US20150094244A1 - Lubricating oil compositions - Google Patents

Lubricating oil compositions Download PDF

Info

Publication number
US20150094244A1
US20150094244A1 US14/509,153 US201414509153A US2015094244A1 US 20150094244 A1 US20150094244 A1 US 20150094244A1 US 201414509153 A US201414509153 A US 201414509153A US 2015094244 A1 US2015094244 A1 US 2015094244A1
Authority
US
United States
Prior art keywords
lubricating oil
oil composition
group
compound
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/509,153
Inventor
Elaine S. Yamaguchi
Kam-Sik Ng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron Oronite Co LLC
Original Assignee
Chevron Oronite Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Oronite Co LLC filed Critical Chevron Oronite Co LLC
Priority to US14/509,153 priority Critical patent/US20150094244A1/en
Publication of US20150094244A1 publication Critical patent/US20150094244A1/en
Assigned to CHEVRON ORONITE COMPANY LLC reassignment CHEVRON ORONITE COMPANY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NG, KAM-SIK, YAMAGUCHI, ELAINE S.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/142Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention generally relates to lubricating oil compositions for reducing wear in engines.
  • Automobile spark ignition and diesel engines have valve train systems including, for example, valves, cams and rocker arms, which present special lubrication concerns. It is extremely important that the lubricant, i.e., the engine oil, protects these parts from wear. It is also important for the engine oils to suppress the production of deposits in the engines. Such deposits are produced from non-combustibles and incomplete combustion of hydrocarbon fuels (e.g., gasoline and diesel fuel oil) and by the deterioration of the engine oil employed.
  • hydrocarbon fuels e.g., gasoline and diesel fuel oil
  • Base oils typically use a mineral oil or a synthetic oil as a base oil.
  • simple base oils alone do not provide the necessary properties to provide the necessary wear protection, deposit control, etc., required to protect internal combustion engines.
  • base oils are formulated with various additives, for imparting auxiliary functions, such as ashless dispersants, metallic detergents (i.e., metal-containing detergents), antiwear agents, antioxidants (i.e., oxidation inhibitors), viscosity index improvers and the like to give a formulated oil (i.e., a lubricating oil composition).
  • zinc dialkyldithiophosphates are usually contained in the commercially available internal composition engine oils, especially those used for automobiles, because of their favorable characteristics as an antiwear agent and performance as an oxidation inhibitor.
  • catalytic converters generally use a combination of catalytic metals, e.g., platinum and metal oxides, and are installed in the exhaust streams, e.g., the exhaust pipes of automobiles, to convert the toxic gases to nontoxic gases.
  • catalytic metals e.g., platinum and metal oxides
  • these catalyst components are poisoned by the phosphorus and sulfur components, or the phosphorus and sulfur decomposition product of the zinc dialkyldithiophosphate; and accordingly, the use of engine oils containing phosphorus and sulfur additives may substantially reduce the life and effectiveness of catalytic converters.
  • a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and further wherein the lubricating oil composition is substantially free of any phosphorus content.
  • a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content, and further wherein the lubricating oil composition has a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
  • a method for improving the wear reducing properties of a lubricating oil composition comprising the step of forming a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • a method of reducing wear in an internal combustion engine which comprises operating the internal combustion engine with a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • an internal combustion engine lubricated with a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing, detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is five of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • the lubricating oil composition of the present invention advantageously possesses improved wear reducing properties while containing no zinc dialkyl dithiophosphate compound as compared to a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
  • zinc dialkyl dithiophosphate is a known antiwear agent typically used in lubricating oil compositions.
  • the improved west reducing properties can be achieved with the lubricating oil compositions of the present invention while also employing relatively low levels or free of any phosphorus content and relatively low levels of sulfur.
  • FIG. 1 is a bar graph comparing the wear performance of the lubricating oil composition of Example 1 versus the lubricating oil compositions of Comparative Examples A and B.
  • the present invention is directed to a lubricating oil composition containing at least (a) a major amount of an oil of lubricating viscosity; (b) an ashless dispersant; (c) at least one metal-containing detergent; (d) an antioxidant; and (e) an anti-wear agent other than a zinc dialkyl dithiophosphate compound, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content, e.g., a phosphorus content not exceeding 0.08 wt. %, more preferably not exceeding 0.05 wt. % and most preferably 0 wt. %, based on the total weight of the lubricating oil composition.
  • the lubricating oil composition of tire present invention contains relatively low levels of sulfur, i.e., not exceeding 0.7 wt. % and preferably not exceeding 0.2 wt. %.
  • the amount of phosphorus and sulfur in the lubricating oil composition of the present invention is measured according to ASTM D4951.
  • the oil of lubricating viscosity for use in the lubricating oil compositions of this invention is typically present in a major amount, e.g., an amount of greater than 50 wt. %, preferably greater than about 70 wt. %, more preferably from about 80 to about 99.5 wt. % and most preferably from about 85 to about 98 wt. %, based on the total weight of the composition.
  • base oil as used herein shall be understood to mean a base stock or blend of base stocks which is a lubricant component that is produced by a single manufacturer to the same specifications (independent of feed source or manufacturer's location); that meets the same manufacturer's specification; and that is identified by a unique formula, product identification number, or both.
  • the base oil for use herein can be any presently known or later-discovered base oil of lubricating viscosity used in formulating lubricating oil compositions for any and all such applications, e.g., engine oils, marine cylinder oils, functional fluids such as hydraulic oils, gear oils, transmission fluids, etc.
  • the base oils for use herein can optionally contain viscosity index improvers, e.g., polymeric alkylmethacrylates; olefinic copolymers, e.g., an ethylene-propylene copolymer or a styrene-butadiene copolymer; and the like and mixtures thereof.
  • viscosity index improvers e.g., polymeric alkylmethacrylates
  • olefinic copolymers e.g., an ethylene-propylene copolymer or a styrene-butadiene copolymer; and the like and mixtures thereof.
  • the viscosity of the base oil is dependent upon the application. Accordingly, the viscosity of a base oil for use herein will ordinarily range from about 2 to about 2000 centistokes (cSt) at 100° Centigrade (C.). Generally, individually the base oils used as engine oils will have a kinematic viscosity range at 100° C.
  • a lubricating oil composition having an SAE Viscosity Grade of 0 W, 0 W-20, 0 W-30, 0 W-40, 0 W-50, 0 W-60, 5 W, 5 W-20, 5 W-30, 5 W-40, 5 W-50, 5 W-60, 10 W, 10 W-20, 10 W-30, 10 W-40, 10 W-50, 15 W, 15 W-20, 15 W-30 or 15 W-40.
  • Oils used as gear oils can have viscosities ranging from about 2 cSt to about 2000 cSt at 100° C.
  • Base stocks may be manufactured using a variety of different processes including, but not limited to, distillation, solvent refining, hydrogen processing, oligomerization, esterification, and rerefining. Rerefined stock shall be substantially free from materials introduced through manufacturing, contamination, or previous use.
  • the base oil of the lubricating oil compositions of this invention may be an natural or synthetic lubricating base oil.
  • Suitable hydrocarbon synthetic oils include, but are not limited to, oils prepared from the polymerization of ethylene or from the polymerization of 1-olefins to provide polymers such as polyalphaolefin or PAO oils, or from hydrocarbon synthesis procedures using carbon monoxide and hydrogen gases such as in a Fischer-Tropsch process.
  • a suitable base oil is one that comprises little, if any, heavy fraction; e.g., little, if any, lube oil fraction of viscosity 20 cSt or higher at 100° C.
  • the base oil may be derived from natural lubricating oils, synthetic lubricating oils or mixtures thereof.
  • Suitable base oil includes base stocks obtained by isomerization of synthetic wax and slack wax, as well, as hydrocracked base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude.
  • Suitable base oils include those in all API categories I, II, III, IV and V as defined in API Publication 1509, 14th Edition, Addendum I, December 1998, Group IV base oils are polyalphaolefins (PAO)
  • Group V base oils include all other base oils not included in Group I, II, III, or IV. Although Group II, III and IV base oils are preferred for use in this invention, these base oils may be prepared by combining one or more of Group I, II, III, IV and V base stocks or base oils.
  • Useful natural oils include mineral lubricating oils such as, for example, liquid petroleum oils, solvent-treated or acid-treated mineral lubricating, oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types, oils derived from coal or shale, animal oils, vegetable oils (e.g., rapeseed oils, castor oils and lard oil), and the like.
  • mineral lubricating oils such as, for example, liquid petroleum oils, solvent-treated or acid-treated mineral lubricating, oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types, oils derived from coal or shale, animal oils, vegetable oils (e.g., rapeseed oils, castor oils and lard oil), and the like.
  • Useful synthetic lubricating oils include, but are not limited to, hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins, e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes), and the like and mixtures thereof; alkylbenzenes such as dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)-benzenes, and the like; polyphenyls such as biphenyls, terphenyls alkylated polyphenyls, and the like; alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivative, analogs and homolog
  • oils include, but are not limited to, oils made by polymerizing olefins of less than 5 carbon atoms such as ethylene, propylene, butylenes, isobutene, pentene, and mixtures thereof. Methods of preparing such polymer oils are well known to those skilled in the art.
  • Additional useful synthetic hydrocarbon oils include liquid polymers of alpha olefins having the proper viscosity.
  • Especially useful synthetic hydrocarbon oils are the hydrogenated liquid oligomers of C 6 to C 12 alpha olefins such as, for example, 1-decene trimer.
  • Another class of useful synthetic lubricating oils include, but are not limited to, alklene oxide polymers, i.e., homopolymers, interpolymers, and derivatives thereof where the terminal hydroxyl groups have been modified by, for example, esterification or etherification.
  • oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and phenyl ethers of these polyoxyalkylene polymers (e.g., methyl poly propylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500 to 1000, diethyl ether of polypropylene glycol having a molecular weight of 1,000 to 1,500, etc.) or mono- and polycarboxylic esters thereof such as for example, the acetic esters, mixed C 3 to C 8 fatty acid esters, or the C 13 oxo acid diester of tetraethylene glycol.
  • the alkyl and phenyl ethers of these polyoxyalkylene polymers e.g., methyl poly propylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500 to 1000, dieth
  • Yet another class of useful synthetic lubricating oils include, but are not limited to, the esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acids, alkyl malonic acids, alkenyl malonic acids, etc., with a variety of alcohols, e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fuma
  • esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid and the like.
  • Esters useful as synthetic oils also include, but are not limited to, those made from carboxylic acids having from about 5 to about 12 carbon atoms with alcohols, e.g., methanol, ethanol, etc., polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, and the like.
  • Silicon-based oils such as, for example, polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxy-siloxane oils and silicate oils, comprise another useful class of synthetic lubricating oils. Specific examples of these include, but are not limited to, tetraethyl silicate, tetra-isopropyl silicate tetra-(2-ethylhexyl) silicate tetra-(4-methyl-hexyl)silicate, tetra-(p-tert-butylphenyl)silicate, hexyl-(4-methyl-2-pentoxy)disiloxane, poly(methyl)siloxanes, poly(methylphenyl)siloxanes, and the like.
  • the lubricating oil may be derived from unrefined, refined and rerefined oils, either natural, synthetic or mixtures of two or more of any of these of the type disclosed hereinabove.
  • Unrefined oils are those obtained directly from a natural or synthetic source (e.g., coal, shale, or tar sands bitumen) without further purification or treatment.
  • Examples of unrefined oils include, but are not limited to, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or an ester oil obtained directly from an esterification process, each of which is then used without further treatment.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
  • These purification techniques are known to those of skill in the art and include, for example, solvent extractions, secondary distillation, acid or base extraction, filtration, percolation, hydrotreating, dewaxing, etc.
  • Rerefined oils are obtained by treating used oils in processes similar to those used to obtain refined oils.
  • Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Lubricating oil base stocks derived from the hydroisomerization of wax may also be used, either alone or in combination with the aforesaid natural and/or synthetic base stocks.
  • Such wax isomerate oil is produced by the hydroisomerization of natural or synthetic waxes or mixtures thereof over a hydroisomerization catalyst.
  • Natural waxes are typically the slack waxes recovered by the solvent dewaxing of mineral oils; synthetic waxes are typically the wax produced by the Fischer-Tropsch process.
  • the ashless dispersant compounds employed in the lubricating oil composition of the present invention are generally used to maintain in suspension insoluble materials resulting from oxidation during use, thus preventing sludge flocculation and precipitation or deposition on metal parts.
  • the lubricating oil composition of the present invention may contain or more ashless dispersants. Nitrogen-containing ashless (metal-free) dispersants are basic, and contribute to the total base number or TBN (as can be measured by ASTM D2896) of a lubricating oil composition to which they are added, without introducing additional sulfated ash.
  • TBN Total Base Number
  • Total Base Number refers to the amount of base equivalent to milligrams of KOH in one gram of sample.
  • An ashless dispersant generally comprises an oil soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed. Many types of ashless dispersants are known in the art.
  • ashless dispersants include, but are not limited to, amines, alcohols, amides, or ester polar moieties attached to the polymer backbones via bridging groups.
  • An ashless dispersant of the present invention may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons, long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long, chain substituted phenol with formaldehyde and polyalkylene polyamine.
  • Carboxylic dispersants are reaction products of carboxylic acylating agents (acids, anhydrides, esters, etc.) comprising at least about 34 and preferably at least about 54 carbon atoms with nitrogen containing compounds (such as amines), organic hydroxy compounds (such as aliphatic compounds including monohydric and polyhydric alcohols, or aromatic compounds including phenols and naphthols), and/or basic inorganic materials.
  • carboxylic acylating agents as acids, anhydrides, esters, etc.
  • nitrogen containing compounds such as amines
  • organic hydroxy compounds such as aliphatic compounds including monohydric and polyhydric alcohols, or aromatic compounds including phenols and naphthols
  • basic inorganic materials include imides, amides, and esters.
  • Succinimide dispersants are a type of carboxylic dispersants. They are produced by reacting hydrocarbyl-substituted succinic acylating agent with organic hydroxy compounds, or with amines comprising at least one hydrogen atom attached to a nitrogen atom, or with a mixture of the hydroxy compounds and amines.
  • succinic acylating agent refers to a hydrocarbon-substituted succinic acid or a succinic acid-producing compound, the latter encompasses the acid itself.
  • Such materials typically include hydrocarbyl-substituted succinic acids, anhydrides, esters (including half esters) and halides.
  • Succinic-based dispersants have a wide variety of chemical structures.
  • One class of succinic-based dispersants may be represented by the formula:
  • each R 1 is independently a hydrocarbyl group, such as a polyolefin-derived group.
  • the hydrocarbyl group is an alkyl group, such as a polyisobutyl group.
  • the R 1 groups can contain about 40 to about 500 carbon atoms, and these atoms may be present in aliphatic forms.
  • R 2 is an alkylene group, commonly an ethylene (C 2 H 4 ) group.
  • succinimide dispersants include those described in, for example, U.S. Pat. No. 3,172,892, 4,234,435 and 6,165,235.
  • the polyalkenes from which the substituent groups are derived are typically homopolymers and interpolymers of polymerizable olefin monomers of 2 to about 16 carbon atoms, and usually 2 to 6 carbon atoms.
  • the amines which are reacted with the succinic acylating agents to form the carboxylic dispersant composition can be monoamines or polyamines,
  • Succinimide dispersants are referred to as such since they normally contain nitrogen largely in the form of imide functionality, although the amide functionality may be in the form of amine salts, amides, imidazolines as well as mixtures thereof.
  • a succinimide dispersant one or more succinic acid-producing compounds and one or more amines are heated and typically water is removed, optionally in the presence of a substantially inert organic, liquid solvent/diluent.
  • the reaction temperature can range from about 80° C. up to the decomposition temperature of the mixture or the product, which typically falls between about 100° C. to about 300° C. Additional details and examples of procedures for preparing the succinimide dispersants of the present invention include those described in, for example, U.S. Pat. Nos. 3,172,892, 3,219,666, 3,272,746, 4,234,435, 6,165,235 and 6,440,905.
  • Suitable ashless dispersants may also include amine dispersants, which reaction products of relatively high molecular weight aliphatic halides and amines, preferably polyalkylene polyamines.
  • amine dispersants include those described in, for example, U.S. Pat. Nos. 3,275,554, 3,438 757, 3,454,555 and 3,565,804.
  • Suitable ashless dispersants may further include “Mannich dispersants,” which are reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines). Examples of such dispersants include those described in, for example, U.S. Pat. Nos. 3,036,003, 3,586,679, 3,591,598 and 3,980.569.
  • Suitable ashless dispersants may also be post-treated ashless dispersants such as post-treated succinimides, e.g., post-treatment processes involving borate or ethylene carbonate as disclosed in, for example, U.S. Pat. Nos. 4,612,132 and 4,746,446; and the like as well as other post-treatment processes.
  • the carbonate-treated alkenyl succinimide is a polybutene succinimide derived from polybutenes having a molecular weight of about 450 to about 3000, preferably from about 900 to about 2500, more preferably from about 1300 to about 2300, and most preferably from about 2000 to about 2400, as well as mixtures of these molecular weights.
  • it is prepared by reacting, under reactive conditions, a mixture of a polybutene succinic acid derivative, an unsaturated acidic reagent copolymer of an unsaturated acidic reagent and an olefin, and a polyamine, such as disclosed in U.S. Pat. No. 5,716,912, the contents of which are incorporated herein by reference.
  • Suitable ashless dispersants may also be polymeric, which are interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substitutes.
  • polymeric dispersants include those described in, for example, U.S. Pat. Nos. 3,329,658; 3,449,250 and 3,666,730.
  • an ashless dispersant for use in the lubricating oil composition is an ethylene, carbonate-treated bissuccinimide derived from a polyisobutenyl group having a number average molecular weight of about 2300.
  • the dispersant(s) for use in the lubricating oil compositions of the present invention are preferably non-polymeric (e.g., are mono- or bissuccinimides).
  • the ashless dispersant is present in the lubricating oil composition in an amount ranging from about 3 to about 10 wt. %, and preferably from about 4 to about 8 wt. %, based on the total weight of the lubricating oil composition.
  • the at least one metal-containing detergent compound employed in the lubricating oil composition of the present invention functions both as a detergent to reduce or remove deposits and as an acid neutralizer or rust inhibitor, thereby reducing wear and corrosion and extending engine life.
  • Detergents generally comprise a polar head with long hydrophobic tail, with the polar head comprising a metal salt of an acid organic compound.
  • the lubricating oil composition of the present invention may contain one or more detergents, which are normally salts, and especially overbased salts.
  • Overbased salts, or overbased materials are single phase, homogeneous Newtonian systems characterized by a metal content in excess of that which would be present according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal.
  • the overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid such as carbon dioxide) with a mixture comprising an acidic organic compound, in a reaction medium comprising at least one inert, organic solvent (such as mineral oil, naphtha, toluene, xylene) in the presence of a stoichiometric excess of a metal base and a promoter.
  • an acidic material typically an inorganic acid or lower carboxylic acid such as carbon dioxide
  • a mixture comprising an acidic organic compound
  • a reaction medium comprising at least one inert, organic solvent (such as mineral oil, naphtha, toluene, xylene) in the presence of a stoichiometric excess of a metal base and a promoter.
  • Useful acidic organic compounds for making the overbased compositions include carboxylic acids, sulfonic acids, phosphorus-containing acids, phenols and mixtures thereof.
  • the acidic organic compounds are carboxylic acids or sulfonic acids with sulfonic or thiousulfonic groups (such as hydrocarbyl-substituted benzenesulfonic acids), and hydrocarbyl-substituted salicylic acids.
  • Carboxylate detergents e.g., salicylates
  • an aromatic carboxylic acid can be prepared by reacting an aromatic carboxylic acid with an appropriate metal compound such as an oxide or hydroxide. Neutral or overbased products may then be obtained by methods well known in the art.
  • the aromatic moiety of the aromatic carboxylic acid can contain one or more heteroatoms such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms. More preferably, the moiety contains six or more carbon atoms, such as a benzene moiety.
  • the aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, optionally fused together or otherwise connected via alkylene bridges.
  • aromatic carboxylic acids include salicylic acids and sulfurized derivatives thereof such as hydrocarbyl substituted salicylic acid and derivatives thereof.
  • Processes for sulfurizing, for example, a hydrocarbyl-substituted salicylic acid are known to those skilled in the art.
  • Salicylic acids are typically prepared by carboxylation, for example, by the Kolbe-Schmitt process, of phenoxides. In that case, salicylic acids are generally obtained in a diluent in admixture with an uncarboxylated phenol.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide. Neutral or overbased products may be obtained by methods well known in the art.
  • sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur-containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products that are mixtures of compounds in which 2 or more phenols are bridged by sulfur-containing bridges.
  • the metal compounds useful in making the overbased salts are generally any Group I or Group II metal compounds in the Periodic Table of the Elements.
  • Group I metals of the metal base include Group Ia alkali metals (e.g., sodium, potassium, lithium) as well as Group Ib metals such as copper.
  • Group I metals are preferably sodium, potassium, lithium and copper, more preferably sodium or potassium, and particularly preferably sodium.
  • Group II metals of the metal base include Group IIa alkaline earth metals (e.g., magnesium, calcium, strontium, barium) as well as Group IIb metals such as zinc or cadmium.
  • the Group II metals are magnesium, calcium, barium, or zinc, more preferably magnesium or calcium, and most preferably calcium.
  • overbased detergents examples include, but are not limited to, calcium sulfonates, calcium phenates, calcium salicylates, calcium stearates and mixtures thereof.
  • Overbased detergents suitable for use in the lubricating oil compositions of the present invention may be low overbased (e.g., an overbased detergent having a TBN below about 100).
  • the TBN of such a low-overbased detergent may be from about 5 to about 50, or from about 10 to about 30, or from about 15 to about 20.
  • the overbased detergents suitable for use in the lubricating oil compositions of the present invention may be high overbased (e.g., an overbased detergent having a TBN above about 100).
  • the TBN of such a high-overbased detergent may be from about 150 to about 450, or from about 200 to about 350, or from about 250 to about 280.
  • a low-overbased calcium sulfonate detergent with a TBN of about 17 and a high-overbased sulfurized calcium phenate with a TBN of about 400 are two exemplary overbased detergents for use in the lubricating oil compositions of the present invention.
  • the lubricating oil compositions of the present invention may contain more than one overbased detergent, which may be all low-TBN detergents, all high-TBN detergents, or a mixture thereof.
  • the lubricating oil compositions of the present invention may contain a first metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 150 to about 450 and a second metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 10 to about 50.
  • a first metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 150 to about 450
  • a second metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 10 to about 50.
  • Suitable detergents for the lubricating oil compositions of the present invention also include “hybrid” detergents such as, for example, phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, and the like.
  • hybrid detergents include those described in, for example, U.S. Pat. Nos. 6,153,565, 6,281,179, 6,429,178, and 6,429,179.
  • the metal-containing detergent is present in the lubricating oil composition in an amount ranging from about 0.25 to about 3 wt. %, and preferably from about 0.5 to about 2 wt. %, based on the total weight of the lubricating oil composition.
  • the antioxidant compounds employed in the lubricating oil composition of the present invention reduce the tendency of base stocks to deteriorate in service, which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth.
  • oxidation inhibitors include hindered phenols, ashless oil soluble phenates and sulfurized phenates, alkyl-substituted diphenylamine, alkyl-substituted phenyl and naphthylamines and the like and mixtures thereof.
  • Suitable diphenylamine antioxidants include, but are not limited to, monoalkylated diphenylamine, dialkylated diphenylamine, trialkylated diphenylamine, and the like and mixtures thereof.
  • Representative examples of diphenylamine antioxidants include butyldiphenylamine, di-butyldiphenylamine, octyldiphenylamine, di-octyldiphenylamine, nonyldiphenylamine, di-nonyldiphenylamine, t-butyl-t-octyldiphenylamine, and the like and mixtures thereof.
  • the antioxidant compound is present in the lubricating oil composition in an amount ranging from about 0.2 to about 4 wt. %, and preferably from about 0.3 to about 1 wt. %, based on the total weight of the lubricating oil composition.
  • the anti-wear agent compounds other than a zinc dialkyl dithiophosphate compound employed in the lubricating oil composition of the present invention include molybdenum-containing complexes such as, for example, a molybdenum/nitrogen-containing complex.
  • molybdenum-containing complexes such as, for example, a molybdenum/nitrogen-containing complex.
  • the structure of the molybdenum/nitrogen complexes is not known with certainty. However, the molybdenum/nitrogen complexes are believed to be compounds in which molybdenum, whose valences are satisfied, with atoms of oxygen or sulfur, is either complexed by, or the salt of, one or more nitrogen atoms of the basic nitrogen containing compound used in the preparation of these compositions.
  • the molybdenum compounds used to prepare the molybdenum and molybdenum/nitrogen complexes are acidic molybdenum compounds. By acidic is meant that the molybdenum compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure.
  • these molybdenum compounds are hexavalent.
  • Suitable molybdenum compounds include molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate and other alkaline metal molybdates and other molybdenum salts such as hydrogen salts, e.g., hydrogen sodium molybdate, MoOCl 4 , MoO 2 Br 2 , Mo 2 O 3 Cl 6 , molybdenum trioxide and the like and mixtures thereof.
  • Preferred acidic molybdenum compounds are molybdic acid, ammonium molybdate, and alkali metal molybdates. Particularly preferred are molybdic acid and ammonium molybdate.
  • the basic nitrogen-containing compound used to prepare the molybdenum/nitrogen complexes have at least one basic nitrogen and are preferably oil-soluble.
  • Representative examples of basic nitrogen-containing compounds include succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polyamines, Mannich bases, phosphoramides, thiophosphoramides, phosphonamides, dispersant viscosity index improvers, and the like and mixtures thereof.
  • Any of the nitrogen-containing compounds may be post-treated with, e.g., boron, using procedures well known in the art so long as the compositions continue to contain basic nitrogen. The post-treatments are particularly applicable to succinimides and Mannich base compositions.
  • succinimides that can be used to prepare the molybdenum complexes described herein are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and the related materials encompassed by the term of art “succinimide” are taught in U.S. Pat. Nos. 3,172,892; 3,219,666 and 3,272,746 the content of which is incorporated by reference herein.
  • the term “succinimide” is understood in the art to include many of the amide, imide, and amidine species which may also be formed. The predominant product however is a succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl substituted succinic acid or anhydride with a nitrogen-containing compound.
  • Preferred succinimides because of their commercial availability, are those succinimides prepared from a hydrocarbyl succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about 350 carbon atoms, and an ethylene amine.
  • ethylene amines include ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine and the like.
  • Particularly preferred are those succinimides prepared from polyisobutenyl succinic anhydride of about 70 to about 128 carbon atoms and tetraethylene pentamine or triethylene tetramine and mixtures thereof.
  • succinimide also included within the term “succinimide” are the cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine containing at least one tertiary amino nitrogen in addition to two or more secondary amino groups. Ordinarily this composition has between about 1,500 and about 50,000 average molecular weight. A typical compound would be that prepared by reacting polyisobutenyl succinic anhydride and ethylene dipiperazine.
  • Carboxylic acid amide compounds are also suitable starting materials for preparing the molybdenum complexes. Examples of such compounds include those disclosed in, for example, U.S. Pat. No. 3,405,064, the content of which is incorporated by reference herein. These compounds are ordinarily prepared by reacting a carboxylic acid or anhydride or ester thereof, having at least about 12 to about 350 aliphatic carbon atoms in the principal aliphatic chain and, if desired, having sufficient pendant aliphatic groups to render the molecule oil soluble with an amine or a hydrocarbyl polyamine, such as an ethylene amine, to give a mono or polycarboxylic acid amide.
  • hydrocarbyl monoamines and hydrocarbyl polyamines e.g., as disclosed in U.S. Pat. No. 3,574,576, the content of which is incorporated by reference herein.
  • the hydrocarbyl group e.g., an alkyl group or olefinic group having one or two sites of unsaturation, usually contains from about 9 to about 350 carbon atoms, and preferably from about 20 to about 200 carbon atoms.
  • hydrocarbyl polyamines are those which are derived, e.g., by reacting polyisobutenyl chloride and a polyalkylene polyamine, such as an ethylene amine, e.g., ethylene diamine, diethylene triamine, tetraethylene pentamine, 2-aminoethylpiperazine, 1,3-propylene diamine, 1,2propylenediamine, and the like.
  • a polyalkylene polyamine such as an ethylene amine, e.g., ethylene diamine, diethylene triamine, tetraethylene pentamine, 2-aminoethylpiperazine, 1,3-propylene diamine, 1,2propylenediamine, and the like.
  • Mannich base compound Another class of basic nitrogen-compounds useful for supplying basic nitrogen is the Mannich base compound. These compounds are prepared from a phenol or C 9 to C 200 alkylphenol, an aldehyde, such as formaldehyde or formaldehyde precursor such as paraformaldehyde, and an amine compound.
  • the amine may be a mono or polyamine and typical compositions are prepared from an alkylamine, such as methylamine or an ethylene amine, e.g., diethylene triamine or tetraethylene pentamine, and the like.
  • the phenolic material may be sulfurized and preferably is dodecylphenol or a C 80 to C 100 alkylphenol. Typical Mannich bases are disclosed in U.S. Pat. Nos.
  • the Mannich base can be prepared by reacting an alkylphenol having at least about 50 carbon atoms, preferably about 50 to about 200 carbon atoms with formaldehyde and an alkylene polyamine H 2 N(ANH) e H where A is a saturated divalent alkyl hydrocarbon of about 2 to about 6 carbon atoms and e is 1 to about 10 and where the condensation product of the alkylene polyamine may be further reacted with urea or thiourea.
  • the utility of these Mannich bases as starting materials for preparing lubricating oil additives can often be significantly improved by treating the Mannich base using conventional techniques to introduce boron into the compound.
  • the molybdenum-containing complexes can be sulfurized or non-sulfurized.
  • Representative sulfur sources for preparing the molybdenum/sulfur complexes include sulfur, hydrogen sulfide, sulfur monochloride, sulfur dichloride, phosphorus pentasulfide, R 2 S r wherein R 2 is a hydrocarbyl such as a C 1 to C 40 alkyl, and f is at least 2, inorganic sulfides and polysulfides such as (NH 4 ) 2 S g , where g is at least 1, thioacetamide, thiourea, and mercaptans of the formula R 2 SH wherein R 2 is as defined above.
  • sulfurizing agents are traditional sulfur-containing antioxidants such as wax sulfides and polysulfides, sulfurized olefins, sulfurized carboxylic and esters and sulfurized ester-olefins, and sulfurized alkylphenols and the metal salts thereof.
  • the molybdenum/nitrogen-containing complex can be made with an organic solvent comprising a polar promoter during a complexation step and procedures for preparing such complexes are described, for example, e.g., in U.S. Pat. Nos. 4,259,194; 4,259,195; 4,261,843; 4,263,152; 4,265,773; 4,283,295; 4,285,822; 4,369,119; 4,370,246; 4,394,279; 4,402,840; and 6,962,896 and U.S. Patent Application Publication No. 2005/0209111, the contents of which are incorporated by reference herein. As shown in these references, the molybdenum/nitrogen-containing complex an further be sulfurized.
  • the anti-wear agent compounds for use herein are substantially free of any phosphorus and/or sulfur content. In another embodiment, the anti-wear agent compounds for use herein are free of any phosphorus and/or sulfur content.
  • the anti-wear agent compounds other than a zinc dialkyl dithiophosphate compound are present in the lubricating oil composition in an amount ranging from about 0.25 to about 5 wt. %, and preferably from about 0.3 to about 2 wt. %, based on the total weight of the lubricating oil composition.
  • the lubricating oil compositions of the present invention can be conveniently prepared by simply blending or mixing the ashless dispersant, at least one metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound, optionally with other additives, with the oil of lubricating viscosity.
  • the ashless dispersant, metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound may also be preblended as a concentrate or package with various other additives, if desired, in the appropriate ratios to facilitate blending of a lubricating composition containing the desired concentration of additives.
  • the ashless dispersant, at least one metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound are blended with the base oil using a concentration at which they provide improved antiwear effect and are both soluble in the oil and compatible with other additives in the desired finished lubricating oil.
  • Compatibility generally means that the present compounds as well as being oil soluble in the applicable treat rate also do not cause other additives to precipitate under normal conditions.
  • Suitable oil solubility/compatibility ranges for a given compound of lubricating oil formulation can be determined by those having ordinary skill in the art using routine solubility testing procedures. For example, precipitation from a formulated lubricating oil composition at ambient conditions (about 20° C. to 25°°C.) can be measured by either actual precipitation from the oil composition or the formulation of a “cloudy” solution which evidences formation of insoluble wax particles.
  • the lubricating oil compositions of the present invention may also contain ether conventional additives for imparting auxiliary functions to give a finished lubricating oil composition in which these additives are dispersed or dissolved.
  • the lubricating oil compositions can be blended with friction modifiers, rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents, pour point depressants, antifoaming agents, co-solvents, package compatibilisers, corrosion-inhibitors, dyes, extreme pressure agents and the like and mixtures thereof.
  • a variety of the additives are known and commercially available. These additives, or their analogous compounds, can be employed for the preparation of the lubricating oil compositions of the invention by the usual blending procedures.
  • friction modifiers include, but are not limited to, alkoxylated fatty amines; borated fatty epoxides; fatty phosphites, fatty epoxides, fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, fatty acid amides, glycerol esters, borated glycerol esters; and fatty imidazolines as disclosed in U.S. Pat. No.
  • friction modifiers obtained from a reaction product of a C 4 to C 75 , preferably a C 6 to C 24 , and most preferably a C 6 to C 20 , fatty acid ester and a nitrogen-containing compound selected from the group consisting of ammonia, and an alkanolamine and the like and mixtures thereof.
  • the friction modifier can be incorporated in the lubricating oil composition in an amount ranging of from about 0.02 to about 2.0 wt. % of the lubricating oil composition, preferably from about 0.05 to about 1.0 wt. %, and more preferably from about 0.1 to about 0.5 wt. %.
  • rust inhibitors include, but are not limited to, nonionic polyoxyalkylene agents, e.g., polyoxyethylene laurel ether, polyoxyethylene higher alcohol ether, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene octyl stearyl ether, polyoxyetnylene oleyl ether, polyoxyethylene sorbitol monostearate, polyoxyethylene sorbitol monooleate, and polyethylene glycol monooleate; stearic acid and other fatty acids; dicarboxylic acids; metal soaps; fatty acid amine salts; metal salts of heavy sulfonic acid; partial carboxylic acid ester of polyhydric alcohol; phosphoric esters; (short-chain) alkenyl succinic acids; partial esters thereof and nitrogen-containing derivatives thereof; synthetic alkarylsulfonates, e.g., metal dinonylnaphthalene
  • antifoaming agents include, but are not limited to, polymer of alkyl methacrylate; polymers of dimethylsilicone and the like and mixtures thereof.
  • the lubricating composition of the present invention may also contain a viscosity index improver.
  • the viscosity index improvers include poly-(alkyl methacrylate), ethylene-propylene copolymer, styrene-butadiene copolymer, and polyisoprene.
  • Viscosity index improvers of the dispersant type (having increased dispersancy) or multifunction type are also employed. These viscosity index improvers an be used singly or in combination.
  • the amount of viscosity index improver to be incorporated into an engine oil varies with desired viscosity of the compounded engine oil, and generally in the range of about 0.5 to about 20 wt. % per total amount of the engine oil.
  • the lubricating oil composition of the present invention possesses a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate such as a zinc dialkyl dithiophosphate compound is present therein.
  • the lubricating oil composition of the present invention possesses a wear reducing property at least about 20% greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate such as a zinc dialkyl dithiophosphate compound is present therein.
  • the lubricating oil composition of the present invention possesses a wear reducing property at least about 25% greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
  • the final application of the lubricating oil compositions of this invention may be, for example, in marine cylinder lubricants in crosshead diesel engines, crankcase lubricants in automobiles and railroads and the like, lubricants for heavy machinery such as steel mills and the like, or as greases for bearings and the like.
  • the lubricating oil compositions of this invention are used to lubricate an internal combustion engine such as a spark ignition engine, a compression ignition diesel engine, e.g., a heavy duty diesel engine or a compression ignition diesel engine equipped with at least one of an exhaust gas recirculation (EGR) system; a catalytic converter; and a particulate trap.
  • EGR exhaust gas recirculation
  • Typical thickening agents include polyurea acetates, lithium stearate and the like.
  • a lubricating oil composition was formed containing 3.858 wt. % of an ethylene carbonate post-treated bis-succinimide prepared from a 2300 average molecular weight polyisobutenyl succinic anhydride with a heavy polyamine, 0.286 wt. % borated glycerol monooleate friction modifier, 0.487 wt. % molybdenum succinimide dispersant/wear inhibitor, 0.490 wt. % diphenylamine antioxidant, 0.593 wt. % 17 TBN calcium sulfonate detergent, 1.141 wt. % 410 TBN calcium sulfonate detergent, 0.050 wt.
  • % silicone-based foam inhibitor 0.537 wt. % Exxon 100 N diluent oil and 4.800 wt. % ethylene-propylene copolymer viscosity index improver, in 87.46 wt, % Group II base oil.
  • the resulting lubricating oil composition had a phosphorus content of 0 wt. % and a sulfur content of 0.051 wt. %.
  • Example 2 To the lubricating oil composition of Example 1 was added 0.64 wt. % of zinc dihydrocarbyl dithiophate. The resulting lubricating oil composition had a phosphorus content of 0.048 wt. % and a sulfur content of 0.151 wt. %.
  • a bis-succinimide derived from 1300 MW PIBSA and heavy polyamine
  • % molybdenum succinimide complex dispersant/wear inhibitor 10 ppm foam inhibitor, 5.75 wt. % functionalized viscosity index improver, 0.3 wt. % pour point depressant, 0.75 wt. % non-functionalized viscosity index improver, and 1.89 wt. % zinc dihydrocarbyl dithiophate in 76.17 wt. % base oil consisting of 24.5 wt. % base oil consisting of 24.5% Group II base oil having a kinematic viscosity (kv) at 100° C. of 4.7 to 4.9 cSt and 75.5 wt. % Group II base oil having a kv at 100° C. of 7.8 to 7.9 cSt.
  • the resulting lubricating oil composition had a phosphorus content of 0.150 wt. % and a sulfur content of 0.445 wt. %.
  • Example 1 The lubricating oil composition of Example 1 and the lubricating oil compositions of Comparative Examples A and B were evaluated using a PCS instruments Ltd., London UK, Mini-Traction Machine (MTM) bench test.
  • MTM Mini-Traction Machine
  • the PCS MTM instrument was modified so that a 1 ⁇ 4-in. diameter Falex 52100 steel test ball (with special holder) was substituted for the pin holder that came with the instrument (see. e.g., Yamaguchi, E. S., “Friction and Wear Measurements Using a Modified MTM Tribometer,” IP.com Journal 7, Vol. 2, 9, pp 57-58 (August 2002), No. IPCOM000009117D; and Yamaguchi, E.
  • Engine soot obtained from the overhead recovery system of an engine testing facility was used for this test. Mineral oil was added to the soot before it was shipped. Therefore, the soot has to be washed prior to the test. It was made into a thin slurry with pentane. The slurry was stirred for a few minutes before it was filtered through a Whatman Number 2 filter paper over a Buchner funnel. The precipitate was made into a thin slurry again and filtered through a Whatman Number 2 filter paper again. The precipitate was then dried in a vacuum oven at 20 inch vacuum and 90° C. for more than 16 hours. The dried soot was then sieved through a 50 mesh (300 ⁇ m maximum) before use. The objective of this operation was to remove the oil and other impurities so that reproducible particles are made and they would give rise to abrasive wear as seen in modern exhaust gas recirculation (EGR) engines.
  • EGR exhaust gas recirculation
  • FIG. 1 show the wear scar diameter (WSD) and standard deviation (STD) of the lubricating oil compositions of Example 1 and Comparative Examples A and B.
  • WSD wear scar diameter
  • STD standard deviation
  • the MTM wear result of the lubricating oil composition of Example 1 is lower than the lubricating oil composition of Comparative Example B, which is a standard lubricant containing a relatively high amount of zinc dihydrocarbyl dithiophophate.

Abstract

A lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content is disclosed.

Description

    PRIORITY
  • This application is a continuation of co-pending U.S. patent application Ser. No. 12/286,376 filed Sep. 30, 2008, the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention generally relates to lubricating oil compositions for reducing wear in engines.
  • 2. Description of the Related Art
  • Automobile spark ignition and diesel engines have valve train systems including, for example, valves, cams and rocker arms, which present special lubrication concerns. It is extremely important that the lubricant, i.e., the engine oil, protects these parts from wear. It is also important for the engine oils to suppress the production of deposits in the engines. Such deposits are produced from non-combustibles and incomplete combustion of hydrocarbon fuels (e.g., gasoline and diesel fuel oil) and by the deterioration of the engine oil employed.
  • Engine oils typically use a mineral oil or a synthetic oil as a base oil. However, simple base oils alone do not provide the necessary properties to provide the necessary wear protection, deposit control, etc., required to protect internal combustion engines. Thus, base oils are formulated with various additives, for imparting auxiliary functions, such as ashless dispersants, metallic detergents (i.e., metal-containing detergents), antiwear agents, antioxidants (i.e., oxidation inhibitors), viscosity index improvers and the like to give a formulated oil (i.e., a lubricating oil composition).
  • A number of such engine oil additives are known and employed in practice. For example, zinc dialkyldithiophosphates are usually contained in the commercially available internal composition engine oils, especially those used for automobiles, because of their favorable characteristics as an antiwear agent and performance as an oxidation inhibitor.
  • However, a problem associated with the use of zinc dialkyldithiophosphate is that their phosphorus and sulfur derivatives poison the catalyst components of the catalytic converters. This is a major concern as effective catalytic converters are needed to reduce pollution and to meet governmental regulation designed to reduce toxic gases such as, for example, hydrocarbons, carbon monoxide and nitrogen oxides, in internal combustion engine exhaust emissions. Such catalytic converters generally use a combination of catalytic metals, e.g., platinum and metal oxides, and are installed in the exhaust streams, e.g., the exhaust pipes of automobiles, to convert the toxic gases to nontoxic gases. As previously mentioned, these catalyst components are poisoned by the phosphorus and sulfur components, or the phosphorus and sulfur decomposition product of the zinc dialkyldithiophosphate; and accordingly, the use of engine oils containing phosphorus and sulfur additives may substantially reduce the life and effectiveness of catalytic converters.
  • There is also governmental and automotive industry pressure towards reducing the phosphorus and sulfur content. For example, current GF-4 motor oil specifications require finished oil to contain less than 0.08 wt % and 0.7 wt % phosphorus and sulfur, respectively, and CJ-4 motor oil specifications, the most current generation heavy duty diesel engine oil, require an oil to contain less than 0.12 wt % and 0.4 wt % phosphorus and sulfur, respectively, and 1.0 wt % sulfated ash. It is widely believed that lowering these limits may have a serious impact on engine performance, engine wear, and oxidation of engine oils. This is because historically a major contributor to the phosphorus content in engine oils has been zinc dialkyldithiophosphates. Accordingly it would be desirable to eliminate the amount of zinc dialkyldithiophosphate in lubricating oils, thus reducing catalyst deactivation and hence increasing the life and effectiveness of catalytic converters while also meeting future industry standard proposed phosphorus and sulfur contents in the engine oil. However, simply decreasing the amount of zinc dialkyldithiophosphate presents problems because this necessarily lowers the antiwear properties and oxidation inhibition properties of the lubricating oil. Therefore, it is necessary to find a way to reduce or eliminate phosphorus and sulfur content while still retaining the antiwear properties of the higher phosphorus and sulfur content engine oils.
  • Accordingly, as demand for further decrease of the phosphorus content and a limit on the sulfur content of lubricating oils is very high, this reduction cannot be satisfied by the present measures in practice and still meet the severe antiwear properties required of today's engine oils. Thus, it would be desirable to develop lubricating oil compositions having relatively low levels of phosphorus and sulfur but which still provide the needed vicar protection now provided by lubricating oils containing zinc dialkyl dithiophosphate. It would therefore be desirable to develop improved lubricating oil compositions which exhibit improved wear when used in an internal combustion engine while containing no zinc therein and relatively low levels or free of any phosphorus and/or sulfur content.
  • SUMMARY OF THE INVENTION
  • In accordance with one embodiment of the present invention, a lubricating oil composition is provided comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and further wherein the lubricating oil composition is substantially free of any phosphorus content.
  • In accordance with a second embodiment of the present invention, a lubricating oil composition is provided comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content, and further wherein the lubricating oil composition has a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
  • In accordance with a third embodiment of the present invention, a method for improving the wear reducing properties of a lubricating oil composition is provided comprising the step of forming a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • In accordance with a fourth embodiment of the present invention, there is provided a method of reducing wear in an internal combustion engine which comprises operating the internal combustion engine with a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • In accordance with a fifth embodiment of the present invention, there is provided an internal combustion engine lubricated with a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing, detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is five of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
  • The lubricating oil composition of the present invention advantageously possesses improved wear reducing properties while containing no zinc dialkyl dithiophosphate compound as compared to a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein. This is unexpected as zinc dialkyl dithiophosphate is a known antiwear agent typically used in lubricating oil compositions. In addition, the improved west reducing properties can be achieved with the lubricating oil compositions of the present invention while also employing relatively low levels or free of any phosphorus content and relatively low levels of sulfur.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a bar graph comparing the wear performance of the lubricating oil composition of Example 1 versus the lubricating oil compositions of Comparative Examples A and B.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is directed to a lubricating oil composition containing at least (a) a major amount of an oil of lubricating viscosity; (b) an ashless dispersant; (c) at least one metal-containing detergent; (d) an antioxidant; and (e) an anti-wear agent other than a zinc dialkyl dithiophosphate compound, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content, e.g., a phosphorus content not exceeding 0.08 wt. %, more preferably not exceeding 0.05 wt. % and most preferably 0 wt. %, based on the total weight of the lubricating oil composition. In another embodiment, the lubricating oil composition of tire present invention contains relatively low levels of sulfur, i.e., not exceeding 0.7 wt. % and preferably not exceeding 0.2 wt. %. The amount of phosphorus and sulfur in the lubricating oil composition of the present invention is measured according to ASTM D4951.
  • The oil of lubricating viscosity for use in the lubricating oil compositions of this invention, also referred to as a base oil, is typically present in a major amount, e.g., an amount of greater than 50 wt. %, preferably greater than about 70 wt. %, more preferably from about 80 to about 99.5 wt. % and most preferably from about 85 to about 98 wt. %, based on the total weight of the composition. The expression “base oil” as used herein shall be understood to mean a base stock or blend of base stocks which is a lubricant component that is produced by a single manufacturer to the same specifications (independent of feed source or manufacturer's location); that meets the same manufacturer's specification; and that is identified by a unique formula, product identification number, or both. The base oil for use herein can be any presently known or later-discovered base oil of lubricating viscosity used in formulating lubricating oil compositions for any and all such applications, e.g., engine oils, marine cylinder oils, functional fluids such as hydraulic oils, gear oils, transmission fluids, etc. Additionally, the base oils for use herein can optionally contain viscosity index improvers, e.g., polymeric alkylmethacrylates; olefinic copolymers, e.g., an ethylene-propylene copolymer or a styrene-butadiene copolymer; and the like and mixtures thereof.
  • As one skilled in the art would readily appreciate, the viscosity of the base oil is dependent upon the application. Accordingly, the viscosity of a base oil for use herein will ordinarily range from about 2 to about 2000 centistokes (cSt) at 100° Centigrade (C.). Generally, individually the base oils used as engine oils will have a kinematic viscosity range at 100° C. of about 2 cSt to about 30 cSt, preferably about 3 cSt to about 16 cSt, and most preferably about 4 cSt to about 12 cSt and will be selected or blended depending on the desired end use and the additives in the finished oil to give the desired grade of engine oil, e.g., a lubricating oil composition having an SAE Viscosity Grade of 0 W, 0 W-20, 0 W-30, 0 W-40, 0 W-50, 0 W-60, 5 W, 5 W-20, 5 W-30, 5 W-40, 5 W-50, 5 W-60, 10 W, 10 W-20, 10 W-30, 10 W-40, 10 W-50, 15 W, 15 W-20, 15 W-30 or 15 W-40. Oils used as gear oils can have viscosities ranging from about 2 cSt to about 2000 cSt at 100° C.
  • Base stocks may be manufactured using a variety of different processes including, but not limited to, distillation, solvent refining, hydrogen processing, oligomerization, esterification, and rerefining. Rerefined stock shall be substantially free from materials introduced through manufacturing, contamination, or previous use. The base oil of the lubricating oil compositions of this invention may be an natural or synthetic lubricating base oil. Suitable hydrocarbon synthetic oils include, but are not limited to, oils prepared from the polymerization of ethylene or from the polymerization of 1-olefins to provide polymers such as polyalphaolefin or PAO oils, or from hydrocarbon synthesis procedures using carbon monoxide and hydrogen gases such as in a Fischer-Tropsch process. For example, a suitable base oil is one that comprises little, if any, heavy fraction; e.g., little, if any, lube oil fraction of viscosity 20 cSt or higher at 100° C.
  • The base oil may be derived from natural lubricating oils, synthetic lubricating oils or mixtures thereof. Suitable base oil includes base stocks obtained by isomerization of synthetic wax and slack wax, as well, as hydrocracked base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude. Suitable base oils include those in all API categories I, II, III, IV and V as defined in API Publication 1509, 14th Edition, Addendum I, December 1998, Group IV base oils are polyalphaolefins (PAO) Group V base oils include all other base oils not included in Group I, II, III, or IV. Although Group II, III and IV base oils are preferred for use in this invention, these base oils may be prepared by combining one or more of Group I, II, III, IV and V base stocks or base oils.
  • Useful natural oils include mineral lubricating oils such as, for example, liquid petroleum oils, solvent-treated or acid-treated mineral lubricating, oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types, oils derived from coal or shale, animal oils, vegetable oils (e.g., rapeseed oils, castor oils and lard oil), and the like.
  • Useful synthetic lubricating oils include, but are not limited to, hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins, e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes), and the like and mixtures thereof; alkylbenzenes such as dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)-benzenes, and the like; polyphenyls such as biphenyls, terphenyls alkylated polyphenyls, and the like; alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivative, analogs and homologs thereof and the like.
  • Other useful synthetic lubricating oils include, but are not limited to, oils made by polymerizing olefins of less than 5 carbon atoms such as ethylene, propylene, butylenes, isobutene, pentene, and mixtures thereof. Methods of preparing such polymer oils are well known to those skilled in the art.
  • Additional useful synthetic hydrocarbon oils include liquid polymers of alpha olefins having the proper viscosity. Especially useful synthetic hydrocarbon oils are the hydrogenated liquid oligomers of C6 to C12 alpha olefins such as, for example, 1-decene trimer.
  • Another class of useful synthetic lubricating oils include, but are not limited to, alklene oxide polymers, i.e., homopolymers, interpolymers, and derivatives thereof where the terminal hydroxyl groups have been modified by, for example, esterification or etherification. These oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and phenyl ethers of these polyoxyalkylene polymers (e.g., methyl poly propylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500 to 1000, diethyl ether of polypropylene glycol having a molecular weight of 1,000 to 1,500, etc.) or mono- and polycarboxylic esters thereof such as for example, the acetic esters, mixed C3 to C8 fatty acid esters, or the C13 oxo acid diester of tetraethylene glycol.
  • Yet another class of useful synthetic lubricating oils include, but are not limited to, the esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acids, alkyl malonic acids, alkenyl malonic acids, etc., with a variety of alcohols, e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc. Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid and the like.
  • Esters useful as synthetic oils also include, but are not limited to, those made from carboxylic acids having from about 5 to about 12 carbon atoms with alcohols, e.g., methanol, ethanol, etc., polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, and the like.
  • Silicon-based oils such as, for example, polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxy-siloxane oils and silicate oils, comprise another useful class of synthetic lubricating oils. Specific examples of these include, but are not limited to, tetraethyl silicate, tetra-isopropyl silicate tetra-(2-ethylhexyl) silicate tetra-(4-methyl-hexyl)silicate, tetra-(p-tert-butylphenyl)silicate, hexyl-(4-methyl-2-pentoxy)disiloxane, poly(methyl)siloxanes, poly(methylphenyl)siloxanes, and the like.
  • The lubricating oil may be derived from unrefined, refined and rerefined oils, either natural, synthetic or mixtures of two or more of any of these of the type disclosed hereinabove. Unrefined oils are those obtained directly from a natural or synthetic source (e.g., coal, shale, or tar sands bitumen) without further purification or treatment. Examples of unrefined oils include, but are not limited to, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or an ester oil obtained directly from an esterification process, each of which is then used without further treatment. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. These purification techniques are known to those of skill in the art and include, for example, solvent extractions, secondary distillation, acid or base extraction, filtration, percolation, hydrotreating, dewaxing, etc. Rerefined oils are obtained by treating used oils in processes similar to those used to obtain refined oils. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Lubricating oil base stocks derived from the hydroisomerization of wax may also be used, either alone or in combination with the aforesaid natural and/or synthetic base stocks. Such wax isomerate oil is produced by the hydroisomerization of natural or synthetic waxes or mixtures thereof over a hydroisomerization catalyst.
  • Natural waxes are typically the slack waxes recovered by the solvent dewaxing of mineral oils; synthetic waxes are typically the wax produced by the Fischer-Tropsch process.
  • The ashless dispersant compounds employed in the lubricating oil composition of the present invention are generally used to maintain in suspension insoluble materials resulting from oxidation during use, thus preventing sludge flocculation and precipitation or deposition on metal parts. The lubricating oil composition of the present invention may contain or more ashless dispersants. Nitrogen-containing ashless (metal-free) dispersants are basic, and contribute to the total base number or TBN (as can be measured by ASTM D2896) of a lubricating oil composition to which they are added, without introducing additional sulfated ash. The term “Total Base Number” or “TBN” as used herein refers to the amount of base equivalent to milligrams of KOH in one gram of sample. Thus, higher TBN numbers reflect more alkaline products, and therefore a greater alkalinity. TBN was determined using ASTM 2896 test. An ashless dispersant generally comprises an oil soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed. Many types of ashless dispersants are known in the art.
  • Representative examples of ashless dispersants include, but are not limited to, amines, alcohols, amides, or ester polar moieties attached to the polymer backbones via bridging groups. An ashless dispersant of the present invention may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons, long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long, chain substituted phenol with formaldehyde and polyalkylene polyamine.
  • Carboxylic dispersants are reaction products of carboxylic acylating agents (acids, anhydrides, esters, etc.) comprising at least about 34 and preferably at least about 54 carbon atoms with nitrogen containing compounds (such as amines), organic hydroxy compounds (such as aliphatic compounds including monohydric and polyhydric alcohols, or aromatic compounds including phenols and naphthols), and/or basic inorganic materials. These reaction products include imides, amides, and esters.
  • Succinimide dispersants are a type of carboxylic dispersants. They are produced by reacting hydrocarbyl-substituted succinic acylating agent with organic hydroxy compounds, or with amines comprising at least one hydrogen atom attached to a nitrogen atom, or with a mixture of the hydroxy compounds and amines. The term “succinic acylating agent” refers to a hydrocarbon-substituted succinic acid or a succinic acid-producing compound, the latter encompasses the acid itself. Such materials typically include hydrocarbyl-substituted succinic acids, anhydrides, esters (including half esters) and halides.
  • Succinic-based dispersants have a wide variety of chemical structures. One class of succinic-based dispersants may be represented by the formula:
  • Figure US20150094244A1-20150402-C00001
  • wherein each R1 is independently a hydrocarbyl group, such as a polyolefin-derived group. Typically the hydrocarbyl group is an alkyl group, such as a polyisobutyl group. Alternatively expressed, the R1 groups can contain about 40 to about 500 carbon atoms, and these atoms may be present in aliphatic forms. R2 is an alkylene group, commonly an ethylene (C2H4) group. Examples of succinimide dispersants include those described in, for example, U.S. Pat. No. 3,172,892, 4,234,435 and 6,165,235.
  • The polyalkenes from which the substituent groups are derived are typically homopolymers and interpolymers of polymerizable olefin monomers of 2 to about 16 carbon atoms, and usually 2 to 6 carbon atoms. The amines which are reacted with the succinic acylating agents to form the carboxylic dispersant composition can be monoamines or polyamines,
  • Succinimide dispersants are referred to as such since they normally contain nitrogen largely in the form of imide functionality, although the amide functionality may be in the form of amine salts, amides, imidazolines as well as mixtures thereof. To prepare a succinimide dispersant, one or more succinic acid-producing compounds and one or more amines are heated and typically water is removed, optionally in the presence of a substantially inert organic, liquid solvent/diluent. The reaction temperature can range from about 80° C. up to the decomposition temperature of the mixture or the product, which typically falls between about 100° C. to about 300° C. Additional details and examples of procedures for preparing the succinimide dispersants of the present invention include those described in, for example, U.S. Pat. Nos. 3,172,892, 3,219,666, 3,272,746, 4,234,435, 6,165,235 and 6,440,905.
  • Suitable ashless dispersants may also include amine dispersants, which reaction products of relatively high molecular weight aliphatic halides and amines, preferably polyalkylene polyamines. Examples of such amine dispersants include those described in, for example, U.S. Pat. Nos. 3,275,554, 3,438 757, 3,454,555 and 3,565,804.
  • Suitable ashless dispersants may further include “Mannich dispersants,” which are reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines). Examples of such dispersants include those described in, for example, U.S. Pat. Nos. 3,036,003, 3,586,679, 3,591,598 and 3,980.569.
  • Suitable ashless dispersants may also be post-treated ashless dispersants such as post-treated succinimides, e.g., post-treatment processes involving borate or ethylene carbonate as disclosed in, for example, U.S. Pat. Nos. 4,612,132 and 4,746,446; and the like as well as other post-treatment processes. The carbonate-treated alkenyl succinimide is a polybutene succinimide derived from polybutenes having a molecular weight of about 450 to about 3000, preferably from about 900 to about 2500, more preferably from about 1300 to about 2300, and most preferably from about 2000 to about 2400, as well as mixtures of these molecular weights. Preferably, it is prepared by reacting, under reactive conditions, a mixture of a polybutene succinic acid derivative, an unsaturated acidic reagent copolymer of an unsaturated acidic reagent and an olefin, and a polyamine, such as disclosed in U.S. Pat. No. 5,716,912, the contents of which are incorporated herein by reference.
  • Suitable ashless dispersants may also be polymeric, which are interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substitutes. Examples of polymeric dispersants include those described in, for example, U.S. Pat. Nos. 3,329,658; 3,449,250 and 3,666,730.
  • In a preferred embodiment of the present invention, an ashless dispersant for use in the lubricating oil composition is an ethylene, carbonate-treated bissuccinimide derived from a polyisobutenyl group having a number average molecular weight of about 2300. The dispersant(s) for use in the lubricating oil compositions of the present invention are preferably non-polymeric (e.g., are mono- or bissuccinimides).
  • Generally, the ashless dispersant is present in the lubricating oil composition in an amount ranging from about 3 to about 10 wt. %, and preferably from about 4 to about 8 wt. %, based on the total weight of the lubricating oil composition.
  • The at least one metal-containing detergent compound employed in the lubricating oil composition of the present invention functions both as a detergent to reduce or remove deposits and as an acid neutralizer or rust inhibitor, thereby reducing wear and corrosion and extending engine life. Detergents generally comprise a polar head with long hydrophobic tail, with the polar head comprising a metal salt of an acid organic compound.
  • The lubricating oil composition of the present invention may contain one or more detergents, which are normally salts, and especially overbased salts. Overbased salts, or overbased materials, are single phase, homogeneous Newtonian systems characterized by a metal content in excess of that which would be present according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal. The overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid such as carbon dioxide) with a mixture comprising an acidic organic compound, in a reaction medium comprising at least one inert, organic solvent (such as mineral oil, naphtha, toluene, xylene) in the presence of a stoichiometric excess of a metal base and a promoter.
  • Useful acidic organic compounds for making the overbased compositions include carboxylic acids, sulfonic acids, phosphorus-containing acids, phenols and mixtures thereof. Preferably, the acidic organic compounds are carboxylic acids or sulfonic acids with sulfonic or thiousulfonic groups (such as hydrocarbyl-substituted benzenesulfonic acids), and hydrocarbyl-substituted salicylic acids.
  • Carboxylate detergents, e.g., salicylates, can be prepared by reacting an aromatic carboxylic acid with an appropriate metal compound such as an oxide or hydroxide. Neutral or overbased products may then be obtained by methods well known in the art. The aromatic moiety of the aromatic carboxylic acid can contain one or more heteroatoms such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms. More preferably, the moiety contains six or more carbon atoms, such as a benzene moiety. The aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, optionally fused together or otherwise connected via alkylene bridges. Representative examples of aromatic carboxylic acids include salicylic acids and sulfurized derivatives thereof such as hydrocarbyl substituted salicylic acid and derivatives thereof. Processes for sulfurizing, for example, a hydrocarbyl-substituted salicylic acid, are known to those skilled in the art. Salicylic acids are typically prepared by carboxylation, for example, by the Kolbe-Schmitt process, of phenoxides. In that case, salicylic acids are generally obtained in a diluent in admixture with an uncarboxylated phenol.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide. Neutral or overbased products may be obtained by methods well known in the art. For example, sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur-containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products that are mixtures of compounds in which 2 or more phenols are bridged by sulfur-containing bridges.
  • The metal compounds useful in making the overbased salts are generally any Group I or Group II metal compounds in the Periodic Table of the Elements. Group I metals of the metal base include Group Ia alkali metals (e.g., sodium, potassium, lithium) as well as Group Ib metals such as copper. Group I metals are preferably sodium, potassium, lithium and copper, more preferably sodium or potassium, and particularly preferably sodium. Group II metals of the metal base include Group IIa alkaline earth metals (e.g., magnesium, calcium, strontium, barium) as well as Group IIb metals such as zinc or cadmium. Preferably, the Group II metals are magnesium, calcium, barium, or zinc, more preferably magnesium or calcium, and most preferably calcium.
  • Examples of the overbased detergents include, but are not limited to, calcium sulfonates, calcium phenates, calcium salicylates, calcium stearates and mixtures thereof. Overbased detergents suitable for use in the lubricating oil compositions of the present invention may be low overbased (e.g., an overbased detergent having a TBN below about 100). The TBN of such a low-overbased detergent may be from about 5 to about 50, or from about 10 to about 30, or from about 15 to about 20. Alternatively, the overbased detergents suitable for use in the lubricating oil compositions of the present invention may be high overbased (e.g., an overbased detergent having a TBN above about 100). The TBN of such a high-overbased detergent may be from about 150 to about 450, or from about 200 to about 350, or from about 250 to about 280. A low-overbased calcium sulfonate detergent with a TBN of about 17 and a high-overbased sulfurized calcium phenate with a TBN of about 400 are two exemplary overbased detergents for use in the lubricating oil compositions of the present invention. The lubricating oil compositions of the present invention may contain more than one overbased detergent, which may be all low-TBN detergents, all high-TBN detergents, or a mixture thereof. For example, the lubricating oil compositions of the present invention may contain a first metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 150 to about 450 and a second metal-containing detergent which is an overbased alkaline earth metal sulfonate detergent having a TBN of about 10 to about 50.
  • Suitable detergents for the lubricating oil compositions of the present invention also include “hybrid” detergents such as, for example, phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, and the like. Examples of hybrid detergents include those described in, for example, U.S. Pat. Nos. 6,153,565, 6,281,179, 6,429,178, and 6,429,179.
  • Generally, the metal-containing detergent is present in the lubricating oil composition in an amount ranging from about 0.25 to about 3 wt. %, and preferably from about 0.5 to about 2 wt. %, based on the total weight of the lubricating oil composition.
  • The antioxidant compounds employed in the lubricating oil composition of the present invention reduce the tendency of base stocks to deteriorate in service, which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth. Such oxidation inhibitors include hindered phenols, ashless oil soluble phenates and sulfurized phenates, alkyl-substituted diphenylamine, alkyl-substituted phenyl and naphthylamines and the like and mixtures thereof. Suitable diphenylamine antioxidants include, but are not limited to, monoalkylated diphenylamine, dialkylated diphenylamine, trialkylated diphenylamine, and the like and mixtures thereof. Representative examples of diphenylamine antioxidants include butyldiphenylamine, di-butyldiphenylamine, octyldiphenylamine, di-octyldiphenylamine, nonyldiphenylamine, di-nonyldiphenylamine, t-butyl-t-octyldiphenylamine, and the like and mixtures thereof.
  • Generally, the antioxidant compound is present in the lubricating oil composition in an amount ranging from about 0.2 to about 4 wt. %, and preferably from about 0.3 to about 1 wt. %, based on the total weight of the lubricating oil composition.
  • The anti-wear agent compounds other than a zinc dialkyl dithiophosphate compound employed in the lubricating oil composition of the present invention include molybdenum-containing complexes such as, for example, a molybdenum/nitrogen-containing complex. Such complexes are known in the art and are described, for example, in U.S. Pat. No. 4,263,152, the content of which is incorporated by reference herein.
  • The structure of the molybdenum/nitrogen complexes is not known with certainty. However, the molybdenum/nitrogen complexes are believed to be compounds in which molybdenum, whose valences are satisfied, with atoms of oxygen or sulfur, is either complexed by, or the salt of, one or more nitrogen atoms of the basic nitrogen containing compound used in the preparation of these compositions. The molybdenum compounds used to prepare the molybdenum and molybdenum/nitrogen complexes are acidic molybdenum compounds. By acidic is meant that the molybdenum compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure. Typically, these molybdenum compounds are hexavalent. Suitable molybdenum compounds include molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate and other alkaline metal molybdates and other molybdenum salts such as hydrogen salts, e.g., hydrogen sodium molybdate, MoOCl4, MoO2Br2, Mo2O3Cl6, molybdenum trioxide and the like and mixtures thereof. Preferred acidic molybdenum compounds are molybdic acid, ammonium molybdate, and alkali metal molybdates. Particularly preferred are molybdic acid and ammonium molybdate.
  • The basic nitrogen-containing compound used to prepare the molybdenum/nitrogen complexes have at least one basic nitrogen and are preferably oil-soluble. Representative examples of basic nitrogen-containing compounds include succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polyamines, Mannich bases, phosphoramides, thiophosphoramides, phosphonamides, dispersant viscosity index improvers, and the like and mixtures thereof. Any of the nitrogen-containing compounds may be post-treated with, e.g., boron, using procedures well known in the art so long as the compositions continue to contain basic nitrogen. The post-treatments are particularly applicable to succinimides and Mannich base compositions.
  • The succinimides that can be used to prepare the molybdenum complexes described herein are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and the related materials encompassed by the term of art “succinimide” are taught in U.S. Pat. Nos. 3,172,892; 3,219,666 and 3,272,746 the content of which is incorporated by reference herein. The term “succinimide” is understood in the art to include many of the amide, imide, and amidine species which may also be formed. The predominant product however is a succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl substituted succinic acid or anhydride with a nitrogen-containing compound. Preferred succinimides, because of their commercial availability, are those succinimides prepared from a hydrocarbyl succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about 350 carbon atoms, and an ethylene amine. Examples of ethylene amines include ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine and the like. Particularly preferred are those succinimides prepared from polyisobutenyl succinic anhydride of about 70 to about 128 carbon atoms and tetraethylene pentamine or triethylene tetramine and mixtures thereof.
  • Also included within the term “succinimide” are the cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine containing at least one tertiary amino nitrogen in addition to two or more secondary amino groups. Ordinarily this composition has between about 1,500 and about 50,000 average molecular weight. A typical compound would be that prepared by reacting polyisobutenyl succinic anhydride and ethylene dipiperazine.
  • Carboxylic acid amide compounds are also suitable starting materials for preparing the molybdenum complexes. Examples of such compounds include those disclosed in, for example, U.S. Pat. No. 3,405,064, the content of which is incorporated by reference herein. These compounds are ordinarily prepared by reacting a carboxylic acid or anhydride or ester thereof, having at least about 12 to about 350 aliphatic carbon atoms in the principal aliphatic chain and, if desired, having sufficient pendant aliphatic groups to render the molecule oil soluble with an amine or a hydrocarbyl polyamine, such as an ethylene amine, to give a mono or polycarboxylic acid amide. Preferred are those amides prepared from (1) a carboxylic acid of the formula R1COOH, wherein R1 is C12 to C20 alkyl or a mixture of this acid with a polyisobutenyl carboxylic acid in which the polyisobutenyl group contains from about 72 to about. 128 carbon atoms and (2) an ethylene amine, especially triethylene tetramine or tetraethylene pentamine or mixtures thereof.
  • Another class of basic nitrogen-compounds which are useful in preparing the molybdenum/nitrogen complex is hydrocarbyl monoamines and hydrocarbyl polyamines, e.g., as disclosed in U.S. Pat. No. 3,574,576, the content of which is incorporated by reference herein. The hydrocarbyl group, e.g., an alkyl group or olefinic group having one or two sites of unsaturation, usually contains from about 9 to about 350 carbon atoms, and preferably from about 20 to about 200 carbon atoms. Particularly preferred hydrocarbyl polyamines are those which are derived, e.g., by reacting polyisobutenyl chloride and a polyalkylene polyamine, such as an ethylene amine, e.g., ethylene diamine, diethylene triamine, tetraethylene pentamine, 2-aminoethylpiperazine, 1,3-propylene diamine, 1,2propylenediamine, and the like.
  • Another class of basic nitrogen-compounds useful for supplying basic nitrogen is the Mannich base compound. These compounds are prepared from a phenol or C9 to C200 alkylphenol, an aldehyde, such as formaldehyde or formaldehyde precursor such as paraformaldehyde, and an amine compound. The amine may be a mono or polyamine and typical compositions are prepared from an alkylamine, such as methylamine or an ethylene amine, e.g., diethylene triamine or tetraethylene pentamine, and the like. The phenolic material may be sulfurized and preferably is dodecylphenol or a C80 to C100 alkylphenol. Typical Mannich bases are disclosed in U.S. Pat. Nos. and 3,368,977; 3,539,661; 3,649,229 and 4,157,309, the content of which is incorporated by reference herein. The Mannich base can be prepared by reacting an alkylphenol having at least about 50 carbon atoms, preferably about 50 to about 200 carbon atoms with formaldehyde and an alkylene polyamine H2N(ANH)eH where A is a saturated divalent alkyl hydrocarbon of about 2 to about 6 carbon atoms and e is 1 to about 10 and where the condensation product of the alkylene polyamine may be further reacted with urea or thiourea. The utility of these Mannich bases as starting materials for preparing lubricating oil additives can often be significantly improved by treating the Mannich base using conventional techniques to introduce boron into the compound.
  • The molybdenum-containing complexes can be sulfurized or non-sulfurized. Representative sulfur sources for preparing the molybdenum/sulfur complexes include sulfur, hydrogen sulfide, sulfur monochloride, sulfur dichloride, phosphorus pentasulfide, R2Sr wherein R2 is a hydrocarbyl such as a C1 to C40 alkyl, and f is at least 2, inorganic sulfides and polysulfides such as (NH4)2Sg, where g is at least 1, thioacetamide, thiourea, and mercaptans of the formula R2SH wherein R2 is as defined above. Also useful as sulfurizing agents are traditional sulfur-containing antioxidants such as wax sulfides and polysulfides, sulfurized olefins, sulfurized carboxylic and esters and sulfurized ester-olefins, and sulfurized alkylphenols and the metal salts thereof.
  • Generally, the molybdenum/nitrogen-containing complex can be made with an organic solvent comprising a polar promoter during a complexation step and procedures for preparing such complexes are described, for example, e.g., in U.S. Pat. Nos. 4,259,194; 4,259,195; 4,261,843; 4,263,152; 4,265,773; 4,283,295; 4,285,822; 4,369,119; 4,370,246; 4,394,279; 4,402,840; and 6,962,896 and U.S. Patent Application Publication No. 2005/0209111, the contents of which are incorporated by reference herein. As shown in these references, the molybdenum/nitrogen-containing complex an further be sulfurized.
  • In one embodiment, the anti-wear agent compounds for use herein are substantially free of any phosphorus and/or sulfur content. In another embodiment, the anti-wear agent compounds for use herein are free of any phosphorus and/or sulfur content.
  • Generally, the anti-wear agent compounds other than a zinc dialkyl dithiophosphate compound are present in the lubricating oil composition in an amount ranging from about 0.25 to about 5 wt. %, and preferably from about 0.3 to about 2 wt. %, based on the total weight of the lubricating oil composition.
  • The lubricating oil compositions of the present invention can be conveniently prepared by simply blending or mixing the ashless dispersant, at least one metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound, optionally with other additives, with the oil of lubricating viscosity. The ashless dispersant, metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound may also be preblended as a concentrate or package with various other additives, if desired, in the appropriate ratios to facilitate blending of a lubricating composition containing the desired concentration of additives. The ashless dispersant, at least one metal-containing detergent, antioxidant and anti-wear agent other than a zinc dialkyl dithiophosphate compound are blended with the base oil using a concentration at which they provide improved antiwear effect and are both soluble in the oil and compatible with other additives in the desired finished lubricating oil. Compatibility in this instance generally means that the present compounds as well as being oil soluble in the applicable treat rate also do not cause other additives to precipitate under normal conditions. Suitable oil solubility/compatibility ranges for a given compound of lubricating oil formulation can be determined by those having ordinary skill in the art using routine solubility testing procedures. For example, precipitation from a formulated lubricating oil composition at ambient conditions (about 20° C. to 25°°C.) can be measured by either actual precipitation from the oil composition or the formulation of a “cloudy” solution which evidences formation of insoluble wax particles.
  • The lubricating oil compositions of the present invention may also contain ether conventional additives for imparting auxiliary functions to give a finished lubricating oil composition in which these additives are dispersed or dissolved. For example, the lubricating oil compositions can be blended with friction modifiers, rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents, pour point depressants, antifoaming agents, co-solvents, package compatibilisers, corrosion-inhibitors, dyes, extreme pressure agents and the like and mixtures thereof. A variety of the additives are known and commercially available. These additives, or their analogous compounds, can be employed for the preparation of the lubricating oil compositions of the invention by the usual blending procedures.
  • Examples of friction modifiers include, but are not limited to, alkoxylated fatty amines; borated fatty epoxides; fatty phosphites, fatty epoxides, fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, fatty acid amides, glycerol esters, borated glycerol esters; and fatty imidazolines as disclosed in U.S. Pat. No. 6,372,696, the contents of which are incorporated by reference herein; friction modifiers obtained from a reaction product of a C4 to C75, preferably a C6 to C24, and most preferably a C6 to C20, fatty acid ester and a nitrogen-containing compound selected from the group consisting of ammonia, and an alkanolamine and the like and mixtures thereof. The friction modifier can be incorporated in the lubricating oil composition in an amount ranging of from about 0.02 to about 2.0 wt. % of the lubricating oil composition, preferably from about 0.05 to about 1.0 wt. %, and more preferably from about 0.1 to about 0.5 wt. %.
  • Examples of rust inhibitors include, but are not limited to, nonionic polyoxyalkylene agents, e.g., polyoxyethylene laurel ether, polyoxyethylene higher alcohol ether, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene octyl stearyl ether, polyoxyetnylene oleyl ether, polyoxyethylene sorbitol monostearate, polyoxyethylene sorbitol monooleate, and polyethylene glycol monooleate; stearic acid and other fatty acids; dicarboxylic acids; metal soaps; fatty acid amine salts; metal salts of heavy sulfonic acid; partial carboxylic acid ester of polyhydric alcohol; phosphoric esters; (short-chain) alkenyl succinic acids; partial esters thereof and nitrogen-containing derivatives thereof; synthetic alkarylsulfonates, e.g., metal dinonylnaphthalene sulfonates; and the like and mixtures thereof.
  • Examples of antifoaming agents include, but are not limited to, polymer of alkyl methacrylate; polymers of dimethylsilicone and the like and mixtures thereof.
  • The lubricating composition of the present invention may also contain a viscosity index improver. Examples of the viscosity index improvers include poly-(alkyl methacrylate), ethylene-propylene copolymer, styrene-butadiene copolymer, and polyisoprene. Viscosity index improvers of the dispersant type (having increased dispersancy) or multifunction type are also employed. These viscosity index improvers an be used singly or in combination. The amount of viscosity index improver to be incorporated into an engine oil varies with desired viscosity of the compounded engine oil, and generally in the range of about 0.5 to about 20 wt. % per total amount of the engine oil.
  • The lubricating oil composition of the present invention possesses a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate such as a zinc dialkyl dithiophosphate compound is present therein. In one embodiment of the present invention, the lubricating oil composition of the present invention possesses a wear reducing property at least about 20% greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate such as a zinc dialkyl dithiophosphate compound is present therein. In another embodiment of the present invention, the lubricating oil composition of the present invention possesses a wear reducing property at least about 25% greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
  • The final application of the lubricating oil compositions of this invention may be, for example, in marine cylinder lubricants in crosshead diesel engines, crankcase lubricants in automobiles and railroads and the like, lubricants for heavy machinery such as steel mills and the like, or as greases for bearings and the like. In one embodiment, the lubricating oil compositions of this invention are used to lubricate an internal combustion engine such as a spark ignition engine, a compression ignition diesel engine, e.g., a heavy duty diesel engine or a compression ignition diesel engine equipped with at least one of an exhaust gas recirculation (EGR) system; a catalytic converter; and a particulate trap.
  • Whether the lubricating oil composition is fluid or solid will ordinarily depend on whether a thickening agent is present. Typical thickening agents include polyurea acetates, lithium stearate and the like.
  • The following non-limiting examples are illustrative of the present invention.
  • EXAMPLE 1
  • A lubricating oil composition was formed containing 3.858 wt. % of an ethylene carbonate post-treated bis-succinimide prepared from a 2300 average molecular weight polyisobutenyl succinic anhydride with a heavy polyamine, 0.286 wt. % borated glycerol monooleate friction modifier, 0.487 wt. % molybdenum succinimide dispersant/wear inhibitor, 0.490 wt. % diphenylamine antioxidant, 0.593 wt. % 17 TBN calcium sulfonate detergent, 1.141 wt. % 410 TBN calcium sulfonate detergent, 0.050 wt. % silicone-based foam inhibitor, 0.537 wt. % Exxon 100 N diluent oil and 4.800 wt. % ethylene-propylene copolymer viscosity index improver, in 87.46 wt, % Group II base oil. The resulting lubricating oil composition had a phosphorus content of 0 wt. % and a sulfur content of 0.051 wt. %.
  • Comparative Example A
  • To the lubricating oil composition of Example 1 was added 0.64 wt. % of zinc dihydrocarbyl dithiophophate. The resulting lubricating oil composition had a phosphorus content of 0.048 wt. % and a sulfur content of 0.151 wt. %.
  • Comparative Example B
  • A lubricating oil composition as formed containing 2.35 wt. % succinimide dispersant, 6 wt. % borated succinimide dispersant, 2.84 wt. % 260 TBN sulfurized calcium phenate detergent, 102 wt. % 17 TBN calcium sulfonate detergent, 0.22 wt. % 410 TBN calcium sulfonate detergent, 0.3 wt. % diphenyl amine antioxidant, 0.6 wt. % hindered phenol antioxidant, 0.4 wt. % terephthalic acid salt of a bis-succinimide (derived from 1300 MW PIBSA and heavy polyamine) dispersant, 0.5 wt. % molybdenum succinimide complex dispersant/wear inhibitor, 10 ppm foam inhibitor, 5.75 wt. % functionalized viscosity index improver, 0.3 wt. % pour point depressant, 0.75 wt. % non-functionalized viscosity index improver, and 1.89 wt. % zinc dihydrocarbyl dithiophophate in 76.17 wt. % base oil consisting of 24.5 wt. % base oil consisting of 24.5% Group II base oil having a kinematic viscosity (kv) at 100° C. of 4.7 to 4.9 cSt and 75.5 wt. % Group II base oil having a kv at 100° C. of 7.8 to 7.9 cSt. The resulting lubricating oil composition had a phosphorus content of 0.150 wt. % and a sulfur content of 0.445 wt. %.
  • Testing
  • Mini-traction Machine Evaluation
  • The lubricating oil composition of Example 1 and the lubricating oil compositions of Comparative Examples A and B were evaluated using a PCS instruments Ltd., London UK, Mini-Traction Machine (MTM) bench test. The PCS MTM instrument was modified so that a ¼-in. diameter Falex 52100 steel test ball (with special holder) was substituted for the pin holder that came with the instrument (see. e.g., Yamaguchi, E. S., “Friction and Wear Measurements Using a Modified MTM Tribometer,” IP.com Journal 7, Vol. 2, 9, pp 57-58 (August 2002), No. IPCOM000009117D; and Yamaguchi, E. S., “Soot Wear in Diesel Engines”, Journal of Engineering Tribology, Proceedings of the Institution of Mechanical Engineers Part J, Vol. 220, No. J5, pp. 463-469 (2006)). The instrument was used in the pin-on-disk mode and run under sliding conditions. It is achieved by fixing the ball rigidly in the special holder, such that the ball stays still while the disk slides under it. The conditions are shown in Table 1.
  • TABLE 1
    Test Conditions for MTM
    Load 14 N
    Initial Contact Pressure 1.53 GPa
    Temperature 116° C.
    Tribocouple 52100/52100
    mm/Sec. Min.
    Speed 3800 10
    2000 10
    1000 10
    100 10
    20 10
    10 10
    5 10
    Length of Timer 70 Min. Test
    Diesel Engine Soot 9%
  • Engine soot obtained from the overhead recovery system of an engine testing facility was used for this test. Mineral oil was added to the soot before it was shipped. Therefore, the soot has to be washed prior to the test. It was made into a thin slurry with pentane. The slurry was stirred for a few minutes before it was filtered through a Whatman Number 2 filter paper over a Buchner funnel. The precipitate was made into a thin slurry again and filtered through a Whatman Number 2 filter paper again. The precipitate was then dried in a vacuum oven at 20 inch vacuum and 90° C. for more than 16 hours. The dried soot was then sieved through a 50 mesh (300 μm maximum) before use. The objective of this operation was to remove the oil and other impurities so that reproducible particles are made and they would give rise to abrasive wear as seen in modern exhaust gas recirculation (EGR) engines.
  • To prepare the test specimens, the anti-corrosion coating of the PCS Instruments 52100 smooth (0.02 micron Ra), steel discs was removed using heptane, hexane, and isooctane. Then, the discs were wiped clean with a soft tissue and submersed in a beaker of the cleaning, solvent until the film on the disc track had been removed, and the track of the disc appeared shiny. The discs and test balls were placed in individual containers and submerged in Chevron 450 thinner. Lastly, the test specimens were ultrasonically cleaned by placing them in a sonicator for 30 minutes.
  • The results of this evaluation are set forth in FIG. 1, which show the wear scar diameter (WSD) and standard deviation (STD) of the lubricating oil compositions of Example 1 and Comparative Examples A and B. As the data show, the lubricating oil composition of Example 1 containing no zinc dihydrocarbyl dithiophophate provided a significantly improved MTM wear result as compared to the same lubricating oil composition of Comparative Example A treated with a zinc dihydrocarbyl dithiophophate. This was unexpected as zinc dihydrocarbyl dithiophophate is a known antiwear agent and would be expected to improve the wear result of the lubricating oil composition. In fact, the MTM wear result of the lubricating oil composition of Example 1 is lower than the lubricating oil composition of Comparative Example B, which is a standard lubricant containing a relatively high amount of zinc dihydrocarbyl dithiophophate.
  • It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. For example, the functions described above and implemented as the best mode for operating the present invention are for illustration purposes only. Other arrangements and methods may be implemented by those skilled in the art without departing from the scope and spirit of this invention. Moreover, those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (34)

1. A lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) about 3 wt. % to about 10 wt. %, based on the total weight of the lubricating oil composition, of an ashless dispersant selected from the group consisting of a bissuccinimide, a bissuccinimide which is post-treated with ethylene carbonate and mixtures thereof, (c) about 0.5 wt % to about 2 wt. %, based on the total weight of the lubricating oil composition, of a metal-containing detergent mixture comprising a first metal-containing detergent which is a non-borated overbased alkaline earth metal sulfonate detergent having a TBN of about 150 to about 450 and a second metal-containing detergent which is a non-borated overbased alkaline earth metal sulfonate detergent having a TBN of about 10 to about 50, (d) about 0.2 wt. % to about 1 wt. %, based on the total weight of the lubricating oil composition, of an antioxidant comprising a diphenylamine compound, and (e) about 0.1 wt. % to about 2 wt. %, based on the total weight of the lubricating oil composition, of an anti-wear agent comprising a molybdenum-containing complex, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
2. The lubricating oil composition of claim 1, wherein the ashless dispersant is a bissuccinimide.
3. The lubricating oil composition of claim 2, wherein the bissuccinimide ashless dispersant is derived from one or more polyalkylene succinic anhydrides.
4. The lubricating oil composition of claim 3, wherein the polyalkylene group is a polyisobutenyl group having an average molecular weight of from about 900 to about 2300.
5. The lubricating oil composition of claim 3, wherein the bissuccinimide is post-treated with ethylene carbonate.
6.-11. (canceled)
12. The lubricating oil composition of claim 1, wherein the diphenylamine compound is selected from the group consisting of an alkylated diphenylamine, phenyl-α-naphthylamine, and alkylated-α-naphthylamine.
13. The lubricating oil composition of claim 1, wherein the diphenylamine compound is selected from the group consisting of butyldiphenylamine, di-butyldiphenylamine, octyldiphenylamine, di-octyldiphenylamine, nonyldiphenylamine, di-nonyldiphenylamine, t-butyl-t-octyldiphenylamine and mixtures thereof.
14.-15. (canceled)
16. The lubricating oil composition of claim 1, wherein the molybdenum-containing complex comprises a molybdenum/nitrogen complex.
17. The lubricating oil composition of claim 1, wherein the molybdenum/nitrogen complex contains a basic nitrogen-containing compound having at least one basic nitrogen.
18. The lubricating oil composition of claim 17, wherein the basic nitrogen-containing compound is selected from the group consisting of succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polyamines, Mannich bases and mixtures thereof.
19. (canceled)
20. The lubricating oil composition of claim 1, which is free of any phosphorus content.
21. The lubricating oil composition of claim 1, further comprising at least one additive selected from the group consisting of a friction modifier, extreme pressure agent, viscosity index improver, pour point depressant and mixtures thereof.
22. The lubricating oil composition of claim 1, wherein the lubricating oil composition has a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
23. The lubricating oil composition of claim 1, which possesses a wear reducing property of at least about 20% greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate compound is present therein.
24. The lubricating oil composition of claim 1, which possesses a wear reducing property of at least about 25% greater than that of a corresponding lubricating oil composition in which a zinc dihydrocarbyl dithiophosphate compound is present therein.
25. A method for reducing wear in an internal combustion engine, the method comprising operating the engine with a lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) about 3 wt. % to about 10 wt. % based on the total weight of the lubricating oil composition, of an ashless dispersant selected from the group consisting of a bissuccinimide a bissuccinimide which is post-treated with ethylene carbonate and mixtures thereof, (c) about 0.5 wt. % to about 2 wt. %, based on the total weight of the lubricating oil composition, of a metal-containing detergent mixture comprising a first metal-containing detergent which is a non-berated overbased alkaline earth metal sulfonate detergent having a TBN of about 150 to about 450 and a second metal-containing detergent which is a non-borated overbased alkaline earth metal sulfonate detergent having a TBN of about 10 to about 50, (d) about 0.2 wt. % to about 1 wt. %, based on the total weight of the lubricating oil composition, of an antioxidant comprising a diphenylamine compound, and (e) about 0.1 wt. % to about 2 wt. %, based on the total weight of the lubricating oil composition, of an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content.
26. The method of claim 25, wherein the ashless dispersant is a bissuccinimide.
27. The method of claim 26, wherein the bissuccinimide ashless dispersant is derived from one or more polyalkylene succinic anhydrides.
28. The method of claim 27, wherein the polyalkylene group is a polyisobutenyl group having an average molecular weight of from about 900 to about 2300.
29. The method of claim 27, wherein the bissuccinimide is post-treated with ethylene carbonate.
30.-35. (canceled)
36. The method of claim 25, wherein the diphenylamine compound is an alkylated diphenylamine.
37.-38. (canceled)
39. The method of claim 25, wherein the molybdenum-containing complex comprises a molybdenum/nitrogen complex.
40. The method of claim 25, wherein the molybdenum-containing complex comprises a molybdenum succinimide complex.
41. (canceled)
42. The method of claim 25, which is free of any phosphorus content.
43. The method of claim 25, further comprising at least one additive selected from the group consisting of a friction modifier, extreme pressure agent, viscosity index improver, pour point depressant and mixtures thereof.
44. The method of claim 25, wherein the lubricating oil composition has a wear reducing property greater than that of a corresponding lubricating oil composition in which a zinc dialkyl dithiophosphate compound is present therein.
45. An internal combustion engine lubricated with the lubricating oil composition of claim 1.
46. An internal combustion engine lubricated with the lubricating oil composition of claim 24.
US14/509,153 2008-09-30 2014-10-08 Lubricating oil compositions Abandoned US20150094244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/509,153 US20150094244A1 (en) 2008-09-30 2014-10-08 Lubricating oil compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/286,376 US20100081591A1 (en) 2008-09-30 2008-09-30 Lubricating oil compositions
US14/509,153 US20150094244A1 (en) 2008-09-30 2014-10-08 Lubricating oil compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/286,376 Continuation US20100081591A1 (en) 2008-09-30 2008-09-30 Lubricating oil compositions

Publications (1)

Publication Number Publication Date
US20150094244A1 true US20150094244A1 (en) 2015-04-02

Family

ID=42058092

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/286,376 Abandoned US20100081591A1 (en) 2008-09-30 2008-09-30 Lubricating oil compositions
US14/509,153 Abandoned US20150094244A1 (en) 2008-09-30 2014-10-08 Lubricating oil compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/286,376 Abandoned US20100081591A1 (en) 2008-09-30 2008-09-30 Lubricating oil compositions

Country Status (6)

Country Link
US (2) US20100081591A1 (en)
EP (1) EP2337831A4 (en)
JP (1) JP5604434B2 (en)
CN (2) CN105419908A (en)
CA (1) CA2738906A1 (en)
WO (1) WO2010039604A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106675701A (en) * 2016-12-21 2017-05-17 李旺达 Anti-friction and anti-attrition chemical additive for biomass engine oil purification filter element and preparation method of chemical additive
EP3578625A1 (en) * 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
CN111303965A (en) * 2020-03-27 2020-06-19 广东凯穗润滑油科技有限公司 Antioxidant self-repairing lubricating oil containing graphene oxide

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2441818A1 (en) * 2010-10-12 2012-04-18 Shell Internationale Research Maatschappij B.V. Lubricating composition
SG11201401057TA (en) * 2011-09-30 2014-11-27 Jx Nippon Oil & Energy Corp Cylinder lubricating oil composition for crosshead diesel engine
CN102399612B (en) * 2011-10-08 2013-12-18 中国石油化工股份有限公司 Zinc-free high pressure anti-wear hydraulic oil and preparation method thereof
IN2015DN04023A (en) * 2012-11-07 2015-10-02 Lubrizol Corp
CN103409214B (en) * 2013-08-26 2014-07-16 广西大学 Cold rolling lubricant for titanium and titanium alloy strips
US9909079B2 (en) * 2013-10-18 2018-03-06 Chevron Oronite Company Llc Lubricating oil composition for protection of silver bearings in medium speed diesel engines
US20160326452A1 (en) * 2014-01-10 2016-11-10 The Lubrizol Corporation Method of lubricating an internal combustion engine
EP3092290B1 (en) * 2014-01-10 2019-09-04 The Lubrizol Corporation Method of lubricating an internal combustion engine
US10487288B2 (en) * 2015-09-16 2019-11-26 Infineum International Limited Additive concentrates for the formulation of lubricating oil compositions
US20180148663A1 (en) * 2016-11-30 2018-05-31 Chevron Japan Ltd. Lubricating oil compositions for motorcycles
US10704009B2 (en) * 2018-01-19 2020-07-07 Chevron Oronite Company Llc Ultra low ash lubricating oil compositions
US11193084B2 (en) * 2018-11-16 2021-12-07 Chevron Japan Ltd. Low viscosity lubricating oil compositions
CN110029000A (en) * 2019-05-24 2019-07-19 福建六九环保科技有限公司 A kind of lube oil additive
CA3152975A1 (en) * 2019-09-05 2021-03-11 Chevron Oronite Company Llc Lubricating oil compositions
CN111690081A (en) * 2020-06-23 2020-09-22 新乡市瑞丰新材料股份有限公司 Preparation method of boronized high-molecular-weight ashless dispersant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439605A (en) * 1993-06-03 1995-08-08 Khorramian; Behrooz A. Phosphorus and phosphours-free low and light ash lubricating oils
US20070049503A1 (en) * 2005-08-31 2007-03-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20070117724A1 (en) * 2005-11-18 2007-05-24 Cartwright Stanley J Enhanced deposit control for lubricating oils used under sustained high load conditions employing glycerine derivative with a grafted hindered phenolic and/or a hindered phenolic containing a thioether group

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8704682D0 (en) * 1987-02-27 1987-04-01 Exxon Chemical Patents Inc Low phosphorus lubricants
US6528461B1 (en) * 2000-11-28 2003-03-04 Bank Of America, N.A. Lubricant containing molybdenum and polymeric dispersant
US6852679B2 (en) * 2002-02-20 2005-02-08 Infineum International Ltd. Lubricating oil composition
JP2004083746A (en) * 2002-08-27 2004-03-18 Nippon Oil Corp Lubricant oil composition for internal combustion engine
CN100513539C (en) * 2003-02-20 2009-07-15 中国石油天然气股份有限公司 Low ash lubricating oil composition for gas engine
US20050043191A1 (en) * 2003-08-22 2005-02-24 Farng L. Oscar High performance non-zinc, zero phosphorus engine oils for internal combustion engines
MY145889A (en) * 2004-07-08 2012-05-15 Shell Int Research Lubricating oil composition
JP4078346B2 (en) * 2004-10-19 2008-04-23 新日本石油株式会社 Antioxidant composition and lubricating oil composition using the same
JP4612393B2 (en) * 2004-10-29 2011-01-12 Jx日鉱日石エネルギー株式会社 Lubricating oil composition suitable for lead-containing metal materials
US20080020952A1 (en) * 2004-10-19 2008-01-24 Kazuhiro Yagishita Lubricant Composition
JP5513703B2 (en) * 2005-05-27 2014-06-04 出光興産株式会社 Lubricating oil composition
EP1757673B1 (en) * 2005-08-23 2020-04-15 Chevron Oronite Company LLC Lubricating oil composition for internal combustion engines
US20070111904A1 (en) * 2005-11-14 2007-05-17 Chevron Oronite Company Llc Low sulfur and low phosphorus lubricating oil composition
US7767633B2 (en) * 2005-11-14 2010-08-03 Chevron Oronite Company Llc Low sulfur and low phosphorus heavy duty diesel engine lubricating oil composition
US7981846B2 (en) * 2005-11-30 2011-07-19 Chevron Oronite Company Llc Lubricating oil composition with improved emission compatibility
US7772167B2 (en) * 2006-12-06 2010-08-10 Afton Chemical Corporation Titanium-containing lubricating oil composition
US7501386B2 (en) * 2005-12-21 2009-03-10 Chevron Oronite Company, Llc Synergistic lubricating oil composition containing a mixture of a benzo[b]perhydroheterocyclic arylamine and a diarylamine
JP4955998B2 (en) * 2005-12-27 2012-06-20 シェブロンジャパン株式会社 Lubricating oil composition
US20080013942A1 (en) * 2006-07-13 2008-01-17 Mary Brown Photographic information logging device and method
US20080146473A1 (en) * 2006-12-19 2008-06-19 Chevron Oronite Company Llc Lubricating oil with enhanced piston cleanliness control
US8747650B2 (en) * 2006-12-21 2014-06-10 Chevron Oronite Technology B.V. Engine lubricant with enhanced thermal stability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439605A (en) * 1993-06-03 1995-08-08 Khorramian; Behrooz A. Phosphorus and phosphours-free low and light ash lubricating oils
US20070049503A1 (en) * 2005-08-31 2007-03-01 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
US20070117724A1 (en) * 2005-11-18 2007-05-24 Cartwright Stanley J Enhanced deposit control for lubricating oils used under sustained high load conditions employing glycerine derivative with a grafted hindered phenolic and/or a hindered phenolic containing a thioether group

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106675701A (en) * 2016-12-21 2017-05-17 李旺达 Anti-friction and anti-attrition chemical additive for biomass engine oil purification filter element and preparation method of chemical additive
EP3578625A1 (en) * 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
US11459521B2 (en) 2018-06-05 2022-10-04 Afton Chemical Coporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
CN111303965A (en) * 2020-03-27 2020-06-19 广东凯穗润滑油科技有限公司 Antioxidant self-repairing lubricating oil containing graphene oxide

Also Published As

Publication number Publication date
EP2337831A2 (en) 2011-06-29
CN105419908A (en) 2016-03-23
CN102224229A (en) 2011-10-19
CA2738906A1 (en) 2010-04-08
JP5604434B2 (en) 2014-10-08
WO2010039604A3 (en) 2010-08-12
EP2337831A4 (en) 2012-05-23
WO2010039604A2 (en) 2010-04-08
JP2012504175A (en) 2012-02-16
US20100081591A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US20150094244A1 (en) Lubricating oil compositions
US8268759B2 (en) Titanium compounds and complexes as additives in lubricants
US7879774B2 (en) Titanium-containing lubricating oil composition
EP1587902A1 (en) Additive formulation for lubricating oils
JP6045116B2 (en) An improved method for the preparation of low molecular weight molybdenum succinimide complexes.
CA2772646C (en) Natural gas engine lubricating oil compositions
US20110245121A1 (en) Natural gas engine lubricating oil compositions
US20150038383A1 (en) Method for preventing exhaust valve seat recession
EP2342313A2 (en) Lubricating oil composition
US8969265B2 (en) Lubricating oil compositions
JP5438251B2 (en) Lubricating oil composition for internal combustion engines
WO2024019952A1 (en) Deposit control compounds for lubricating compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON ORONITE COMPANY LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAGUCHI, ELAINE S.;NG, KAM-SIK;SIGNING DATES FROM 20151004 TO 20151115;REEL/FRAME:037175/0025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION