped structure portion 24 is provided on the entire lower surface of folded portion 17 in this embodiment, but may be provided in part of the lower surface of folded portion 17. When stepped structure portion 24 is provided in part of the lower surface of folded portion 17, stepped structure 24 is configured to be symmetric with respect to the central line (bisector: B-BB) of folded portion 17, as in FIG. 5, which is a front view when viewed in an A direction of FIG. 4.
  • Thus, a mechanical strength of folded portion 17 can be configured to be symmetric with respect to bisector B-BB, and folded portion 17 is not twisted due to the displacement of straight portions 16 a and 16 b. Consequently, a deviation in the pivotal axis of mirror part 15 can be reduced. Further, even when stress is focused on folded portions 17 of second oscillation parts 14 a and 14 b, second oscillation parts 14 a and 14 b can be prevented from being damaged.
  • In this embodiment, for example, stepped structure portion 24 is separately provided below folded portion 17, but may be integrated with folded portion 17. Further, stepped structure portion 24 may not be provided below folded portion 17, but may be provided above folded portion 17. When stepped structure portion 24 is provided above folded portion 17, stepped structure portion 24 can be easily provided after formation of optical reflecting device 10. Therefore, productivity can be improved. When stepped structure portion 24 is formed above folded portion 17, stepped structure portion 24 may be formed of a metal material on only folded portion 17 by evaporation, sputtering, partial plating, or the like using a metal mask or the like or may be formed by applying a resin material by inkjet, dipping, or the like.
  • When stepped structure portion 24 is formed of a metal material, stepped structure portion 24 can be made of a metal material with a higher specific gravity than straight portion 16 by evaporation or sputtering. Therefore, stepped structure portion 24 can be thinned. Further, by selecting a material with an even higher specific gravity such as gold, platinum, tantalum, or tungsten, stepped structure portion 24 can be thinned. Therefore, the optical reflecting device can be provided at a low cost.
  • Since stepped structure portion 24 is provided after the formation of optical reflecting device 10, a driving frequency or a deflection angle can be adjusted within a given range. Therefore, a yield ratio can be improved, and thus productivity can be improved.
  • In this embodiment, for example, the outer circumferential surface of stepped structure portion 24 matches the outer circumferential surface of folded portion 17. However, the outer circumferential surface of stepped structure portion 24 may retreat inward from the outer circumferential surface of folded portion 17. Further, the outer circumferential surface of stepped structure portion 24 may protrude outward from the outer circumferential surface of folded portion 17.
  • Thus, stepped structure portion 24 according to the present invention contributes to improvement in the mechanical strength of folded portions 17 of second oscillation parts 14 a and 14 b. The same advantage can be obtained when the thickness of folded portion 17 is greater than the thickness of straight portion 16 or only folded portion 17 is made of another material with higher strength than straight portion 16.
  • Second oscillation parts 14 a and 14 b have been exemplified, but the same applies to first oscillation parts 12 a and 12 b. Hereinafter, first oscillation parts 12 a and 12 b will be described. FIG. 6 is a perspective view illustrating the detailed configuration of the first oscillation parts of the optical reflecting device according to the first embodiment of the present invention. One pair of first oscillation parts 12 a and 12 b each have a meandering shape formed of a plurality of straight portions 25 (portions inside dotted lines in the drawing) and folded portions 26 having curvature and formed by folding the ends of the plurality of straight portions 25. Thus, since first oscillation parts 12 a and 12 b have such a meandering shape, first oscillation parts 12 a and 12 b can be actually lengthened. Therefore, by combining the amounts of displacement of straight portions 25, the amount of rotation of movable frame 13 can be increased. Since the configuration and the operation principle of one pair of first oscillation parts 12 a and 12 b are the same as those of second oscillation parts 14 a and 14 b, the detailed description thereof will not be repeated.
  • FIG. 7 is a partial sectional perspective view illustrating the first oscillation part of the optical reflecting device according to the first embodiment of the present invention. FIG. 7 shows the configuration of folded portion 26 and straight portions 25 connected to folded portion 26. As shown in FIG. 7, folded portion 26 is configured to be thicker than straight portion 25 by providing stepped structure portion 27 below folded portion 26. At this time, a relation among thickness h3 of straight portion 25, width W2 of straight portion 25, and thickness h4 of stepped structure portion 27 preferably satisfies the following relation, as in second oscillation parts 14 a and 14 b.

  • h3+h4<W2
  • In this embodiment, stepped structure portion 27 is provided on the entire lower surface of folded portion 26, but may be provided in part of the lower surface of folded portion 26. When stepped structure portion 27 is provided in part of the lower surface of folded portion 26, stepped structure 27 is configured to be symmetric with respect to the central line (bisector: B-BB) of folded portion 26, as in FIG. 8 which is a front view when viewed in an A direction of FIG. 7.
  • Thus, since a mechanical strength of folded portion 26 can be configured to be symmetric with respect to bisector B-BB, folded portion 26 is not twisted due to the displacement of straight portions 25 a and 25 b. Since a deviation in the pivotal axis of movable frame 13 can be reduced, a deviation in the pivotal axis of mirror part 15 can be consequently reduced. Further, since the driving frequency is low in first oscillation parts 12 a and 12 b operating at a low speed, the displacement of first oscillation parts 12 a and 12 b is larger than that of second oscillation parts 14 a and 14 b operating at a high speed. Therefore, stress may be focused on folded portions 26, and thus the oscillation parts may be damaged in the worst case, as in second oscillation parts 14 a and 14 b. Accordingly, by providing stepped structure portion 27, the same advantage as that of second oscillation parts 14 a and 14 b can be obtained.
  • Finally, an operation of a display apparatus using optical reflecting device 10 according to this embodiment will be described.
  • FIG. 9 is a diagram illustrating the configuration of an example of the display apparatus using optical reflecting device 10 according to this embodiment.
  • As shown in FIG. 9, a light flux (incident light 29) is incident on mirror part 15 from light source 28 such as a laser light source, and reflected light 30 is scanned in the X and Y axis directions by oscillation of mirror part 15. Then, reflected light 30 is scanned simultaneously in two axis directions, and image 32 is projected onto screen 31 or a wall.
  • Thus, when optical reflecting device 10 is operated, an alternating-current voltage of each resonant frequency is applied to each of upper electrodes 23 (see FIG. 3) of first oscillation parts 12 a and 12 b (see FIG. 1) and second oscillation parts 14 a and 14 b (see FIG. 1) to drive all of piezoelectric actuators 20 (see FIG. 3) of first oscillation parts 12 a and 12 b and second oscillation parts 14 a and 14 b. Here, when first oscillation parts 12 a and 12 b and second oscillation parts 14 a and 14 b are resonated, the amplitude thereof is increased. As a result, the pivotal angle about the X and Y axes of mirror part 15 (see FIG. 1) can be enlarged.
  • First oscillation parts 12 a and 12 b are bended alternatively and oscillated in direction of their thickness by the positive and negative phases of the alternating-current voltage (electrical signal) supplied from upper electrodes 23. This oscillation results in upper and lower (vertical) oscillation of movable frame 13 (see FIG. 1), thereby rotating mirror part 15 around the S2 axis using the center of mirror part 15 as a fixed point.
  • Second oscillation parts 14 a and 14 b are bended alternatively and oscillated in direction of their thickness by the positive and negative phases of the alternating-current voltage supplied from upper electrodes 23. This oscillation results in the upper and lower oscillation of the right and left ends of mirror part 15, thereby rotating mirror part 15 about the S1 axis using the center of mirror part 15 as a fixed point.
  • In this embodiment, stepped structure portions 24 and 27 contributing to the increase in the thickness compared to straight portions 16 and 25 are provided respectively on folded portions 17 and 26 in the meandering shape of second oscillation parts 14 a and 14 b and first oscillation parts 12 a and 12 b. Therefore, stress occurring inside folded portions 17 and 26 can be distributed. As a result, the pivotal angle about the S1 axis of mirror part 15 further increases, compared to a configuration in which stepped structure portions 24 and 27 are not provided. In second oscillation parts 14 a and 14 b according to this embodiment, thickness h1 is set to 100 μm, thickness h2 is set to 50 μm, and width W1 is set to 170 μm. Therefore, as the measurement result, the pivotal angle about the S1 axis can be increased by about 20%, compared to the conventional configuration. Likewise, in first oscillation parts 12 a and 12 b, thickness h3 is set to 100 μm, thickness h4 is set to 50 μm, and width W2 is set to 170 μm. Therefore, as the measurement result, the pivotal angle about the S2 axis can be increased by about 20%, compared to the conventional configuration.
  • In this embodiment, the case in which stepped structure portions 24 and 27 are provided in the oscillation parts including second oscillation parts 14 a and 14 b and first oscillation parts 12 a and 12 b has been described. However, stepped structure portion 24 may be provided only in second oscillation parts 14 a and 14 b. Thus, since the configuration of the oscillation parts can be simplified, the productivity of the optical reflecting device can be improved.
  • The optical reflecting device according to the present invention is effective in an image projecting apparatus such as a projector, a head-up display, or a head-mounted display.

Claims (8)

What is claimed is:
1. An optical reflecting device comprising:
a fixed frame;
a pair of first oscillation parts of which one-side ends are connected to an inside of the fixed frame;
a pivotable movable frame connected to and held by the other-side ends of the pair of first oscillation parts;
a pair of second oscillation parts of which one-side ends are connected to an inside of the movable frame and which are disposed to be substantially perpendicular to the pair of first oscillation parts; and
a pivotable mirror part connected to and held by the other-side ends of the pair of second oscillation parts,
wherein the first oscillation parts have a meandering shape in which a plurality of straight portions and a plurality of folded portions are formed, and a stepped structure portion greater than the straight portions in thickness is provided in part of the folded portions.
2. The optical reflecting device according to claim 1,
wherein on the assumption that h1 is a thickness of the straight portion, h2 is a thickness of the stepped structure portion, and W1 is a width of the straight portion, h1+h2<W1 is satisfied.
3. The optical reflecting device according to claim 2,
wherein the stepped structure portion includes a central point (bisector point) of the folded portion.
4. The optical reflecting device according to claim 3,
wherein at least part of the stepped structure portion is made of a material different from that of the straight portion.
5. The optical reflecting device according to claim 4,
wherein the stepped structure portion is formed by evaporation, sputtering, or dipping.
6. The optical reflecting device according to claim 1,
wherein the stepped structure portion includes a central point (bisector point) of the folded portion.
7. The optical reflecting device according to claim 6,
wherein at least part of the stepped structure portion is made of a material different from that of the straight portion.
8. The optical reflecting device according to claim 7,
wherein the stepped structure portion is formed by evaporation, sputtering, or dipping.
US14/591,267 2010-06-24 2015-01-07 Optical reflecting device Active US9025228B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/591,267 US9025228B1 (en) 2010-06-24 2015-01-07 Optical reflecting device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010-143477 2010-06-24
JP2010143477 2010-06-24
PCT/JP2011/003519 WO2011161943A1 (en) 2010-06-24 2011-06-21 Optical reflection element
US201213698327A 2012-11-16 2012-11-16
US14/591,267 US9025228B1 (en) 2010-06-24 2015-01-07 Optical reflecting device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/003519 Continuation WO2011161943A1 (en) 2010-06-24 2011-06-21 Optical reflection element
US13/698,327 Continuation US8964273B2 (en) 2010-06-24 2011-06-21 Optical reflection element

Publications (2)

Publication Number Publication Date
US20150116803A1 true US20150116803A1 (en) 2015-04-30
US9025228B1 US9025228B1 (en) 2015-05-05

Family

ID=45371150

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/698,327 Active 2032-04-28 US8964273B2 (en) 2010-06-24 2011-06-21 Optical reflection element
US14/591,267 Active US9025228B1 (en) 2010-06-24 2015-01-07 Optical reflecting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/698,327 Active 2032-04-28 US8964273B2 (en) 2010-06-24 2011-06-21 Optical reflection element

Country Status (5)

Country Link
US (2) US8964273B2 (en)
JP (2) JPWO2011161943A1 (en)
KR (1) KR20130108515A (en)
CN (1) CN102959454B (en)
WO (1) WO2011161943A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766450B2 (en) 2014-10-15 2017-09-19 Ricoh Company, Ltd. Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US10976539B2 (en) 2018-03-02 2021-04-13 Mitsumi Electric Co., Ltd. Actuator and optical scanning device
US11119311B2 (en) 2018-03-14 2021-09-14 Mitsumi Electric Co, Ltd. Actuator and optical scanning device
US11635615B2 (en) 2017-12-21 2023-04-25 Mitsumi Electric Co., Ltd. Actuator, optical scanning device, and manufacturing methods

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161943A1 (en) * 2010-06-24 2011-12-29 パナソニック株式会社 Optical reflection element
WO2013185812A1 (en) * 2012-06-13 2013-12-19 Lemoptix Sa A mems device
JP6220561B2 (en) * 2013-05-31 2017-10-25 スタンレー電気株式会社 Optical deflector
JP6648443B2 (en) * 2014-10-15 2020-02-14 株式会社リコー Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
DE102015209030B4 (en) 2015-05-18 2023-06-07 Robert Bosch Gmbh Micromechanical device and method of making a micromechanical device
JP6052341B2 (en) * 2015-06-03 2016-12-27 ミツミ電機株式会社 Optical scanning device
JP2017116842A (en) * 2015-12-25 2017-06-29 株式会社リコー Light deflector and image projection device
JP6959525B2 (en) * 2017-12-21 2021-11-02 ミツミ電機株式会社 Optical scanning device
JP6962183B2 (en) * 2017-12-27 2021-11-05 株式会社デンソー Optical scanning device and radar device
JP7121258B2 (en) 2018-03-14 2022-08-18 ミツミ電機株式会社 optical scanner
JP7011164B2 (en) 2018-03-15 2022-02-10 ミツミ電機株式会社 Actuator and optical scanning device
JP7011165B2 (en) 2018-03-22 2022-01-26 ミツミ電機株式会社 Actuator and optical scanning device
JP7021435B2 (en) * 2018-04-18 2022-02-17 ミツミ電機株式会社 Mirror drive device, optical scanning control device and mirror drive method
FR3090613B1 (en) 2018-12-20 2021-01-22 Commissariat Energie Atomique JOINT FOR MICRO AND NANOELECTROMECHANICAL SYSTEMS WITH OUT-OF-PLAN DISPLACEMENT OFFERING REDUCED NON-LINEARITY
FR3090612B1 (en) * 2018-12-20 2021-01-22 Commissariat Energie Atomique OUT-OF-PLANE JOINT FOR MICRO AND NANOELECTROMECHANICAL SYSTEMS WITH REDUCED NON-LINEARITY
JP7468173B2 (en) 2019-08-20 2024-04-16 株式会社リコー Optical deflector, optical scanning system, image projection device, image forming device, laser radar
JP7322697B2 (en) * 2019-12-27 2023-08-08 住友電気工業株式会社 mirror driving mechanism
JP2021113885A (en) * 2020-01-17 2021-08-05 浜松ホトニクス株式会社 Optical unit, optical device, and method of manufacturing optical unit
JP7452024B2 (en) 2020-01-17 2024-03-19 富士電機株式会社 electronic equipment
EP4194926A4 (en) * 2020-08-04 2024-01-10 Fujifilm Corp Micromirror device and optical scanning device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356545A (en) * 1999-06-11 2000-12-26 Yokogawa Electric Corp Infrared detection element and its manufacture
JP2001001300A (en) * 1999-06-22 2001-01-09 Sony Corp Fine beam structure, and its manufacture
US6327855B1 (en) 2000-02-04 2001-12-11 Jds Uniphase Inc. Actuators including serpentine arrangements of alternating actuating and opposing segments and related methods
US6710417B2 (en) 2001-09-27 2004-03-23 Seagate Technology Llc Armor coated MEMS devices
JP2005128147A (en) * 2003-10-22 2005-05-19 Stanley Electric Co Ltd Optical deflector and optical apparatus using the same
US7356880B2 (en) 2004-07-26 2008-04-15 Pentax Corporation Hinge structure of micromirror device
JP4481756B2 (en) * 2004-07-26 2010-06-16 Hoya株式会社 Hinge structure
JP4926596B2 (en) 2006-08-08 2012-05-09 スタンレー電気株式会社 Optical deflector and manufacturing method thereof
JP5296424B2 (en) * 2008-06-19 2013-09-25 キヤノン電子株式会社 Optical scanning device, image forming device, display device, and input device
JP5262613B2 (en) * 2008-11-20 2013-08-14 パナソニック株式会社 Optical reflection element
WO2011161943A1 (en) * 2010-06-24 2011-12-29 パナソニック株式会社 Optical reflection element
JP5471946B2 (en) 2010-08-02 2014-04-16 船井電機株式会社 Vibration mirror element
JP5736766B2 (en) * 2010-12-22 2015-06-17 ミツミ電機株式会社 Optical scanning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766450B2 (en) 2014-10-15 2017-09-19 Ricoh Company, Ltd. Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US11635615B2 (en) 2017-12-21 2023-04-25 Mitsumi Electric Co., Ltd. Actuator, optical scanning device, and manufacturing methods
US10976539B2 (en) 2018-03-02 2021-04-13 Mitsumi Electric Co., Ltd. Actuator and optical scanning device
US11119311B2 (en) 2018-03-14 2021-09-14 Mitsumi Electric Co, Ltd. Actuator and optical scanning device

Also Published As

Publication number Publication date
CN102959454A (en) 2013-03-06
KR20130108515A (en) 2013-10-04
US8964273B2 (en) 2015-02-24
JP2016001325A (en) 2016-01-07
US9025228B1 (en) 2015-05-05
WO2011161943A1 (en) 2011-12-29
US20130107339A1 (en) 2013-05-02
CN102959454B (en) 2015-09-30
JPWO2011161943A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US9025228B1 (en) Optical reflecting device
JP2016170376A (en) Optical deflector
US20100014143A1 (en) Vibrating Mirror Element
US9766450B2 (en) Light deflector, two-dimensional image display apparatus, optical scanner, and image forming apparatus
US9523849B2 (en) Optical reflection element
US20210223539A1 (en) Micromirror device and method of driving micromirror device
JP6988062B2 (en) Light deflectors, light scanning devices, image projection devices, image forming devices, and moving objects
WO2013114917A1 (en) Mems device and electronic instrument having projector function
JP2005128147A (en) Optical deflector and optical apparatus using the same
US10598950B2 (en) Image projection apparatus and movable body
CN107884925B (en) Optical scanning device and method for manufacturing optical scanning device
US20150116806A1 (en) Optical scanner, image display device, head mount display, and heads-up display
JP7237146B2 (en) Micromirror device and driving method of micromirror device
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
US9261669B2 (en) Vibrating element having meandering shape, and optical reflection element
JP2013160891A (en) Oscillation mirror element and electronic apparatus with projector function
US20140198259A1 (en) Electronic device having a projector function and a vibrating mirror element
JP7473774B2 (en) Piezoelectric actuator, optical scanning device
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
JP2017097193A (en) Optical deflection device and optical scanning device
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
US20220043256A1 (en) Micromirror device
JP2006064901A (en) Light deflection element, light deflector, optical scanner and image forming apparatus

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8