US20150094657A1 - Medical balloon with coextruded radiopaque portion - Google Patents

Medical balloon with coextruded radiopaque portion Download PDF

Info

Publication number
US20150094657A1
US20150094657A1 US14/383,767 US201314383767A US2015094657A1 US 20150094657 A1 US20150094657 A1 US 20150094657A1 US 201314383767 A US201314383767 A US 201314383767A US 2015094657 A1 US2015094657 A1 US 2015094657A1
Authority
US
United States
Prior art keywords
balloon
catheter
radiopaque
shaft
paragraph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/383,767
Other languages
English (en)
Inventor
Pat Byrne
Paul Anders Fillmore
Justin Hall
Margo Shannon Underwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ClearStream Technologies Ltd
Original Assignee
ClearStream Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ClearStream Technologies Ltd filed Critical ClearStream Technologies Ltd
Priority to US14/383,767 priority Critical patent/US20150094657A1/en
Publication of US20150094657A1 publication Critical patent/US20150094657A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • A61M2025/1031Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/105Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon

Definitions

  • This disclosure relates generally to balloons for performing medical procedures, such as angioplasty and, more particularly, to a medical balloon having a coextruded radiopaque portion.
  • Balloons are routinely used to resolve or address flow restrictions or perhaps even complete blockages in tubular areas of the body, such as arteries or veins. In many clinical situations, the restrictions are caused by hard solids, such as calcified plaque, and require the use of high pressures to compact such blockages.
  • Commercially available balloons employ complex technology to achieve high pressure requirements without sacrificing the profile of the balloon. Besides high pressure requirements, the balloons should also be resistant to puncture, easy to track and push, and present a low profile, especially when used for angioplasty.
  • angioplasty balloons are expanded from a deflated, folded state to an expanded state within a vessel to treat a target area, such as a portion of the circumferential inner wall I of a blood vessel V, as shown in FIGS. 1 and 2 .
  • the inflation of a balloon 12 with wall 28 is traditionally completed using an X-ray contrast agent CM along dimension DX to provide better visibility under X-ray or other form of radiography R during the interventional procedure, as illustrated in FIGS. 3 and 3 a (which shows the intensity measured by a fluoroscope detector plate, FDP).
  • FDP fluoroscope detector plate
  • a 70/30 percent mixture of contrast agent and saline is used to inflate the balloon during an angioplasty procedure.
  • a desirable goal is to reduce inflation and deflation times required for balloons without sacrificing the profile of the balloons, especially for large volume balloons (which can require up to two minutes of inflation/deflation times with the contrast agent).
  • the use of contrast agent prolongs the inflation/deflation times and also poses the risk of iodine exposure to patients sensitive to iodine.
  • a non-radiopaque substance could be used in lieu of the contrast agent, such as for example saline or carbon dioxide, but such substances are invisible during X-ray imaging, and thus do not enhance visibility.
  • the physician performing the angioplasty procedure should be able to locate the position of the uninflated balloon with accuracy, so that the balloon will be properly positioned once inflated. This is conventionally accomplished by attaching marker bands on the catheter shaft in the region corresponding to the balloon working surface.
  • This “working surface” is the surface along the portion of the balloon that is used to achieve the desired treatment effect, such as contacting the calcified plaque (which surface in the case of a balloon having conical or tapering sections at the proximal and distal ends is typically co-extensive with a generally cylindrical barrel section).
  • misalignment amount X between each interior marker band M carried by shaft S and working surface W of balloon 12 which also typically includes a radiopaque tip P at the distal end.
  • misalignment amount X between each interior marker band M carried by shaft S and working surface W of balloon 12 , which also typically includes a radiopaque tip P at the distal end.
  • the resulting misalignment may prevent the clinician from accurately identifying the location of the working surface of the balloon during an interventional procedure. This may lead to a geographic misplacement, or “miss,” of the intended contact between the target area T and the working surface W of the balloon 12 (see FIG. 2 ). It is especially desirable to avoid such an outcome when the balloon is designed to deliver a payload (such as a drug, stent, or both) or a working element to a specified location within the vasculature, since a miss may prolong the procedure (such as, for example, by requiring redeployment of the balloon 12 or the use of another balloon catheter in the case of a drug coated balloon).
  • a payload such as a drug, stent, or both
  • the balloon may also be subject to a phenomenon known as “pancaking.” In this condition, the balloon 12 folds down upon itself to a flattened state, as shown in FIG. 5 . This situation may cause the balloon to be viewed through fluoroscopy as perhaps still being in the inflated condition, since the full width of the balloon may still be perceived. This can give the clinician the false perception that the balloon remains inflated, when in fact it is not.
  • the need is identified for a balloon for which the working surface may be identified during an interventional procedure with enhanced precision.
  • the solution would take into account the possible mismatch between fixed locations on the catheter shaft and the balloon to define the working surface, and would operate independent of the position of the portion of the catheter shaft within the balloon.
  • the improved identification may also allow for the better detection of the false perception of deflation caused by pancaking.
  • procedural efficiency would be enhanced without remarkably increasing cost or complexity, and in a manner that can be applied to many existing catheter technologies without extensive modification.
  • An object of the disclosure is to provide a balloon having a coextruded radiopaque portion.
  • FIGS. 1-9 are illustrative of the background of the invention.
  • FIG. 10 illustrates a first embodiment according to the disclosure
  • FIG. 11 illustrates a second embodiment according to the disclosure
  • FIGS. 12 and 12 a are cross-sectional views of certain embodiments
  • FIG. 13 illustrates a third embodiment according to the disclosure
  • FIG. 14 illustrates a fourth embodiment according to the disclosure
  • FIG. 15 illustrates the embodiment of FIG. 14 in a folded condition
  • FIG. 16 illustrates a fifth embodiment according to the disclosure
  • FIGS. 17 and 18 illustrate a sixth embodiment according to the disclosure
  • FIG. 19 illustrates a manufacturing technique
  • FIGS. 20-23 illustrate various embodiments according to the disclosure.
  • FIGS. 24-28 illustrate other embodiments according to the disclosure.
  • a catheter 10 having a distal portion 11 with a balloon 12 mounted on a catheter tube 14 .
  • the balloon 12 has an intermediate section 16 , or “barrel,” and end sections 18 , 20 .
  • the end sections 18 , 20 reduce in diameter to join the intermediate section 16 to the catheter tube 14 (and thus sections 18 , 20 are generally termed cones or cone sections).
  • the balloon 12 is sealed at balloon ends (proximal end 15 a and distal end 15 b ) on the cone sections 18 , 20 to allow the inflation of the balloon 12 via one or more inflation lumens 17 extending within catheter tube 14 and communicating with the interior of the balloon 12 .
  • the catheter tube 14 also includes an elongated, tubular shaft 24 forming a guidewire lumen 23 that directs the guidewire 26 through the catheter 10 , and along the distal end of which the balloon 12 may be located.
  • this guidewire 26 may extend through the proximal end of the catheter 10 and a first port 25 of a connector 27 into the lumen 23 to achieve an “over the wire” (OTW) arrangement, but could also be provided in a “rapid exchange” (RX) configuration, in which the guidewire 26 exits a lateral opening 14 a closer to the distal end (see FIG. 9 ) or else is fed through the tip distally of the balloon 12 (not shown).
  • a second port 29 may also be associated with catheter 10 , such as by way of connector 27 , for introducing a fluid (e.g., saline, a contrast agent, or both) into the interior compartment of the balloon 12 via the inflation lumen 17 .
  • a fluid e.g., saline, a contrast agent
  • Balloon 12 may include a single or multi-layered balloon wall 28 forming the interior for receiving the inflation fluid.
  • the balloon 12 may be a non-compliant balloon having a balloon wall 28 that maintains its size and shape in one or more directions when the balloon is inflated. Examples of non-compliant balloons may be found in U.S. Pat. No. 6,746,425 and Publication Nos. US 2006/0085022, US 2006/0085023 and US 2006/0085024, the disclosures of which are hereby incorporated herein by reference.
  • the balloon 12 in such case also has a pre-determined surface area that remains constant during and after inflation, also has a pre-determined length and pre-determined diameter that each, or together, remain constant during and after inflation.
  • the balloon 12 could be semi-compliant or compliant instead, depending on the particular use.
  • the balloon 12 may have a radiopaque quality.
  • this radiopaque quality is provided in a manner that allows for a clinician to differentiate, with relative ease and high precision, one portion of the balloon 12 from another (such as, but not limited to, the barrel section 16 including the working surface W from the cone sections 18 , 20 ). This helps the clinician ensure the accurate positioning of the balloon 12 and, in particular, a portion of or the entire working surface W, at a specified treatment location, which may be especially desirable in the delivery of drugs via the balloon working surface W, as outlined in more detail in the following description.
  • the radiopaque quality is achieved by providing strategically positioned identifiers, such as one or more at least partially radiopaque markings 30 .
  • the markings 30 are provided at one or more locations along the balloon 12 to create a defined portion as the working surface W.
  • a marking 30 may be provided extending along the balloon 12 in a longitudinal direction.
  • the marking 30 may be provided in the form of at least one longitudinal strip 36 , as shown in FIG. 10 . More than one strip 36 may be provided, each being spaced in the circumferential direction, either irregularly or equidistantly (e.g., two strips offset at 180 degrees, three strips offset 120 degrees from each other, four strips offset 90 degrees from each other).
  • FIG. 11 may be considered a top plan view of the balloon 12 with transparency (or as it may appear under fluoroscopy) to show the presence of at least three strips (but four would appear substantially similar, if spaced apart equidistantly, with the top and bottom strips align at the twelve and six o'clock positions, respectively).
  • the strips 36 may also be formed so as to comprise all or only a portion of the cross-sectional thickness of the balloon wall 28 , as shown in FIG. 12 (partial) and FIG. 12 a (full), and may be along an outer or inner surface of the balloon wall 28 .
  • the one or more strips 36 may extend the entire length L of the balloon 12 , or may extend only over a portion of it, such as the working surface W of the barrel section 16 .
  • one or more of the markings 30 such as strips 36 , may also extend along all or a portion of one or both of the cone sections 18 , 20 .
  • a plurality of strips, 36 such as two, three, or four or more, along one or both of cone sections 18 , 20 only may allow the clinician to more readily detect the existence of pancaking, since the strips would appear to be farther apart when the balloon 12 is inflated, and closer when the balloon 12 is deflated ( 12 ′) and not flattened (compare FIGS. 14 and 15 ).
  • the balloon 12 including the radiopaque markings 30 may be formed using co-extrusion techniques.
  • this may be achieved by using an extrusion apparatus 100 including a first die 101 with one or more ports corresponding to the desired number of radiopaque strips 36 in the balloon 12 , and a second, adjacent die 102 with ports for providing the carrier material, together arranged to form a tubular coextruded structure.
  • the co-extrusion process would form six radiopaque portions 104 in a tubular parison 106 , as shown in FIGS. 17 and 18 .
  • the material between the radiopaque portions 104 is the non-radiopaque carrier material 108 , which in the illustrated embodiment completely encloses and encases the embedded radiopaque portions 104 .
  • the parison 106 with the one or more radiopaque portions may be cut to any desired length.
  • the cut parison 106 may then be placed into a mold cavity 150 (such as by separating two mating mold portions) and expanded, such as by blow molding under heat and pressure ( FIG. 19 ).
  • the result is the finished, at least partially radiopaque balloon 12 having markings 30 , with a shape (e.g., with cone sections 18 , 20 , and barrel section 16 ) conforming to the interior contour of the mold cavity (which in the case of only one co-extruded radiopaque portion in the parison, may have the appearance when molded of the balloon 12 in FIG. 10 ).
  • a tube 200 may be formed via coextrusion having one or more radiopaque portions 202 , as shown in FIG. 20 and previously described.
  • This tube 200 may then be bonded to non-radiopaque tubes 204 , such as by welding, to create a tubular parison 206 ( FIG. 21 ) that is at least partially radiopaque.
  • This parison 206 may then be expanded to form the corresponding balloon 12 , such as by blow molding.
  • the resulting expanded balloon 12 (taking into account elongation) may have the appearance of the FIG. 11 embodiment, with the working surface W delineated by the resulting strips 36 .
  • FIGS. 22 and 23 An alternative is to provide two tubes 302 a , 302 b (which may be portions of tube 300 ), and connect these to the opposed ends of a tube 300 having no added radiopacifier, to create a parison 306 ( FIGS. 22 and 23 ). Upon being expanded, this parison 306 could form an embodiment of the balloon 12 similar to the one shown in FIG. 13 . As should be appreciated, the FIG. 13 embodiment could also be formed in a similar manner by bonding the tube 300 to a single, co-extruded tube 302 a or 302 b having a radiopacifier (which, if tube 302 a or 302 b had three or more radiopaque portions, could be used to create the FIG. 14 embodiment).
  • the balloon 12 with the radiopaque quality may also be formed by coextruding a radiopaque material with a non-radiopaque material together in an overlapping manner to create a multi-layered parison.
  • a parison 400 may be created by coextruding one or more layers of a radiopaque material 402 with a material 404 without any added radiopacifier. This could be done to form a balloon 12 that is entirely radiopaque along the length L (such as by blow molding the parison 400 ), or one that is partially radiopaque.
  • the multi-layered parison 400 could be attached to tubes 406 , 408 having no added radiopacifier.
  • the bonded tubes 400 , 406 , 408 may then be expanded in a mold to create a balloon 12 having a radiopaque quality extending along the working surface W only ( FIG. 26 ).
  • a tube without any added radiopacifier could be bonded to one or two performs formed as in FIG. 24 and blown to create a balloon 12 with the radiopaque markings along one or both of the cone sections 18 , 20 ( FIG. 26 a ).
  • the forming may be done by coextruding the radiopaque-enhanced and non-radiopaque-enhanced materials together in a continuous fashion, as described previously, or an intermittent fashion (such as to provide the strip 36 along the portions of the tube continuously formed to create the cone sections or barrel section of the finished balloon).
  • an intermittent fashion such as to provide the strip 36 along the portions of the tube continuously formed to create the cone sections or barrel section of the finished balloon.
  • strategically selecting the thickness of the coextruded materials may allow for a more precise control of the radiopacity of the strips 36 (e.g., a thicker strip would include more radiopacifier and be more readily discernable).
  • control may be achieved by adjusting the relative amount of radiopacifier in the corresponding material for providing the strips 36 during the co-extrusion process.
  • Balloons 12 that carry one or more surface elements, such as a payload (drug, stent, or both) or a working implement (cutter, focused force wire, or the like) into the vasculature may also benefit from the foregoing description of marking techniques.
  • a balloon 12 including a defined working surface W such as by providing radiopaque markings 30 at the transitions between the barrel section 16 and cone sections 18 , 20 , may include a portion coated with such a drug D, such as one designed for achieving a desired therapeutic effect when applied to the interior of the vessel.
  • the radiopaque marking 30 may also correspond to the location of the drug D on the balloon 12 , such as along the entire working surface W or only a portion of it.
  • the drug D may be applied to the inflated balloon as part of the manufacturing process, and prior to folding for insertion in the vasculature.
  • the clinician may thus with the benefit of a fluoroscope determine the precise positioning of the working surface W prior to inflating the balloon 12 in the vasculature to deliver the drug D to the desired location and provide the desired treatment regimen.
  • a balloon may be formed of a multi-layered structure, such as by co-extrusion of a parison 500 , so as to provide an outer layer 502 that is radiopaque ( FIG. 27 , cross sectional view), which may extend the full length of the parison (and thus form a balloon 12 that is radiopaque in its entirety) or along only a portion of the balloon.
  • the balloon 12 when inflated may then be etched (by solvent, acid, laser, or other material removal process) in a regular or irregular pattern 504 to remove a portion of the outer layer 502 , such as along all or a portion of the working surface W. As shown in FIG.
  • drug D may then be applied to the etched pattern 504 , either along the etched portion or the un-etched portion, such as by spraying, painting, coating, or the like.
  • the extent of the portion of the balloon 12 including the drug D is readily determinable under fluoroscopy during the procedure, as the remaining radiopaque portions permit easy identification for delivery.
  • radiopaque materials include, but are not limited to, thermoplastic films including finely divided tungsten, tantalum, bismuth, bismuth trioxide, bismuth oxychloride, bismuth subcarbonate, other bismuth compounds, barium sulfate, tin, silver, silver compounds, rare earth oxides, and many other substances commonly used for X-ray absorption.
  • the polymer used for making these films may be any polymeric material which can be loaded with radiopacifier and formed into a sufficiently thin film.
  • polymers include thermoplastic and thermoset polymers.
  • thermoplastic polymers include, but are not limited to, polyurethanes, polyamides (nylon 11, nylon 12), polyether-polyamide copolymers such as PEBAX, polyethylene terephthalate or other polyesters, polyvinyl acetate, polyvinyl chloride, and many other thermoplastic materials useful for making films.
  • thermoset polymers include, but are not limited to, crosslinked polyurethanes, polyureas, epoxies, acrylics, silicones, and many other thermoset materials that can be formed into thin structures, including films.
  • any adjacent material such as the carrier or a layer, may be formed of a compatible material to that used to form the radiopaque portion. This avoids the need for additional processing or the inclusion of a compatibilizer, tie layer or the like.
  • the radiopaque material comprises expanded polytetrafluoroethylene (ePTFE), which in the form of a strip 36 corresponding to the working surface W may stretch along with the inflation of the balloon 12 and retract on deflation.
  • ePTFE expanded polytetrafluoroethylene
  • a balloon catheter comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; and an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including first and second spaced conical end sections and a working surface between the conical sections, the balloon further including at least one radiopaque marking identifying the transition from the conical end section to the working surface.
  • the at least one radiopaque marking comprises a first radiopaque marking at a first transition between the first conical end section and the working surface, and further including a second radiopaque marking at a second transition between the second conical end section and the working surface.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the at least one marking comprises a strip.
  • the strips extend at least partially in a longitudinal direction between the first and second conical end sections.
  • the strips comprise annular bands.
  • at least two spaced radiopaque markings are provided on each conical end section, including one adjacent a distal portion and a proximal portion of each conical end section.
  • the balloon includes a barrel section between the first and second conical end sections, and further including a plurality of radiopaque markings on the barrel section.
  • the marking comprises a first pattern on the conical end sections and further including a second, different pattern on the working surface.
  • the at least one marking is selected from the group consisting of a pattern, a strip, a brand, a logo, a letter, a number, a word, or combinations thereof.
  • the identifier comprises a scale.
  • the balloon includes a drug. 1.13 The catheter of paragraph 1.12, wherein the drug corresponds to the location of the radiopaque marking. 1.14 The catheter of paragraph 1.12, wherein the drug corresponds to other than the location of the radiopaque marking. 1.15 The catheter of paragraph 1.12, wherein the radiopaque marking comprises the drug formulated to include a radiopacifier. 1.16 A balloon having a drug carried on a working surface of the balloon wall and a radiopaque identifier identifying the location of the drug on the balloon. 1.17 The balloon of paragraph 1.16, wherein the radiopaque identifier comprises a radiopaque material mixed with a formulation comprising the drug.
  • a balloon catheter comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; and an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including a generally cylindrical barrel section forming a working surface, and generally conical end sections that do not form a part of the working surface, the balloon further including at least one radiopaque identifier for indicating the relative position of the working surface, said identifier being provided on at least one of the conical end sections of the balloon so as to define the extent of the working surface.
  • the identifier comprises a marking.
  • a first marking is provided at a first transition between the first conical section end section and the working surface and a second marking is provided at a second transition between the second end section and the working surface.
  • the marking comprises a strip.
  • the identifier comprises a longitudinal strip extending between an end of the balloon and the barrel section.
  • each of the plurality of identifiers comprises a longitudinally extending strip.
  • the identifiers comprise annular bands.
  • the identifier is a first identifier comprising a first pattern, and further including a second identifier comprising a second, different pattern.
  • the identifier includes at least one letter or number.
  • the identifier comprises a logo.
  • the identifier comprises a scale.
  • An inflatable balloon for use in connection with a catheter, comprising: an inflatable body including a working surface extending in a longitudinal direction between a first end and a second end, the body having at least one radiopaque identifier provided along the body for identifying at least a first end of the working surface, the radiopaque identifier having a first radiographic quality for identifying the location of the first end of the working surface and a second radiographic quality at a location other than at the first end of the working surface.
  • the second radiographic quality is provided for identifying the second end of the working surface.
  • the first radiographic quality and the second radiographic quality are substantially the same.
  • the radiopaque identifier comprises a marking.
  • the radiopaque identifier follows a generally helical path from the first end to the second end of the working surface.
  • the identifier comprises a plurality of helical identifiers extending along the working surface.
  • the identifier comprises a radiopaque filament.
  • a balloon for use in connection with a catheter comprising: a body having an outer surface and at least one winding extending along the outer surface of the balloon, said balloon having a radiopaque quality. 3.17 The balloon of paragraph 3.16, wherein the winding comprises a radiopaque filament. 3.18 The balloon of any of the foregoing paragraphs, wherein the radiopaque identifier comprises a helical pattern or a diamond pattern. 3.19 A catheter including the balloon of any of the foregoing paragraphs. 3.20 An inflatable balloon for use in connection with a catheter comprising a radiopaque identifier comprising a helical pattern or a diamond pattern.
  • a balloon catheter for use in connection with a guidewire comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including first and second spaced ends and a working surface between the ends; and at least one wire including at least a radiopaque portion for identifying the location of working surface of the balloon.
  • said wire comprises a material having a shape memory for adjusting between a first state and a second state.
  • the at least one wire extends generally in the longitudinal direction.
  • a balloon catheter adapted for use with a guidewire comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including first and second spaced ends and a working surface between the ends; and an insert located within the interior compartment of the balloon, the insert including at least a radiopaque portion separate from the shaft.
  • the insert is adapted for moving relative to the shaft.
  • the insert extends from a first end of the balloon to one end of the working surface.
  • the insert comprises a tube made at least partially of a radiopaque material.
  • the insert comprises at least one finger.
  • the finger includes a radiopaque end portion.
  • the insert comprises a plurality of fingers adapted for moving from a retracted condition to an expanded condition when the balloon is inflated. 5.8 The catheter of any of the foregoing paragraphs 5.1 to 5.7, further including a retractable sheath at least partially covering the insert.
  • the insert comprises a wire.
  • the wire includes a radiopaque portion corresponding to the working surface.
  • the radiopaque portion comprises an intermediate portion of the wire.
  • the wire extends from the first end to the second end of the balloon, and the radiopaque portion comprises an end portion of the wire.
  • at least one end of the insert is connected at a location where the balloon connects to the tubular shaft.
  • a balloon catheter comprising: an elongated, tubular shaft having a proximal end and a distal end; and a balloon positioned along the distal end of the shaft, a portion of a wall of the balloon partially comprising a coextruded radiopaque material.
  • the radiopaque portion comprises at least one strip extending along a working surface of the balloon.
  • a balloon catheter comprising: a shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and supporting at least one radiopaque identifier; an inflatable balloon supported along the distal end of the shaft, the balloon when inflated including a working surface; and an actuator for aligning at least one end of the working surface with the at least one radiopaque identifier.
  • the actuator includes a first position corresponding to a deflated state of the balloon and a second position corresponding to the inflated state of the balloon.
  • the actuator comprises a spring.
  • the radiopaque identifier comprises a marker attached to the shaft.
  • the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.
  • the actuator is a first actuator for aligning a distal end of the working surface with the radiopaque identifier, and further including a second actuator for aligning a proximal end of the working surface with the radiopaque identifier.
  • each of the first and second actuators comprise a plurality of springs.
  • the radiopaque identifier comprises a first marking and a second marking
  • the actuator is a first actuator for aligning a distal end of the working surface with the first marking, and further including a second actuator for aligning a proximal end of the working surface with the second marking.
  • the balloon catheter of any of the foregoing paragraphs 8.1 to 8.14 comprising: a shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end, and supporting first and second radiopaque identifiers; a first actuator for aligning a first end of the working surface with the first radiopaque marking; and a second actuator for aligning a second end of the working surface with the second radiopaque identifier.
  • the balloon catheter of any of the foregoing paragraphs 8.1 to 8.15 comprising: a shaft for carrying the balloon, the shaft including at least one channel formed in an outer portion of a wall of the shaft; and an actuator having a first end connected to the balloon and a second end at least partially positioned in the channel.
  • the balloon catheter of any of the foregoing paragraphs 8.1 to 8.16 comprising: a shaft for carrying the balloon, the shaft including a plurality of channels formed in an outer portion of the wall of the shaft. 8.18 The catheter of paragraph 8.17, further including an actuator having a first end connected to the balloon and a second end positioned in at least one of the channels.
  • a balloon catheter for use with a guidewire comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; an inflatable balloon connected to the distal end of the shaft, the balloon including a working surface; a radiopaque identifier for identifying the working surface; and a receiver adjacent the proximal end of the shaft and adapted for allowing the shaft to move relative to the receiver in at least the longitudinal direction.
  • the shaft carries a stop
  • the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.
  • the catheter of paragraph 9.2 further including a tube for supplying an inflation fluid to inflate the balloon, said tube being connected to the receiver and generally coaxial with the shaft, and wherein the stop forms a seal with the recess to prevent the inflation fluid from passing around the shaft.
  • the seal comprises an O-ring arranged coaxially with the shaft.
  • the radiopaque identifier is separate from the shaft.
  • the radiopaque identifier comprises an insert positioned within the interior compartment of the balloon.
  • the insert comprises a tubular sleeve arranged coaxially with the shaft.
  • the body includes a guidewire port arranged in communication with the receiver, and further including an inflation port for introducing the inflation fluid for inflating the balloon.
  • the receiver further includes a recess for receiving the stop, said recess having a dimension in the longitudinal direction that is greater than a corresponding dimension of the stop.
  • the stop forms a seal with the recess to prevent the inflation fluid from passing.
  • the stop comprises an O-ring.
  • a catheter including a guidewire shaft having a distal end connected to a balloon and at a proximal end mounted for sliding movement.
  • a catheter comprising a hub for receiving a proximal end of a guidewire shaft, the shaft being adapted to slidably move in a restrained manner relative to the hub.
  • a balloon catheter comprising: an elongated tubular shaft having a proximal end and a distal end spaced apart in a longitudinal direction, the shaft along a distal portion including at least one radiopaque identifier, said distal portion being formed of a material resistant to elongation in the longitudinal direction; and an inflatable, non-compliant balloon extending over the distal portion of the shaft.
  • the balloon includes a generally cylindrical barrel section positioned between generally conical sections, said barrel section including a working surface having at least one edge aligned with the radiopaque identifier.
  • the radiopaque identifier comprises a first marker positioned at the at least one edge of the working surface, and further including a second marker positioned at the opposite edge of the working surface in the longitudinal direction.
  • each marker comprises a radiopaque band swaged to the distal portion of the shaft.
  • the distal portion of the shaft comprises a tube adapted for guiding a guidewire from a proximal end of the balloon to a distal end of the balloon.
  • 10.6 The catheter according to paragraph 10.1, wherein at least the distal portion of the shaft comprises steel.
  • the shaft comprises steel.
  • 10.8 The catheter according to paragraphs 10.6 or 10.7, wherein the steel shaft comprises a stainless steel. 10.9
  • the polymer layer comprises an outer layer of the shaft.
  • the distal portion of the shaft comprises a polymer shaft including a braid or mesh.
  • the balloon includes a generally cylindrical barrel section positioned between generally conical sections, the distal portion of the shaft extending from a first end of a first conical section to a second end of a second conical section.
  • the non-compliant balloon comprises one or more inelastic fibers.
  • the non-compliant balloon comprises polyethylene terephthalate.
  • a balloon catheter comprising: a shaft extending in a longitudinal direction and adapted for expanding from a compressed condition to an expanded condition in the longitudinal direction, the shaft supporting at least one radiopaque identifier; and an inflatable balloon positioned along the shaft, the balloon when inflated including a working surface for aligning with the radiopaque identifier in at least the expanded condition of the shaft.
  • the expandable shaft comprises a first portion connected in tandem to an expandable element.
  • the expandable element comprises a spring.
  • the spring comprises a coil spring.
  • the expandable shaft comprises a first expandable element connecting a first portion of the shaft to a second portion of the shaft, and further including a second expandable element connecting the second portion of the shaft to a third portion of the shaft.
  • the first and second expandable elements comprise first and second coil springs.
  • the first and second coil springs have different spring constants.
  • the radiopaque identifier comprises a pair of spaced radiopaque markers, one positioned in alignment with a first end of the working surface and another positioned at a second end of the working surface.
  • the first and second expandable elements comprise a radiopaque material.
  • the radiopaque identifier comprises a spring.
  • the expandable element comprises a spring having a variable spring constant.
  • a balloon catheter comprising: a shaft; a balloon; and an expandable element adapted for expanding in the longitudinal direction connecting the shaft to the balloon.
  • the expandable element is selected from the group consisting of a spring, a bellows, a fiber matrix, or combinations of the foregoing.
  • a balloon catheter comprising a balloon and an inflation lumen including an expandable element adapted for expanding in the longitudinal direction for providing a fluid to the balloon.
  • the expandable element comprises a radiopaque material.
  • 11.30 The catheter of any of the foregoing paragraphs 11.1 to 11.29, further including a drug on the balloon.
  • a balloon catheter comprising: an elongated, tubular shaft extending in a longitudinal direction, said shaft having a proximal end and a distal end; and a balloon having an inflation compartment formed a balloon wall including a working surface, and further including at least one chamber adjacent to the working surface adapted for receiving an identifier for identifying the location of the working surface.
  • 12.2 The balloon catheter of paragraph 12.1, wherein the shaft includes a first lumen for supplying a fluid to the chamber.
  • the shaft includes a port between the first lumen and the chamber.
  • the identifier comprises a contrast agent.
  • the contrast agent comprises a material selected from the group consisting of a radiopacifier, polyvinyl acetate, cellulose, a fluid, a liquid, a solid, a powder, or combinations of the foregoing.
  • the chamber comprises a first chamber at a proximal end of the balloon, and further including a second chamber at a distal end of the balloon.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Radiation-Therapy Devices (AREA)
US14/383,767 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion Abandoned US20150094657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/383,767 US20150094657A1 (en) 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261608913P 2012-03-09 2012-03-09
NL2008450 2012-03-09
NL2008450 2012-03-09
US14/383,767 US20150094657A1 (en) 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion
PCT/US2013/029977 WO2013134697A1 (en) 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/029977 A-371-Of-International WO2013134697A1 (en) 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/225,193 Continuation US12005212B2 (en) 2012-03-09 2021-04-08 Medical balloon with coextruded radiopaque portion

Publications (1)

Publication Number Publication Date
US20150094657A1 true US20150094657A1 (en) 2015-04-02

Family

ID=49117404

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/383,767 Abandoned US20150094657A1 (en) 2012-03-09 2013-03-08 Medical balloon with coextruded radiopaque portion
US17/225,193 Active 2034-02-16 US12005212B2 (en) 2012-03-09 2021-04-08 Medical balloon with coextruded radiopaque portion

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/225,193 Active 2034-02-16 US12005212B2 (en) 2012-03-09 2021-04-08 Medical balloon with coextruded radiopaque portion

Country Status (9)

Country Link
US (2) US20150094657A1 (es)
EP (2) EP3583977A1 (es)
JP (1) JP6310403B2 (es)
KR (1) KR102349929B1 (es)
CN (1) CN104245038B (es)
AU (1) AU2013229826B2 (es)
ES (1) ES2746914T3 (es)
IN (1) IN2014DN07117A (es)
WO (1) WO2013134697A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9861794B2 (en) 2015-10-08 2018-01-09 Cook Medical Technologies Llc Multi chamber medical balloon
US11623072B2 (en) * 2014-10-16 2023-04-11 W. L. Gore & Associates, Inc. Blow molded composite devices and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108853688B (zh) 2012-03-09 2021-07-06 明讯科技有限公司 具有能精确标识工作表面位置的不透射线端部的医用囊
JP6223370B2 (ja) 2012-03-09 2017-11-01 クリアストリーム・テクノロジーズ・リミテッド 作用表面の場所を正確に識別するためのx線不透過性のインサートを有する医療用バルーン
EP2822633B1 (en) 2012-03-09 2019-02-06 Clearstream Technologies Limited Parison for forming blow molded medical balloon with modified portion, medical balloon, and related methods
NZ709426A (en) 2012-12-31 2017-08-25 Clearstream Tech Ltd Catheter with markings to facilitate alignment
KR102329479B1 (ko) 2015-10-15 2021-11-19 한국전기연구원 활성화 열처리 공정을 통한 탄화규소 다이오드 제조방법
CN106730252A (zh) * 2015-11-18 2017-05-31 上海微创医疗器械(集团)有限公司 球囊、球囊扩张导管及球囊的制备方法
US11861822B2 (en) * 2021-06-24 2024-01-02 Saudi Arabian Oil Company Image recognition device and method for retrieving information on a marker

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618614A (en) * 1969-05-06 1971-11-09 Scient Tube Products Inc Nontoxic radiopaque multiwall medical-surgical tubings
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US5102401A (en) * 1990-08-22 1992-04-07 Becton, Dickinson And Company Expandable catheter having hydrophobic surface
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5797882A (en) * 1996-08-23 1998-08-25 Becton Dickinson And Company Arterial catheter and catheter/needle assembly with improved flow characteristics and method for its use
US5843089A (en) * 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US20030004535A1 (en) * 1999-03-31 2003-01-02 Frank Musbach Textured and/or marked balloon for stent delivery
US6652568B1 (en) * 1999-12-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque balloon
US20040267195A1 (en) * 2003-06-24 2004-12-30 Arnoldo Currlin Catheter balloon having visible marker
US20070142771A1 (en) * 2005-12-20 2007-06-21 Durcan Jonathan P Non-compliant multilayered balloon for a catheter
US20100094209A1 (en) * 2008-10-10 2010-04-15 Intervalve, Inc. Valvuloplasty Catheter And Methods
US20100191221A1 (en) * 2004-02-24 2010-07-29 Boston Scientific Scimed, Inc. Rotatable Catheter Assembly
US20100234875A1 (en) * 2008-10-30 2010-09-16 R4 Vascular, Inc. Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure
US20110160661A1 (en) * 2008-09-05 2011-06-30 Elton Richard K Balloon with radiopaque adhesive
US20130053770A1 (en) * 2011-08-25 2013-02-28 Cook Medical Technologies Llc Medical balloon and balloon catheter assembly

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027659A (en) * 1975-11-21 1977-06-07 Krandex Corporation Radiographic opaque and conductive stripped medical tubes
WO1982000413A1 (en) * 1980-07-28 1982-02-18 Lab Abbott Improved radiopaque medical tubing
ES2043289T3 (es) * 1989-09-25 1993-12-16 Schneider Usa Inc La extrusion de capas multiples como procedimiento para hacer balones de angioplastia.
US5453099A (en) * 1990-03-26 1995-09-26 Becton, Dickinson And Company Catheter tubing of controlled in vivo softening
US5195969A (en) * 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5587125A (en) * 1994-08-15 1996-12-24 Schneider (Usa) Inc. Non-coextrusion method of making multi-layer angioplasty balloons
US6124007A (en) * 1996-03-06 2000-09-26 Scimed Life Systems Inc Laminate catheter balloons with additive burst strength and methods for preparation of same
US6746425B1 (en) 1996-06-14 2004-06-08 Futuremed Interventional Medical balloon
US6977103B2 (en) * 1999-10-25 2005-12-20 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6447835B1 (en) * 2000-02-15 2002-09-10 Scimed Life Systems, Inc. Method of coating polymeric tubes used in medical devices
US7985234B2 (en) * 2002-02-27 2011-07-26 Boston Scientific Scimed, Inc. Medical device
US20040220550A1 (en) * 2002-05-24 2004-11-04 Charles Schryver Hybrid extruded articles and method
US6989025B2 (en) * 2002-10-04 2006-01-24 Boston Scientific Scimed, Inc. Extruded tubing with discontinuous striping
US8088158B2 (en) * 2002-12-20 2012-01-03 Boston Scientific Scimed, Inc. Radiopaque ePTFE medical devices
US20050215950A1 (en) * 2004-03-26 2005-09-29 Scimed Life Systems, Inc. Balloon catheter with radiopaque portion
US7717951B2 (en) * 2004-05-06 2010-05-18 Cook Incorporated Delivery system that facilitates visual inspection of an intraluminal medical device
US20050258565A1 (en) * 2004-05-19 2005-11-24 Prem Anand Method and apparatus for forming a striped extrusion
US7309324B2 (en) 2004-10-15 2007-12-18 Futuremed Interventional, Inc. Non-compliant medical balloon having an integral woven fabric layer
US7354419B2 (en) 2004-10-15 2008-04-08 Futuremed Interventional, Inc. Medical balloon having strengthening rods
US7682335B2 (en) 2004-10-15 2010-03-23 Futurematrix Interventional, Inc. Non-compliant medical balloon having an integral non-woven fabric layer
US20070100280A1 (en) * 2005-03-31 2007-05-03 Van Sloten Leonard A Catheter with balloon material having visual marker
JP5280852B2 (ja) * 2005-11-09 2013-09-04 シー・アール・バード・インコーポレーテッド 放射線不透過性マーカーを有する移植片及びステント植皮
US20100241178A1 (en) * 2008-06-02 2010-09-23 Loma Vista Medical, Inc. Inflatable medical devices
EP2095795A1 (en) * 2007-12-21 2009-09-02 Abbott Laboratories Vascular Enterprises Limited Double layered balloons in medical devices
US20090226502A1 (en) * 2008-03-06 2009-09-10 Boston Scientific Scimed, Inc. Balloon catheter devices with solvent-swellable polymer
US9364634B2 (en) * 2008-04-22 2016-06-14 Becton, Dickinson And Company Systems and methods for improving catheter hole array efficiency
US8052638B2 (en) * 2008-11-26 2011-11-08 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618614A (en) * 1969-05-06 1971-11-09 Scient Tube Products Inc Nontoxic radiopaque multiwall medical-surgical tubings
US4657024A (en) * 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US5102401A (en) * 1990-08-22 1992-04-07 Becton, Dickinson And Company Expandable catheter having hydrophobic surface
US5674192A (en) * 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5843089A (en) * 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5797882A (en) * 1996-08-23 1998-08-25 Becton Dickinson And Company Arterial catheter and catheter/needle assembly with improved flow characteristics and method for its use
US20030004535A1 (en) * 1999-03-31 2003-01-02 Frank Musbach Textured and/or marked balloon for stent delivery
US6652568B1 (en) * 1999-12-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque balloon
US20040267195A1 (en) * 2003-06-24 2004-12-30 Arnoldo Currlin Catheter balloon having visible marker
US20100191221A1 (en) * 2004-02-24 2010-07-29 Boston Scientific Scimed, Inc. Rotatable Catheter Assembly
US20070142771A1 (en) * 2005-12-20 2007-06-21 Durcan Jonathan P Non-compliant multilayered balloon for a catheter
US20110160661A1 (en) * 2008-09-05 2011-06-30 Elton Richard K Balloon with radiopaque adhesive
US20100094209A1 (en) * 2008-10-10 2010-04-15 Intervalve, Inc. Valvuloplasty Catheter And Methods
US20100234875A1 (en) * 2008-10-30 2010-09-16 R4 Vascular, Inc. Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure
US20130053770A1 (en) * 2011-08-25 2013-02-28 Cook Medical Technologies Llc Medical balloon and balloon catheter assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623072B2 (en) * 2014-10-16 2023-04-11 W. L. Gore & Associates, Inc. Blow molded composite devices and method
US9861794B2 (en) 2015-10-08 2018-01-09 Cook Medical Technologies Llc Multi chamber medical balloon

Also Published As

Publication number Publication date
AU2013229826B2 (en) 2017-04-27
JP2015512695A (ja) 2015-04-30
ES2746914T3 (es) 2020-03-09
WO2013134697A1 (en) 2013-09-12
AU2013229826A1 (en) 2014-09-25
EP2822634A1 (en) 2015-01-14
JP6310403B2 (ja) 2018-04-11
US12005212B2 (en) 2024-06-11
KR20140133556A (ko) 2014-11-19
CN104245038B (zh) 2017-05-31
EP3583977A1 (en) 2019-12-25
CN104245038A (zh) 2014-12-24
KR102349929B1 (ko) 2022-01-10
US20210220625A1 (en) 2021-07-22
EP2822634B1 (en) 2019-08-07
IN2014DN07117A (es) 2015-04-24

Similar Documents

Publication Publication Date Title
US12005212B2 (en) Medical balloon with coextruded radiopaque portion
US11771873B2 (en) Medical balloon with radiopaque identifier for precisely identifying the working surface
US11685097B2 (en) Parison for forming blow molded medical balloon with modified portion, medical balloon, and related methods
US11478619B2 (en) Medical balloon with radiopaque end portion for precisely identifying a working surface location
US11878134B2 (en) Balloon catheter with floating hub
US20150099969A1 (en) Medical balloon including a radiopaque wire for precisely identifying a working surface location

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCV Information on status: appeal procedure

Free format text: REQUEST RECONSIDERATION AFTER BOARD OF APPEALS DECISION

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED AFTER REQUEST FOR RECONSIDERATION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION