US20150076538A1 - Sealed semiconductor light emitting device - Google Patents

Sealed semiconductor light emitting device Download PDF

Info

Publication number
US20150076538A1
US20150076538A1 US14/387,591 US201314387591A US2015076538A1 US 20150076538 A1 US20150076538 A1 US 20150076538A1 US 201314387591 A US201314387591 A US 201314387591A US 2015076538 A1 US2015076538 A1 US 2015076538A1
Authority
US
United States
Prior art keywords
wafer
metal
forming
metal layers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/387,591
Other versions
US10020431B2 (en
Inventor
Jipu Lei
Stefano Schiaffino
Alexander H. Nickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Priority to US14/387,591 priority Critical patent/US10020431B2/en
Assigned to KONINKLIJKE PHILIPS ELECTRONICS N.V. reassignment KONINKLIJKE PHILIPS ELECTRONICS N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHIAFFINO, STEFANO, LEI, JIPU, NICKEL, ALEXANDER H.
Publication of US20150076538A1 publication Critical patent/US20150076538A1/en
Assigned to KONINKLIJKE PHILIPS N.V. reassignment KONINKLIJKE PHILIPS N.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KONINKLIJKE PHILIPS ELECTRONICS N.V.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUMILEDS LLC
Assigned to LUMILEDS LLC reassignment LUMILEDS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONINKLIJKE PHILIPS N.V.
Application granted granted Critical
Publication of US10020431B2 publication Critical patent/US10020431B2/en
Assigned to SOUND POINT AGENCY LLC reassignment SOUND POINT AGENCY LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUMILEDS HOLDING B.V., LUMILEDS LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32235Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present invention relates to a semiconductor light emitting device including a structure that seals the semiconductor structure.
  • LEDs light emitting diodes
  • RCLEDs resonant cavity light emitting diodes
  • VCSELs vertical cavity laser diodes
  • edge emitting lasers are among the most efficient light sources currently available.
  • Materials systems currently of interest in the manufacture of high-brightness light emitting devices capable of operation across the visible spectrum include Group III-V semiconductors, particularly binary, ternary, and quaternary alloys of gallium, aluminum, indium, and nitrogen, also referred to as III-nitride materials.
  • III-nitride light emitting devices are fabricated by epitaxially growing a stack of semiconductor layers of different compositions and dopant concentrations on a sapphire, silicon carbide, III-nitride, or other suitable substrate by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or other epitaxial techniques.
  • MOCVD metal-organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the stack often includes one or more n-type layers doped with, for example, Si, formed over the substrate, one or more light emitting layers in an active region formed over the n-type layer or layers, and one or more p-type layers doped with, for example, Mg, formed over the active region. Electrical contacts are formed on the n- and p-type regions.
  • FIG. 1 illustrates a light emitting diode die 110 attached to a submount 114 , described in more detail in U.S. Pat. No. 6,876,008. Electrical connections between the solderable surfaces on the top and bottom surfaces of the submount are formed within the submount. The solderable areas on the top of the submount, on which solder balls 122 - 1 and 122 - 2 are disposed, are electrically connected to the solderable areas on the bottom of the submount, which attach to solder joint 138 , by a conductive path within the submount. Solder joint 138 electrically connects solderable areas on the bottom of the submount to a board 134 .
  • Submount 114 may be, for example, a silicon/glass composite submount with several different regions.
  • Silicon regions 114 - 2 are surrounded by metalizations 118 - 1 and 118 - 2 , which form the conductive path between the top surface and the bottom surface of the submount.
  • Circuitry such as ESD protection circuitry may be formed in the silicon regions 114 - 2 surrounded by metalizations 118 - 1 and 118 - 2 , or in other silicon region 114 - 3 .
  • the other silicon regions 114 - 3 may also electrically contact the die 110 or board 134 .
  • Glass regions 114 - 1 electrically isolate different regions of silicon.
  • Solder joints 138 may be electrically isolated by an insulating region 135 which may be, for example, a dielectric layer or air.
  • the submount 114 including metalizations 118 - 1 and 118 - 2 is formed separately from die 110 , before die 110 is attached to submount 114 .
  • a silicon wafer which is comprised of sites for many submounts, is grown to include any desired circuitry such as the ESD protection circuitry mentioned above. Holes are formed in the wafer by conventional masking and etching steps. A conductive layer such as a metal is formed over the wafer and in the holes. The conductive layer may then be patterned. A layer of glass is then formed over the wafer and in the holes. Portions of the glass layer and wafer are removed to expose the conductive layer.
  • the conductive layer on the underside of the wafer may then be patterned and additional conductive layers may be added and patterned.
  • individual LED dice 110 may be physically and electrically connected to the conductive regions on the submount by interconnects 122 . In other words, the LEDs 110 are attached to the submount 114 after being diced into individual diodes.
  • a method includes providing a wafer of semiconductor devices.
  • the wafer of semiconductor devices includes a semiconductor structure comprising a light emitting layer sandwiched between an n-type region and a p-type region.
  • the wafer of semiconductor devices further includes first and second metal contacts for each semiconductor device. Each first metal contact is in direct contact with the n-type region and each second metal contact is in direct contact with the p-type region.
  • the method includes forming a structure that seals the semiconductor structure of each semiconductor device.
  • the wafer of semiconductor devices is attached to a wafer of support substrates.
  • FIG. 1 illustrates a prior art device including an LED mounted on a submount.
  • FIG. 2 illustrates a semiconductor LED suitable for use in embodiments of the present invention.
  • FIG. 3 illustrates thick metal layers formed on the metal contacts of a semiconductor LED.
  • FIG. 4 illustrates the structure of FIG. 3 after planarizing the electrically insulating layer.
  • FIG. 5 is a plan view of the structure illustrated in cross sectional view in FIG. 4 .
  • FIG. 6 illustrates a support substrate wafer after forming vias and forming a dielectric layer.
  • FIG. 7 illustrates the structure of FIG. 6 after forming a conductive layer and etching to reveal the conductive material at the tops of the vias.
  • FIG. 8 illustrates the structure of FIG. 7 after forming a dielectric layer on the top of the thinned support substrate wafer.
  • FIG. 9 illustrates the structure of FIG. 8 after depositing a seed layer and additional conductive layers.
  • FIG. 10 illustrates the structure of FIG. 9 after removing remaining seed layer.
  • FIG. 11 illustrates a support substrate wafer after forming a dielectric layer.
  • FIG. 12 illustrates the structure of FIG. 11 after forming one or more conductive layers.
  • FIG. 13 illustrates the structure of FIG. 12 after forming vias and a dielectric layer.
  • FIG. 14 illustrates the structure of FIG. 13 after forming conductive layers on the bottom of the support substrate wafer.
  • FIG. 15 illustrates a portion of a wafer of devices bonded to a portion of a wafer of support substrates.
  • a semiconductor light emitting device is bonded to a mount in a wafer scale process.
  • the semiconductor light emitting device are III-nitride LEDs that emits blue or UV light
  • semiconductor light emitting devices besides LEDs such as laser diodes and semiconductor light emitting devices made from other materials systems such as other III-V materials, III-phosphide, III-arsenide, II-VI materials, ZnO, or Si-based materials may be used.
  • FIG. 2 illustrates a semiconductor light emitting device suitable for use in embodiments of the invention.
  • the device illustrated in FIG. 2 is just one example of a device that may be used with embodiments of the invention. Any suitable device may be used with embodiments of the invention—embodiments of the invention are not limited to the details illustrated in FIG. 2 .
  • FIG. 2 illustrates a flip-chip device
  • embodiments of the invention may be used with other device geometries and are not limited to flip-chip devices.
  • the device illustrated in FIG. 2 may be formed by first growing a semiconductor structure on a growth substrate 10 , as is known in the art.
  • the growth substrate 10 may be any suitable substrate such as, for example, sapphire, SiC, Si, GaN, or composite substrates.
  • An n-type region 14 may be grown first and may include multiple layers of different compositions and dopant concentration including, for example, preparation layers such as buffer layers or nucleation layers, and/or layers designed to facilitate removal of the growth substrate, which may be n-type or not intentionally doped, and n- or even p-type device layers designed for particular optical, material, or electrical properties desirable for the light emitting region to efficiently emit light.
  • a light emitting or active region 16 is grown over the n-type region.
  • suitable light emitting regions include a single thick or thin light emitting layer, or a multiple quantum well light emitting region including multiple thin or thick light emitting layers separated by barrier layers.
  • a p-type region 18 may then be grown over the light emitting region.
  • the p-type region may include multiple layers of different composition, thickness, and dopant concentration, including layers that are not intentionally doped, or n-type layers.
  • the total thickness of all the semiconductor material in the device is less than 10 ⁇ m in some embodiments and less than 6 ⁇ m in some embodiments.
  • a p-contact metal 20 is formed on the p-type region.
  • the p-contact metal 20 may be reflective and may be a multi-layer stack.
  • the p-contact metal may include a layer for making ohmic contact to the p-type semiconductor material, a reflective metal layer, and a guard metal layer that prevents or reduces migration of the reflective metal.
  • the semiconductor structure is then patterned by standard photolithographic operations and etched to remove a portion of the entire thickness of the p-contact metal, a portion of the entire thickness of the p-type region, and a portion of the entire thickness of the light emitting region, to form at least one mesa which reveals a surface of the n-type region 14 on which a metal n-contact 22 is formed.
  • N-contact 22 may have the same shape as thick metal layer 26 , described below.
  • P-contact 20 may have the same shape as thick metal layer 28 , described below.
  • the n-contact and the p-contact are electrically isolated by a gap 24 which may be filled with a solid, a dielectric, an electrically insulating material, air, ambient gas, or any other suitable material.
  • the p- and n-contacts may be any suitable shape and may be arranged in any suitable way. Patterning a semiconductor structure and forming n- and p-contacts is well known to a person of skill in the art. Accordingly, the shape and arrangement of the n- and p-contacts is not limited to the embodiment illustrated in FIGS. 2 and 5 .
  • the device illustrated in FIG. 2 is formed on a wafer that includes many such devices.
  • the semiconductor structure may be etched down to an insulating layer, which may be an insulating semiconductor layer that is part of the semiconductor structure, or the growth substrate, as illustrated in FIG. 2 .
  • FIGS. 3 and 4 illustrate preparing a wafer of LED devices for bonding to a support substrate wafer, described below.
  • the LED structure illustrated in FIG. 2 which includes the semiconductor structure including the n-type region, the p-type region, and the light emitting region, and the n- and p-contacts, is represented in simplified form by structure 12 in the FIGS. 3 and 4 .
  • thick metal layers are formed on the n- and p-contacts of the LED.
  • the thick metal layers may be formed on a wafer scale, before a wafer of devices is diced into individual or smaller groups of devices.
  • the thick metal layers may support the device structure of FIG. 2 after the wafer of devices is diced, and may support the device structure of FIG. 2 during removal of the growth substrate in some embodiments.
  • FIG. 3 illustrates thick metal layers formed on the n- and p-contacts of LED 12 .
  • a base layer which is not shown in FIG. 3 , is formed first.
  • the base layer is a metal layer or layers on which the thick metal layers are deposited.
  • the base layer may include an adhesion layer, the material of which is selected for good adhesion to the n- and p-contacts, and a seed layer, the material of which is selected for good adhesion to the thick metal layers.
  • suitable materials for the adhesion layer include but are not limited to Ti, W, and alloys such as TiW.
  • suitable materials for the seed layer include but are not limited to Cu.
  • the base layer or layers may be formed by any suitable technique including, for example, sputtering or evaporation.
  • the base layer or layers may be patterned by standard lithographic techniques such that the base layer is present only where the thick metal layers are to be formed.
  • a photoresist layer may be formed over the base layer and patterned by standard lithographic techniques to form openings where the thick metal layers are to be formed.
  • Thick metal layers 26 and 28 are formed simultaneously over the n- and p-contacts of LED 12 .
  • Thick metal layers 26 and 28 may be any suitable metal such as, for example, copper, nickel, gold, palladium, nickel-copper alloy, or other alloys.
  • Thick metal layers 26 and 28 may be formed by any suitable technique including, for example, plating.
  • Thick metal layers 28 and 30 may be between 20 ⁇ m and 500 ⁇ m in some embodiments, between 30 ⁇ m and 200 ⁇ m in some embodiments, and between 50 ⁇ m and 100 ⁇ m in some embodiments.
  • Thick metal layers 26 and 28 support the semiconductor structure during later processing steps, in particular removal of the growth substrate, and provide a thermal pathway to conduct heat away from the semiconductor structure, which may improve the efficiency of the device.
  • an electrically insulating material 32 is formed over the wafer.
  • the electrically insulating material 32 fills gaps 30 between the thick metal layers 26 and 28 and also fills gaps 34 between LEDs 12 .
  • the electrically insulating material 32 may optionally be disposed over the tops of thick metal layers 26 and 28 .
  • Electrically insulating material 32 is selected to electrically isolate metal layers 26 and 28 and to have a coefficient of thermal expansion that is matched or is relatively close to that of the metal(s) in thick metal layers 26 and 28 .
  • electrically insulating material 32 may be a dielectric layer, a polymer, benzocyclobutene, one or more oxides of silicon, one or more nitrides of silicon, silicone, or epoxy in some embodiments.
  • Electrically insulating material 32 may be formed by any suitable technique, including, for example, overmolding, injection molding, spinning on, and spraying on. Overmolding is performed as follows: An appropriately sized and shaped mold is provided. The mold is filled with a liquid material, such as silicone or epoxy, which when cured forms a hardened electrically insulating material. The mold and the LED wafer are brought together. The mold is then heated to cure (harden) the electrically insulating material.
  • the mold and the LED wafer are then separated, leaving the electrically insulating material 32 over the LEDs, between the LEDs, and filling any gaps on each LED.
  • one or more fillers are added to the molding compound to form composite materials with optimized physical and material properties.
  • FIG. 4 illustrates an optional processing step, where the device is planarized, for example by removing any electrically insulating material overlying thick metal layers 26 and 28 .
  • Electrically insulating material 32 may be removed by any suitable technique, including, for example, microbead blasting, fly cutting, cutting with a blade, grinding, polishing, or chemical mechanical polishing.
  • the electrically insulating material 30 between thick metal layers 26 and 28 is not removed, and the electrically insulating material 34 between adjacent LEDs is not removed.
  • FIG. 5 is a plan view of the structure shown in cross sectional view in FIG. 4 .
  • the cross section shown in FIG. 4 is taken at axis 27 shown in FIG. 5 .
  • the thick metal layer 26 formed on the n-contact illustrated in FIG. 2 is circular, though it may have any shape.
  • the thick metal layer 26 is surrounded by the thick metal layer 28 formed on the p-contact illustrated in FIG. 2 .
  • Thick metal layers 26 and 28 are electrically isolated by electrically insulating material 30 , which surrounds thick metal layer 26 .
  • Electrically insulating material 34 surrounds the device.
  • FIGS. 6 , 7 , 8 , 9 , and 10 illustrate preparation of a support substrate wafer according to some embodiments.
  • FIGS. 11 , 12 , 13 , and 14 illustrate preparation of a support substrate according to alternative embodiments.
  • the support substrate wafer includes a body 40 , as illustrated in FIG. 6 .
  • Body 40 may be, for example, Si, Ge, GaAs, or any other suitable material.
  • Vias are formed in the body 40 .
  • Some vias 42 are placed to align with metal layers on the wafer of devices that electrically connect to the n-type region.
  • Some vias 44 are placed to align with metal layers on the wafer of devices that electrically connect to the p-type region.
  • a dielectric layer 46 is formed on the bottom surface of body 40 , including in the insides of the vias.
  • Dielectric layer 46 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or plasma-enhanced chemical vapor deposition (PECVD), or a nitride of silicon formed by PECVD.
  • PECVD plasma-enhanced chemical vapor deposition
  • a conductive layer is formed over dielectric layer 46 on the bottom surface of the body 40 and in vias 42 and 44 .
  • the conductive layer is patterned to form conductive layer 48 in via 42 and conductive layer 50 in via 44 .
  • Conductive layers 48 and 50 are electrically isolated from each other by a gap which exposes dielectric layer 46 .
  • the conductive layer may be, for example, a metal such as copper or gold.
  • the conductive layer may be formed by first forming a seed layer over the entire bottom surface of the body, for example by sputtering, then patterning to remove the seed layer in the region between conductive layers 48 and 50 . A thicker metal layer is then formed on the remaining portions of the seed layer, for example by plating.
  • the body 40 is etched from the top surface, to expose the conductive layers 48 a and 50 a at the tops of vias 42 and 44 .
  • Body 40 may be thinned by any suitable technique including wet or dry etching or a mechanical technique such as grinding. Though FIG. 7 illustrates a structure with a planar top surface, in some embodiments body 40 may be etched below the tops of conductive layers 48 a and 50 a.
  • a dielectric layer 52 is formed over the top of body 40 , over the surface exposed by the thinning described in reference to FIG. 7 .
  • Dielectric layer 52 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD.
  • FIG. 8 illustrates a thermally grown dielectric layer 52 , which may be self-aligned with conductive layers 48 a and 50 a such that a planar top surface is formed, assuming the surface was planar after the thinning illustrated in FIG. 7 .
  • dielectric material may be deposited over conductive layers 48 a and 50 a at the tops of vias 42 and 44 .
  • the dielectric material deposited over conductive layers 48 a and 50 a may be removed by conventional lithography and etching steps.
  • the top surface may be planar as illustrated in FIG. 8 though it need not be.
  • one or more conductive layers are formed on the top surface of body 40 .
  • the one or more conductive layers may be any suitable material formed by any suitable process.
  • the conductive layers include a copper layer, a nickel layer, and a gold/tin layer.
  • the conductive layers are in direct contact with conductive layers 48 a and 50 a at the tops of vias 42 and 44 .
  • the conductive layers may be shaped to align with thick metal layers 26 and 28 , shown in plan view in FIG. 5 , formed on the wafer of devices.
  • a seed layer 54 of copper is formed over the top of body 40 .
  • the seed layer may be patterned such that photoresist 57 is formed over areas where the conductive layers are not to be formed, such as in gaps 55 that provide electrical isolation between the conductive layers electrically connected to metal 48 in via 42 and the conductive layers electrically connected to metal 50 in via 44 .
  • a thick copper layer is then formed, for example by plating, followed by a nickel layer formed by plating, followed by a gold/tin layer formed by sequentially plating gold and tin at a thickness ratio of 4:1.
  • the photoresist 57 is then removed, as illustrated in FIG. 10 , leaving gaps 55 that electrically isolate conductive layers 56 , 60 , and 64 from conductive layers 58 , 62 , and 66 .
  • Copper layer 56 , nickel layer 60 , and gold/tin layer 64 are formed over conductive layer 48 in via 42 .
  • Copper layer 58 , nickel layer 62 , and gold/tin layer 66 are formed over conductive layer 50 in via 44 .
  • seed layer 54 formed in FIG. 9 remains in the gaps 55 between copper, nickel, and gold/tin layers formed over via 42 and those layers formed over via 44 .
  • the seed layer in gaps 55 may be removed by etching, as illustrated in FIG. 10 , such that dielectric layer 52 is exposed in the bottom of gaps 55 .
  • the structure may be annealed at elevated temperature, to cause the plated gold and tin layers to form a gold/tin eutectic.
  • the gold/tin eutectic is later used as the bonding layer to attach the support substrate wafer to the wafer of devices.
  • FIGS. 11 , 12 , 13 , and 14 illustrate an alternative method for preparing the support substrate wafer.
  • Like structures may be the same materials and formed by the same techniques described above in reference to FIGS. 6 , 7 , 8 , 9 , and 10 .
  • dielectric 52 is formed over the top surface of body 40 .
  • Dielectric layer 52 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD.
  • conductive layers are formed on the top surface of body 40 , and patterned. As described above in reference to FIG. 9 , one or more conductive layers may be any suitable material formed by any suitable process. In FIG. 12 as in FIG. 9 , the conductive layers include a copper layer, a nickel layer, and a gold/tin layer. To form the conductive layers illustrated in FIG. 9 , a seed layer 54 of copper is formed over the top of body 40 . The seed layer may be patterned such that photoresist is formed over areas where the conductive layers are not to be formed, such as in a gap 55 between later-formed vias 42 and 44 , which provides electrical isolation.
  • a thick copper layer is then formed, for example by plating, followed by a nickel layer formed by plating, followed by a gold/tin layer formed by sequentially plating gold and tin at a thickness ratio of 4 : 1 or by plating a gold/tin alloy of appropriate composition.
  • the photoresist is then removed, resulting the structure illustrated in FIG. 12 .
  • Copper layer 56 , nickel layer 60 , and gold/tin layer 64 are formed over in the region of later-formed via 42 .
  • Copper layer 58 , nickel layer 62 , and gold/tin layer 66 are formed in the region of later-formed via 44 .
  • Seed layer 54 remains in the areas between the conductive metal layers.
  • vias 42 and 44 are formed by conventional patterning and etching steps. Vias 42 and 44 are formed on the bottom surface of body 40 and extend toward the top surface of body 40 . Vias 42 and 44 extend through dielectric layer 52 to the bottom of conductive layers 56 and 58 , respectively.
  • the conductive layers 56 and 58 often a metal such as copper, serve as an etch stop layer for the etching step that forms vias 42 and 44 .
  • a dielectric layer 46 is formed on the bottom surface of body 40 and in vias 42 and 44 .
  • Dielectric layer 46 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD.
  • a conductive layer is formed on the bottom surface of body 40 and in vias 42 and 44 .
  • Conductive layer 48 is in direct contact with copper seed layer 54 at the top of via 42 .
  • Conductive layer 50 is in direct contact with copper seed layer 54 at the top of via 44 .
  • Conductive layers 48 and 50 are electrically isolated from each other by a gap 49 which exposes dielectric layer 46 .
  • the conductive layer may be, for example, a metal such as copper or gold.
  • the conductive layer may be formed by first forming a seed layer over the entire bottom surface of the body, for example by sputtering, then patterning to form a photoresist layer in the region between conductive layers 48 and 50 .
  • a thicker metal layer is then formed on the portions of the seed layer not covered by photoresist, for example by plating.
  • the photoresist is removed, then the seed layer in the gap 49 between the thicker metal layers 48 and 50 is removed, for example by etching.
  • the seed layer 54 is removed from gaps 55 by etching to isolate the metal stack 56 , 60 , 64 from the metal stack 52 , 58 , 62 .
  • the structure may be annealed, for example at a temperature of at least 200° C.
  • FIG. 15 illustrates a portion of a wafer 70 of devices, such as the device illustrated in FIG. 4 , attached to a wafer 72 of support substrates, such as the support substrates illustrated in FIGS. 10 and 14 .
  • the wafers 70 and 72 are bonded together by aligning the metal regions 64 , 66 on the top of support substrate wafer 72 with the metal regions 26 , 28 on the bottom of device wafer 70 , then heating the structure to reflow the metal layers 64 and 66 .
  • Metal layers 64 and 66 may have the same shape as metal regions 26 and 28 , illustrated in FIG. 5 .
  • Regions 75 are connected to conductive layer 50 outside the plane illustrated in FIG. 15 .
  • metal layers 64 and 66 are a gold/tin eutectic, though any material that is sufficiently conductive and suitable for bonding can be used.
  • insulating material 30 , 34 is a material that metal layers 64 and 66 will not wet when metal layers 64 and 66 are reflowed. Because metal layers 64 and 66 will not wet the insulating material 30 , 34 on the bottom of device wafer 70 , gaps 74 filled with ambient gas are formed between the metal layers 64 and 66 .
  • metal layers 64 and 66 on wafer 72 will wet only metal regions 26 and 28 on wafer 70 and not insulating material 30 and 34 , metal layers 64 and 66 and metal regions 26 and 28 do not have to have precisely the same shape, and do not need to be precisely aligned, as illustrated in FIG. 15 .
  • FIG. 15 Two devices are illustrated in FIG. 15 , though it is to be understood that the structures illustrated in FIG. 15 are repeated across both wafers. After bonding, the wafer may be diced, which separates the two devices at position 76 .
  • Each semiconductor structure 71 on device wafer 70 illustrated in more detail in FIG. 2 as semiconductor layers 14 , 16 , and 18 and illustrated in simplified form in FIG. 15 , is completely enclosed and sealed by growth substrate 10 on the top of semiconductor structure 71 , and by metal regions 26 and 28 and insulating material 30 and 34 on the bottom.
  • the n- and p-contacts 22 and 20 illustrated in FIG. 2 , are also protected by the seal.
  • the seal is formed by wafer-level processing steps that occur while the semiconductor structures 71 are connected to growth substrate 10 .
  • no material can contact the semiconductor structure 71 .
  • the seal formed by metal regions 26 , 28 and insulating material 30 , 34 prevents metal bonding layers 64 , 66 , or any other material from contacting the semiconductor structure 71 during bonding to support substrate 72 .
  • the growth substrate 10 is removed from the structure illustrated in FIG. 15 .
  • the growth substrate may be removed by any suitable technique, including, for example, laser lift-off, etching, mechanical techniques such as grinding, or a combination of techniques.
  • the growth substrate is sapphire and is removed by wafer-scale laser lift-off. Since the sapphire substrate does not need to be thinned before removal and has not been diced, it can be reused as a growth substrate.
  • the growth substrate 10 is only thinned, such that a portion of the growth substrate remains on the final device. In some embodiments, the entire growth substrate 10 remains on the final device.
  • the surface of the semiconductor structure exposed by removing the growth substrate may be optionally thinned and roughened, for example by photoelectrochemical etching.
  • the wafer of devices is then diced into individual or groups of LEDs. Individual or groups of LEDs may be separated by sawing, scribing, breaking, cutting, or otherwise separating neighboring LEDs at position 76 , as illustrated in FIG. 15 .
  • the growth substrate 10 is thinned or removed after dicing, rather than before.
  • One or more optional structures such as filters, lenses, dichroic materials, or wavelength converting materials may be formed over the LEDs, before or after dicing.
  • a wavelength converting material may be formed such that all or only a portion of the light emitted by the light emitting device and incident on the wavelength converting material may be converted by the wavelength converting material. Unconverted light emitted by the light emitting device may be part of the final spectrum of light, though it need not be.
  • Examples of common combinations include a blue-emitting LED combined with a yellow-emitting wavelength converting material, a blue-emitting LED combined with green- and red-emitting wavelength converting materials, a UV-emitting LED combined with blue- and yellow-emitting wavelength converting material, and a UV-emitting LED combined with blue-, green-, and red-emitting wavelength converting materials.
  • Wavelength converting materials emitting other colors of light may be added to tailor the spectrum of light emitted from the device.
  • the wavelength converting material may be conventional phosphor particles, quantum dots, organic semiconductors, II-VI or III-V semiconductors, II-VI or III-V semiconductor quantum dots or nanocrystals, dyes, polymers, or materials such as GaN that luminesce. Any suitable phosphor or other wavelength converting material may be used.
  • the thick metal layers 26 and 28 and the electrically insulating material that fills gaps between the thick metal layers and between neighboring LEDs provide mechanical support to the semiconductor structure during bonding, substrate removal, dicing, and other processing.
  • the seal around the semiconductor structure formed by thick metal layers 26 and 28 and insulating material 30 and 34 protects the semiconductor structure from contamination during bonding and other processing steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Wire Bonding (AREA)

Abstract

A method according embodiments of the invention includes providing a wafer of semiconductor devices. The wafer of semiconductor devices includes a semiconductor structure comprising a light emitting layer sandwiched between an n-type region and a p-type region. The wafer of semiconductor devices further includes first and second metal contacts for each semiconductor device. Each first metal contact is in direct contact with the n-type region and each second metal contact is in direct contact with the p-type region. The method further includes forming a structure that seals the semiconductor structure of each semiconductor device. The wafer of semiconductor devices is attached to a wafer of support substrates.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a semiconductor light emitting device including a structure that seals the semiconductor structure.
  • BACKGROUND
  • Semiconductor light-emitting devices including light emitting diodes (LEDs), resonant cavity light emitting diodes (RCLEDs), vertical cavity laser diodes (VCSELs), and edge emitting lasers are among the most efficient light sources currently available. Materials systems currently of interest in the manufacture of high-brightness light emitting devices capable of operation across the visible spectrum include Group III-V semiconductors, particularly binary, ternary, and quaternary alloys of gallium, aluminum, indium, and nitrogen, also referred to as III-nitride materials. Typically, III-nitride light emitting devices are fabricated by epitaxially growing a stack of semiconductor layers of different compositions and dopant concentrations on a sapphire, silicon carbide, III-nitride, or other suitable substrate by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or other epitaxial techniques. The stack often includes one or more n-type layers doped with, for example, Si, formed over the substrate, one or more light emitting layers in an active region formed over the n-type layer or layers, and one or more p-type layers doped with, for example, Mg, formed over the active region. Electrical contacts are formed on the n- and p-type regions.
  • FIG. 1 illustrates a light emitting diode die 110 attached to a submount 114, described in more detail in U.S. Pat. No. 6,876,008. Electrical connections between the solderable surfaces on the top and bottom surfaces of the submount are formed within the submount. The solderable areas on the top of the submount, on which solder balls 122-1 and 122-2 are disposed, are electrically connected to the solderable areas on the bottom of the submount, which attach to solder joint 138, by a conductive path within the submount. Solder joint 138 electrically connects solderable areas on the bottom of the submount to a board 134. Submount 114 may be, for example, a silicon/glass composite submount with several different regions. Silicon regions 114-2 are surrounded by metalizations 118-1 and 118-2, which form the conductive path between the top surface and the bottom surface of the submount. Circuitry such as ESD protection circuitry may be formed in the silicon regions 114-2 surrounded by metalizations 118-1 and 118-2, or in other silicon region 114-3. The other silicon regions 114-3 may also electrically contact the die 110 or board 134. Glass regions 114-1 electrically isolate different regions of silicon. Solder joints 138 may be electrically isolated by an insulating region 135 which may be, for example, a dielectric layer or air.
  • In the device illustrated in FIG. 1, the submount 114 including metalizations 118-1 and 118-2 is formed separately from die 110, before die 110 is attached to submount 114. For example, U.S. Pat. No. 6,876,008 explains that a silicon wafer, which is comprised of sites for many submounts, is grown to include any desired circuitry such as the ESD protection circuitry mentioned above. Holes are formed in the wafer by conventional masking and etching steps. A conductive layer such as a metal is formed over the wafer and in the holes. The conductive layer may then be patterned. A layer of glass is then formed over the wafer and in the holes. Portions of the glass layer and wafer are removed to expose the conductive layer. The conductive layer on the underside of the wafer may then be patterned and additional conductive layers may be added and patterned. Once the underside of the wafer is patterned, individual LED dice 110 may be physically and electrically connected to the conductive regions on the submount by interconnects 122. In other words, the LEDs 110 are attached to the submount 114 after being diced into individual diodes.
  • SUMMARY
  • It is an object of the invention to provide a wafer-scale method for attaching a wafer of semiconductor devices to a support substrate wafer such that each device is hermetically sealed by the attachment to the support substrate wafer, to reduce or eliminate contamination during later processing steps such as dicing and application of wavelength converting materials and/or lenses.
  • A method according embodiments of the invention includes providing a wafer of semiconductor devices. The wafer of semiconductor devices includes a semiconductor structure comprising a light emitting layer sandwiched between an n-type region and a p-type region. The wafer of semiconductor devices further includes first and second metal contacts for each semiconductor device. Each first metal contact is in direct contact with the n-type region and each second metal contact is in direct contact with the p-type region. The method includes forming a structure that seals the semiconductor structure of each semiconductor device. The wafer of semiconductor devices is attached to a wafer of support substrates.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a prior art device including an LED mounted on a submount.
  • FIG. 2 illustrates a semiconductor LED suitable for use in embodiments of the present invention.
  • FIG. 3 illustrates thick metal layers formed on the metal contacts of a semiconductor LED.
  • FIG. 4 illustrates the structure of FIG. 3 after planarizing the electrically insulating layer.
  • FIG. 5 is a plan view of the structure illustrated in cross sectional view in FIG. 4.
  • FIG. 6 illustrates a support substrate wafer after forming vias and forming a dielectric layer.
  • FIG. 7 illustrates the structure of FIG. 6 after forming a conductive layer and etching to reveal the conductive material at the tops of the vias.
  • FIG. 8 illustrates the structure of FIG. 7 after forming a dielectric layer on the top of the thinned support substrate wafer. FIG. 9 illustrates the structure of FIG. 8 after depositing a seed layer and additional conductive layers.
  • FIG. 10 illustrates the structure of FIG. 9 after removing remaining seed layer.
  • FIG. 11 illustrates a support substrate wafer after forming a dielectric layer.
  • FIG. 12 illustrates the structure of FIG. 11 after forming one or more conductive layers.
  • FIG. 13 illustrates the structure of FIG. 12 after forming vias and a dielectric layer.
  • FIG. 14 illustrates the structure of FIG. 13 after forming conductive layers on the bottom of the support substrate wafer.
  • FIG. 15 illustrates a portion of a wafer of devices bonded to a portion of a wafer of support substrates.
  • DETAILED DESCRIPTION
  • In embodiments of the invention, a semiconductor light emitting device is bonded to a mount in a wafer scale process. Though in the examples below the semiconductor light emitting device are III-nitride LEDs that emits blue or UV light, semiconductor light emitting devices besides LEDs such as laser diodes and semiconductor light emitting devices made from other materials systems such as other III-V materials, III-phosphide, III-arsenide, II-VI materials, ZnO, or Si-based materials may be used.
  • FIG. 2 illustrates a semiconductor light emitting device suitable for use in embodiments of the invention. The device illustrated in FIG. 2 is just one example of a device that may be used with embodiments of the invention. Any suitable device may be used with embodiments of the invention—embodiments of the invention are not limited to the details illustrated in FIG. 2. For example, though FIG. 2 illustrates a flip-chip device, embodiments of the invention may be used with other device geometries and are not limited to flip-chip devices.
  • The device illustrated in FIG. 2 may be formed by first growing a semiconductor structure on a growth substrate 10, as is known in the art. The growth substrate 10 may be any suitable substrate such as, for example, sapphire, SiC, Si, GaN, or composite substrates. An n-type region 14 may be grown first and may include multiple layers of different compositions and dopant concentration including, for example, preparation layers such as buffer layers or nucleation layers, and/or layers designed to facilitate removal of the growth substrate, which may be n-type or not intentionally doped, and n- or even p-type device layers designed for particular optical, material, or electrical properties desirable for the light emitting region to efficiently emit light. A light emitting or active region 16 is grown over the n-type region. Examples of suitable light emitting regions include a single thick or thin light emitting layer, or a multiple quantum well light emitting region including multiple thin or thick light emitting layers separated by barrier layers. A p-type region 18 may then be grown over the light emitting region. Like the n-type region, the p-type region may include multiple layers of different composition, thickness, and dopant concentration, including layers that are not intentionally doped, or n-type layers. The total thickness of all the semiconductor material in the device is less than 10 μm in some embodiments and less than 6 μm in some embodiments.
  • A p-contact metal 20 is formed on the p-type region. The p-contact metal 20 may be reflective and may be a multi-layer stack. For example, the p-contact metal may include a layer for making ohmic contact to the p-type semiconductor material, a reflective metal layer, and a guard metal layer that prevents or reduces migration of the reflective metal. The semiconductor structure is then patterned by standard photolithographic operations and etched to remove a portion of the entire thickness of the p-contact metal, a portion of the entire thickness of the p-type region, and a portion of the entire thickness of the light emitting region, to form at least one mesa which reveals a surface of the n-type region 14 on which a metal n-contact 22 is formed.
  • A plan view of the device illustrated in FIG. 2 would look similar to the plan view illustrated in FIG. 5. N-contact 22 may have the same shape as thick metal layer 26, described below. P-contact 20 may have the same shape as thick metal layer 28, described below. The n-contact and the p-contact are electrically isolated by a gap 24 which may be filled with a solid, a dielectric, an electrically insulating material, air, ambient gas, or any other suitable material. The p- and n-contacts may be any suitable shape and may be arranged in any suitable way. Patterning a semiconductor structure and forming n- and p-contacts is well known to a person of skill in the art. Accordingly, the shape and arrangement of the n- and p-contacts is not limited to the embodiment illustrated in FIGS. 2 and 5.
  • Though a single light emitting device is illustrated in FIG. 2, it is to be understood that the device illustrated in FIG. 2 is formed on a wafer that includes many such devices. In the regions 13 between individual devices on a wafer of devices, the semiconductor structure may be etched down to an insulating layer, which may be an insulating semiconductor layer that is part of the semiconductor structure, or the growth substrate, as illustrated in FIG. 2.
  • FIGS. 3 and 4 illustrate preparing a wafer of LED devices for bonding to a support substrate wafer, described below. The LED structure illustrated in FIG. 2, which includes the semiconductor structure including the n-type region, the p-type region, and the light emitting region, and the n- and p-contacts, is represented in simplified form by structure 12 in the FIGS. 3 and 4.
  • In embodiments of the invention, thick metal layers are formed on the n- and p-contacts of the LED. The thick metal layers may be formed on a wafer scale, before a wafer of devices is diced into individual or smaller groups of devices. The thick metal layers may support the device structure of FIG. 2 after the wafer of devices is diced, and may support the device structure of FIG. 2 during removal of the growth substrate in some embodiments.
  • FIG. 3 illustrates thick metal layers formed on the n- and p-contacts of LED 12. In some embodiments, a base layer, which is not shown in FIG. 3, is formed first. The base layer is a metal layer or layers on which the thick metal layers are deposited. For example, the base layer may include an adhesion layer, the material of which is selected for good adhesion to the n- and p-contacts, and a seed layer, the material of which is selected for good adhesion to the thick metal layers. Examples of suitable materials for the adhesion layer include but are not limited to Ti, W, and alloys such as TiW. Examples of suitable materials for the seed layer include but are not limited to Cu. The base layer or layers may be formed by any suitable technique including, for example, sputtering or evaporation.
  • The base layer or layers may be patterned by standard lithographic techniques such that the base layer is present only where the thick metal layers are to be formed. Alternatively, a photoresist layer may be formed over the base layer and patterned by standard lithographic techniques to form openings where the thick metal layers are to be formed.
  • Thick metal layers 26 and 28 are formed simultaneously over the n- and p-contacts of LED 12. Thick metal layers 26 and 28 may be any suitable metal such as, for example, copper, nickel, gold, palladium, nickel-copper alloy, or other alloys. Thick metal layers 26 and 28 may be formed by any suitable technique including, for example, plating. Thick metal layers 28 and 30 may be between 20 μm and 500 μm in some embodiments, between 30 μm and 200 μm in some embodiments, and between 50 μm and 100 μm in some embodiments. Thick metal layers 26 and 28 support the semiconductor structure during later processing steps, in particular removal of the growth substrate, and provide a thermal pathway to conduct heat away from the semiconductor structure, which may improve the efficiency of the device.
  • After thick metal layers 26 and 28 are formed, an electrically insulating material 32 is formed over the wafer. The electrically insulating material 32 fills gaps 30 between the thick metal layers 26 and 28 and also fills gaps 34 between LEDs 12. The electrically insulating material 32 may optionally be disposed over the tops of thick metal layers 26 and 28. Electrically insulating material 32 is selected to electrically isolate metal layers 26 and 28 and to have a coefficient of thermal expansion that is matched or is relatively close to that of the metal(s) in thick metal layers 26 and 28. For example, electrically insulating material 32 may be a dielectric layer, a polymer, benzocyclobutene, one or more oxides of silicon, one or more nitrides of silicon, silicone, or epoxy in some embodiments. Electrically insulating material 32 may be formed by any suitable technique, including, for example, overmolding, injection molding, spinning on, and spraying on. Overmolding is performed as follows: An appropriately sized and shaped mold is provided. The mold is filled with a liquid material, such as silicone or epoxy, which when cured forms a hardened electrically insulating material. The mold and the LED wafer are brought together. The mold is then heated to cure (harden) the electrically insulating material. The mold and the LED wafer are then separated, leaving the electrically insulating material 32 over the LEDs, between the LEDs, and filling any gaps on each LED. In some embodiments, one or more fillers are added to the molding compound to form composite materials with optimized physical and material properties.
  • FIG. 4 illustrates an optional processing step, where the device is planarized, for example by removing any electrically insulating material overlying thick metal layers 26 and 28. Electrically insulating material 32 may be removed by any suitable technique, including, for example, microbead blasting, fly cutting, cutting with a blade, grinding, polishing, or chemical mechanical polishing. The electrically insulating material 30 between thick metal layers 26 and 28 is not removed, and the electrically insulating material 34 between adjacent LEDs is not removed.
  • FIG. 5 is a plan view of the structure shown in cross sectional view in FIG. 4.
  • The cross section shown in FIG. 4 is taken at axis 27 shown in FIG. 5. The thick metal layer 26 formed on the n-contact illustrated in FIG. 2 is circular, though it may have any shape. The thick metal layer 26 is surrounded by the thick metal layer 28 formed on the p-contact illustrated in FIG. 2. Thick metal layers 26 and 28 are electrically isolated by electrically insulating material 30, which surrounds thick metal layer 26. Electrically insulating material 34 surrounds the device.
  • Separate from the preparation of the wafer of devices, illustrated in FIGS. 2, 3, and 4, a wafer of support substrates is prepared. FIGS. 6, 7, 8, 9, and 10 illustrate preparation of a support substrate wafer according to some embodiments. FIGS. 11, 12, 13, and 14 illustrate preparation of a support substrate according to alternative embodiments.
  • The support substrate wafer includes a body 40, as illustrated in FIG. 6. Body 40 may be, for example, Si, Ge, GaAs, or any other suitable material. Vias are formed in the body 40. Some vias 42 are placed to align with metal layers on the wafer of devices that electrically connect to the n-type region. Some vias 44 are placed to align with metal layers on the wafer of devices that electrically connect to the p-type region. After the vias are formed, a dielectric layer 46 is formed on the bottom surface of body 40, including in the insides of the vias. Dielectric layer 46 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or plasma-enhanced chemical vapor deposition (PECVD), or a nitride of silicon formed by PECVD.
  • In FIG. 7, a conductive layer is formed over dielectric layer 46 on the bottom surface of the body 40 and in vias 42 and 44. The conductive layer is patterned to form conductive layer 48 in via 42 and conductive layer 50 in via 44. Conductive layers 48 and 50 are electrically isolated from each other by a gap which exposes dielectric layer 46. The conductive layer may be, for example, a metal such as copper or gold. The conductive layer may be formed by first forming a seed layer over the entire bottom surface of the body, for example by sputtering, then patterning to remove the seed layer in the region between conductive layers 48 and 50. A thicker metal layer is then formed on the remaining portions of the seed layer, for example by plating.
  • After conductive layers 48 and 50 are formed, the body 40 is etched from the top surface, to expose the conductive layers 48 a and 50 a at the tops of vias 42 and 44. Body 40 may be thinned by any suitable technique including wet or dry etching or a mechanical technique such as grinding. Though FIG. 7 illustrates a structure with a planar top surface, in some embodiments body 40 may be etched below the tops of conductive layers 48 a and 50 a.
  • In FIG. 8, a dielectric layer 52 is formed over the top of body 40, over the surface exposed by the thinning described in reference to FIG. 7. Dielectric layer 52 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD. FIG. 8 illustrates a thermally grown dielectric layer 52, which may be self-aligned with conductive layers 48 a and 50 a such that a planar top surface is formed, assuming the surface was planar after the thinning illustrated in FIG. 7. If dielectric material is deposited, for example by PECVD, dielectric material may be deposited over conductive layers 48 a and 50 a at the tops of vias 42 and 44. The dielectric material deposited over conductive layers 48 a and 50 a may be removed by conventional lithography and etching steps. The top surface may be planar as illustrated in FIG. 8 though it need not be.
  • In FIG. 9, one or more conductive layers are formed on the top surface of body 40. The one or more conductive layers may be any suitable material formed by any suitable process. In FIG. 9, the conductive layers include a copper layer, a nickel layer, and a gold/tin layer. The conductive layers are in direct contact with conductive layers 48 a and 50 a at the tops of vias 42 and 44. The conductive layers may be shaped to align with thick metal layers 26 and 28, shown in plan view in FIG. 5, formed on the wafer of devices. To form the conductive layers illustrated in FIG. 9, a seed layer 54 of copper is formed over the top of body 40. The seed layer may be patterned such that photoresist 57 is formed over areas where the conductive layers are not to be formed, such as in gaps 55 that provide electrical isolation between the conductive layers electrically connected to metal 48 in via 42 and the conductive layers electrically connected to metal 50 in via 44. A thick copper layer is then formed, for example by plating, followed by a nickel layer formed by plating, followed by a gold/tin layer formed by sequentially plating gold and tin at a thickness ratio of 4:1.
  • The photoresist 57 is then removed, as illustrated in FIG. 10, leaving gaps 55 that electrically isolate conductive layers 56, 60, and 64 from conductive layers 58, 62, and 66. Copper layer 56, nickel layer 60, and gold/tin layer 64 are formed over conductive layer 48 in via 42. Copper layer 58, nickel layer 62, and gold/tin layer 66 are formed over conductive layer 50 in via 44.
  • After the photoresist is removed from gaps 55, seed layer 54 formed in FIG. 9 remains in the gaps 55 between copper, nickel, and gold/tin layers formed over via 42 and those layers formed over via 44. The seed layer in gaps 55 may be removed by etching, as illustrated in FIG. 10, such that dielectric layer 52 is exposed in the bottom of gaps 55. The structure may be annealed at elevated temperature, to cause the plated gold and tin layers to form a gold/tin eutectic. The gold/tin eutectic is later used as the bonding layer to attach the support substrate wafer to the wafer of devices.
  • FIGS. 11, 12, 13, and 14 illustrate an alternative method for preparing the support substrate wafer. Like structures may be the same materials and formed by the same techniques described above in reference to FIGS. 6, 7, 8, 9, and 10. In FIG. 11, dielectric 52 is formed over the top surface of body 40. Dielectric layer 52 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD.
  • In FIG. 12, conductive layers are formed on the top surface of body 40, and patterned. As described above in reference to FIG. 9, one or more conductive layers may be any suitable material formed by any suitable process. In FIG. 12 as in FIG. 9, the conductive layers include a copper layer, a nickel layer, and a gold/tin layer. To form the conductive layers illustrated in FIG. 9, a seed layer 54 of copper is formed over the top of body 40. The seed layer may be patterned such that photoresist is formed over areas where the conductive layers are not to be formed, such as in a gap 55 between later-formed vias 42 and 44, which provides electrical isolation. A thick copper layer is then formed, for example by plating, followed by a nickel layer formed by plating, followed by a gold/tin layer formed by sequentially plating gold and tin at a thickness ratio of 4:1 or by plating a gold/tin alloy of appropriate composition. The photoresist is then removed, resulting the structure illustrated in FIG. 12. Copper layer 56, nickel layer 60, and gold/tin layer 64 are formed over in the region of later-formed via 42. Copper layer 58, nickel layer 62, and gold/tin layer 66 are formed in the region of later-formed via 44. Seed layer 54 remains in the areas between the conductive metal layers.
  • In FIG. 13, vias 42 and 44 are formed by conventional patterning and etching steps. Vias 42 and 44 are formed on the bottom surface of body 40 and extend toward the top surface of body 40. Vias 42 and 44 extend through dielectric layer 52 to the bottom of conductive layers 56 and 58, respectively. The conductive layers 56 and 58, often a metal such as copper, serve as an etch stop layer for the etching step that forms vias 42 and 44.
  • A dielectric layer 46 is formed on the bottom surface of body 40 and in vias 42 and 44. Dielectric layer 46 may be any suitable material such as, for example, an oxide of silicon formed by thermal growth or PECVD, or a nitride of silicon formed by PECVD. After dielectric layer 46 is formed, a conductive layer is formed on the bottom surface of body 40 and in vias 42 and 44. Conductive layer 48 is in direct contact with copper seed layer 54 at the top of via 42. Conductive layer 50 is in direct contact with copper seed layer 54 at the top of via 44. Conductive layers 48 and 50 are electrically isolated from each other by a gap 49 which exposes dielectric layer 46. The conductive layer may be, for example, a metal such as copper or gold. The conductive layer may be formed by first forming a seed layer over the entire bottom surface of the body, for example by sputtering, then patterning to form a photoresist layer in the region between conductive layers 48 and 50. A thicker metal layer is then formed on the portions of the seed layer not covered by photoresist, for example by plating. The photoresist is removed, then the seed layer in the gap 49 between the thicker metal layers 48 and 50 is removed, for example by etching. Likewise, the seed layer 54 is removed from gaps 55 by etching to isolate the metal stack 56,60, 64 from the metal stack 52, 58, 62. The structure may be annealed, for example at a temperature of at least 200° C.
  • FIG. 15 illustrates a portion of a wafer 70 of devices, such as the device illustrated in FIG. 4, attached to a wafer 72 of support substrates, such as the support substrates illustrated in FIGS. 10 and 14. The wafers 70 and 72 are bonded together by aligning the metal regions 64, 66 on the top of support substrate wafer 72 with the metal regions 26, 28 on the bottom of device wafer 70, then heating the structure to reflow the metal layers 64 and 66. Metal layers 64 and 66 may have the same shape as metal regions 26 and 28, illustrated in FIG. 5. Regions 75 are connected to conductive layer 50 outside the plane illustrated in FIG. 15. In some embodiments, metal layers 64 and 66 are a gold/tin eutectic, though any material that is sufficiently conductive and suitable for bonding can be used. In some embodiments, insulating material 30, 34 is a material that metal layers 64 and 66 will not wet when metal layers 64 and 66 are reflowed. Because metal layers 64 and 66 will not wet the insulating material 30, 34 on the bottom of device wafer 70, gaps 74 filled with ambient gas are formed between the metal layers 64 and 66. Also, because metal layers 64 and 66 on wafer 72 will wet only metal regions 26 and 28 on wafer 70 and not insulating material 30 and 34, metal layers 64 and 66 and metal regions 26 and 28 do not have to have precisely the same shape, and do not need to be precisely aligned, as illustrated in FIG. 15.
  • Two devices are illustrated in FIG. 15, though it is to be understood that the structures illustrated in FIG. 15 are repeated across both wafers. After bonding, the wafer may be diced, which separates the two devices at position 76. Each semiconductor structure 71 on device wafer 70, illustrated in more detail in FIG. 2 as semiconductor layers 14, 16, and 18 and illustrated in simplified form in FIG. 15, is completely enclosed and sealed by growth substrate 10 on the top of semiconductor structure 71, and by metal regions 26 and 28 and insulating material 30 and 34 on the bottom. The n- and p-contacts 22 and 20, illustrated in FIG. 2, are also protected by the seal. As described above, the seal is formed by wafer-level processing steps that occur while the semiconductor structures 71 are connected to growth substrate 10. During the bonding to support substrate wafer 72 illustrated in FIG. 15, no material can contact the semiconductor structure 71. In particular, the seal formed by metal regions 26, 28 and insulating material 30, 34, prevents metal bonding layers 64, 66, or any other material from contacting the semiconductor structure 71 during bonding to support substrate 72.
  • In some embodiments, after bonding to support substrate 72, the growth substrate 10 is removed from the structure illustrated in FIG. 15. The growth substrate may be removed by any suitable technique, including, for example, laser lift-off, etching, mechanical techniques such as grinding, or a combination of techniques. In some embodiments, the growth substrate is sapphire and is removed by wafer-scale laser lift-off. Since the sapphire substrate does not need to be thinned before removal and has not been diced, it can be reused as a growth substrate. In some embodiments, the growth substrate 10 is only thinned, such that a portion of the growth substrate remains on the final device. In some embodiments, the entire growth substrate 10 remains on the final device.
  • In some embodiments, the surface of the semiconductor structure exposed by removing the growth substrate, typically a surface of n-type region 14 (illustrated in FIG. 2), may be optionally thinned and roughened, for example by photoelectrochemical etching.
  • The wafer of devices is then diced into individual or groups of LEDs. Individual or groups of LEDs may be separated by sawing, scribing, breaking, cutting, or otherwise separating neighboring LEDs at position 76, as illustrated in FIG. 15. In some embodiments, the growth substrate 10 is thinned or removed after dicing, rather than before.
  • One or more optional structures such as filters, lenses, dichroic materials, or wavelength converting materials may be formed over the LEDs, before or after dicing. A wavelength converting material may be formed such that all or only a portion of the light emitted by the light emitting device and incident on the wavelength converting material may be converted by the wavelength converting material. Unconverted light emitted by the light emitting device may be part of the final spectrum of light, though it need not be. Examples of common combinations include a blue-emitting LED combined with a yellow-emitting wavelength converting material, a blue-emitting LED combined with green- and red-emitting wavelength converting materials, a UV-emitting LED combined with blue- and yellow-emitting wavelength converting material, and a UV-emitting LED combined with blue-, green-, and red-emitting wavelength converting materials. Wavelength converting materials emitting other colors of light may be added to tailor the spectrum of light emitted from the device. The wavelength converting material may be conventional phosphor particles, quantum dots, organic semiconductors, II-VI or III-V semiconductors, II-VI or III-V semiconductor quantum dots or nanocrystals, dyes, polymers, or materials such as GaN that luminesce. Any suitable phosphor or other wavelength converting material may be used.
  • The thick metal layers 26 and 28 and the electrically insulating material that fills gaps between the thick metal layers and between neighboring LEDs provide mechanical support to the semiconductor structure during bonding, substrate removal, dicing, and other processing. The seal around the semiconductor structure formed by thick metal layers 26 and 28 and insulating material 30 and 34 protects the semiconductor structure from contamination during bonding and other processing steps.
  • Having described the invention in detail, those skilled in the art will appreciate that, given the present disclosure, modifications may be made to the invention without departing from the spirit of the inventive concept described herein. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.

Claims (20)

1. A method comprising:
providing a wafer of semiconductor devices, the wafer of semiconductor devices comprising:
a semiconductor structure comprising a light emitting layer sandwiched between an n-type region and a p-type region; and
first and second metal contacts for each semiconductor device, wherein each first metal contact is in direct contact with the n-type region and each second metal contact is in direct contact with the p-type region;
forming a structure that seals the semiconductor structure of each semiconductor device, wherein forming a structure that seals the semiconductor structure of each semiconductor device comprises:
forming first and second metal layers on the first and second metal contacts of each semiconductor device on the wafer, respectively, wherein the first and second metal layers are sufficiently thick to support the semiconductor structure during later processing; and
after forming first and second metal layers, molding an electrically insulating layer that fills spaces between the first and second metal layers over the first and second metal layers; and
attaching the wafer of semiconductor devices to a wafer of support substrates.
2. (canceled)
3. The method of claim 1 wherein the wafer of support substrates comprises a plurality of regions of bonding metal formed on the surface of a body.
4. The method of claim 3 wherein attaching the wafer of semiconductor devices to a wafer of support substrates comprises aligning the plurality of regions of bonding metal on the wafer of support substrates with the first and second metal layers on the wafer of semiconductor devices.
5. The method of claim 4 wherein attaching the wafer of semiconductor devices to a wafer of support substrates further comprises heating the regions of bonding metal such that the regions of bonding metal reflow.
6. The method of claim 5 wherein forming an electrically insulating layer comprises forming the electrically insulating layer of a material that the bonding metal will not wet when the regions of bonding metal are heated.
7. The method of claim 1 wherein forming first and second metal layers comprises plating first and second metal layers on the wafer of semiconductor devices.
8. The method of claim 1 wherein the first and second metal layers are at least 50 μm thick.
9. The method of claim 1 wherein forming the electrically insulating layer comprises:
positioning a mold over the wafer of semiconductor devices;
filling the mold with electrically insulating molding material; and
curing the molding material.
10. The method of claim 1 further comprising dicing the wafer of semiconductor devices after forming a structure that seals the semiconductor structure of each semiconductor device.
11. The method of claim 1 further comprising removing a growth substrate from the wafer of semiconductor devices after attaching the wafer of semiconductor devices to a wafer of support substrates.
12. The method of claim 1 further comprising forming the wafer of support substrates, wherein forming the wafer of support substrates comprises:
providing a body;
etching a plurality of vias in the body, each of the vias extending from a bottom surface of the body toward a top surface of the body; and
lining sidewalls and a top of each of the vias with metal.
13. The method of claim 12 wherein forming the wafer of support substrates further comprises:
thinning the body from the top surface of the body to expose the metal at the top of each via;
forming regions of bonding metal on the top surface of the body, wherein the regions of bonding metal are in direct contact with the metal at the top of each via; and
forming an electrically insulating layer on a top surface of the body.
14. The method of claim 1 further comprising forming a wafer of support substrates, wherein forming a wafer of support substrates comprises:
providing a body;
forming a bonding metal layer on a top surface of the body;
etching a plurality of vias in the body, each of the vias extending from a bottom surface of the body toward a top surface of the body and terminating on the bonding metal layer formed on the top surface of the body.
15. The method of claim 14 further comprising:
patterning the bonding metal layer on the top surface of the body to form electrically isolated bonding metal regions disposed over the top of each via; and
forming a plurality of second metal layers, each second metal layer being formed on sidewalls of each via and on a bottom surface of the body, wherein each second metal layer is in direct contact with the electrically isolated bonding metal region disposed over the top of each via.
16. The method of claim 1 wherein forming a structure that seals the semiconductor structure of each semiconductor device comprises forming a structure that protects the semiconductor structure from contamination.
17. A device comprising :
a semiconductor structure comprising a Ill-nitride light emitting layer sandwiched between an n-type region and a p-type region;
a first metal layer in direct contact with the n-type region and a second metal layer in direct contact with the p-type region;
third and fourth metal layers disposed on the first and second metal layers, wherein the third and fourth metal layers are sufficiently thick to support the semiconductor structure; and
an electrically insulating solid that fills spaces between the third and fourth metal layers;
wherein the third and fourth metal layers and the electrically insulating solid seal the semiconductor structure.
18. The device of claim 17 wherein the third and fourth metal layers are at least 50 μm thick.
19. The device of claim 17 wherein the third and fourth metal layers are plated on the first and second metal layers.
20. The device of claim 17 further comprising a silicon mount, wherein the third and fourth metal layers are disposed between the semiconductor structure and the silicon mount.
US14/387,591 2012-03-30 2013-03-22 Sealed semiconductor light emitting device Active US10020431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,591 US10020431B2 (en) 2012-03-30 2013-03-22 Sealed semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261617692P 2012-03-30 2012-03-30
PCT/IB2013/052290 WO2013144801A1 (en) 2012-03-30 2013-03-22 Sealed semiconductor light emitting device.
US14/387,591 US10020431B2 (en) 2012-03-30 2013-03-22 Sealed semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/052290 A-371-Of-International WO2013144801A1 (en) 2012-03-30 2013-03-22 Sealed semiconductor light emitting device.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/030,325 Continuation US20180323353A1 (en) 2012-03-30 2018-07-09 Sealed semiconductor light emitting device

Publications (2)

Publication Number Publication Date
US20150076538A1 true US20150076538A1 (en) 2015-03-19
US10020431B2 US10020431B2 (en) 2018-07-10

Family

ID=48428536

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/387,591 Active US10020431B2 (en) 2012-03-30 2013-03-22 Sealed semiconductor light emitting device
US16/030,325 Abandoned US20180323353A1 (en) 2012-03-30 2018-07-09 Sealed semiconductor light emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/030,325 Abandoned US20180323353A1 (en) 2012-03-30 2018-07-09 Sealed semiconductor light emitting device

Country Status (6)

Country Link
US (2) US10020431B2 (en)
EP (1) EP2831930B1 (en)
JP (2) JP6470677B2 (en)
KR (1) KR102129146B1 (en)
CN (2) CN109994586B (en)
WO (1) WO2013144801A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150049421A1 (en) * 2013-08-13 2015-02-19 Amkor Technology, Inc. Electronic device package structure and method fabricating the same
CN108615710A (en) * 2016-12-09 2018-10-02 艾马克科技公司 Semiconductor device and its manufacturing method
US10096975B1 (en) 2017-03-27 2018-10-09 International Business Machines Corporation Laterally grown edge emitting laser
US20190229247A1 (en) * 2018-01-22 2019-07-25 Rohm Co., Ltd. Led package
US10615305B1 (en) * 2018-04-20 2020-04-07 Facebook Technologies, Llc Self-alignment of micro light emitting diode using planarization

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116970A1 (en) 2015-10-06 2017-04-06 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing a semiconductor laser
DE102017106410A1 (en) 2017-03-24 2018-09-27 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and optoelectronic component
DE102021116242A1 (en) * 2021-06-23 2022-12-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing an optoelectronic component and optoelectronic component

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696389A (en) * 1994-03-15 1997-12-09 Kabushiki Kaisha Toshiba Light-emitting semiconductor device
US20050062060A1 (en) * 2003-08-26 2005-03-24 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US20050104220A1 (en) * 2003-11-14 2005-05-19 Stanley Electric Co., Ltd. Semiconductor device and its manufacture method capable of preventing short circuit of electrodes when semiconductor device is mounted on sub-mount substrate
US20050156185A1 (en) * 2004-01-19 2005-07-21 Kim Hyun K. Flip chip nitride semiconductor light emitting diode
US20070126016A1 (en) * 2005-05-12 2007-06-07 Epistar Corporation Light emitting device and manufacture method thereof
US20090267085A1 (en) * 2005-03-11 2009-10-29 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
US20100012963A1 (en) * 2008-07-21 2010-01-21 Mutual-Pak Technology Co., Ltd. Light emitting diode and method of the same
US20100148185A1 (en) * 2008-12-15 2010-06-17 Everlight Electronics Co., Ltd. Flip-chip light-emitting diode device
US20110101539A1 (en) * 2009-10-30 2011-05-05 Oki Semiconductor Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US20110204395A1 (en) * 2010-02-24 2011-08-25 Young Gi Hong Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof
US20110215365A1 (en) * 2010-03-04 2011-09-08 Advanced Optoelectronic Technology, Inc. Semiconductor package and fabrication method thereof
US20110233586A1 (en) * 2010-03-23 2011-09-29 Kabushiki Kaisha Toshiba Method for manufacturing light emitting device and light emitting device
US20110241061A1 (en) * 2010-04-05 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Heat dissipation by through silicon plugs
US20110297997A1 (en) * 2010-06-07 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US20110297969A1 (en) * 2010-06-04 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US20120104445A1 (en) * 2010-11-03 2012-05-03 Yang ming-kun Chip package and method for forming the same
US20120168792A1 (en) * 2010-12-31 2012-07-05 Samsung Electronics Co., Ltd. Heterojunction structures of different substrates joined and methods of fabricating the same
US20120181558A1 (en) * 2011-01-13 2012-07-19 Seong-Deok Hwang Wafer level light-emitting device package and method of manufacturing the same
US20130020589A1 (en) * 2011-07-21 2013-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level photonic device die structure and method of making the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164332A (en) * 1991-03-15 1992-11-17 Microelectronics And Computer Technology Corporation Diffusion barrier for copper features
US6876008B2 (en) 2003-07-31 2005-04-05 Lumileds Lighting U.S., Llc Mount for semiconductor light emitting device
EP2937897A3 (en) * 2003-09-15 2016-03-23 Nuvotronics LLC Device package and methods for the fabrication and testing thereof
JP4535834B2 (en) * 2004-10-18 2010-09-01 パナソニック電工株式会社 Light emitting device and manufacturing method thereof
JP2005123657A (en) 2005-01-31 2005-05-12 Sanyo Electric Co Ltd Chip-type light emitting device and its manufacturing method
US7736945B2 (en) 2005-06-09 2010-06-15 Philips Lumileds Lighting Company, Llc LED assembly having maximum metal support for laser lift-off of growth substrate
TWI422044B (en) 2005-06-30 2014-01-01 Cree Inc Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US20080124835A1 (en) 2006-11-03 2008-05-29 International Business Machines Corporation Hermetic seal and reliable bonding structures for 3d applications
US7663148B2 (en) 2006-12-22 2010-02-16 Philips Lumileds Lighting Company, Llc III-nitride light emitting device with reduced strain light emitting layer
US20090230409A1 (en) 2008-03-17 2009-09-17 Philips Lumileds Lighting Company, Llc Underfill process for flip-chip leds
JP2010103186A (en) * 2008-10-21 2010-05-06 Sony Corp Method of manufacturing semiconductor light emitting apparatus
US8017958B2 (en) 2009-06-30 2011-09-13 Koninklijke Philips Electronics N.V. P-contact layer for a III-P semiconductor light emitting device
JP5534763B2 (en) * 2009-09-25 2014-07-02 株式会社東芝 Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP2011071272A (en) * 2009-09-25 2011-04-07 Toshiba Corp Semiconductor light-emitting device and method for manufacturing the same
US8471280B2 (en) 2009-11-06 2013-06-25 Koninklijke Philips Electronics N.V. Silicone based reflective underfill and thermal coupler
DE102009053064A1 (en) * 2009-11-13 2011-05-19 Osram Opto Semiconductors Gmbh Protective diode structure thin film semiconductor device and method of fabricating a thin film semiconductor device
JP2011199221A (en) * 2010-03-24 2011-10-06 Hitachi Cable Ltd Light emitting diode
JP5337105B2 (en) * 2010-06-03 2013-11-06 株式会社東芝 Semiconductor light emitting device
US8471282B2 (en) * 2010-06-07 2013-06-25 Koninklijke Philips Electronics N.V. Passivation for a semiconductor light emitting device
US9070851B2 (en) * 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696389A (en) * 1994-03-15 1997-12-09 Kabushiki Kaisha Toshiba Light-emitting semiconductor device
US20050062060A1 (en) * 2003-08-26 2005-03-24 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US20050104220A1 (en) * 2003-11-14 2005-05-19 Stanley Electric Co., Ltd. Semiconductor device and its manufacture method capable of preventing short circuit of electrodes when semiconductor device is mounted on sub-mount substrate
US20050156185A1 (en) * 2004-01-19 2005-07-21 Kim Hyun K. Flip chip nitride semiconductor light emitting diode
US20090267085A1 (en) * 2005-03-11 2009-10-29 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
US20070126016A1 (en) * 2005-05-12 2007-06-07 Epistar Corporation Light emitting device and manufacture method thereof
US20100012963A1 (en) * 2008-07-21 2010-01-21 Mutual-Pak Technology Co., Ltd. Light emitting diode and method of the same
US20100148185A1 (en) * 2008-12-15 2010-06-17 Everlight Electronics Co., Ltd. Flip-chip light-emitting diode device
US20110101539A1 (en) * 2009-10-30 2011-05-05 Oki Semiconductor Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US20110204395A1 (en) * 2010-02-24 2011-08-25 Young Gi Hong Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof
US20110215365A1 (en) * 2010-03-04 2011-09-08 Advanced Optoelectronic Technology, Inc. Semiconductor package and fabrication method thereof
US20110233586A1 (en) * 2010-03-23 2011-09-29 Kabushiki Kaisha Toshiba Method for manufacturing light emitting device and light emitting device
US20110241061A1 (en) * 2010-04-05 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Heat dissipation by through silicon plugs
US20110297969A1 (en) * 2010-06-04 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US20110297997A1 (en) * 2010-06-07 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US20120104445A1 (en) * 2010-11-03 2012-05-03 Yang ming-kun Chip package and method for forming the same
US20120168792A1 (en) * 2010-12-31 2012-07-05 Samsung Electronics Co., Ltd. Heterojunction structures of different substrates joined and methods of fabricating the same
US20120181558A1 (en) * 2011-01-13 2012-07-19 Seong-Deok Hwang Wafer level light-emitting device package and method of manufacturing the same
US20130020589A1 (en) * 2011-07-21 2013-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level photonic device die structure and method of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150049421A1 (en) * 2013-08-13 2015-02-19 Amkor Technology, Inc. Electronic device package structure and method fabricating the same
US9478517B2 (en) * 2013-08-13 2016-10-25 Amkor Technology, Inc. Electronic device package structure and method of fabricating the same
CN108615710A (en) * 2016-12-09 2018-10-02 艾马克科技公司 Semiconductor device and its manufacturing method
US10096975B1 (en) 2017-03-27 2018-10-09 International Business Machines Corporation Laterally grown edge emitting laser
US20190229247A1 (en) * 2018-01-22 2019-07-25 Rohm Co., Ltd. Led package
US10700250B2 (en) * 2018-01-22 2020-06-30 Rohm Co., Ltd. LED package
US10964870B2 (en) 2018-01-22 2021-03-30 Rohm Co., Ltd. LED package
US10615305B1 (en) * 2018-04-20 2020-04-07 Facebook Technologies, Llc Self-alignment of micro light emitting diode using planarization
US11302841B1 (en) 2018-04-20 2022-04-12 Facebook Technologies, Llc Self-alignment of micro light emitting diode using planarization

Also Published As

Publication number Publication date
CN104205366A (en) 2014-12-10
KR102129146B1 (en) 2020-07-02
US10020431B2 (en) 2018-07-10
JP2015514319A (en) 2015-05-18
EP2831930A1 (en) 2015-02-04
JP6470677B2 (en) 2019-02-13
CN109994586A (en) 2019-07-09
KR20150002717A (en) 2015-01-07
CN104205366B (en) 2018-08-31
EP2831930B1 (en) 2018-09-19
JP2018191016A (en) 2018-11-29
CN109994586B (en) 2022-06-03
US20180323353A1 (en) 2018-11-08
WO2013144801A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US20180323353A1 (en) Sealed semiconductor light emitting device
US9431581B2 (en) Method of attaching a light emitting device to a support substrate
JP2019114804A (en) Light-emitting device bonded to supporting substrate
WO2014167455A2 (en) Top emitting semiconductor light emitting device
US9484513B2 (en) Semiconductor light emitting device with thick metal layers
US9362471B2 (en) Semiconductor light emitting device with thick metal layers
WO2013084155A1 (en) Forming thick metal layers on a semiconductor light emitting device
WO2012164456A1 (en) Method of attaching a light emitting device to a support substrate
WO2013084103A1 (en) Semiconductor light emitting device with thick metal layers

Legal Events

Date Code Title Description
AS Assignment

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEI, JIPU;NICKEL, ALEXANDER H.;SCHIAFFINO, STEFANO;SIGNING DATES FROM 20130404 TO 20130405;REEL/FRAME:033804/0495

AS Assignment

Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:036104/0610

Effective date: 20130515

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:LUMILEDS LLC;REEL/FRAME:043108/0001

Effective date: 20170630

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: SECURITY INTEREST;ASSIGNOR:LUMILEDS LLC;REEL/FRAME:043108/0001

Effective date: 20170630

AS Assignment

Owner name: LUMILEDS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS N.V.;REEL/FRAME:044809/0940

Effective date: 20170428

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: SOUND POINT AGENCY LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:LUMILEDS LLC;LUMILEDS HOLDING B.V.;REEL/FRAME:062299/0338

Effective date: 20221230