US20150008443A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
US20150008443A1
US20150008443A1 US14/322,822 US201414322822A US2015008443A1 US 20150008443 A1 US20150008443 A1 US 20150008443A1 US 201414322822 A US201414322822 A US 201414322822A US 2015008443 A1 US2015008443 A1 US 2015008443A1
Authority
US
United States
Prior art keywords
control board
terminal
semiconductor
low
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/322,822
Other versions
US8916967B1 (en
Inventor
Kenya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMASHITA, KENYA
Application granted granted Critical
Publication of US8916967B1 publication Critical patent/US8916967B1/en
Publication of US20150008443A1 publication Critical patent/US20150008443A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor

Definitions

  • the present disclosure relates to, for example, semiconductor devices applicable to powering, etc.
  • FIG. 5 illustrates an example structure of such a conventional power semiconductor module.
  • a gate terminal 128 and a source terminal 129 provided in a semiconductor module 118 inside a case 116 are electrically connected to a drive element 106 mounted on a control board 208 via a shortest path.
  • a gate pad and a source pad of a semiconductor element 110 are connected to the gate terminal 128 and the source terminal 129 via wires 109 .
  • control signals converted by a photocoupler 103 mounted on a control board 201 are transmitted to the drive element 106 .
  • the control board 208 is electrically connected to the control board 201 by a lead 204 .
  • the control board 208 is located as close as possible to the control board 201 to reduce the length of the lead 204 .
  • FIG. 6A a conventional semiconductor module is considered, in which a photocoupler 103 and a drive element 106 are mounted close to one another on a same control board 218 .
  • drive signals generated by a control board 211 located above the control board 218 are input to the control board 218 via a lead 214 .
  • FIG. 6B illustrates example arrangement of specific components of the control board 218 .
  • a photocoupler 103 is located as close as possible to a drive element 106 .
  • a semiconductor device includes a semiconductor module including a high-side semiconductor element connected to a first gate terminal and a first source terminal, and a low-side semiconductor element connected to a second gate terminal and a second source terminal; a first control board located above the semiconductor module; a first drive element and a second drive element held by the first control board, the first drive element being connected to the first gate terminal and the first source terminal, and the second drive element being connected to the second gate terminal and the second source terminal; a second control board located above the first control board; and a plurality of photocouplers held by the second control board, output signals of the photocouplers being input to the first drive element or the second drive element.
  • the semiconductor module includes a positive electrode terminal and a ground terminal provided at one side of the semiconductor module, and an output terminal provided at another side opposite to the one side.
  • the first gate terminal and the first source terminal are located at the side of the semiconductor module provided with the positive electrode terminal and the ground terminal.
  • the second gate terminal and the second source terminal are located at the side of the semiconductor module provided with the output terminal.
  • the present disclosure provides a semiconductor device reducing the influence of noise and the influence of heat.
  • FIG. 1A is a schematic cross-sectional view illustrating a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 1B is a top view illustrating a plurality of semiconductor modules forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2A is a schematic top view illustrating a first control board forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2B is a schematic top view illustrating a second control board forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic top view illustrating a plurality of semiconductor modules forming a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 4A is a schematic top view illustrating a first control board forming the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 4B is a schematic top view illustrating a second control board forming the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view illustrating a conventional power semiconductor module.
  • FIG. 6A is a cross-sectional view illustrating another conventional semiconductor module.
  • FIG. 6B is a top view illustrating arrangement of components of conventional semiconductor modules on a control board.
  • FIG. 1A As shown in FIG. 1A , three semiconductor modules 18 shown in FIG. 1B and a case 16 containing the modules are located under a first control board 8 .
  • a semiconductor device outputs three-phase power.
  • the semiconductor device includes the semiconductor modules 18 contained in the case 16 , the first control board 8 contained in the case 16 and located above the semiconductor modules 18 , a second control board 5 contained in the case 16 and located above the first control board 8 , and a third control board 1 located above the second control board 5 .
  • a circuit including a plurality of drive elements 6 is formed on the first control board 8 .
  • a circuit including a plurality of photocouplers 3 capable of transmitting electrical signals in an insulated state is formed on the second control board 5 .
  • the first control board 8 is electrically connected to the second control board 5 by a first lead 4 .
  • the second control board 5 is electrically connected to the third control board 1 by a second lead 2 .
  • the case 16 is mounted on a heat sink 15 .
  • the second control board 5 has a smaller area than the first control board 8 .
  • the drive elements 6 are, for example, elements driving SiC-MOSFETs made of a wide bandgap material at a high speed.
  • each of the semiconductor modules 18 includes a first transistor 10 b being a high-side semiconductor element, and a second transistor 10 a being a low-side semiconductor element.
  • the transistor closer to a power source is called a high-side transistor
  • the transistor closer to ground is called a low-side transistor.
  • Each semiconductor module 18 is provided with a positive electrode terminal (i.e., a power source terminal) 25 , which is directly drawn from a first die pad 11 b holding the high-side first transistor 10 b , and a ground terminal (i.e., a negative electrode terminal) 26 , which is electrically connected to the low-side second transistor 10 a , at the lower side in the figure.
  • An output terminal 27 which is directly drawn from a second die pad 11 a holing the low-side second transistor 10 a , is located at the upper side in the figure.
  • the positive electrode terminal 25 and the ground terminal 26 are preferably located at the same side, and the output terminal 27 is preferably located at the side opposite to the side provided with the positive electrode terminal 25 and the ground terminal 26 .
  • the low-side second transistor 10 a is metallically jointed onto the second die pad 11 a .
  • a drain electrode of the second transistor 10 a is connected to the output terminal 27 .
  • a source electrode of the second transistor 10 a is connected to the ground terminal 26 , for example, by a plurality of aluminum ribbons.
  • the high-side first transistor 10 b is metallically jointed onto the first die pad 11 b .
  • a drain electrode of the first transistor 10 b is connected to the positive electrode terminal 25 .
  • a source electrode of the first transistor 10 b is connected to the output terminal 27 , for example, by a plurality of aluminum ribbons.
  • a first gate terminal 28 b and a first source terminal 29 b connected to the high-side first transistor 10 b are provided at the high side at which the positive electrode terminal 25 and the ground terminal 26 are located.
  • a second gate terminal 28 a and a second source terminal 29 a connected to the low-side second transistor 10 a are provided at the low side at which the output terminal 27 is located.
  • a gate pad and a source pad of the second transistor 10 a are connected to the second gate terminal 28 a and the second source terminal 29 a by respective wires 9 .
  • a gate pad and a source pad of the first transistor 10 b are connected to the first gate terminal 28 b and the first source terminal 29 b by respective wires 9 .
  • the heat sink 15 is exposed from the opening.
  • the die pads 11 a and 11 b on which the transistors 10 a and 10 b are mounted, are provided on a single heat dissipater 13 via an insulating member 12 .
  • the heat dissipater 13 is fixed onto the heat sink 15 at the opening of the case 16 .
  • This structure electrically insulates the die pads 11 a and 11 b from the heat dissipater 13 , and efficiently releases the heat, which is generated from the transistors 10 a and 10 b , from the heat dissipater 13 to the heat sink 15 .
  • the insulating member 12 is made of a material having high voltage resistance and high thermal conductivity.
  • each semiconductor module 18 the heat dissipater 13 , the insulating member 12 , the die pads 11 a and 11 b , the transistors 10 a and 10 b , and the wires 9 are integrally sealed on the heat sink 15 by sealing resin 14 .
  • the positive electrode terminals 25 and the ground terminals 26 of the semiconductor modules 18 are metallically jointed to a positive electrode-side bus bar 20 a and a ground-side bus bar 20 b respectively, which are fixed to the case 16 being a support body.
  • the output terminals 27 of the semiconductor modules 18 are metallically jointed to an UO terminal 21 , a VO terminal 22 , and a WO terminal 23 , which are embedded in the case 16 .
  • the first control board 8 located directly above the three semiconductor modules 18 is supported by the case 16 .
  • the first control board 8 is provided with a control circuit (e.g., a gate drive circuit) including the drive elements 6 , etc.
  • each semiconductor module 18 for example, the first gate terminal 28 b and the first source terminal 29 b of the high-side first transistor 10 b are electrically connected to the output terminal of one of the drive elements (i.e., a first drive element) 6 mounted on the first control board 8 .
  • the second gate terminal 28 a and the second source terminal 29 a of the low-side second transistor 10 a are electrically connected to the output terminal of the other one of the drive element (i.e., a second drive element) 6 mounted on the first control board 8 .
  • the drive elements 6 are connected to the gate pads and the source pads of the transistors 10 a and 10 b via shortest paths.
  • each semiconductor module according to this embodiment reduces the inductance between the gates and the sources to improve gate controllability.
  • the second gate terminals 28 a and the second source terminals 29 a of the second transistors 10 a are all located at the low side.
  • the first gate terminals 28 b and the first source terminals 29 b of the first transistors 10 b are all located at the high side.
  • the first gate terminal 28 b and the first source terminal 29 b of each high-side first transistor 10 b are located close to the positive electrode terminal 25 and the ground terminal 26
  • the second gate terminal 28 a and the second source terminal 29 a of the low-side second transistor 10 a are located close to the output terminal 27 .
  • the first control board 8 is provided as shown in FIG. 2A .
  • FIG. 2A is a top view illustrating the structure of the first control board 8 .
  • broken lines represent one of the semiconductor modules 18 covered by the first control board 8 .
  • the first gate terminals 28 b and the first source terminals 29 b are connected to respective through-holes 50 provided in high-side first circuit regions 51 , 52 , and 53 .
  • the first circuit region 51 is a high-side W-phase control circuit region
  • the first circuit region 52 is a high-side V-phase control circuit region
  • the first circuit region 53 is a high-side U-phase control circuit region.
  • the high-side first circuit regions 51 - 53 are provided to correspond to the three semiconductor modules 18 .
  • the second gate terminals 28 a and the second source terminals 29 a are connected to respective through-holes 50 located in a low-side second circuit region 54 .
  • the second circuit region 54 is, for example, a low-side control circuit region.
  • the high-side first circuit regions 51 - 53 are located above the high-side U-phase, V-phase, and W-phase first transistors 10 b , respectively.
  • the low-side second circuit region 54 is located above the low-side U-phase, V-phase, and W-phase second transistors 10 a .
  • this structure connects the drive elements 6 to the gate pads and the source pads of the transistors 10 a and 10 b to be controlled via shortest paths, with the potential of the arm elements on the first control board 8 being independent from one another. As a result, the inductance between the gates and the sources reduces, thereby providing excellent gate controllability.
  • a plurality of low-side control signal lines of the first control board 8 are connected to control signal lines located in a wiring region 75 of the second control board 5 by the connectors 56 d .
  • a plurality of high-side control signal lines of the first control board 8 are connected to control signal lines located in wiring regions 72 - 74 of the second control board 5 by the connectors 56 a , 56 b , and 56 c , respectively.
  • the wiring regions 72 - 75 are, for example, control signal wiring regions.
  • power semiconductor elements such as SiC-MOSFETs can be operated at a high speed by setting the length of the first lead 4 , which is the distance between the first control board 8 and the second control board 5 , to 20 mm or shorter. For example, if the length of the first lead 4 is longer than 20 mm, the ground potential of the first control board 8 differs from the ground potential of the second control board 5 in high speed operation. Then, logic values of signals input from the photocouplers 3 to the drive elements 6 may not be held.
  • the photocouplers 3 are mounted on the second control board 5 and the drive elements 6 are mounted on the first control board 8 located under the second control board 5 . This keeps the heat sensitive elements such as the photocouplers 3 away from the semiconductor modules 18 whose temperatures rise in operation. Therefore, a highly reliable semiconductor device is provided.
  • FIG. 3 illustrates how to mount three semiconductor modules included in the semiconductor device according to this embodiment.
  • each semiconductor module 18 includes a positive electrode terminal 25 , a ground terminal 26 , an output terminal 27 , a plurality of gate terminals 28 a and 28 b , and a plurality of source terminals 29 a and 29 b .
  • a low-side second transistor 10 a is formed by, for example, connecting three elements in parallel and metallically jointing the elements onto a second die pad 11 a , from which the output terminal 27 is drawn.
  • the source electrode of the low-side second transistor 10 a is connected to the ground terminal 26 by a plurality of aluminum ribbons.
  • a high-side first transistor 10 b is formed by, for example, connecting three elements in parallel and metallically jointing the elements onto a first die pad 11 b , from which the positive electrode terminal 25 is drawn.
  • the source electrode of the high-side first transistor 10 b is connected to the output terminal 27 by a plurality of aluminum ribbons.
  • the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b are not preferably connected to the side provided with the positive electrode terminal 25 and the ground terminal 26 , and the side provided with the output terminal 27 .
  • the transistors 10 a and 10 b are difficult to be switched at the same time. As shown in FIG.
  • the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b are preferably located in a region not provided with the positive electrode terminal 25 , the ground terminal 26 , or the output terminal 27 such that the lengths of the wires are equal.
  • This structure enables more stable parallel drive.
  • the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b may be provided for each chip, or may be connected inside each semiconductor module 18 except for each single pair located outside.
  • FIG. 4A illustrates example arrangement of drive elements 6 and through-holes 67 and 68 on a first control board 8 .
  • the through-holes 67 are, for example, gate terminal through-holes
  • the through-holes 68 are, for example, source terminal through-holes.
  • the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b which are connected to the low-side second transistors 10 a corresponding to the U-phase, V-phase, and W-phase of the semiconductor modules 18 , are connected to the through-holes 67 and 68 provided in a second circuit region 64 .
  • the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b which are connected to the high-side first transistors 10 b corresponding to the U-phase, V-phase, and W-phase, are connected to the through-holes 67 and 68 provided in each of first circuit regions 61 , 62 , and 63 .
  • Circuit components such as drive elements 6 are provided in the circuit regions 61 - 64 .
  • An insulating region 65 not provided with the circuit components or conductive patterns is formed at the boundaries between the circuit regions 61 - 64 .
  • the insulating region 65 separates the high-side circuit regions 61 - 63 from the low-side circuit region 64 in the vertical direction of the substrate (i.e., the lateral direction of FIG. 4A ) and separates at boundaries between the high-side circuit regions 61 and 62 and between the high-side circuit regions 62 and 63 .
  • a second control board 5 is located directly above the first control board 8 .
  • the control circuit formed above the second control board 5 insulates a drive signal generation circuit including photocouplers 3 from the semiconductor modules 18 .
  • FIG. 4B illustrates example overlapping where a second control board 5 is located directly above a first control board 8 having the structure shown in FIG. 4A .
  • Low-side signal lines of the first control board 8 are connected to control signal lines located in a wiring region 75 by connectors 66 d of the second control board 5 . This connects input terminals of the drive elements 6 at the low side to output terminals of the photocouplers 3 .
  • high-side signal lines of the first control board 8 are connected to control signal lines located in wiring regions 72 , 73 , and 74 by connectors 66 a , 66 b , and 66 c , respectively, on the second control board 5 . This connects input terminals of the drive elements 6 at the high side to the output terminals of the photocouplers 3 .
  • Signal lines 81 connecting a signal input section 80 of the second control board 5 to the photocouplers 3 are preferably located on the low-side second circuit region 64 of the first control board 8 .
  • the photocouplers 3 and the drive elements 6 are mounted separately on the second control board 5 and on the first control board 8 , respectively. This keeps the heat sensitive elements such as the photocouplers 3 away from the semiconductor modules 18 whose temperatures rise in operation. Therefore, the semiconductor device according to the present disclosure secures high reliability.
  • the photocouplers 3 are provided not on the third control board 1 but on the second control board 5 , thereby mounting the photocouplers 3 at a distance of 20 mm or shorter from the first control board 8 .
  • the drive elements 6 are thus mounted close to the photocouplers 3 . As a result, high speed drive elements such as SiC-MOSFETs are stably operated by parallel drive under a high temperature.
  • the semiconductor device according to the present disclosure provides high reliability and are useful for power semiconductor devices, etc.

Abstract

A semiconductor device includes a semiconductor module including a high-side first transistor and a low-side second transistor, a first control board located above the semiconductor module, a drive element connected to a first gate terminal and a first source terminal of the first transistor on the first control board, and a drive element connected to a second gate terminal and a second source terminal of the second transistor on the first control board, a second control board located above the first control board, and photocouplers provided on the second control board. The semiconductor module includes a positive electrode terminal, a ground terminal, and an output terminal. The first gate terminal and the first source terminal are located at the side provided with the positive electrode terminal and the ground terminal. The second gate terminal and the second source terminal are located at the side provided with the output terminal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Japanese Patent Application No. 2013-141476 filed on Jul. 5, 2013 and Japanese Patent Application No. 2014-097433 filed on May 9, 2014, the entire disclosures of which are incorporated by reference herein.
  • BACKGROUND
  • The present disclosure relates to, for example, semiconductor devices applicable to powering, etc.
  • Higher efficiency in power semiconductor modules for power conversion is demanded in view of low energy consumption.
  • Most of heat generated in power semiconductor modules in operation is generated from semiconductor elements. In order to reduce the inductance between ground and power sources in half bridge structures to the limit, optimization in the structures of power semiconductor modules is also demanded. To achieve the objective, most suitable structures of power semiconductor modules formed by closely arranging a plurality of semiconductor chips are considered from both the heat and electrical points of view.
  • FIG. 5 illustrates an example structure of such a conventional power semiconductor module.
  • As shown in FIG. 5, in the conventional power semiconductor module, a gate terminal 128 and a source terminal 129 provided in a semiconductor module 118 inside a case 116 are electrically connected to a drive element 106 mounted on a control board 208 via a shortest path. Inside the semiconductor module 118, a gate pad and a source pad of a semiconductor element 110 are connected to the gate terminal 128 and the source terminal 129 via wires 109. In the conventional power semiconductor module, control signals converted by a photocoupler 103 mounted on a control board 201 are transmitted to the drive element 106. The control board 208 is electrically connected to the control board 201 by a lead 204. If the lead 204 is long and fine, the ground potential of the control board 208 and the ground potential of the control board 201 fluctuate to easily generate noise. To address the problem, in the conventional structure, the control board 208 is located as close as possible to the control board 201 to reduce the length of the lead 204.
  • In order to reduce the influence of the lead 204, as shown in FIG. 6A, a conventional semiconductor module is considered, in which a photocoupler 103 and a drive element 106 are mounted close to one another on a same control board 218. In the structure of FIG. 6A, drive signals generated by a control board 211 located above the control board 218 are input to the control board 218 via a lead 214. FIG. 6B illustrates example arrangement of specific components of the control board 218. As shown in FIG. 6B, in each conventional semiconductor module, a photocoupler 103 is located as close as possible to a drive element 106.
  • Although each of the structures shown in FIGS. 6A and 6B reduces the influence of noise, the temperature of the photocoupler 103 may rise, since the photocoupler 103 is mounted on the control board 218 together with the drive element 106.
  • In order to reduce the influence of heat, providing a shield between two control boards is considered (see, e.g., Japanese Unexamined Patent Publication No. 2001-237368).
  • SUMMARY
  • It is however necessary to increase the distance between the control boards to provide the shield between the two control boards as in the invention of Japanese Unexamined Patent Publication No. 2001-237368. If the distance between the two control boards increases, a long lead is needed to connect the two control boards. This may cause noise.
  • It is an objective of the present disclosure to provide a semiconductor device which achieves the objective of reducing the influence of noise and the influence of heat.
  • In order to achieve the objective, a semiconductor device according to a first aspect of the present disclosure includes a semiconductor module including a high-side semiconductor element connected to a first gate terminal and a first source terminal, and a low-side semiconductor element connected to a second gate terminal and a second source terminal; a first control board located above the semiconductor module; a first drive element and a second drive element held by the first control board, the first drive element being connected to the first gate terminal and the first source terminal, and the second drive element being connected to the second gate terminal and the second source terminal; a second control board located above the first control board; and a plurality of photocouplers held by the second control board, output signals of the photocouplers being input to the first drive element or the second drive element. The semiconductor module includes a positive electrode terminal and a ground terminal provided at one side of the semiconductor module, and an output terminal provided at another side opposite to the one side. The first gate terminal and the first source terminal are located at the side of the semiconductor module provided with the positive electrode terminal and the ground terminal. The second gate terminal and the second source terminal are located at the side of the semiconductor module provided with the output terminal.
  • The present disclosure provides a semiconductor device reducing the influence of noise and the influence of heat.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic cross-sectional view illustrating a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 1B is a top view illustrating a plurality of semiconductor modules forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2A is a schematic top view illustrating a first control board forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2B is a schematic top view illustrating a second control board forming the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic top view illustrating a plurality of semiconductor modules forming a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 4A is a schematic top view illustrating a first control board forming the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 4B is a schematic top view illustrating a second control board forming the semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view illustrating a conventional power semiconductor module.
  • FIG. 6A is a cross-sectional view illustrating another conventional semiconductor module.
  • FIG. 6B is a top view illustrating arrangement of components of conventional semiconductor modules on a control board.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure will be described hereinafter with reference to the drawings. In the following description, the same reference characters are used to represent equivalent elements, and the explanation thereof will be omitted as appropriate.
  • First Embodiment
  • A power semiconductor device according to a first embodiment will be described with reference to FIGS. 1A, 1B, 2A and 2B. FIG. 1B illustrates that three semiconductor modules forming the semiconductor device according to this embodiment are embedded in a case.
  • As shown in FIG. 1A, three semiconductor modules 18 shown in FIG. 1B and a case 16 containing the modules are located under a first control board 8. In this embodiment, an example will be described where a semiconductor device outputs three-phase power.
  • As shown in FIG. 1A, the semiconductor device according to this embodiment includes the semiconductor modules 18 contained in the case 16, the first control board 8 contained in the case 16 and located above the semiconductor modules 18, a second control board 5 contained in the case 16 and located above the first control board 8, and a third control board 1 located above the second control board 5.
  • A circuit including a plurality of drive elements 6 is formed on the first control board 8. A circuit including a plurality of photocouplers 3 capable of transmitting electrical signals in an insulated state is formed on the second control board 5. The first control board 8 is electrically connected to the second control board 5 by a first lead 4. The second control board 5 is electrically connected to the third control board 1 by a second lead 2. The case 16 is mounted on a heat sink 15. In FIGS. 1A-2B, as viewed in plan, the second control board 5 has a smaller area than the first control board 8. The drive elements 6 are, for example, elements driving SiC-MOSFETs made of a wide bandgap material at a high speed.
  • First, the structures of the semiconductor modules 18 will be described. As shown in FIG. 1B, each of the semiconductor modules 18 includes a first transistor 10 b being a high-side semiconductor element, and a second transistor 10 a being a low-side semiconductor element.
  • In general, for example, where transistors having the same polarity are connected in series to an output terminal of a great-power switching circuit to form a half-bridge circuit, the transistor closer to a power source is called a high-side transistor, and the transistor closer to ground is called a low-side transistor.
  • Each semiconductor module 18 is provided with a positive electrode terminal (i.e., a power source terminal) 25, which is directly drawn from a first die pad 11 b holding the high-side first transistor 10 b, and a ground terminal (i.e., a negative electrode terminal) 26, which is electrically connected to the low-side second transistor 10 a, at the lower side in the figure. An output terminal 27, which is directly drawn from a second die pad 11 a holing the low-side second transistor 10 a, is located at the upper side in the figure. As such, as a structure of each semiconductor module 18, the positive electrode terminal 25 and the ground terminal 26 are preferably located at the same side, and the output terminal 27 is preferably located at the side opposite to the side provided with the positive electrode terminal 25 and the ground terminal 26.
  • The low-side second transistor 10 a is metallically jointed onto the second die pad 11 a. A drain electrode of the second transistor 10 a is connected to the output terminal 27. A source electrode of the second transistor 10 a is connected to the ground terminal 26, for example, by a plurality of aluminum ribbons. The high-side first transistor 10 b is metallically jointed onto the first die pad 11 b. A drain electrode of the first transistor 10 b is connected to the positive electrode terminal 25. A source electrode of the first transistor 10 b is connected to the output terminal 27, for example, by a plurality of aluminum ribbons.
  • A first gate terminal 28 b and a first source terminal 29 b connected to the high-side first transistor 10 b are provided at the high side at which the positive electrode terminal 25 and the ground terminal 26 are located. On the other hand, a second gate terminal 28 a and a second source terminal 29 a connected to the low-side second transistor 10 a are provided at the low side at which the output terminal 27 is located. A gate pad and a source pad of the second transistor 10 a are connected to the second gate terminal 28 a and the second source terminal 29 a by respective wires 9. Similarly, a gate pad and a source pad of the first transistor 10 b are connected to the first gate terminal 28 b and the first source terminal 29 b by respective wires 9.
  • An opening is formed at the bottom of the case 16. The heat sink 15 is exposed from the opening. On the other hand, the die pads 11 a and 11 b, on which the transistors 10 a and 10 b are mounted, are provided on a single heat dissipater 13 via an insulating member 12. The heat dissipater 13 is fixed onto the heat sink 15 at the opening of the case 16. This structure electrically insulates the die pads 11 a and 11 b from the heat dissipater 13, and efficiently releases the heat, which is generated from the transistors 10 a and 10 b, from the heat dissipater 13 to the heat sink 15. The insulating member 12 is made of a material having high voltage resistance and high thermal conductivity. In each semiconductor module 18, the heat dissipater 13, the insulating member 12, the die pads 11 a and 11 b, the transistors 10 a and 10 b, and the wires 9 are integrally sealed on the heat sink 15 by sealing resin 14.
  • The positive electrode terminals 25 and the ground terminals 26 of the semiconductor modules 18 are metallically jointed to a positive electrode-side bus bar 20 a and a ground-side bus bar 20 b respectively, which are fixed to the case 16 being a support body. The output terminals 27 of the semiconductor modules 18 are metallically jointed to an UO terminal 21, a VO terminal 22, and a WO terminal 23, which are embedded in the case 16.
  • The first control board 8 located directly above the three semiconductor modules 18 is supported by the case 16. The first control board 8 is provided with a control circuit (e.g., a gate drive circuit) including the drive elements 6, etc.
  • As shown in FIGS. 1A and 2B, in each semiconductor module 18, for example, the first gate terminal 28 b and the first source terminal 29 b of the high-side first transistor 10 b are electrically connected to the output terminal of one of the drive elements (i.e., a first drive element) 6 mounted on the first control board 8. Although not shown, the second gate terminal 28 a and the second source terminal 29 a of the low-side second transistor 10 a are electrically connected to the output terminal of the other one of the drive element (i.e., a second drive element) 6 mounted on the first control board 8. With this structure, the drive elements 6 are connected to the gate pads and the source pads of the transistors 10 a and 10 b via shortest paths. As a result, each semiconductor module according to this embodiment reduces the inductance between the gates and the sources to improve gate controllability.
  • As shown in FIG. 1B, where the three semiconductor modules 18 are arranged such that the low-side second transistors 10 a and the high-side first transistors 10 b are aligned in the same direction, the second gate terminals 28 a and the second source terminals 29 a of the second transistors 10 a are all located at the low side. On the other hand, the first gate terminals 28 b and the first source terminals 29 b of the first transistors 10 b are all located at the high side. In this embodiment, as described above, the first gate terminal 28 b and the first source terminal 29 b of each high-side first transistor 10 b are located close to the positive electrode terminal 25 and the ground terminal 26, while the second gate terminal 28 a and the second source terminal 29 a of the low-side second transistor 10 a are located close to the output terminal 27. Relative to such arrangement of the terminals, the first control board 8 is provided as shown in FIG. 2A.
  • FIG. 2A is a top view illustrating the structure of the first control board 8. In FIG. 2A, broken lines represent one of the semiconductor modules 18 covered by the first control board 8.
  • As shown in FIG. 2A, the first gate terminals 28 b and the first source terminals 29 b are connected to respective through-holes 50 provided in high-side first circuit regions 51, 52, and 53. As an example, the first circuit region 51 is a high-side W-phase control circuit region, the first circuit region 52 is a high-side V-phase control circuit region, and the first circuit region 53 is a high-side U-phase control circuit region. In this embodiment, the high-side first circuit regions 51-53 are provided to correspond to the three semiconductor modules 18.
  • As shown in FIG. 2A, the second gate terminals 28 a and the second source terminals 29 a are connected to respective through-holes 50 located in a low-side second circuit region 54. The second circuit region 54 is, for example, a low-side control circuit region.
  • As described above, in the semiconductor device according to this embodiment, the high-side first circuit regions 51-53 are located above the high-side U-phase, V-phase, and W-phase first transistors 10 b, respectively. The low-side second circuit region 54 is located above the low-side U-phase, V-phase, and W-phase second transistors 10 a. In this embodiment, this structure connects the drive elements 6 to the gate pads and the source pads of the transistors 10 a and 10 b to be controlled via shortest paths, with the potential of the arm elements on the first control board 8 being independent from one another. As a result, the inductance between the gates and the sources reduces, thereby providing excellent gate controllability.
  • Since circuit components such as drive elements 6 are provided in the circuit regions 51-54, the circuit components are preferably insulated from one another. In this embodiment, an insulating region 55 not provided with the circuit components or conductive patterns is formed to insulate and isolate the boundaries between the circuit regions 51-54. Specifically, the insulating region 55 insulates and isolates the boundary between the low-side second circuit region 54 and the high-side first circuit regions 51-53, and insulates and isolates the boundaries between the high-side first circuit regions 51 and 52, and between the high-side first circuit regions 52 and 53.
  • On the first control board 8, a plurality of connectors 56 a-56 d are linearly arranged as viewed in plan in regions of the high-side first circuit regions 51-53, which face the low-side second circuit region 54, and a region of the second circuit region 54, which faces the high-side first circuit region 53, respectively. That is, the plurality of connectors 56 a-56 d are linearly arranged as viewed in plan in the vicinity of the boundary between the high-side first circuit regions 51-53 and the low-side second circuit region 54. The connectors 56 a-56 d are, for example, control signal connectors.
  • FIG. 2B is a top view illustrating the structure of the second control board 5. In FIG. 2B, broken lines represent one of the semiconductor modules 18 covered by the second control board 5 and the first control board 8.
  • As shown in FIG. 2B, a plurality of low-side control signal lines of the first control board 8 are connected to control signal lines located in a wiring region 75 of the second control board 5 by the connectors 56 d. Similarly, a plurality of high-side control signal lines of the first control board 8 are connected to control signal lines located in wiring regions 72-74 of the second control board 5 by the connectors 56 a, 56 b, and 56 c, respectively. The wiring regions 72-75 are, for example, control signal wiring regions.
  • A plurality of signal lines 81 connecting a signal input section 80 of the second control board 5 to the photocouplers 3 are preferably located above the low-side second circuit region 54 of the first control board 8. In this embodiment, since the first control board 8 is mounted close to the second control board 5, a low voltage signal line (e.g., a signal line allowing a logic signal with a voltage of 5V or lower to flow) can be located not close to the high-side first circuit regions 51-53 which cause voltage fluctuations of hundreds volts but in the low-side second circuit region 54, thereby reducing the influence of noise.
  • In this embodiment, power semiconductor elements such as SiC-MOSFETs can be operated at a high speed by setting the length of the first lead 4, which is the distance between the first control board 8 and the second control board 5, to 20 mm or shorter. For example, if the length of the first lead 4 is longer than 20 mm, the ground potential of the first control board 8 differs from the ground potential of the second control board 5 in high speed operation. Then, logic values of signals input from the photocouplers 3 to the drive elements 6 may not be held. More specifically, assume that the minimum signal transmittance speed is (20 mm)/(70% of the speed of light), which is the ratio of the length of the lead to the signal transmittance speed in the lead, in high speed operation in which the voltage change rate of each phase output varies by 50 kV/μs. This prevents the ground potential difference of 0.48 V, which corresponds to the threshold of logic determination of a general drive element. According to the verification of the present inventors, operation at 50 kV/μs or lower is possible where the first lead 4 has a length of 20 mm or shorter.
  • A drive signal generation circuit including a microcomputer is provided on the third control board 1 located above the second control board 5. Drive signals are output from the third control board 1 via the second lead 2 to the signal input section 80 of the second control board 5. While the third control board 1 is preferably connected to the second control board 5 at a short distance, the distance between the third control board 1 and the second control board 5 is not limited as long as the quality of the signals is not damaged.
  • As described above, in the semiconductor device according to this embodiment, the photocouplers 3 are mounted on the second control board 5 and the drive elements 6 are mounted on the first control board 8 located under the second control board 5. This keeps the heat sensitive elements such as the photocouplers 3 away from the semiconductor modules 18 whose temperatures rise in operation. Therefore, a highly reliable semiconductor device is provided.
  • As described above, the semiconductor device according to this embodiment reduces the influence of noise on logic signals caused by potential fluctuations at the low side. Therefore, the semiconductor device according to this embodiment reduces the influence of noise and the influence of heat without using a shield against the heat.
  • Second Embodiment
  • Semiconductor modules forming a power semiconductor device according to a second embodiment will be described hereinafter with reference to FIGS. 3, 4A, and 4B. FIG. 3 illustrates how to mount three semiconductor modules included in the semiconductor device according to this embodiment.
  • As shown in FIG. 3, each semiconductor module 18 includes a positive electrode terminal 25, a ground terminal 26, an output terminal 27, a plurality of gate terminals 28 a and 28 b, and a plurality of source terminals 29 a and 29 b. A low-side second transistor 10 a is formed by, for example, connecting three elements in parallel and metallically jointing the elements onto a second die pad 11 a, from which the output terminal 27 is drawn. The source electrode of the low-side second transistor 10 a is connected to the ground terminal 26 by a plurality of aluminum ribbons. A high-side first transistor 10 b is formed by, for example, connecting three elements in parallel and metallically jointing the elements onto a first die pad 11 b, from which the positive electrode terminal 25 is drawn. The source electrode of the high-side first transistor 10 b is connected to the output terminal 27 by a plurality of aluminum ribbons.
  • In the structure of each semiconductor module 18, the positive electrode terminal 25 and the ground terminal 26 are preferably located at one side, and the output terminal 27 is preferably located at the side opposite to the one side. While the low-side second transistor 10 a and the high-side first transistor 10 b included in each semiconductor module 18 are formed by three elements, the number of the elements is not limited to three. Each semiconductor module 18 reduces inductance by using bus bars for wiring or other structures. In this embodiment, a plurality of chips are arranged in a line to form each of the low-side second transistor 10 a and the high-side first transistor 10 b to connect the chips to the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b via shortest paths using respective wires 9.
  • As such, in arranging the plurality of transistors 10 a and 10 b at a low side and a high side, the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b are not preferably connected to the side provided with the positive electrode terminal 25 and the ground terminal 26, and the side provided with the output terminal 27. With this structure, since the lengths of wires of the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b are not equal, the transistors 10 a and 10 b are difficult to be switched at the same time. As shown in FIG. 3, the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b are preferably located in a region not provided with the positive electrode terminal 25, the ground terminal 26, or the output terminal 27 such that the lengths of the wires are equal. This structure enables more stable parallel drive. The gate terminals 28 a and 28 b and the source terminals 29 a and 29 b may be provided for each chip, or may be connected inside each semiconductor module 18 except for each single pair located outside.
  • In this embodiment, as shown in FIG. 3, for example, where three semiconductor modules 18 are provided in the same direction, the arrangement of the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b is different from that of the first embodiment. Different from the arrangement of the terminals, FIG. 4A illustrates example arrangement of drive elements 6 and through- holes 67 and 68 on a first control board 8. The through-holes 67 are, for example, gate terminal through-holes, while the through-holes 68 are, for example, source terminal through-holes.
  • The gate terminals 28 a and 28 b and the source terminals 29 a and 29 b, which are connected to the low-side second transistors 10 a corresponding to the U-phase, V-phase, and W-phase of the semiconductor modules 18, are connected to the through- holes 67 and 68 provided in a second circuit region 64. Similarly, the gate terminals 28 a and 28 b and the source terminals 29 a and 29 b, which are connected to the high-side first transistors 10 b corresponding to the U-phase, V-phase, and W-phase, are connected to the through- holes 67 and 68 provided in each of first circuit regions 61, 62, and 63. Circuit components such as drive elements 6 are provided in the circuit regions 61-64. An insulating region 65 not provided with the circuit components or conductive patterns is formed at the boundaries between the circuit regions 61-64. In this embodiment, the insulating region 65 separates the high-side circuit regions 61-63 from the low-side circuit region 64 in the vertical direction of the substrate (i.e., the lateral direction of FIG. 4A) and separates at boundaries between the high- side circuit regions 61 and 62 and between the high- side circuit regions 62 and 63.
  • In this embodiment, the low-side second circuit region 64 is located above the U-phase, V-phase, and W-phase low-side second transistors 10 a. Similarly, the high-side first circuit regions 61-63 are located above the U-phase, V-phase, and W-phase high-side first transistors 10 b. This structure connects the drive elements 6 to the gate pads and the source pads of the transistors 10 a and 10 b to be controlled via the shortest paths, with the potential of the low and high sides being independent from one another. As a result, the inductance between the gates and the sources reduces, thereby providing excellent gate controllability. A plurality of terminal through-holes 66 for supplying control signals and power are provided in the circuit regions 61, 62, 63, and 64.
  • A second control board 5 is located directly above the first control board 8. The control circuit formed above the second control board 5 insulates a drive signal generation circuit including photocouplers 3 from the semiconductor modules 18. FIG. 4B illustrates example overlapping where a second control board 5 is located directly above a first control board 8 having the structure shown in FIG. 4A.
  • Low-side signal lines of the first control board 8 are connected to control signal lines located in a wiring region 75 by connectors 66 d of the second control board 5. This connects input terminals of the drive elements 6 at the low side to output terminals of the photocouplers 3. Similarly, high-side signal lines of the first control board 8 are connected to control signal lines located in wiring regions 72, 73, and 74 by connectors 66 a, 66 b, and 66 c, respectively, on the second control board 5. This connects input terminals of the drive elements 6 at the high side to the output terminals of the photocouplers 3. Signal lines 81 connecting a signal input section 80 of the second control board 5 to the photocouplers 3 are preferably located on the low-side second circuit region 64 of the first control board 8.
  • For example, the first control board 8 is mounted close to the second control board 5. The control signals are logic signals with a voltage of 5 V or lower. If formed across the high-side first circuit regions 61-63 causing voltage fluctuations of hundreds volts at a short distance, such low voltage signal lines are influenced by noise. In order to reduce the influence of noise, these low voltage signal lines are preferably located above the low-side second circuit region 64. As described above in the first embodiment, power semiconductor elements such as SiC-MOSFETs can be operated at a high speed by setting the length of the first lead 4, which is the distance between the first control board 8 and the second control board 5, to 20 mm or shorter.
  • A drive signal generation circuit including a microcomputer is mounted on a third control board 1. Drive signals are output from the third control board 1 via a second lead 2 to the signal input section of the second control board 5.
  • As described above, the photocouplers 3 and the drive elements 6 are mounted separately on the second control board 5 and on the first control board 8, respectively. This keeps the heat sensitive elements such as the photocouplers 3 away from the semiconductor modules 18 whose temperatures rise in operation. Therefore, the semiconductor device according to the present disclosure secures high reliability. The photocouplers 3 are provided not on the third control board 1 but on the second control board 5, thereby mounting the photocouplers 3 at a distance of 20 mm or shorter from the first control board 8. The drive elements 6 are thus mounted close to the photocouplers 3. As a result, high speed drive elements such as SiC-MOSFETs are stably operated by parallel drive under a high temperature.
  • The semiconductor device according to the present disclosure provides high reliability and are useful for power semiconductor devices, etc.

Claims (9)

What is claimed is:
1. A semiconductor device comprising:
a semiconductor module including
a high-side semiconductor element connected to a first gate terminal and a first source terminal, and
a low-side semiconductor element connected to a second gate terminal and a second source terminal;
a first control board located above the semiconductor module;
a first drive element and a second drive element held by the first control board, the first drive element being connected to the first gate terminal and the first source terminal, and the second drive element being connected to the second gate terminal and the second source terminal;
a second control board located above the first control board; and
a plurality of photocouplers held by the second control board, output signals of the photocouplers being input to the first drive element or the second drive element, wherein
the semiconductor module includes
a positive electrode terminal and a ground terminal provided at one side of the semiconductor module, and
an output terminal provided at another side opposite to the one side,
the first gate terminal and the first source terminal are located at the side of the semiconductor module provided with the positive electrode terminal and the ground terminal, and
the second gate terminal and the second source terminal are located at the side of the semiconductor module provided with the output terminal.
2. The semiconductor device of claim 1, wherein
a positive electrode terminal is drawn from a first die pad holding the high-side semiconductor element,
an output terminal is drawn from a second die pad holding the low-side semiconductor element, and
the low-side semiconductor element is electrically connected to a ground terminal.
3. The semiconductor device of claim 1, wherein
the first control board is segmented into a plurality of circuit regions including a high-side first circuit region and a low-side second circuit region, and
an insulating region is formed between each adjacent pair of the circuit regions.
4. The semiconductor device of claim 3, wherein
a plurality of signal lines connecting a signal input section of the second control board to the photocouplers are located above the low-side second circuit region of the first control board.
5. The semiconductor device of claim 3, wherein
a connector connecting a low-side control signal line of the first control board to a control signal line of the second control board is located in a vicinity of a region between the first circuit region and the second circuit region on the first control board.
6. The semiconductor device of claim 5, wherein
the connector includes a plurality of connectors linearly arranged as viewed in plan in the vicinity of the region between the first circuit region and the second circuit region on the first control board.
7. The semiconductor device of claim 1, wherein
the second control board has a smaller area than the first control board as viewed in plan.
8. The semiconductor device of claim 1, wherein
a lead connecting the first control board to the second control board has a length of 20 mm or shorter.
9. The semiconductor device of claim 1, wherein
each of the high-side semiconductor element and the low-side semiconductor element is a device made of a wide bandgap material.
US14/322,822 2013-07-05 2014-07-02 Semiconductor device Active US8916967B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013141476 2013-07-05
JP2013-141476 2013-07-05
JP2014-097433 2014-05-09
JP2014097433A JP6337394B2 (en) 2013-07-05 2014-05-09 Semiconductor device

Publications (2)

Publication Number Publication Date
US8916967B1 US8916967B1 (en) 2014-12-23
US20150008443A1 true US20150008443A1 (en) 2015-01-08

Family

ID=51059325

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/322,822 Active US8916967B1 (en) 2013-07-05 2014-07-02 Semiconductor device

Country Status (4)

Country Link
US (1) US8916967B1 (en)
EP (1) EP2822366B1 (en)
JP (1) JP6337394B2 (en)
CN (1) CN104282669B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348216B2 (en) * 2016-03-02 2019-07-09 Mitsubishi Electric Corporation Electric power converting apparatus with inner plane of control board fixed to housing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894775B1 (en) * 2012-09-04 2019-02-20 Fuji Electric Co., Ltd. Intelligent module
WO2015040970A1 (en) * 2013-09-18 2015-03-26 日立オートモティブシステムズ株式会社 Power converter
WO2016065485A1 (en) * 2014-10-31 2016-05-06 Algozen Corporation A mounting apparatus, for mounting at least one heat dissipating electrical device, optionally including a heat sink body for solid, gas and fluid heat exchange, and circuit board assembly providing interface between circuits
CN105118818B (en) * 2015-07-20 2018-08-21 东南大学 A kind of power module of square flat pin-free packaging structure
CN110115115A (en) * 2017-01-17 2019-08-09 株式会社藤仓 Wiring body and Wiring body component
DE212019000114U1 (en) * 2018-10-15 2020-04-21 Rohm Co., Ltd. Control module and semiconductor device
JP7267826B2 (en) * 2019-04-18 2023-05-02 三菱重工サーマルシステムズ株式会社 Automotive electric compressor
JP2020178479A (en) * 2019-04-19 2020-10-29 日本電産エレシス株式会社 Inverter unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645516A (en) * 1992-07-27 1994-02-18 Sanyo Electric Co Ltd Hybrid integrated circuit device
US5699609A (en) * 1995-04-12 1997-12-23 Allen-Bradley Company, Inc. Method of making power substrate assembly
DE10101086B4 (en) * 2000-01-12 2007-11-08 International Rectifier Corp., El Segundo Power module unit
JP4163360B2 (en) 2000-02-21 2008-10-08 三菱電機株式会社 Power module
US6735968B2 (en) * 2002-03-29 2004-05-18 Hitachi, Ltd. Refrigerating apparatus and an inverter device used therein
JP3682550B2 (en) * 2002-03-29 2005-08-10 株式会社日立製作所 Refrigeration apparatus and inverter apparatus used therefor
JP4909712B2 (en) * 2006-11-13 2012-04-04 日立オートモティブシステムズ株式会社 Power converter
CN100582844C (en) * 2006-12-15 2010-01-20 富准精密工业(深圳)有限公司 Built-in optical focusing lens structure
JP5029900B2 (en) * 2007-11-20 2012-09-19 アイシン・エィ・ダブリュ株式会社 Motor control device
JP5171520B2 (en) 2008-09-30 2013-03-27 日立オートモティブシステムズ株式会社 Power converter
JP5506937B2 (en) * 2010-08-24 2014-05-28 三菱電機株式会社 Power converter
DE102011080912A1 (en) * 2011-08-12 2013-02-14 Bayerische Motoren Werke Aktiengesellschaft Vehicle with power electronics
JP5591211B2 (en) * 2011-11-17 2014-09-17 三菱電機株式会社 Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348216B2 (en) * 2016-03-02 2019-07-09 Mitsubishi Electric Corporation Electric power converting apparatus with inner plane of control board fixed to housing

Also Published As

Publication number Publication date
EP2822366A3 (en) 2015-05-06
US8916967B1 (en) 2014-12-23
EP2822366A2 (en) 2015-01-07
CN104282669A (en) 2015-01-14
JP2015029403A (en) 2015-02-12
EP2822366B1 (en) 2016-05-11
JP6337394B2 (en) 2018-06-06
CN104282669B (en) 2018-11-20

Similar Documents

Publication Publication Date Title
US8916967B1 (en) Semiconductor device
US11270984B2 (en) Semiconductor module
JP2018050084A (en) Semiconductor module
JP6400201B2 (en) Power semiconductor module
KR20150022742A (en) Semiconductor device
US20180277470A1 (en) Integrated package assembly for switching regulator
US6566750B1 (en) Semiconductor module
CN110663110B (en) Semiconductor power module
CN109473415B (en) SMD package with topside cooling
US11056415B2 (en) Semiconductor device
US20160006370A1 (en) Power conversion apparatus
JPH08288456A (en) Power semiconductor module
US9202766B2 (en) Package for power device and method of making the same
JP2005235816A (en) Semiconductor power module
US20230146272A1 (en) Semiconductor apparatus
US6664629B2 (en) Semiconductor device
US10804186B2 (en) Semiconductor module and power converter
JP4246040B2 (en) Semiconductor device package
JP6483963B2 (en) Power converter
JP2006294973A (en) Semiconductor apparatus
US20160099198A1 (en) Semiconductor package apparatus
JP6766965B2 (en) Power converter
US20230282632A1 (en) Semiconductor module
US20230245943A1 (en) Semiconductor module
US20230274990A1 (en) Power Semiconductor Module System and Method for Producing the Power Semiconductor Module System

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YAMASHITA, KENYA;REEL/FRAME:033597/0825

Effective date: 20140625

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8