US20150047807A1 - In-Wall Hydronic Thermal Control System and Installation Method - Google Patents

In-Wall Hydronic Thermal Control System and Installation Method Download PDF

Info

Publication number
US20150047807A1
US20150047807A1 US14/529,496 US201414529496A US2015047807A1 US 20150047807 A1 US20150047807 A1 US 20150047807A1 US 201414529496 A US201414529496 A US 201414529496A US 2015047807 A1 US2015047807 A1 US 2015047807A1
Authority
US
United States
Prior art keywords
tubing
panels
wall
tracks
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/529,496
Inventor
Joachim Fiedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/898,882 external-priority patent/US8650832B2/en
Priority claimed from US13/625,202 external-priority patent/US8898997B2/en
Application filed by Individual filed Critical Individual
Priority to US14/529,496 priority Critical patent/US20150047807A1/en
Publication of US20150047807A1 publication Critical patent/US20150047807A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/525Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0035Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • Hydronic radiant floor, wall, and/or ceiling thermal control systems are typically used for heating a space, such as a room in a dwelling or commercial building, usually for human and creature comfort.
  • Typical hydronic heating systems require a supply of hot water, or other fluid, from a boiler, for example, and valves for controlling the quantity of the water from the supply that is fed to heating loops, which include tubing and/or heating elements. These heating loops are in thermal contact with the space or rooms to be heated or cooled. It is often necessary to control the temperature of the water in the heating loops. For example, if the supply water temperature is set to about 180° F. (80° C.) for laundry, it must be modulated down to about 100° F. or 40° C., (or lower) for radiant systems. On the other hand, chillers can be used to supply cold water during the summer months for cooling.
  • a number of approaches are available for distributing the tubing in the space to be heated to form the heating loops.
  • the tubing is set in the concrete flooring.
  • the heat loop tubing is installed between the floor or ceiling joists using metal radiation plates.
  • a preferable approach for forming the heating loops in floors relies on modular panel heating elements.
  • the panel elements include integral metal radiation plates or sheets that are attached to two spaced apart boards, which cooperate to hold the tubing in intimate thermal contact with the radiation plate, so that the plate is heated by conduction of heat from the tubing.
  • the plate then provides a surface that radiates heat into the room. Thermal conduction from the tubing to the plate and mechanical attachment of the tubing to the panel can also be ensured by using a resilient, thermally-conductive filler material as described in U.S. Pat. No. 5,579,996, issued Dec. 3, 1996, entitled “Radiant Floor and Wall Hydronic Heating Systems”, also to Joachim Fiedrich, the inventor herein.
  • hydronic thermal control systems can also be used for cooling.
  • the cooling is accomplished by feeding cool water or fluid to the tubing to reduce the temperature of the radiation plate in the modular panel, to below room temperature. As a result, heat is radiated from the room to cool water in the tubing. This heats the water slightly, and the water is then fed to a heat exchanger or chiller, for example, where it gives up the heat and is fed back to the panels.
  • these modular panel systems use a number of different types of panels to create the continuous tracks required to hold the tubing of the radiant loops.
  • straight, lateral run track panels are connected end-to-end to provide tubing tracks that extend laterally across the room floor to be heated or cooled.
  • U turn or return track panels are usually used.
  • These return track panels comprise arcuate tracks that allow the tubing to be routed between successive tracks in the lateral run track panels by laying the tubing through the 180 degree arc of the return track.
  • large serpentine radiant tubing loops can be created in the floors of rooms or other spaces.
  • connections must be further made between the tubing loops and the manifold, circulating pump, and/or injection valve control assemblies that are located, for example, in a closet or other area near or in the room or space to be heated or cooled.
  • This routing between the typically serpentine layout of the tubing in the floor, for example, and the manifold, pump, and injection valves of the control assemblies can be performed either in-plane and/or out-of-plane.
  • connections are routed, at least in part, in the plane of the floor.
  • the long runs to the control assembly can be made in tracks constructed from the lateral run track panels. This has advantages since the tubing routed in this connection can also contribute to the heating and/or cooling of the space.
  • Routing between the serpentine tubing layout on the floor and the control assembly can also be performed out-of-plane.
  • a hole is usually drilled through the floor, for example, and then the tubing is routed between or through the floor joints to connect the serpentine layout with the control assembly.
  • the invention features a hydronic thermal management system.
  • the system comprises tubing panels comprising tracks; tubing in the tracks of the tubing panels for carrying a heat transfer fluid, over-panels secured over the tubing panels, and an aluminum foil layer and/or hardening substance layer contacting the tubing in the tubing panels and located between the tubing panels and the over-panels.
  • both the aluminum foil layer and the hardening substance layer are used between the tubing and the over-panels.
  • the hardening substance layer if used, can be fortified with a high thermal conductivity material, such as an oxide powder or metal shavings.
  • a spray adhesive can be used for attaching the aluminum foil layer, if used, to the tubing panels or the hardening substance layer.
  • the invention features method for fabricating a hydronic thermal management system.
  • the method comprises securing tubing panels, the panels comprising tracks, fitting tubing into the tracks of the tubing panels for carrying a heat transfer fluid, securing over-panels over the tubing panels, and applying an aluminum foil layer and/or a hardening substance layer that contacts the tubing in the tubing panels and is located between the tubing panels and the over-panels.
  • the filling material can be mastic or other putty-like hardening substances.
  • the wall support structure comprises vertically extending studs, preferably with insulation between the studs or ceiling joists.
  • the wall can include a moisture barrier backing for the tubing panels to prevent moisture from permeating through the wall and improve panel strength/rigidity.
  • FIG. 1 is a partial perspective view of a partially completed wall including a hydronic thermal management system
  • FIGS. 2 and 2A are schematic cross sections of the wall including a hydronic thermal management system.
  • FIG. 1 shows a wall including a hydronic thermal management system, which has been constructed according to the principles of the present invention.
  • the wall 100 is constructed from tubing panels 112 , i.e., 112 A, 112 B, 112 C.
  • these tubing panels 112 are constructed from a wood material.
  • the panels are plywood panels.
  • the tubing panels 112 are fabricated from oriented strand board (OSB) plywood, which is produced by binding wood chips with a mix of glue and resin.
  • the panels 112 are constructed from CDX plywood. This type of plywood is produced by gluing together sheets of veneer, each layer being glued in the opposite grain to the one below it.
  • other engineered wood or plant material products are used for the tubing panels 112 .
  • These include fiberboard, such as particle board, and hard board.
  • cement-based board is used, known as cement board, which fabricated from a combination of cement and reinforcing fibers and formed into sheets.
  • the thickness of the tubing panels is 5 ⁇ 8 or 1 ⁇ 2 or 3 ⁇ 8 inches.
  • the panels are usually 4 feet (ft) wide by 8 ft long or 3 ft wide by 5 ft long.
  • tracks 114 A, 114 B, 114 C are fabricated in the tubing panels 112 .
  • the tracks 114 are fabricated in the tubing panels 112 using a computer controlled router. The router bores out the tracks with a “U” cross-section.
  • the tracks 114 have constricted mouths so that the tubing T is press fit into the tracks using the compliance of material of the tubing panels 112 and tubing and then is retained in the track by an interference fit.
  • the tracks 114 extend along the longitudinal direction of each of the panels 112 .
  • arcuate or return tracks 115 connect each of the longitudinally extending lateral run tracks 114 to allow routing between the longitudinal tracks 114 .
  • Tubing T is pressfit into the tracks 114 of the tubing panels 112 .
  • the tubing T is laid out in a serpentine fashion extending along each longitudinal track and then routing to the next track through the arcuate tracks 115 .
  • the outer diameter of the tubing is 5/16 to 5 ⁇ 8 inches. In any event, it is sized to the tracks so that it typically forms an interference fit within the tracks T.
  • a filling material 118 is spread over the tubing panels 112 and the tubing T that is installed within those tubing panels 112 .
  • the filling material 118 functions to create a high thermal conductive path between the tubing T and a subsequent drywall panel 110 or other over-panel such as cement board.
  • the filling material 118 is spread in the manner of plaster using a trowel to form a smooth skim coat of the filling material 118 . Care is especially taken to spread the filling material 118 around the tubing T while also forming a relatively thin layer of the filling material on top of the tubing panels 112 .
  • the smooth side of the trowel is used to achieve better contact with subsequent layers such as aluminum foil. Further troweling should be performed perpendicular to the tubing T.
  • the filling material also adds to the thermal mass of the system and should even be filled into vacant tracks to further increase the mass.
  • the filling material 118 is a mastic material or an acrylic polymer including limestone and zinc oxide.
  • filling materials such as plasters and plastic-based filling materials.
  • a common characteristic of the filling materials in the preferred embodiment is that the filling material initially has a putty or wet plaster consistency. It then quickly hardens to form a high thermal conductive relationship with the tubing T.
  • the filling material is a mastic that is fortified with a high thermal conductive material such as aluminum oxide powder.
  • Other options include material with silicon oxide or graphite.
  • Metal shavings or powder including iron and/or aluminum are mixed with the mastic or filling material in other embodiments. In any event, the metals, non-metals, or oxides are added to improve the thermal transfer properties of the filling material 118 .
  • a high thermally conductive material layer 119 is applied over the filling material 118 .
  • the high thermally conductive material layer is flexible and thin.
  • aluminum foil is used with a thickness less than 0.2 millimeters (0.0079 in), although thinner gauges down to 0.006 mm can also be used.
  • the foil is extremely pliable, and can be bent or wrapped and laminated to the filling material 118 .
  • a spray adhesive is also used in some instances to retain the material layer until subsequent layers are applied or installed.
  • the high thermally conductive aluminum foil layer 119 is applied to tubing panels 112 and the filling material 118 is applied over both the tubing panels 112 and the high thermally conductive material layer 119 .
  • the tubing panels are fabricated with the aluminum foil layer and then the tracks 114 , 115 are routed into the tubing panels 112 and through the foil layer 119 .
  • the filling material is not used and the foil layer 119 is applied directly to the tubing panels and held there with a spray adhesive or roll-on adhesive or using a foil layer with integral adhesive such as adhesive tape.
  • the aluminum foil 119 is applied after the tubing has been installed in the tracks T, 114 , 115 . In another embodiment, the aluminum foil is applied before the tubing has been installed in the tracks T, 114 , 115 . In more detail, the aluminum foil is applied to the panels and covering the tracks T, 114 , 115 . It is preferably held in place using an adhesive, such as a spray adhesive. Then, the foil is slit along the direction of the tracks. The tubing is then press-fit into the tracks, contacting the foil 119 proximate to that slit.
  • wall panels 110 are secured to the tubing panels 112 .
  • common drywall panels 110 are used; drywall panels constructed from gypsum plaster that is pressed between two thick sheets of paper.
  • the drywall panels 110 are secured to the tubing panels 112 while the filling material 118 , if used, is still hardening. This ensures a good thermal conductive arrangement between the drywall panels 110 and the tubing T, with the filling material filling in around the tubing T and adhering to the face of the drywall panels. If further ensures good thermal contact with the high thermally conductive aluminum foil layer 119 .
  • concrete board is used in place of the gypsum drywall as the wall panels.
  • Preferably high-density concrete board is used because of its better thermal conductivity.
  • HardieBacker 500® brand cement board is used, which is manufactured by James Hardie Building Products.
  • the tubing panels 112 also include a moisture barrier backing layer 150 , in the preferred embodiment.
  • This layer 150 provides a number of advantages.
  • the backing layer 150 feature improves tubing panel rigidity.
  • the tracks 114 are currently cut into the panels 112 using CNC routers. This reduces the strength and rigidity of the tubing panels, which is counteracted to some degree by the presence of the backing layer.
  • the layer 150 also helps to ensure that the panel 112 is held firmly to the vacuum table of the CNC router during fabrication of the tracks 114 .
  • the layer 150 also eliminates internal wall condensation if used in a chilled water cooling system.
  • the moisture barrier 150 backing is made from a sheet material that is positioned along the inner surface of the wall panel 112 .
  • the backing layer 150 prevents moisture from permeating through the wall.
  • a moisture barrier backing 150 is typically made from plastic sheets, treated papers, or metallic foils.
  • Commercially available OSB plywood includes layers or sheets of polyethylene or vinyl paper.
  • a plaster skim coat 130 or joint compound is applied to the drywall panels to form a smooth wall surface.
  • FIG. 2 shows the wall 100 in cross-section.
  • the wall support structure includes vertically extending studs or ceiling joists 120 .
  • these studs are 2 ⁇ 4, or 2 ⁇ 6 solid wood studs.
  • plywood and siding 124 are typically secured to the studs 120 .
  • the tubing panels 112 are secured to the studs 120 by nails, glue and/or screws.
  • insulation such as foam or fiberglass insulation 122 is located between the studs 120 .
  • the filling material 118 is shown as a skim coat over the tubing panels 112 and tubing T, filling in around the tubing.
  • the wallboard panels 110 are nailed or screwed to the tubing panels 112 , preferably over the high thermally conductive aluminum foil layer 119 .
  • the plaster or joint compound 130 is applied to the drywall panels 110 .
  • the tracks 114 are sized relative to the diameter of the tubing T such that the tubing projects outward from the surface of the panel 112 by a distance d.
  • d 1-3 millimeters. This configuration ensures good thermal contact with the aluminum foil layer 119 , if present, and the subsequent wall panel 110 .
  • the heating/cooling system 200 includes pumps for flowing a fluid, such as water, through the tubing T.
  • the heating/cooling system 200 further includes a boiler for heating the fluid and possibly also a chiller for cooling the fluid during the summer months.
  • One further advantage of the system is that relatively high temperature water can be used in the tubing T, since direct human contact with walls is far less common than contact with floors, i.e., barefeet. Further, whereas floor covering, i.e., carpeting, usually impedes the heat transfer in floor systems, wall coverings are less common, with insulating wall coverings being far less common.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Building Environments (AREA)

Abstract

A system for installing tubing of hydronic thermal control systems in the walls, including ceilings, of buildings allows for the stable incorporation of the tubing in the walls while ensuring good thermal conductivity between the tubing and the building's room. The system features a wall including a hydronic thermal management system. The wall comprises a vertically-extending wall support structure, tubing panels secured to the wall support structure, the panels being constructed from wood material, tubing in the tubing panels for carrying a heat transfer fluid, and drywall panels secured over the tubing panels. A filling material is applied between the tubing and the drywall panels. Also a high thermally conductive layer, such as aluminum foil, is used between the filling material and the drywall panels or between the filling material and the tubing panels.

Description

    RELATED APPLICATIONS
  • This application is a Continuation-in-Part of U.S. application Ser. No. 13/625,202, filed on Sep. 24, 2012, which is a Continuation-in-Part of International Application No. PCT/US2011/029565, filed on Mar. 23, 2011, which claims priority to U.S. application Ser. No. 12/898,882, filed on Oct. 6, 2010, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/316,944, filed on Mar. 24, 2010. U.S. application Ser. No. 13/625,202 is also a Continuation-in-Part of U.S. application Ser. No. 12/898,882, filed on Oct. 6, 2010, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/316,944, filed on Mar. 24, 2010.
  • All of the foregoing applications are fully incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • Hydronic radiant floor, wall, and/or ceiling thermal control systems are typically used for heating a space, such as a room in a dwelling or commercial building, usually for human and creature comfort. Typical hydronic heating systems require a supply of hot water, or other fluid, from a boiler, for example, and valves for controlling the quantity of the water from the supply that is fed to heating loops, which include tubing and/or heating elements. These heating loops are in thermal contact with the space or rooms to be heated or cooled. It is often necessary to control the temperature of the water in the heating loops. For example, if the supply water temperature is set to about 180° F. (80° C.) for laundry, it must be modulated down to about 100° F. or 40° C., (or lower) for radiant systems. On the other hand, chillers can be used to supply cold water during the summer months for cooling.
  • A suitable system for reducing and controlling the supply water temperature is described in U.S. Pat. No. 5,119,988, issued Jun. 9, 1992, entitled “Hydronic Heating Water Temperature Control System”, to Joachim Fiedrich, the inventor herein. In that patent, a three-way, modulated diverting or by-pass valve is provided, in the return line to the boiler, for diverting some of the cooler return water to the hot supply water to reduce the temperature of the supply water feeding the heating loop supply header. This is sometimes called temperature dilution and the diverting valve is modulated by a feedback signal derived from the diluted water temperature.
  • A number of approaches are available for distributing the tubing in the space to be heated to form the heating loops. In one such approach, the tubing is set in the concrete flooring. In other cases, the heat loop tubing is installed between the floor or ceiling joists using metal radiation plates.
  • A preferable approach for forming the heating loops in floors relies on modular panel heating elements. Some examples are described in U.S. Pat. No. 5,292,065, issued Mar. 8, 1994, entitled “Radiant Floor and Wall Hydronic Heating Systems”, to Joachim Fiedrich, the inventor herein. The panel elements include integral metal radiation plates or sheets that are attached to two spaced apart boards, which cooperate to hold the tubing in intimate thermal contact with the radiation plate, so that the plate is heated by conduction of heat from the tubing. The plate then provides a surface that radiates heat into the room. Thermal conduction from the tubing to the plate and mechanical attachment of the tubing to the panel can also be ensured by using a resilient, thermally-conductive filler material as described in U.S. Pat. No. 5,579,996, issued Dec. 3, 1996, entitled “Radiant Floor and Wall Hydronic Heating Systems”, also to Joachim Fiedrich, the inventor herein.
  • These hydronic thermal control systems can also be used for cooling. The cooling is accomplished by feeding cool water or fluid to the tubing to reduce the temperature of the radiation plate in the modular panel, to below room temperature. As a result, heat is radiated from the room to cool water in the tubing. This heats the water slightly, and the water is then fed to a heat exchanger or chiller, for example, where it gives up the heat and is fed back to the panels.
  • More recently, the instant inventor described a system of installing the tubing in sheets of gypsum or cement wallboard as described in U.S. Pat. Appl. Publ. No. 2004/0026525 A1, entitled “In radiant wall and ceiling hydronic room heating or cooling systems, using tubing that is fed hot or cold water, the tubing is embedded in gypsum or cement wallboard in intimate thermal contact therewith so that the wallboard heats or cools the room”, which is incorporated herein in its entirety by this reference.
  • Often, these modular panel systems use a number of different types of panels to create the continuous tracks required to hold the tubing of the radiant loops. Most commonly, straight, lateral run track panels are connected end-to-end to provide tubing tracks that extend laterally across the room floor to be heated or cooled. At the end of the tracks on each of these lateral run panels, “U” turn or return track panels are usually used. These return track panels comprise arcuate tracks that allow the tubing to be routed between successive tracks in the lateral run track panels by laying the tubing through the 180 degree arc of the return track. Using the combination of the straight tracks of the lateral run track panels and the return tracks of the return track panels, large serpentine radiant tubing loops can be created in the floors of rooms or other spaces.
  • In order to complete the radiant heating/cooling loops, connections must be further made between the tubing loops and the manifold, circulating pump, and/or injection valve control assemblies that are located, for example, in a closet or other area near or in the room or space to be heated or cooled. This routing between the typically serpentine layout of the tubing in the floor, for example, and the manifold, pump, and injection valves of the control assemblies can be performed either in-plane and/or out-of-plane.
  • In in-plane routing, the connections are routed, at least in part, in the plane of the floor. Often, the long runs to the control assembly can be made in tracks constructed from the lateral run track panels. This has advantages since the tubing routed in this connection can also contribute to the heating and/or cooling of the space.
  • Routing between the serpentine tubing layout on the floor and the control assembly can also be performed out-of-plane. In this case, a hole is usually drilled through the floor, for example, and then the tubing is routed between or through the floor joints to connect the serpentine layout with the control assembly.
  • SUMMARY OF THE INVENTION
  • In the past, there has been limited success at incorporating hydronic thermal control systems in the vertically-extending walls of buildings. The previous approach of incorporating the tubing in the gypsum wallboard met with limited success. Incorporation of the tubing in the wallboard and/or the formation of tracks in the wallboard made the wallboard mechanically unstable and subject to breakage. Moreover, the relatively weak gypsum material did not hold the relatively rigid and inflexible PEX (cross-linked polyethylene) tubing that is commonly used for hydronic thermal management systems.
  • Nevertheless, there are advantages to deploying the tubing in the walls. The relatively stable gypsum drywall or cement board can better withstand thermal cycling than hardwood floors, for example. Moreover, higher temperatures can be used in the walls since the occupants rarely touch the walls whereas they are usually in contact with the floors. Moreover, often rugs are used on the floors, which undermine the ability of the tubing installed in the floors to control the temperature of the associated room. In contrast, most of the wall surfaces are exposed in most buildings.
  • The present invention concerns an improved system for installing tubing of hydronic thermal control systems in the walls, including ceilings, of buildings. It allows for the stable incorporation of the tubing in the walls while ensuring good thermal conductivity between the tubing and the building's room.
  • In general, according to one aspect, the invention features a hydronic thermal management system. The system comprises tubing panels comprising tracks; tubing in the tracks of the tubing panels for carrying a heat transfer fluid, over-panels secured over the tubing panels, and an aluminum foil layer and/or hardening substance layer contacting the tubing in the tubing panels and located between the tubing panels and the over-panels.
  • In embodiments, both the aluminum foil layer and the hardening substance layer are used between the tubing and the over-panels.
  • The hardening substance layer, if used, can be fortified with a high thermal conductivity material, such as an oxide powder or metal shavings.
  • A spray adhesive can be used for attaching the aluminum foil layer, if used, to the tubing panels or the hardening substance layer.
  • In general, according to another aspect, the invention features method for fabricating a hydronic thermal management system. The method comprises securing tubing panels, the panels comprising tracks, fitting tubing into the tracks of the tubing panels for carrying a heat transfer fluid, securing over-panels over the tubing panels, and applying an aluminum foil layer and/or a hardening substance layer that contacts the tubing in the tubing panels and is located between the tubing panels and the over-panels.
  • When used, the filling material can be mastic or other putty-like hardening substances. The wall support structure comprises vertically extending studs, preferably with insulation between the studs or ceiling joists. Also, the wall can include a moisture barrier backing for the tubing panels to prevent moisture from permeating through the wall and improve panel strength/rigidity.
  • The above and other features of the invention including various novel details of construction and combinations of parts, and other advantages, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular method and device embodying the invention are shown by way of illustration and not as a limitation of the invention. The principles and features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings, reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale; emphasis has instead been placed upon illustrating the principles of the invention. Of the drawings:
  • FIG. 1 is a partial perspective view of a partially completed wall including a hydronic thermal management system; and
  • FIGS. 2 and 2A are schematic cross sections of the wall including a hydronic thermal management system.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a wall including a hydronic thermal management system, which has been constructed according to the principles of the present invention.
  • The wall 100 is constructed from tubing panels 112, i.e., 112A, 112B, 112C. In the preferred embodiment, these tubing panels 112 are constructed from a wood material. In one example, the panels are plywood panels. In one implementation, the tubing panels 112 are fabricated from oriented strand board (OSB) plywood, which is produced by binding wood chips with a mix of glue and resin. In another example, the panels 112 are constructed from CDX plywood. This type of plywood is produced by gluing together sheets of veneer, each layer being glued in the opposite grain to the one below it. In still other examples, other engineered wood or plant material products are used for the tubing panels 112. These include fiberboard, such as particle board, and hard board. In still other examples, cement-based board is used, known as cement board, which fabricated from a combination of cement and reinforcing fibers and formed into sheets.
  • In the current implementation, the thickness of the tubing panels is ⅝ or ½ or ⅜ inches. The panels are usually 4 feet (ft) wide by 8 ft long or 3 ft wide by 5 ft long.
  • In the preferred embodiment, tracks 114A, 114B, 114C, are fabricated in the tubing panels 112. In the current embodiment, the tracks 114 are fabricated in the tubing panels 112 using a computer controlled router. The router bores out the tracks with a “U” cross-section. Preferably, the tracks 114 have constricted mouths so that the tubing T is press fit into the tracks using the compliance of material of the tubing panels 112 and tubing and then is retained in the track by an interference fit.
  • Generally, the tracks 114 extend along the longitudinal direction of each of the panels 112. In the illustrated example, arcuate or return tracks 115 connect each of the longitudinally extending lateral run tracks 114 to allow routing between the longitudinal tracks 114.
  • Tubing T is pressfit into the tracks 114 of the tubing panels 112. Typically, the tubing T is laid out in a serpentine fashion extending along each longitudinal track and then routing to the next track through the arcuate tracks 115. Typically the outer diameter of the tubing is 5/16 to ⅝ inches. In any event, it is sized to the tracks so that it typically forms an interference fit within the tracks T.
  • During construction of the wall 100, typically after the tubing T has been press fit into the tracks 114, 115, a filling material 118 is spread over the tubing panels 112 and the tubing T that is installed within those tubing panels 112. The filling material 118 functions to create a high thermal conductive path between the tubing T and a subsequent drywall panel 110 or other over-panel such as cement board.
  • Typically, the filling material 118 is spread in the manner of plaster using a trowel to form a smooth skim coat of the filling material 118. Care is especially taken to spread the filling material 118 around the tubing T while also forming a relatively thin layer of the filling material on top of the tubing panels 112. Preferably, the smooth side of the trowel is used to achieve better contact with subsequent layers such as aluminum foil. Further troweling should be performed perpendicular to the tubing T. The filling material also adds to the thermal mass of the system and should even be filled into vacant tracks to further increase the mass.
  • In the current embodiment, the filling material 118 is a mastic material or an acrylic polymer including limestone and zinc oxide.
  • In other embodiments, other types of filling materials are used such as plasters and plastic-based filling materials. A common characteristic of the filling materials in the preferred embodiment is that the filling material initially has a putty or wet plaster consistency. It then quickly hardens to form a high thermal conductive relationship with the tubing T. In a particularly preferred embodiment, the filling material is a mastic that is fortified with a high thermal conductive material such as aluminum oxide powder. Other options include material with silicon oxide or graphite. Metal shavings or powder including iron and/or aluminum are mixed with the mastic or filling material in other embodiments. In any event, the metals, non-metals, or oxides are added to improve the thermal transfer properties of the filling material 118.
  • In one embodiment, a high thermally conductive material layer 119 is applied over the filling material 118. Preferably the high thermally conductive material layer is flexible and thin. Currently aluminum foil is used with a thickness less than 0.2 millimeters (0.0079 in), although thinner gauges down to 0.006 mm can also be used. The foil is extremely pliable, and can be bent or wrapped and laminated to the filling material 118. A spray adhesive is also used in some instances to retain the material layer until subsequent layers are applied or installed.
  • In alternative embodiment, the high thermally conductive aluminum foil layer 119 is applied to tubing panels 112 and the filling material 118 is applied over both the tubing panels 112 and the high thermally conductive material layer 119. In one implementation, the tubing panels are fabricated with the aluminum foil layer and then the tracks 114, 115 are routed into the tubing panels 112 and through the foil layer 119. In still another embodiment, the filling material is not used and the foil layer 119 is applied directly to the tubing panels and held there with a spray adhesive or roll-on adhesive or using a foil layer with integral adhesive such as adhesive tape.
  • In one embodiment, the aluminum foil 119 is applied after the tubing has been installed in the tracks T, 114, 115. In another embodiment, the aluminum foil is applied before the tubing has been installed in the tracks T, 114, 115. In more detail, the aluminum foil is applied to the panels and covering the tracks T, 114, 115. It is preferably held in place using an adhesive, such as a spray adhesive. Then, the foil is slit along the direction of the tracks. The tubing is then press-fit into the tracks, contacting the foil 119 proximate to that slit.
  • Next, wall panels 110 are secured to the tubing panels 112. In the preferred embodiment, common drywall panels 110 are used; drywall panels constructed from gypsum plaster that is pressed between two thick sheets of paper. In one embodiment, the drywall panels 110 are secured to the tubing panels 112 while the filling material 118, if used, is still hardening. This ensures a good thermal conductive arrangement between the drywall panels 110 and the tubing T, with the filling material filling in around the tubing T and adhering to the face of the drywall panels. If further ensures good thermal contact with the high thermally conductive aluminum foil layer 119.
  • In other embodiments, concrete board is used in place of the gypsum drywall as the wall panels. Preferably high-density concrete board is used because of its better thermal conductivity. In one example, HardieBacker 500® brand cement board is used, which is manufactured by James Hardie Building Products.
  • The tubing panels 112 also include a moisture barrier backing layer 150, in the preferred embodiment. The addition of this layer 150 provides a number of advantages.
  • The backing layer 150 feature improves tubing panel rigidity. The tracks 114 are currently cut into the panels 112 using CNC routers. This reduces the strength and rigidity of the tubing panels, which is counteracted to some degree by the presence of the backing layer.
  • The layer 150 also helps to ensure that the panel 112 is held firmly to the vacuum table of the CNC router during fabrication of the tracks 114.
  • The layer 150 also eliminates internal wall condensation if used in a chilled water cooling system. In one example, the moisture barrier 150 backing is made from a sheet material that is positioned along the inner surface of the wall panel 112. The backing layer 150 prevents moisture from permeating through the wall. A moisture barrier backing 150 is typically made from plastic sheets, treated papers, or metallic foils. Commercially available OSB plywood includes layers or sheets of polyethylene or vinyl paper.
  • A plaster skim coat 130 or joint compound is applied to the drywall panels to form a smooth wall surface.
  • FIG. 2 shows the wall 100 in cross-section. In particular, it shows the vertically-extending wall or horizontally-extending ceiling support structure that provides the mechanical support to the tubing panels 112. In the illustrated example, the wall support structure includes vertically extending studs or ceiling joists 120. Commonly, these studs are 2×4, or 2×6 solid wood studs. On the external side, plywood and siding 124 are typically secured to the studs 120. On the interior side, the tubing panels 112 are secured to the studs 120 by nails, glue and/or screws.
  • According to a typical construction technique, insulation, such as foam or fiberglass insulation 122 is located between the studs 120.
  • The filling material 118 is shown as a skim coat over the tubing panels 112 and tubing T, filling in around the tubing. The wallboard panels 110 are nailed or screwed to the tubing panels 112, preferably over the high thermally conductive aluminum foil layer 119. The plaster or joint compound 130 is applied to the drywall panels 110.
  • In one implementation detail shown in FIG. 2A, the tracks 114 are sized relative to the diameter of the tubing T such that the tubing projects outward from the surface of the panel 112 by a distance d. Preferably d=1-3 millimeters. This configuration ensures good thermal contact with the aluminum foil layer 119, if present, and the subsequent wall panel 110.
  • Also shown is the heating/cooling system in the typical implementation, the heating/cooling system 200 includes pumps for flowing a fluid, such as water, through the tubing T. Preferably, the heating/cooling system 200 further includes a boiler for heating the fluid and possibly also a chiller for cooling the fluid during the summer months.
  • One further advantage of the system is that relatively high temperature water can be used in the tubing T, since direct human contact with walls is far less common than contact with floors, i.e., barefeet. Further, whereas floor covering, i.e., carpeting, usually impedes the heat transfer in floor systems, wall coverings are less common, with insulating wall coverings being far less common.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims (19)

What is claimed is:
1. A hydronic thermal management system, comprising:
tubing panels comprising tracks;
tubing in the tracks of the tubing panels for carrying a heat transfer fluid;
over-panels secured over the tubing panels; and
an aluminum foil layer and/or hardening substance layer contacting the tubing in the tubing panels and located between the tubing panels and the over-panels.
2. A wall as claimed in claim 1, further comprising both the aluminum foil layer and the hardening substance layer between the tubing and the over-panels.
3. A wall as claimed in claim 1, further comprising a thermal control system for flowing the fluid through the tubing.
4. A wall as claimed in claim 3, wherein the thermal control system heats the fluid.
5. A wall as claimed in claim 3, wherein the thermal control system cools the fluid.
6. A wall as claimed in claim 1, further comprising the hardening substance layer between the tubing and the over-panels, wherein the hardening substance layer is fortified with a high thermal conductivity material.
7. A wall as claimed in claim 1, further comprising the hardening substance layer between the tubing and the over-panels, wherein the hardening substance layer is fortified with an oxide powder or metal.
8. A wall as claimed in claim 1, further comprising a spray or other adhesive for attaching the aluminum foil layer to the tubing panels or the hardening substance layer.
9. A wall as claimed in claim 1, further comprising a backing layer on the tubing panels.
10. A method for fabricating a hydronic thermal management system, the method comprising:
securing tubing panels, the panels comprising tracks;
fitting tubing into the tracks of the tubing panels for carrying a heat transfer fluid;
securing over-panels over the tubing panels; and
applying an aluminum foil layer and/or a hardening substance layer that extends across the tracks, contacting the tubing in the tubing panels and located between the tubing panels and the over-panels.
11. A method as claimed in claim 10, further comprising applying the aluminum foil layer and the hardening substance layer between the tubing panels and the wall panels.
12. A method as claimed in claim 10, further comprising flowing the fluid through the tubing.
13. A method as claimed in claim 12, further comprising heating the fluid.
14. A method as claimed in claim 10, further comprising applying the hardening substance layer between the tubing panels and the wall panels, wherein the hardening substance layer is fortified with a high thermal conductivity material.
15. A method as claimed in claim 10, further comprising applying the hardening substance layer between the tubing panels and the wall panels, wherein the hardening substance layer is fortified with metallic oxide powder.
16. A method as claimed in claim 10, further comprising applying a spray or other adhesive for attaching the aluminum foil layer between the tubing panels and the wall panels.
17. A method as claimed in claim 10, further comprising applying the aluminum foil layer to the hardening substance layer that is applied to the tubing panels.
18. A method as claimed in claim 10, wherein the aluminum foil has a thickness of less than 0.2 millimeters.
19. A method as claimed in claim 10, further comprising slitting the foil layer prior fitting the tubing into the tracks.
US14/529,496 2010-03-24 2014-10-31 In-Wall Hydronic Thermal Control System and Installation Method Abandoned US20150047807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/529,496 US20150047807A1 (en) 2010-03-24 2014-10-31 In-Wall Hydronic Thermal Control System and Installation Method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US31694410P 2010-03-24 2010-03-24
US12/898,882 US8650832B2 (en) 2010-03-24 2010-10-06 In-wall hydronic thermal control system and installation method
PCT/US2011/029565 WO2011119689A2 (en) 2010-03-24 2011-03-23 In-wall hydronic thermal control system and installation method
US13/625,202 US8898997B2 (en) 2010-03-24 2012-09-24 In-wall hydronic thermal control system and installation method
US14/529,496 US20150047807A1 (en) 2010-03-24 2014-10-31 In-Wall Hydronic Thermal Control System and Installation Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/625,202 Continuation-In-Part US8898997B2 (en) 2010-03-24 2012-09-24 In-wall hydronic thermal control system and installation method

Publications (1)

Publication Number Publication Date
US20150047807A1 true US20150047807A1 (en) 2015-02-19

Family

ID=52465972

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/529,496 Abandoned US20150047807A1 (en) 2010-03-24 2014-10-31 In-Wall Hydronic Thermal Control System and Installation Method

Country Status (1)

Country Link
US (1) US20150047807A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077753A1 (en) * 2015-05-08 2018-03-15 Ningbo Sinyuan Industry Group Co., Ltd. Wave-to-heat conversion structure and application thereof
CN108954457A (en) * 2018-05-30 2018-12-07 崔党营 A kind of floor heating pipe mounting structure of good warmth retention effect
EP3434982A1 (en) * 2017-07-28 2019-01-30 Josef Sieberer Surface tempering module
US10371623B2 (en) 2016-02-05 2019-08-06 Nelson Rojo Corrosion test chamber
US20190309959A1 (en) * 2018-04-06 2019-10-10 David R. Hall Hydronic Panel
US20200326085A1 (en) * 2019-04-15 2020-10-15 Ut-Battelle, Llc Thermally Anisotropic Composites for Thermal Management in Building Environments
US20210396006A1 (en) * 2018-11-14 2021-12-23 Innovative Building Technologies, Llc Modular building system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077753A1 (en) * 2015-05-08 2018-03-15 Ningbo Sinyuan Industry Group Co., Ltd. Wave-to-heat conversion structure and application thereof
US11046583B2 (en) * 2015-05-08 2021-06-29 Ningbo Sinyuan Industry Group Co., Ltd. Wave-to-heat conversion structure and application thereof
US10371623B2 (en) 2016-02-05 2019-08-06 Nelson Rojo Corrosion test chamber
EP3434982A1 (en) * 2017-07-28 2019-01-30 Josef Sieberer Surface tempering module
US20190309959A1 (en) * 2018-04-06 2019-10-10 David R. Hall Hydronic Panel
US11131464B2 (en) * 2018-04-06 2021-09-28 Hall Labs Llc Hydronic panel heating or cooling system
CN108954457A (en) * 2018-05-30 2018-12-07 崔党营 A kind of floor heating pipe mounting structure of good warmth retention effect
US20210396006A1 (en) * 2018-11-14 2021-12-23 Innovative Building Technologies, Llc Modular building system
US20200326085A1 (en) * 2019-04-15 2020-10-15 Ut-Battelle, Llc Thermally Anisotropic Composites for Thermal Management in Building Environments

Similar Documents

Publication Publication Date Title
US20150047807A1 (en) In-Wall Hydronic Thermal Control System and Installation Method
US20040026525A1 (en) In radiant wall and ceiling hydronic room heating or cooling systems, using tubing that is fed hot or cold water, the tubing is embedded in gypsum or cement wallboard in intimate thermal contact therewith so that the wallboard heats or cools the room
CA2107601C (en) Heating/cooling systems
US6152377A (en) Radiant floor and wall hydronic heating system tubing attachment to radiant plate
US5579996A (en) Radiant floor and wall hydronic heating systems
US6092587A (en) Heating/cooling systems
US5931381A (en) For radiant floor, wall and ceiling hydronic heating and/or cooling systems using metal plates that are heated or cooled by attached tubing that is fed hot or cold water, techniques of improving performance and avoiding condensation when cooling
US5957378A (en) Radiant floor and wall hydronic heating systems
US8650832B2 (en) In-wall hydronic thermal control system and installation method
US7013609B2 (en) Modular radiant heat panel system
US6182903B1 (en) Radiant floor wall and ceiling hydronic heating and/or cooling systems, using modular panels hinged together in sets of panels, staggering the positions of panels in the sets so that sets are interlocking
CA2236560C (en) Apparatus and method of attaching radiating plate to holders of modular unit for radiant floor and wall hydronic heating systems
US20030218075A1 (en) Thermal heating board
US20040040693A1 (en) In a dry installation of a radiant floor or wall hydronic heating system, metal radiating sheets that attach to the rough floor or wall adapted with a metal slot for holding hot water tubing
US8898997B2 (en) In-wall hydronic thermal control system and installation method
ATE421013T1 (en) FLOOR WITH UNDERFLOOR HEATING
EP1353129A1 (en) Overfloor heating system
JP2005220565A (en) Heating floor structure and its construction method
KR102140100B1 (en) Light weight electric heat pannel
JP3062818B1 (en) Heating flooring
KR200410775Y1 (en) carbon paper using finish material
JP4739408B2 (en) Construction structure and method of two plates on dry heating system
WO2000032991A2 (en) Thermal heating board
GB2460420A (en) Heat transfer panel with reinforcing layer
GB2569581A (en) Improvements in flooring system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION