US20150007658A1 - Motion detection device and motion analysis system - Google Patents
Motion detection device and motion analysis system Download PDFInfo
- Publication number
- US20150007658A1 US20150007658A1 US14/309,446 US201414309446A US2015007658A1 US 20150007658 A1 US20150007658 A1 US 20150007658A1 US 201414309446 A US201414309446 A US 201414309446A US 2015007658 A1 US2015007658 A1 US 2015007658A1
- Authority
- US
- United States
- Prior art keywords
- inertial sensor
- indicator
- output
- detection device
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
- A61B5/1122—Determining geometric values, e.g. centre of rotation or angular range of movement of movement trajectories
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6895—Sport equipment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/003—Repetitive work cycles; Sequence of movements
- G09B19/0038—Sports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
Definitions
- the present invention relates to a motion detection device and a motion analysis system utilizing the motion detection device.
- JP-A-2011-210 discloses a swing analysis system as a specific example of a motion analysis system.
- a three-dimensional acceleration sensor is attached to a subject.
- the subject's golf swing is analyzed, based on an output from the three-dimensional acceleration sensor. See JP-A-2011-78753 and JP-A-2000-148351 as well.
- a golf swing starts with the address, goes through the backswing, downswing and impact, then goes on to the follow-through, and reaches the finish. It is desirable that analysis of a golf swing should start at the address.
- the swing analysis system is operated by an observer. The observer can confirm the address posture of the subject and start measuring the subject's swing. In such a swing analysis system, measurement of a swing cannot be started at proper timing in the absence of the observer. It is desirable that measurement of a swing securely starts at the address even when the subject is by himself or herself.
- An advantage of some aspects of the invention is to provide a motion detection device and a motion analysis system which are capable of starting measurement of a swing securely at proper timing even when the subject is by himself or herself.
- An aspect of the invention relates to a motion detection device that specifies a movement of at least one of a subject and a sporting gear as an indicator of a trigger signal, using an output from an inertial sensor.
- the inertial sensor outputs a detection signal during a series of movements of the subject or the sporting gear.
- the movement of at least one of the subject and the sporting gear is specified in the output from the inertial sensor.
- the trigger signal is generated according to the specified movement.
- the subject can cause the trigger signal to be generated at proper timing through his or her own movement.
- the indicator may include a repetition of the movement.
- the indicator may include the movement and a movement in an opposite direction to the movement.
- a specific movement and a movement in the opposite direction paired with the specific movement for example, a mirror image
- the exercise does not include a continuation of a specific movement and a movement in the opposite direction during the period. Therefore, a continuation of a movement and a movement in the opposite direction during such a period can be considered to be an intentional movement by the subject. Such a continuation of the movement and the movement in the opposite direction is very unlikely to be mistaken for another movement. Therefore, erroneous output of the trigger signal can be prevented.
- the motion detection device may include a memory which stores the indicator. If the indicator stored in the memory is specified in the output from the inertial sensor, the trigger signal is generated.
- the memory may store a peak part of the output from the inertial sensor as the indicator. If the peak part stored in the memory is specified in the output from the inertial sensor, the trigger signal is generated.
- the memory may store plural peak parts of the output from the inertial sensor as the indicator. If the plural peak parts stored in the memory are specified in the output from the inertial sensor, the trigger signal is generated.
- the memory may store the output from the inertial sensor in a static state of at least one of the subject and the sporting gear on which the inertial sensor is installed.
- the output from the inertial sensor represents a detection signal having a substantially constant value. Therefore, the movement to be the indicator can become conspicuous in the output. The indicator is thus securely found in the output from the inertial sensor. The indicator is prevented from being overlooked.
- the memory may store the indicator for each subject.
- the indicator is thus customized for each subject. Output of the trigger signal is reliably secured for subject.
- the memory may be loaded in a sensor unit in which the inertial sensor is loaded.
- the memory is thus incorporated into the sensor unit.
- the sensor unit itself functions as a motion detection device.
- the motion detection device may include a calculation circuit which, if the indicator is detected from the output from the inertial sensor, outputs the trigger signal and instructs a main body unit to carry out processing.
- the calculation circuit can be configured separately from the main body unit. The burden on the main body unit is thus reduced.
- a first indicator and a second indicator may be specified as the indicator.
- the calculation circuit may output the trigger signal to the main body unit to start measurement if the first indicator is detected from the output from the inertial sensor, and may output the trigger signal to the main body unit to stop measurement if the second indicator is detected from the output from the inertial sensor.
- the calculation circuit may be loaded in a sensor unit in which the inertial sensor is loaded.
- the calculation circuit is thus incorporated into the sensor unit.
- the sensor unit itself functions as a motion detection device.
- the inertial sensor may be an angular velocity sensor.
- the motion detection device may specify the indicator, using an angular velocity generated about an axis of a shaft portion of the sporting gear.
- the inertial sensor outputs an angular velocity signal.
- the movement of at least one of the subject and the sporting gear is specified according to the angular velocity.
- the inertial sensor may be an acceleration sensor.
- the motion detection device may specify the indicator, using an acceleration generated in the sporting gear.
- the inertial sensor outputs an acceleration signal. The movement of at least one of the subject and the sporting gear is specified according to the acceleration signal.
- the motion detection device may be incorporated and utilized in a motion analysis system.
- the motion analysis system may include the motion detection device and the main body unit which executes processing in response to reception of the trigger signal.
- the main body unit may process the output from the inertial sensor at a first sampling rate before receiving the trigger signal and may process the output from the inertial sensor at a second sampling rate that is higher than the first sampling rate in response to reception of the trigger signal.
- the main body unit waits for execution of processing operation until the trigger signal is received. At this point, the main body unit processes the output from the inertial sensor at the first sampling rate. As the trigger signal is received, the main body unit processes the output from the inertial sensor at the second sampling rate. Therefore, resolution of motion analysis can be increased. The frequency of signal processing at the time of waiting is lowered. Therefore, unnecessary energy consumption can be restrained.
- the trigger signal may be a signal indicating start or stop of execution of processing by the main body unit.
- the subject can manage the start and stop of measurement through his or her own movement. The subject can realize the start and stop of measurement at proper timing.
- Another aspect of the invention relates to a motion detection device that includes: a unit which stores a movement of a subject or a sporting gear as an indicator, using an output from an inertial sensor; and a unit which outputs a trigger signal to a main body unit if the indicator is detected from the output from the inertial sensor.
- FIG. 1 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a first embodiment of the invention.
- FIG. 2 is a conceptual view schematically showing the relation between a motion analysis model, and a golfer and a golf club.
- FIG. 3 is a block diagram schematically showing the configuration of a calculation processing circuit according to the first embodiment.
- FIG. 4 is a conceptual view schematically showing a specific movement according to a first specific example.
- FIG. 5 is a graph schematically showing an indicator specifying the specific movement according to the first specific example.
- FIG. 6 is a conceptual view schematically showing a specific movement according to a second specific example.
- FIG. 7 is a graph schematically showing an indicator specifying the specific movement according to the second specific example.
- FIG. 8 is a conceptual view schematically showing a specific movement according to a third specific example.
- FIG. 9 is a graph schematically showing an indicator specifying the specific movement according to the third specific example.
- FIG. 10 is a conceptual view schematically showing a specific movement according to a fourth specific example.
- FIG. 11 is a graph schematically showing an indicator specifying the specific movement according to the fourth specific example.
- FIG. 12 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a second embodiment of the invention.
- FIG. 13 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a comparative example.
- FIG. 14 is a conceptual view schematically showing the configuration of a golf swing analysis system according to another comparative example.
- FIG. 1 schematically shows the configuration of a golf swing analysis system (motion analysis system) 11 according to a first embodiment of the invention.
- the golf swing analysis system 11 has, for example, a sensor unit 12 and a main body unit 13 .
- the sensor unit 12 is attached to a golf club (sporting gear) 14 .
- the golf club 14 includes a shaft 14 a and a grip 14 b .
- the grip 14 b is gripped by the subject's hands.
- the grip 14 b is formed coaxially with a center axis of the shaft 14 a .
- a club head 14 c is connected to a distal end of the shaft 14 a .
- the sensor unit 12 is attached to the shaft 14 a or the grip 14 b of the golf club 14 .
- the sensor unit 12 may be fixed so that the sensor unit 12 cannot move relative to the golf club 14 .
- the sensor unit 12 may be thus installed on the golf club 14 .
- the sensor unit 12 may be attached to the subject's hand,
- the sensor unit 12 has an inertial sensor 15 .
- An acceleration sensor and a gyro sensor are incorporated in the inertial sensor 15 .
- the acceleration sensor can detect an acceleration in each of three-axis directions orthogonal to each other.
- the gyro sensor can detect an angular velocity about each of three axes orthogonal to each other.
- the inertial sensor 15 outputs a detection signal. Based on the detection signal, the acceleration and angular velocity for each axis are specified.
- the acceleration sensor and the gyro sensor detect information of acceleration and angular velocity with relatively high accuracy.
- one of detection axes of the inertial sensor 15 is aligned with the center axis of the shaft 14 a . That is, a y-axis of the inertial sensor 15 overlaps with or extends parallel to the center axis of the shaft 14 a.
- the sensor unit 12 has a calculation circuit 16 and a memory 17 .
- the calculation circuit 16 is connected to the inertial sensor 15 .
- the calculation circuit 16 receives an output from the inertial sensor 15 .
- the memory 17 is connected to the calculation circuit 16 .
- the memory 17 stores an indicator that is expressed by the output from the inertial sensor 15 and that specifies a specific movement of the golf club 14 . The specific movement will be described in detail later.
- the indicator includes a first indicator, a second indicator, and a third indicator. If the first indicator is detected in an output signal from the inertial sensor 15 while receiving the output signal from the inertial sensor 15 , the calculation circuit 16 outputs a start signal (trigger signal).
- the calculation circuit 16 determines the static state of the golf club 14 , based on the output from the inertial sensor 15 .
- the third indicator may be specified, for example, as a threshold value. As the threshold value, a value that can eliminate the influence of a detection signal indicating micro-vibration such as body motion may be set.
- the calculation circuit 16 determines that the golf club 14 is in the static state. If the static state is detected over a predetermined period, the calculation circuit 16 generates the static state notification signal.
- the inertial sensor 15 , the calculation circuit 16 and the memory 17 may be accommodated in a common casing of the sensor unit 12 .
- the calculation circuit 16 and the memory 17 form a motion detection device 18 .
- the motion detection device 18 specifies the movement of the golf club 14 , which is at least one of the subject and the sporting gear, as the indicator of the trigger signal, using the output from the inertial sensor 15 .
- the main body unit 13 has a calculation processing circuit 19 .
- the sensor unit 12 is connected to the calculation processing circuit 19 .
- a predetermined interface circuit 21 is connected to the calculation processing circuit 19 .
- the interface circuit 21 may be wired to the sensor unit 12 or wirelessly connected to the sensor unit 12 .
- the output from the inertial sensor 15 that is, the detection signal, the start signal and the end signal are inputted to the calculation processing circuit 19 from the sensor unit 12 .
- a storage device 22 is connected to the calculation processing circuit 19 .
- a golf swing analysis software program 23 and related data are stored.
- the calculation processing circuit 19 executes the golf swing analysis software program 23 to realize a golf swing analysis method.
- the storage device 22 includes a DRAM (dynamic random access memory), a large-capacity storage unit, a non-volatile memory or the like.
- the golf swing analysis software program 23 is temporarily held when carrying out the golf swing analysis method.
- the large-capacity storage unit such as a hard disk drive (HDD)
- the golf swing analysis software program and data are saved.
- BIOS basic input/output system
- An image processing circuit 24 is connected to the calculation processing circuit 19 .
- the calculation processing circuit 19 sends predetermined image data to the image processing circuit 24 .
- a display device 25 is connected to the image processing circuit 24 .
- a predetermined interface circuit (not shown) is connected to the image processing circuit 24 .
- the image processing circuit 24 sends an image signal to the display device 25 , according to the image data inputted thereto. An image specified by the image signal is displayed on a screen of the display device 25 .
- As the display device 25 a liquid crystal display or another type of flat panel display is used.
- the calculation processing circuit 19 , the storage device 22 and the image processing circuit 24 can be provided, for example, as a computer device.
- An input device 26 is connected to the calculation processing circuit 19 .
- the input device 26 has at least alphabetical keys and ten keys. Letter information and numerical value information are inputted to the calculation processing circuit 19 from the input device 26 .
- the input device 26 may include, for example, a keyboard.
- the main body unit 13 can be configured as a smartphone, tablet PC (personal computer), or mobile phone terminal.
- the calculation processing circuit 19 prescribes an imaginary space.
- the imaginary space is formed as a three-dimensional space.
- the three-dimensional space has an absolute reference coordinate system (overall coordinate system) ⁇ xyz .
- a three-dimensional motion analysis model 28 is constructed in accordance with the absolute reference coordinate system ⁇ xyz .
- a bar 29 in the three-dimensional motion analysis model 28 is point-constrained at a support 31 (coordinate x).
- the bar 29 acts as a pendulum three-dimensionally about the support 31 .
- the position of the support 31 can be moved.
- the absolute reference coordinate system ⁇ xyz the position of a center of gravity 32 of the bar 29 is specified by a coordinate x g and the position of the club head 14 c is specified by a coordinate x h .
- the three-dimensional motion analysis model 28 is equivalent to a modeling of the golf club 14 at the time of a swing.
- the pendulum bar 29 projects the shaft 14 a of the golf club 14 .
- the support 31 of the bar 29 projects the grip 14 b .
- the sensor unit 12 is fixed on the bar 29 .
- the position of the inertial sensor 15 is specified by a coordinate x s .
- the inertial sensor 15 outputs an acceleration signal and an angular velocity signal.
- the acceleration signal specifies an acceleration minus the influence of gravitational acceleration g, that is, ( ⁇ umlaut over (X) ⁇ s ⁇ g).
- the angular velocity signal specifies angular velocities ⁇ 1 , ⁇ 2 .
- the calculation processing circuit 19 similarly fixes a local coordinate system ⁇ s on the inertial sensor 15 .
- the origin of the local coordinate system ⁇ s is set at the origin of a detection axis of the inertial sensor 15 .
- the y-axis of the local coordinate system ⁇ s coincides with the axis of the shaft 14 a .
- the x-axis of the local coordinate system ⁇ s coincides with the ball hitting direction that is specified by the direction of the face. Therefore, according to the local coordinate system ⁇ s , a position l sj of the support 31 is specified by (0, l sjy , 0).
- a position l sg of the center of gravity 32 is specified by (0, l sgy , 0), and a position l sh of the club head 14 c is specified by (0, l shy , 0).
- FIG. 3 schematically shows the configuration of the calculation processing circuit 19 according to the one embodiment.
- the calculation processing circuit 19 has a bias value calculation unit 35 .
- the bias value calculation unit 35 is connected, for example, to the calculation circuit 16 of the sensor unit 12 .
- the bias value calculation unit 35 calculates a bias value of the inertial sensor 15 , based on the output from the inertial sensor 15 .
- the bias value can be specified based on the detection signal outputted from the inertial sensor 15 in the static state.
- the bias value calculation unit 35 finds a bias estimate value that is a function of time, based on information of the position of the club head 14 c and the position of the grip end acquired during a predetermined period.
- the bias estimate value data is sampled at an arbitrary time interval and linearly approximated on a two-dimensional plane including a time axis.
- the bias is a general term for an error including zero-bias in the initial state where angular velocity is zero and random drifts due to external factors such as power supply fluctuations and temperature fluctuations.
- the calculation processing circuit 19 has a support displacement calculation unit 36 and a club head displacement calculation unit 37 .
- the acceleration signal and the angular velocity signal are inputted to the support displacement calculation unit 36 from the inertial sensor 15 .
- the support displacement calculation unit 36 calculates the displacement of the support 31 according to the time axis. For example, if the displacement of the inertial sensor 15 and the posture of the bar 29 are specified, the displacement of the support 31 can be specified.
- the displacement of the inertial sensor 15 can be calculated based on the acceleration from the inertial sensor 15 .
- the posture of the bar 29 can be calculated based on the angular velocity from the inertial sensor 15 .
- the support displacement calculation unit 36 acquires various numerical data including grip end data from the storage device 22 .
- the grip end data specifies the position of the grip end, that is, the position l sj of the support 31 , for example, according to the local coordinate system ⁇ s of the inertial sensor 15 .
- the length of the golf club 14 may be specified and the position of the inertial sensor 15 on the golf club 14 may be thus specified.
- the coordinates of the position of the support 31 are transformed from the local coordinate system ⁇ s of the inertial sensor 15 to the absolute reference coordinate system ⁇ xyz . In this coordinate transformation, a transformation matrix can be supplied from the storage device 22 .
- the acceleration signal and the angular velocity signal are inputted to the club head displacement calculation unit 37 from the inertial sensor 15 .
- the club head displacement calculation unit 37 calculates the displacement of the club head 14 c according to the time axis. For example, if the displacement of the inertial sensor 15 and the posture of the bar 29 are specified, the displacement of the club head 14 c can be specified within the local coordinate system ⁇ s of the inertial sensor 15 .
- the displacement of the inertial sensor 15 can be calculated based on the acceleration from the inertial sensor 15 .
- the posture of the bar 29 can be calculated based on the angular velocity from the inertial sensor 15 .
- the club head displacement calculation unit 37 acquires various numerical data including club head data from the storage device 22 .
- the club head data specifies the position l sh of the club head 14 c , for example, according to the local coordinate system ⁇ s of the inertial sensor 15 .
- the length of the golf club 14 may be specified and the position of the inertial sensor 15 on the golf club 14 may be thus specified.
- the coordinates of the position of the club head 14 c are transformed from the local coordinate system ⁇ s to the absolute reference coordinate system ⁇ xyz . In such coordinate transformation, the club head displacement calculation unit 37 is notified of the position of the support 31 from the support displacement calculation unit 36 .
- the calculation processing circuit 19 has a swing image data generation unit 38 .
- the swing image data generation unit 38 is connected to the bias value calculation unit 35 , the support displacement calculation unit 36 and the club head displacement calculation unit 37 .
- the swing image data generation unit 38 generates three-dimensional image data to visualize the movement trajectory of the bar 29 in three dimensions, based on the position of the support 31 and the position of the club head 14 c along the time axis. In generating the three-dimensional image data, the swing image data generation unit 38 corrects the position of the support 31 and the position of the club head 14 c , based on the bias estimate value.
- the calculation processing circuit 19 has a switching unit 39 .
- the bias value calculation unit 35 , the support displacement calculation unit 36 and the club head displacement calculation unit 37 are connected to the switching unit 39 .
- the detection signal, the start signal, the end signal and the static state notification signal are sent to the switching unit 39 from the sensor unit 12 .
- the switching unit 39 processes the detection signal from the inertial sensor 15 at a first sampling rate. As the detection signal from the inertial sensor 15 is a temporally discrete value, the switching unit 39 thins out the discrete value at the first sampling rate.
- the detection signal is sent to the bias value calculation unit 35 , the support displacement calculation unit 36 and the club head displacement calculation unit 37 at the first sampling rate.
- the switching unit 39 processes the detection signal from the inertial sensor 15 at a second sampling rate that is higher than the first sampling rate, in response to reception of the start signal.
- the detection signal is sent to the bias value calculation unit 35 , the support displacement calculation unit 36 and the club head displacement calculation unit 37 at the second sampling rate.
- the number of samples per unit time of the discrete value used in the calculation increases.
- the first sampling rate is set, for example, at 250 Hz
- the second sampling rate is set, for example, at 1000 Hz.
- the switching unit 39 changes the frequency of processing the output from the inertial sensor 15 in response to the reception of the start signal sent from the calculation circuit 16 .
- the switching unit 39 switches the sampling rate from the second sampling rate to the first sampling rate in response to reception of the end signal.
- the detection signal from the inertial sensor 15 may be thinned out at the time of the output from the sensor unit 12 (for example, at the time of the output from the calculation circuit 16 ), or may be thinned out at the time of the processing by the calculation processing circuit 19 (switching unit 39 ) after the reception by the main body unit 13 .
- a golfer's golf swing is measured.
- necessary information is inputted to the calculation processing circuit 19 from the input device 26 .
- the three-dimensional pendulum model 28 inputting the position l sj of the support 31 according to the local coordinate system ⁇ s and a rotation matrix R 0 of the initial posture of the inertial sensor 15 is prompted.
- the inputted information is managed, for example, under a specific identifier.
- the identifier may identify a specific golfer.
- the inertial sensor 15 is mounted on the shaft 14 a of the golf club 14 .
- the inertial sensor 15 is fixed so that the inertial sensor 15 cannot be displaced relative to the golf club 14 .
- One of the detection axes of the inertial sensor 15 (here, the y-axis) is aligned with the center axis of the shaft 14 a .
- Another one of the detection axes of the inertial sensor 15 (here, the x-axis) is aligned with the ball hitting direction specified by the direction of the face.
- the measurement by the inertial sensor 15 is started before the execution of a golf swing.
- the inertial sensor 15 starts operating in response to an operation on a switch (not shown).
- the inertial sensor 15 is set in a predetermined position and posture.
- the position and posture correspond to the position and posture specified by the rotation matrix R 0 of the initial posture.
- the inertial sensor 15 continuously measures acceleration and angular velocity at a specific sampling interval. The sampling interval prescribes the resolution of the measurement.
- a detection signal from the inertial sensor 15 is sent in real time to the calculation processing circuit 19 .
- the calculation processing circuit 19 receives a signal specifying the output from the inertial sensor 15 .
- a golf swing starts with the address, goes through the backswing, downswing and impact, then goes on to the follow-through and reaches the finish.
- the posture of the subject is static.
- the calculation circuit 16 determines the static state of the golf club 14 . If the output from the inertial sensor 15 is below a threshold value, the calculation circuit 16 understands that the golf club 14 is in the static state.
- the calculation circuit 16 outputs a static state notification signal.
- the bias value calculation unit 35 calculates the bias value of the inertial sensor 15 .
- the calculated bias value is sent to the swing image data generation unit 38 .
- the subject can start the swing movement.
- the swing movement shifts from the address to the backswing, goes through the downswing and impact, then goes on to the follow-through, and reaches the finish.
- the golf club 14 is swung. When swung, the golf club 14 changes its posture according to the time axis.
- the inertial sensor 15 outputs a detection signal in accordance with the posture of the golf club 14 .
- the support displacement calculation unit 36 and the club head displacement calculation unit 37 start calculating the movement trajectory of the golf club 14 .
- the support displacement calculation unit 36 and the club head displacement calculation unit 37 can securely follow the movement of the golf club 14 over the entire swing.
- the subject carries out a specific movement before starting the swing movement.
- a movement of rotating the golf club 14 in one direction about the center axis of the shaft 14 a can be given as an example.
- Such a rotation of the golf club 14 can be realized by the subject turning the arms in one direction from the address posture.
- the y-axis of the inertial sensor 15 is aligned with the center axis of the shaft 14 a , as clear from FIG. 2 . Therefore, as a result of such a movement, a large change, that is, a peak appears in the angular velocity about the y-axis in the output from the inertial sensor 15 , as shown in FIG. 5 .
- the waveform and size of such a peak is stored as an indicator in the memory 17 in advance.
- the calculation circuit 16 acquires the indicator of the specific movement from the memory 17 .
- the calculation circuit 16 searches the output from the inertial sensor 15 for the indicator of the specific movement. For example, if a similar waveform is detected in the output from the inertial sensor 15 , the calculation circuit 16 outputs a start signal to the main body unit 13 . Alternatively, for example, if a value above a threshold value is detected in the angular velocity about the y-axis of the inertial sensor 15 , the calculation circuit 16 outputs a start signal to the main body unit 13 .
- the main body unit 13 As the main body unit 13 receives the start signal, the main body unit 13 starts analyzing the movement of the sporting gear or records useful data for such analysis.
- the golf swing analysis system 11 can start measurement securely at proper timing even when the subject is by himself or herself. Any redundant analysis can be avoided before the start of the swing.
- the subject when the swing is finished, the subject carries out a specific movement.
- This specific movement may be the same as or different from the specific movement carried out at the start. However, if the specific movement at the start and the specific movement at the end are different from each other, confusion between the start and the end is prevented.
- the calculation circuit 16 searches the output from the inertial sensor 15 for the indicator of the specific movement. For example, if a similar waveform is detected in the output from the inertial sensor 15 , the calculation circuit 16 outputs an end signal to the main body unit 13 .
- the calculation circuit 16 outputs an end signal to the main body unit 13 .
- the main body unit 13 receives the end signal, the main body unit 13 ends the measurement.
- the main body unit 13 changes the sampling rate from the second sampling rate to the first sampling rate.
- the subject In the detection of the specific movement, the subject is required to be, for example, in the static posture of the address.
- the calculation circuit 16 detects the static state of the golf club 14 in a predetermined period before the indicator is detected.
- the output from the inertial sensor 15 shows a detection value with a substantially constant value, as shown in FIG. 5 . Therefore, the specific movement can become conspicuous in the output from the inertial sensor 15 .
- the calculation circuit 16 can securely find the indicator in the output from the inertial sensor 15 . The indicator can be prevented from being overlooked.
- FIG. 6 schematically shows a specific movement according to a second specific example.
- a movement of rotating the golf club 14 in one direction about the center axis of the shaft 14 a is repeated.
- large changes that is, plural (in this example, two) peaks appear consecutively in the angular velocity about the y-axis in the output from the inertial sensor 15 , as shown in FIG. 7 .
- the waveform and size of such plural peaks are stored as an indicator in the memory 17 in advance.
- the indicator can include a repetition of a specific movement.
- the sensor unit 12 can output the start signal or the end signal at appropriate timing. Therefore, erroneous output of the start signal or the end signal can be prevented.
- FIG. 8 schematically shows a specific movement according to a third specific example.
- a movement of rotating the golf club 14 in a first direction about the center axis of the shaft 14 a a movement of rotating the golf club 14 in a second direction that is opposite to the first direction about the center axis of the shaft 14 a is carried out.
- Such a rotation of the golf club 14 can be realized by the subject turning his or her arms in the first direction from the address posture and returning to the address posture again, and subsequently turning his or her arms in the second direction and returning to the address posture again.
- the indicator can include one specific movement, followed by a movement in the direction opposite to the former specific movement and paired with the former specific movement.
- a specific movement and a movement in the opposite direction paired with the specific movement for example, a mirror image
- the exercise does not include a continuation of a specific movement and a movement in the opposite direction during the period. Therefore, a continuation of a movement and a movement in the opposite direction during such a period can be considered to be an intentional movement by the subject.
- Such a continuation of a specific movement and a movement in the opposite direction is very unlikely to be mistaken for another movement.
- the sensor unit 12 can output the start signal or the end signal at appropriate timing. Therefore, erroneous output of the start signal or the end signal can be prevented.
- FIG. 10 schematically shows a specific movement according to a fourth specific example.
- a movement of swinging the club head 14 c in the direction of a target line, that is, in the ball hitting direction and thus applying an impact is carried out.
- large changes that is, plural (in this example, two) peaks appear consecutively in the acceleration in the x-axis direction in the output from the inertial sensor 15 , as shown in FIG. 11 .
- the waveform and size of such plural peaks are stored as an indicator in the memory 17 in advance.
- the indicator may be specified by one peak or may be specified by movements in the opposite directions from the static state.
- the indicator is formed, based on the recording of an actual measured value outputted from the inertial sensor 15 .
- the indicator is formed, based on an actual movement of the subject or the sporting gear.
- the indicator is thus customized for each subject.
- the subject can register a familiar movement as the indicator in the memory 17 of the sensor unit 12 .
- the subject can remember to carry out the specific movement according to the indicator. Thus, output of the start signal or the end signal can be reliably secured.
- FIG. 12 schematically shows the configuration of a golf swing analysis system (motion analysis system) 11 a according to a second embodiment of the invention.
- the calculation processing circuit 19 in the main body unit 13 is in charge of the function of the calculation circuit 16 .
- the storage device 22 is in charge of the function of the memory 17 . Therefore, the storage device 22 stores an indicator that is expressed by the output from the inertial sensor 15 and that specifies a specific movement of the golf club 14 . If the indicator is detected in the output from the inertial sensor 15 while receiving the output signal from the inertial sensor 15 , the calculation processing circuit 19 starts analyzing the movement of the golf club 14 or records useful data for such analysis.
- Such switching between the sampling rates may be realized by the switching unit 39 in the calculation processing circuit 19 , as in the foregoing description.
- FIG. 13 schematically shows the configuration of a golf swing analysis system 41 according to a comparative example.
- the golf swing analysis system 41 has a light receiving sensor 42 .
- the light receiving sensor 42 is embedded in the grip 14 b of the golf club 14 .
- the light receiving sensor 42 is arranged, for example, at a part covered by the right hand of a right-handed subject when the subject places his or her right hand on the grip 14 b .
- the light receiving sensor 42 outputs different signals between a light receiving occasion and a light shielding occasion.
- a determination circuit 43 is connected to the light receiving sensor 42 .
- the determination circuit 43 outputs the start signal in response to the signal on the light shielding occasion from the light receiving sensor 42 . Therefore, when light reception is interrupted by the subject's hand at the address, the start signal is sent to the main body unit 13 from the determination circuit 43 .
- the other parts of the configuration are similar to the foregoing golf swing analysis system 11 .
- the golf swing analysis system 41 according to the comparative example can securely start measurement at proper timing even when the subject is by himself or herself. Redundant analysis can be avoided before a swing is started.
- the determination circuit 43 may be incorporated in the calculation processing circuit 19 in the main body unit 13 . In such a case, the output from the light receiving sensor 42 may be sent to the calculation processing circuit 19 from the interface 21 .
- FIG. 14 schematically shows the configuration of a golf swing analysis system 51 according to another comparative example.
- the golf swing analysis system 51 has a microphone 52 .
- the microphone 52 is incorporated, for example, in the sensor unit 12 .
- the microphone 52 picks up sounds in the surroundings.
- a voice recognition circuit 53 is connected to the microphone 52 .
- the voice recognition circuit 53 recognizes the subject's voice picked up by the microphone 52 .
- a memory 54 is connected to the voice recognition circuit 53 .
- the memory 54 stores an indicator that is expressed by the output from the microphone 52 and that specifies a specific voice of the subject.
- As the indicator for example, a voice speaking words like “start measurement” may be used.
- the voice recognition circuit 53 outputs the start signal to the main body unit 13 .
- the other parts of the configuration are similar to the foregoing golf swing analysis system 11 .
- the golf swing analysis system 51 according to this comparative example can securely start measurement at proper timing even when the subject is by himself or herself. Redundant analysis can be avoided before a swing is started.
- the individual function blocks in the calculation processing circuit 19 are realized according to the execution of the golf swing analysis software program 23 .
- the individual function blocks may be realized by hardware without depending on software processing.
- the golf swing analysis systems 11 , 41 , 51 may also be applied to swing analysis of other sporting gears held and swung by the hand (for example, a tennis racket, table tennis racket, baseball bat, or bamboo sword for kendo).
- the embodiments can also be used for motion analysis in running, boxing and the like if the inertial sensor 15 is installed on the subject.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Theoretical Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Business, Economics & Management (AREA)
- Geometry (AREA)
- Educational Administration (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Golf Clubs (AREA)
Abstract
A motion detection device specifies a movement of at least one of a subject and a sporting gear as an indicator of a trigger signal, using an output from an inertial sensor. The movement of at least one of the subject and the sporting gear is specified in the output from the inertial sensor. The trigger signal is generated according to the specified movement. The subject causes the trigger signal to be generated at proper timing through his or her own movement.
Description
- 1. Technical Field
- The present invention relates to a motion detection device and a motion analysis system utilizing the motion detection device.
- 2. Related Art
- For example, JP-A-2011-210 discloses a swing analysis system as a specific example of a motion analysis system. A three-dimensional acceleration sensor is attached to a subject. The subject's golf swing is analyzed, based on an output from the three-dimensional acceleration sensor. See JP-A-2011-78753 and JP-A-2000-148351 as well.
- A golf swing starts with the address, goes through the backswing, downswing and impact, then goes on to the follow-through, and reaches the finish. It is desirable that analysis of a golf swing should start at the address. In JP-A-2011-210, the swing analysis system is operated by an observer. The observer can confirm the address posture of the subject and start measuring the subject's swing. In such a swing analysis system, measurement of a swing cannot be started at proper timing in the absence of the observer. It is desirable that measurement of a swing securely starts at the address even when the subject is by himself or herself.
- An advantage of some aspects of the invention is to provide a motion detection device and a motion analysis system which are capable of starting measurement of a swing securely at proper timing even when the subject is by himself or herself.
- (1) An aspect of the invention relates to a motion detection device that specifies a movement of at least one of a subject and a sporting gear as an indicator of a trigger signal, using an output from an inertial sensor.
- The inertial sensor outputs a detection signal during a series of movements of the subject or the sporting gear. In the motion detection device, the movement of at least one of the subject and the sporting gear is specified in the output from the inertial sensor. The trigger signal is generated according to the specified movement. The subject can cause the trigger signal to be generated at proper timing through his or her own movement.
- (2) The indicator may include a repetition of the movement. Generally, there are few exercises that include a repetition of a specific movement during a predetermined period. If the duration of the period is adjusted, the exercise does not include a repetitive movement during the period. Therefore, a repetition of a movement detected during such a period can be considered to be an intentional movement by the subject. Such a repetition of the movement is very unlikely to be mistaken for another movement. Therefore, erroneous output of the trigger signal can be prevented.
- (3) The indicator may include the movement and a movement in an opposite direction to the movement. Generally, there are few exercises in which a specific movement and a movement in the opposite direction paired with the specific movement (for example, a mirror image) continue during a predetermined period. If the duration of the period is adjusted, the exercise does not include a continuation of a specific movement and a movement in the opposite direction during the period. Therefore, a continuation of a movement and a movement in the opposite direction during such a period can be considered to be an intentional movement by the subject. Such a continuation of the movement and the movement in the opposite direction is very unlikely to be mistaken for another movement. Therefore, erroneous output of the trigger signal can be prevented.
- (4) The motion detection device may include a memory which stores the indicator. If the indicator stored in the memory is specified in the output from the inertial sensor, the trigger signal is generated.
- (5) The memory may store a peak part of the output from the inertial sensor as the indicator. If the peak part stored in the memory is specified in the output from the inertial sensor, the trigger signal is generated.
- (6) The memory may store plural peak parts of the output from the inertial sensor as the indicator. If the plural peak parts stored in the memory are specified in the output from the inertial sensor, the trigger signal is generated.
- (7) The memory may store the output from the inertial sensor in a static state of at least one of the subject and the sporting gear on which the inertial sensor is installed. In such a static state, the output from the inertial sensor represents a detection signal having a substantially constant value. Therefore, the movement to be the indicator can become conspicuous in the output. The indicator is thus securely found in the output from the inertial sensor. The indicator is prevented from being overlooked.
- (8) The memory may store the indicator for each subject. The indicator is thus customized for each subject. Output of the trigger signal is reliably secured for subject.
- (9) The memory may be loaded in a sensor unit in which the inertial sensor is loaded. The memory is thus incorporated into the sensor unit. The sensor unit itself functions as a motion detection device.
- (10) The motion detection device may include a calculation circuit which, if the indicator is detected from the output from the inertial sensor, outputs the trigger signal and instructs a main body unit to carry out processing. The calculation circuit can be configured separately from the main body unit. The burden on the main body unit is thus reduced.
- (11) In the motion detection device, a first indicator and a second indicator may be specified as the indicator. The calculation circuit may output the trigger signal to the main body unit to start measurement if the first indicator is detected from the output from the inertial sensor, and may output the trigger signal to the main body unit to stop measurement if the second indicator is detected from the output from the inertial sensor. Thus, the subject can manage the start and stop of measurement through his or her own movement. The subject can realize the start and stop of measurement at proper timing.
- (12) The calculation circuit may be loaded in a sensor unit in which the inertial sensor is loaded. The calculation circuit is thus incorporated into the sensor unit. The sensor unit itself functions as a motion detection device.
- (13) The inertial sensor may be an angular velocity sensor. The motion detection device may specify the indicator, using an angular velocity generated about an axis of a shaft portion of the sporting gear. The inertial sensor outputs an angular velocity signal. The movement of at least one of the subject and the sporting gear is specified according to the angular velocity.
- (14) The inertial sensor may be an acceleration sensor. The motion detection device may specify the indicator, using an acceleration generated in the sporting gear. The inertial sensor outputs an acceleration signal. The movement of at least one of the subject and the sporting gear is specified according to the acceleration signal.
- (15) The motion detection device may be incorporated and utilized in a motion analysis system. In this case, the motion analysis system may include the motion detection device and the main body unit which executes processing in response to reception of the trigger signal.
- (16) The main body unit may process the output from the inertial sensor at a first sampling rate before receiving the trigger signal and may process the output from the inertial sensor at a second sampling rate that is higher than the first sampling rate in response to reception of the trigger signal. The main body unit waits for execution of processing operation until the trigger signal is received. At this point, the main body unit processes the output from the inertial sensor at the first sampling rate. As the trigger signal is received, the main body unit processes the output from the inertial sensor at the second sampling rate. Therefore, resolution of motion analysis can be increased. The frequency of signal processing at the time of waiting is lowered. Therefore, unnecessary energy consumption can be restrained.
- (17) The trigger signal may be a signal indicating start or stop of execution of processing by the main body unit. Thus, the subject can manage the start and stop of measurement through his or her own movement. The subject can realize the start and stop of measurement at proper timing.
- (18) Another aspect of the invention relates to a motion detection device that includes: a unit which stores a movement of a subject or a sporting gear as an indicator, using an output from an inertial sensor; and a unit which outputs a trigger signal to a main body unit if the indicator is detected from the output from the inertial sensor.
- The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
-
FIG. 1 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a first embodiment of the invention. -
FIG. 2 is a conceptual view schematically showing the relation between a motion analysis model, and a golfer and a golf club. -
FIG. 3 is a block diagram schematically showing the configuration of a calculation processing circuit according to the first embodiment. -
FIG. 4 is a conceptual view schematically showing a specific movement according to a first specific example. -
FIG. 5 is a graph schematically showing an indicator specifying the specific movement according to the first specific example. -
FIG. 6 is a conceptual view schematically showing a specific movement according to a second specific example. -
FIG. 7 is a graph schematically showing an indicator specifying the specific movement according to the second specific example. -
FIG. 8 is a conceptual view schematically showing a specific movement according to a third specific example. -
FIG. 9 is a graph schematically showing an indicator specifying the specific movement according to the third specific example. -
FIG. 10 is a conceptual view schematically showing a specific movement according to a fourth specific example. -
FIG. 11 is a graph schematically showing an indicator specifying the specific movement according to the fourth specific example. -
FIG. 12 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a second embodiment of the invention. -
FIG. 13 is a conceptual view schematically showing the configuration of a golf swing analysis system according to a comparative example. -
FIG. 14 is a conceptual view schematically showing the configuration of a golf swing analysis system according to another comparative example. - Hereinafter, an embodiment of the invention will be described with reference to the accompanying drawings. The following embodiment should not unduly limit the content of the invention described in the appended claims. Not all the configurations described in this embodiment are necessarily essential as elements of the invention.
-
FIG. 1 schematically shows the configuration of a golf swing analysis system (motion analysis system) 11 according to a first embodiment of the invention. The golfswing analysis system 11 has, for example, asensor unit 12 and amain body unit 13. Thesensor unit 12 is attached to a golf club (sporting gear) 14. Thegolf club 14 includes ashaft 14 a and agrip 14 b. Thegrip 14 b is gripped by the subject's hands. Thegrip 14 b is formed coaxially with a center axis of theshaft 14 a. Aclub head 14 c is connected to a distal end of theshaft 14 a. Preferably, thesensor unit 12 is attached to theshaft 14 a or thegrip 14 b of thegolf club 14. Thesensor unit 12 may be fixed so that thesensor unit 12 cannot move relative to thegolf club 14. Thesensor unit 12 may be thus installed on thegolf club 14. Alternatively, thesensor unit 12 may be attached to the subject's hand, arm or shoulder. - The
sensor unit 12 has aninertial sensor 15. An acceleration sensor and a gyro sensor are incorporated in theinertial sensor 15. The acceleration sensor can detect an acceleration in each of three-axis directions orthogonal to each other. The gyro sensor can detect an angular velocity about each of three axes orthogonal to each other. Theinertial sensor 15 outputs a detection signal. Based on the detection signal, the acceleration and angular velocity for each axis are specified. The acceleration sensor and the gyro sensor detect information of acceleration and angular velocity with relatively high accuracy. Here, when installing thesensor unit 12, one of detection axes of theinertial sensor 15 is aligned with the center axis of theshaft 14 a. That is, a y-axis of theinertial sensor 15 overlaps with or extends parallel to the center axis of theshaft 14 a. - The
sensor unit 12 has acalculation circuit 16 and amemory 17. Thecalculation circuit 16 is connected to theinertial sensor 15. Thecalculation circuit 16 receives an output from theinertial sensor 15. Thememory 17 is connected to thecalculation circuit 16. Thememory 17 stores an indicator that is expressed by the output from theinertial sensor 15 and that specifies a specific movement of thegolf club 14. The specific movement will be described in detail later. The indicator includes a first indicator, a second indicator, and a third indicator. If the first indicator is detected in an output signal from theinertial sensor 15 while receiving the output signal from theinertial sensor 15, thecalculation circuit 16 outputs a start signal (trigger signal). Similarly, if the second indicator is detected in the output signal from theinertial sensor 15, thecalculation circuit 16 outputs an end signal (trigger signal). Similarly, if the third indicator is detected in the output signal from theinertial sensor 15, thecalculation circuit 16 outputs a static state notification signal. That is, the third indicator corresponds to an output from theinertial sensor 15 in a static state of thegolf club 14. Thecalculation circuit 16 determines the static state of thegolf club 14, based on the output from theinertial sensor 15. The third indicator may be specified, for example, as a threshold value. As the threshold value, a value that can eliminate the influence of a detection signal indicating micro-vibration such as body motion may be set. If the output from theinertial sensor 15 is below the threshold value, thecalculation circuit 16 determines that thegolf club 14 is in the static state. If the static state is detected over a predetermined period, thecalculation circuit 16 generates the static state notification signal. Theinertial sensor 15, thecalculation circuit 16 and thememory 17 may be accommodated in a common casing of thesensor unit 12. Here, thecalculation circuit 16 and thememory 17 form amotion detection device 18. Themotion detection device 18 specifies the movement of thegolf club 14, which is at least one of the subject and the sporting gear, as the indicator of the trigger signal, using the output from theinertial sensor 15. - The
main body unit 13 has acalculation processing circuit 19. Thesensor unit 12 is connected to thecalculation processing circuit 19. For this connection, apredetermined interface circuit 21 is connected to thecalculation processing circuit 19. Theinterface circuit 21 may be wired to thesensor unit 12 or wirelessly connected to thesensor unit 12. The output from theinertial sensor 15, that is, the detection signal, the start signal and the end signal are inputted to thecalculation processing circuit 19 from thesensor unit 12. - A
storage device 22 is connected to thecalculation processing circuit 19. In thestorage device 22, for example, a golf swinganalysis software program 23 and related data are stored. Thecalculation processing circuit 19 executes the golf swinganalysis software program 23 to realize a golf swing analysis method. Thestorage device 22 includes a DRAM (dynamic random access memory), a large-capacity storage unit, a non-volatile memory or the like. For example, in the DRAM, the golf swinganalysis software program 23 is temporarily held when carrying out the golf swing analysis method. In the large-capacity storage unit such as a hard disk drive (HDD), the golf swing analysis software program and data are saved. In the non-volatile memory, a relatively small-capacity program such as BIOS (basic input/output system) and data are stored. - An
image processing circuit 24 is connected to thecalculation processing circuit 19. Thecalculation processing circuit 19 sends predetermined image data to theimage processing circuit 24. Adisplay device 25 is connected to theimage processing circuit 24. For this connection, a predetermined interface circuit (not shown) is connected to theimage processing circuit 24. Theimage processing circuit 24 sends an image signal to thedisplay device 25, according to the image data inputted thereto. An image specified by the image signal is displayed on a screen of thedisplay device 25. As thedisplay device 25, a liquid crystal display or another type of flat panel display is used. Here, thecalculation processing circuit 19, thestorage device 22 and theimage processing circuit 24 can be provided, for example, as a computer device. - An
input device 26 is connected to thecalculation processing circuit 19. Theinput device 26 has at least alphabetical keys and ten keys. Letter information and numerical value information are inputted to thecalculation processing circuit 19 from theinput device 26. Theinput device 26 may include, for example, a keyboard. Here, themain body unit 13 can be configured as a smartphone, tablet PC (personal computer), or mobile phone terminal. - The
calculation processing circuit 19 prescribes an imaginary space. The imaginary space is formed as a three-dimensional space. As shown inFIG. 2 , the three-dimensional space has an absolute reference coordinate system (overall coordinate system) Σxyz. In the three-dimensional space, a three-dimensionalmotion analysis model 28 is constructed in accordance with the absolute reference coordinate system Σxyz. Abar 29 in the three-dimensionalmotion analysis model 28 is point-constrained at a support 31 (coordinate x). Thebar 29 acts as a pendulum three-dimensionally about thesupport 31. The position of thesupport 31 can be moved. Here, according to the absolute reference coordinate system Σxyz, the position of a center ofgravity 32 of thebar 29 is specified by a coordinate xg and the position of theclub head 14 c is specified by a coordinate xh. - The three-dimensional
motion analysis model 28 is equivalent to a modeling of thegolf club 14 at the time of a swing. Thependulum bar 29 projects theshaft 14 a of thegolf club 14. Thesupport 31 of thebar 29 projects thegrip 14 b. Thesensor unit 12 is fixed on thebar 29. According to the absolute reference coordinate system Σxyz, the position of theinertial sensor 15 is specified by a coordinate xs. Theinertial sensor 15 outputs an acceleration signal and an angular velocity signal. The acceleration signal specifies an acceleration minus the influence of gravitational acceleration g, that is, ({umlaut over (X)}s−g). The angular velocity signal specifies angular velocities ω1, ω2. - The
calculation processing circuit 19 similarly fixes a local coordinate system Σs on theinertial sensor 15. The origin of the local coordinate system Σs is set at the origin of a detection axis of theinertial sensor 15. The y-axis of the local coordinate system Σs coincides with the axis of theshaft 14 a. The x-axis of the local coordinate system Σs coincides with the ball hitting direction that is specified by the direction of the face. Therefore, according to the local coordinate system Σs, a position lsj of thesupport 31 is specified by (0, lsjy, 0). Similarly, on this local coordinate system Σs, a position lsg of the center ofgravity 32 is specified by (0, lsgy, 0), and a position lsh of theclub head 14 c is specified by (0, lshy, 0). -
FIG. 3 schematically shows the configuration of thecalculation processing circuit 19 according to the one embodiment. Thecalculation processing circuit 19 has a biasvalue calculation unit 35. The biasvalue calculation unit 35 is connected, for example, to thecalculation circuit 16 of thesensor unit 12. The biasvalue calculation unit 35 calculates a bias value of theinertial sensor 15, based on the output from theinertial sensor 15. The bias value can be specified based on the detection signal outputted from theinertial sensor 15 in the static state. The biasvalue calculation unit 35 finds a bias estimate value that is a function of time, based on information of the position of theclub head 14 c and the position of the grip end acquired during a predetermined period. To derive the bias estimate value, data is sampled at an arbitrary time interval and linearly approximated on a two-dimensional plane including a time axis. Here, the bias is a general term for an error including zero-bias in the initial state where angular velocity is zero and random drifts due to external factors such as power supply fluctuations and temperature fluctuations. - The
calculation processing circuit 19 has a supportdisplacement calculation unit 36 and a club headdisplacement calculation unit 37. The acceleration signal and the angular velocity signal are inputted to the supportdisplacement calculation unit 36 from theinertial sensor 15. Based on the acceleration and the angular velocity, the supportdisplacement calculation unit 36 calculates the displacement of thesupport 31 according to the time axis. For example, if the displacement of theinertial sensor 15 and the posture of thebar 29 are specified, the displacement of thesupport 31 can be specified. The displacement of theinertial sensor 15 can be calculated based on the acceleration from theinertial sensor 15. The posture of thebar 29 can be calculated based on the angular velocity from theinertial sensor 15. In this calculation, the supportdisplacement calculation unit 36 acquires various numerical data including grip end data from thestorage device 22. The grip end data specifies the position of the grip end, that is, the position lsj of thesupport 31, for example, according to the local coordinate system Σs of theinertial sensor 15. Also, in specifying the position of thesupport 31, the length of thegolf club 14 may be specified and the position of theinertial sensor 15 on thegolf club 14 may be thus specified. The coordinates of the position of thesupport 31 are transformed from the local coordinate system Σs of theinertial sensor 15 to the absolute reference coordinate system Σxyz. In this coordinate transformation, a transformation matrix can be supplied from thestorage device 22. - The acceleration signal and the angular velocity signal are inputted to the club head
displacement calculation unit 37 from theinertial sensor 15. Based on the acceleration and the angular velocity, the club headdisplacement calculation unit 37 calculates the displacement of theclub head 14 c according to the time axis. For example, if the displacement of theinertial sensor 15 and the posture of thebar 29 are specified, the displacement of theclub head 14 c can be specified within the local coordinate system Σs of theinertial sensor 15. The displacement of theinertial sensor 15 can be calculated based on the acceleration from theinertial sensor 15. The posture of thebar 29 can be calculated based on the angular velocity from theinertial sensor 15. In this calculation, the club headdisplacement calculation unit 37 acquires various numerical data including club head data from thestorage device 22. The club head data specifies the position lsh of theclub head 14 c, for example, according to the local coordinate system Σs of theinertial sensor 15. Also, in specifying the position of theclub head 14 c, the length of thegolf club 14 may be specified and the position of theinertial sensor 15 on thegolf club 14 may be thus specified. The coordinates of the position of theclub head 14 c are transformed from the local coordinate system Σs to the absolute reference coordinate system Σxyz. In such coordinate transformation, the club headdisplacement calculation unit 37 is notified of the position of thesupport 31 from the supportdisplacement calculation unit 36. - The
calculation processing circuit 19 has a swing imagedata generation unit 38. The swing imagedata generation unit 38 is connected to the biasvalue calculation unit 35, the supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37. The swing imagedata generation unit 38 generates three-dimensional image data to visualize the movement trajectory of thebar 29 in three dimensions, based on the position of thesupport 31 and the position of theclub head 14 c along the time axis. In generating the three-dimensional image data, the swing imagedata generation unit 38 corrects the position of thesupport 31 and the position of theclub head 14 c, based on the bias estimate value. - The
calculation processing circuit 19 has aswitching unit 39. The biasvalue calculation unit 35, the supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37 are connected to theswitching unit 39. The detection signal, the start signal, the end signal and the static state notification signal are sent to theswitching unit 39 from thesensor unit 12. Before receiving the start signal, the switchingunit 39 processes the detection signal from theinertial sensor 15 at a first sampling rate. As the detection signal from theinertial sensor 15 is a temporally discrete value, the switchingunit 39 thins out the discrete value at the first sampling rate. The detection signal is sent to the biasvalue calculation unit 35, the supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37 at the first sampling rate. Meanwhile, the switchingunit 39 processes the detection signal from theinertial sensor 15 at a second sampling rate that is higher than the first sampling rate, in response to reception of the start signal. The detection signal is sent to the biasvalue calculation unit 35, the supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37 at the second sampling rate. The number of samples per unit time of the discrete value used in the calculation increases. Here, the first sampling rate is set, for example, at 250 Hz, and the second sampling rate is set, for example, at 1000 Hz. In this way, the switchingunit 39 changes the frequency of processing the output from theinertial sensor 15 in response to the reception of the start signal sent from thecalculation circuit 16. Moreover, the switchingunit 39 switches the sampling rate from the second sampling rate to the first sampling rate in response to reception of the end signal. To realize the first sampling rate that is lower than the second sampling rate, the detection signal from theinertial sensor 15 may be thinned out at the time of the output from the sensor unit 12 (for example, at the time of the output from the calculation circuit 16), or may be thinned out at the time of the processing by the calculation processing circuit 19 (switching unit 39) after the reception by themain body unit 13. - The operation of the golf
swing analysis system 11 will be described briefly. First, a golfer's golf swing is measured. Before the measurement, necessary information is inputted to thecalculation processing circuit 19 from theinput device 26. Here, according to the three-dimensional pendulum model 28, inputting the position lsj of thesupport 31 according to the local coordinate system Σs and a rotation matrix R0 of the initial posture of theinertial sensor 15 is prompted. The inputted information is managed, for example, under a specific identifier. The identifier may identify a specific golfer. - Before the measurement, the
inertial sensor 15 is mounted on theshaft 14 a of thegolf club 14. Theinertial sensor 15 is fixed so that theinertial sensor 15 cannot be displaced relative to thegolf club 14. One of the detection axes of the inertial sensor 15 (here, the y-axis) is aligned with the center axis of theshaft 14 a. Another one of the detection axes of the inertial sensor 15 (here, the x-axis) is aligned with the ball hitting direction specified by the direction of the face. - The measurement by the
inertial sensor 15 is started before the execution of a golf swing. Theinertial sensor 15 starts operating in response to an operation on a switch (not shown). At the start of the operation, theinertial sensor 15 is set in a predetermined position and posture. The position and posture correspond to the position and posture specified by the rotation matrix R0 of the initial posture. Theinertial sensor 15 continuously measures acceleration and angular velocity at a specific sampling interval. The sampling interval prescribes the resolution of the measurement. A detection signal from theinertial sensor 15 is sent in real time to thecalculation processing circuit 19. Thecalculation processing circuit 19 receives a signal specifying the output from theinertial sensor 15. - A golf swing starts with the address, goes through the backswing, downswing and impact, then goes on to the follow-through and reaches the finish. At the address, the posture of the subject is static. The
calculation circuit 16 determines the static state of thegolf club 14. If the output from theinertial sensor 15 is below a threshold value, thecalculation circuit 16 understands that thegolf club 14 is in the static state. Thecalculation circuit 16 outputs a static state notification signal. In response to reception of the static state notification signal, the biasvalue calculation unit 35 calculates the bias value of theinertial sensor 15. The calculated bias value is sent to the swing imagedata generation unit 38. - As the static state is thus secured, the subject can start the swing movement. The swing movement shifts from the address to the backswing, goes through the downswing and impact, then goes on to the follow-through, and reaches the finish. The
golf club 14 is swung. When swung, thegolf club 14 changes its posture according to the time axis. Theinertial sensor 15 outputs a detection signal in accordance with the posture of thegolf club 14. The supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37 start calculating the movement trajectory of thegolf club 14. Thus, the supportdisplacement calculation unit 36 and the club headdisplacement calculation unit 37 can securely follow the movement of thegolf club 14 over the entire swing. - The subject carries out a specific movement before starting the swing movement. As the specific movement, a movement of rotating the
golf club 14 in one direction about the center axis of theshaft 14 a, as shown inFIG. 4 , can be given as an example. Such a rotation of thegolf club 14 can be realized by the subject turning the arms in one direction from the address posture. Here, the y-axis of theinertial sensor 15 is aligned with the center axis of theshaft 14 a, as clear fromFIG. 2 . Therefore, as a result of such a movement, a large change, that is, a peak appears in the angular velocity about the y-axis in the output from theinertial sensor 15, as shown inFIG. 5 . The waveform and size of such a peak is stored as an indicator in thememory 17 in advance. Thecalculation circuit 16 acquires the indicator of the specific movement from thememory 17. Thecalculation circuit 16 searches the output from theinertial sensor 15 for the indicator of the specific movement. For example, if a similar waveform is detected in the output from theinertial sensor 15, thecalculation circuit 16 outputs a start signal to themain body unit 13. Alternatively, for example, if a value above a threshold value is detected in the angular velocity about the y-axis of theinertial sensor 15, thecalculation circuit 16 outputs a start signal to themain body unit 13. As themain body unit 13 receives the start signal, themain body unit 13 starts analyzing the movement of the sporting gear or records useful data for such analysis. The golfswing analysis system 11 can start measurement securely at proper timing even when the subject is by himself or herself. Any redundant analysis can be avoided before the start of the swing. - In this embodiment, when the swing is finished, the subject carries out a specific movement. This specific movement may be the same as or different from the specific movement carried out at the start. However, if the specific movement at the start and the specific movement at the end are different from each other, confusion between the start and the end is prevented. The
calculation circuit 16 searches the output from theinertial sensor 15 for the indicator of the specific movement. For example, if a similar waveform is detected in the output from theinertial sensor 15, thecalculation circuit 16 outputs an end signal to themain body unit 13. Alternatively, for example, if a value above a threshold value is detected in the angular velocity about the y-axis of theinertial sensor 15, thecalculation circuit 16 outputs an end signal to themain body unit 13. As themain body unit 13 receives the end signal, themain body unit 13 ends the measurement. At the same time, themain body unit 13 changes the sampling rate from the second sampling rate to the first sampling rate. - In the detection of the specific movement, the subject is required to be, for example, in the static posture of the address. As a result, the
calculation circuit 16 detects the static state of thegolf club 14 in a predetermined period before the indicator is detected. As the static state of thegolf club 14 is established, the output from theinertial sensor 15 shows a detection value with a substantially constant value, as shown inFIG. 5 . Therefore, the specific movement can become conspicuous in the output from theinertial sensor 15. Thecalculation circuit 16 can securely find the indicator in the output from theinertial sensor 15. The indicator can be prevented from being overlooked. - Moreover, when the start signal is received, the
calculation processing circuit 19 in themain body unit 13 processes the output from theinertial sensor 15 at the second sampling rate (=1000 Hz). Therefore, the resolution of the motion analysis can be increased. Meanwhile, thecalculation processing circuit 19 waits for execution of processing until receiving the start signal. At this point, thecalculation processing circuit 19 processes the output from theinertial sensor 15 at the first sampling rate (=250 Hz). The frequency of processing is lowered. Therefore, unnecessary energy consumption can be restrained. -
FIG. 6 schematically shows a specific movement according to a second specific example. In the second specific example, a movement of rotating thegolf club 14 in one direction about the center axis of theshaft 14 a is repeated. As a result of such a movement, large changes, that is, plural (in this example, two) peaks appear consecutively in the angular velocity about the y-axis in the output from theinertial sensor 15, as shown inFIG. 7 . The waveform and size of such plural peaks are stored as an indicator in thememory 17 in advance. Thus, the indicator can include a repetition of a specific movement. - Generally, there are few exercises that include a repetition of a specific movement during a predetermined period. If the duration of the period is adjusted, the exercise does not include a repetitive movement during the period. Therefore, a repetitive movement detected during such a period can be considered to be an intentional movement by the subject. Such a repetitive movement is very unlikely to be mistaken for another movement. As a result, the
sensor unit 12 can output the start signal or the end signal at appropriate timing. Therefore, erroneous output of the start signal or the end signal can be prevented. -
FIG. 8 schematically shows a specific movement according to a third specific example. In the third specific example, after a movement of rotating thegolf club 14 in a first direction about the center axis of theshaft 14 a, a movement of rotating thegolf club 14 in a second direction that is opposite to the first direction about the center axis of theshaft 14 a is carried out. Such a rotation of thegolf club 14 can be realized by the subject turning his or her arms in the first direction from the address posture and returning to the address posture again, and subsequently turning his or her arms in the second direction and returning to the address posture again. As a result of such a movement, large changes, that is, peaks appear consecutively in the opposite directions in the angular velocity about the y-axis in the output from theinertial sensor 15, as shown inFIG. 9 . The waveform and size of such peaks in the opposite directions are stored as an indicator in thememory 17 in advance. Thus, the indicator can include one specific movement, followed by a movement in the direction opposite to the former specific movement and paired with the former specific movement. - Generally, there are few exercises in which a specific movement and a movement in the opposite direction paired with the specific movement (for example, a mirror image) continue during a predetermined period. If the duration of the period is adjusted, the exercise does not include a continuation of a specific movement and a movement in the opposite direction during the period. Therefore, a continuation of a movement and a movement in the opposite direction during such a period can be considered to be an intentional movement by the subject. Such a continuation of a specific movement and a movement in the opposite direction is very unlikely to be mistaken for another movement. As a result, the
sensor unit 12 can output the start signal or the end signal at appropriate timing. Therefore, erroneous output of the start signal or the end signal can be prevented. -
FIG. 10 schematically shows a specific movement according to a fourth specific example. In the fourth specific example, a movement of swinging theclub head 14 c in the direction of a target line, that is, in the ball hitting direction and thus applying an impact is carried out. As a result of such a movement, large changes, that is, plural (in this example, two) peaks appear consecutively in the acceleration in the x-axis direction in the output from theinertial sensor 15, as shown inFIG. 11 . The waveform and size of such plural peaks are stored as an indicator in thememory 17 in advance. Here, the indicator may be specified by one peak or may be specified by movements in the opposite directions from the static state. - The indicator is formed, based on the recording of an actual measured value outputted from the
inertial sensor 15. In other words, the indicator is formed, based on an actual movement of the subject or the sporting gear. The indicator is thus customized for each subject. The subject can register a familiar movement as the indicator in thememory 17 of thesensor unit 12. The subject can remember to carry out the specific movement according to the indicator. Thus, output of the start signal or the end signal can be reliably secured. -
FIG. 12 schematically shows the configuration of a golf swing analysis system (motion analysis system) 11 a according to a second embodiment of the invention. In the second embodiment, thecalculation processing circuit 19 in themain body unit 13 is in charge of the function of thecalculation circuit 16. Thestorage device 22 is in charge of the function of thememory 17. Therefore, thestorage device 22 stores an indicator that is expressed by the output from theinertial sensor 15 and that specifies a specific movement of thegolf club 14. If the indicator is detected in the output from theinertial sensor 15 while receiving the output signal from theinertial sensor 15, thecalculation processing circuit 19 starts analyzing the movement of thegolf club 14 or records useful data for such analysis. If the first indicator is detected in the output from theinertial sensor 15, thecalculation processing circuit 19 processes the output from theinertial sensor 15 at the second sampling rate (=1000 Hz). Thecalculation processing circuit 19 processes the output from theinertial sensor 15 at the first sampling rate (=250 Hz) that is lower than the second sampling rate, until the first indicator is detected in the output from theinertial sensor 15. Such switching between the sampling rates may be realized by the switchingunit 39 in thecalculation processing circuit 19, as in the foregoing description. -
FIG. 13 schematically shows the configuration of a golfswing analysis system 41 according to a comparative example. The golfswing analysis system 41 has alight receiving sensor 42. Thelight receiving sensor 42 is embedded in thegrip 14 b of thegolf club 14. Thelight receiving sensor 42 is arranged, for example, at a part covered by the right hand of a right-handed subject when the subject places his or her right hand on thegrip 14 b. Thelight receiving sensor 42 outputs different signals between a light receiving occasion and a light shielding occasion. - A
determination circuit 43 is connected to thelight receiving sensor 42. Thedetermination circuit 43 outputs the start signal in response to the signal on the light shielding occasion from thelight receiving sensor 42. Therefore, when light reception is interrupted by the subject's hand at the address, the start signal is sent to themain body unit 13 from thedetermination circuit 43. The other parts of the configuration are similar to the foregoing golfswing analysis system 11. The golfswing analysis system 41 according to the comparative example can securely start measurement at proper timing even when the subject is by himself or herself. Redundant analysis can be avoided before a swing is started. Moreover, thedetermination circuit 43 may be incorporated in thecalculation processing circuit 19 in themain body unit 13. In such a case, the output from thelight receiving sensor 42 may be sent to thecalculation processing circuit 19 from theinterface 21. -
FIG. 14 schematically shows the configuration of a golfswing analysis system 51 according to another comparative example. The golfswing analysis system 51 has amicrophone 52. Themicrophone 52 is incorporated, for example, in thesensor unit 12. Themicrophone 52 picks up sounds in the surroundings. Avoice recognition circuit 53 is connected to themicrophone 52. Thevoice recognition circuit 53 recognizes the subject's voice picked up by themicrophone 52. For example, amemory 54 is connected to thevoice recognition circuit 53. Thememory 54 stores an indicator that is expressed by the output from themicrophone 52 and that specifies a specific voice of the subject. As the indicator, for example, a voice speaking words like “start measurement” may be used. If the indicator is detected in the voice picked up by themicrophone 52, thevoice recognition circuit 53 outputs the start signal to themain body unit 13. The other parts of the configuration are similar to the foregoing golfswing analysis system 11. The golfswing analysis system 51 according to this comparative example can securely start measurement at proper timing even when the subject is by himself or herself. Redundant analysis can be avoided before a swing is started. - In the above embodiments, the individual function blocks in the
calculation processing circuit 19 are realized according to the execution of the golf swinganalysis software program 23. However, the individual function blocks may be realized by hardware without depending on software processing. Moreover, the golfswing analysis systems inertial sensor 15 is installed on the subject. - While the embodiments are described above in detail, a person skilled in the art can readily understand that various modifications can be made without substantially departing from the new matters and advantageous effects of the invention. Therefore, all such modifications are included in the scope of the invention. For example, in the specification and drawings, a term described along with a different term with a broader meaning or the same meaning at least once can be replaced with the different term in any part of the specification and drawings. Also, the configurations and operations of the
inertial sensor 15, thegolf club 14, thegrip 14 b, theclub head 14 c, thecalculation processing circuits 19 and the like are not limited to those described in the embodiments, and various modifications can be made. - The entire disclosure of Japanese Patent Application No. 2013-141722, filed Jul. 5, 2013 is expressly incorporated by reference herein.
Claims (18)
1. A motion detection device that specifies a movement of at least one of a subject and a sporting gear as an indicator of a trigger signal, using an output from an inertial sensor.
2. The motion detection device according to claim 1 , wherein the indicator includes a repetition of the movement.
3. The motion detection device according to claim 1 , wherein the indicator includes the movement and a movement in an opposite direction to the movement.
4. The motion detection device according to claim 1 , further comprising a memory which stores the indicator.
5. The motion detection device according to claim 4 , wherein the memory stores a peak part of the output from the inertial sensor as the indicator.
6. The motion detection device according to claim 4 , wherein the memory stores plural peak parts of the output from the inertial sensor as the indicator.
7. The motion detection device according to claim 4 , wherein the memory stores the output from the inertial sensor in a static state of at least one of the subject and the sporting gear on which the inertial sensor is installed.
8. The motion detection device according to claim 4 , wherein the memory stores the indicator for subject.
9. The motion detection device according to claim 4 , wherein the memory is loaded in a sensor unit in which the inertial sensor is loaded.
10. The motion detection device according to claim 1 , further comprising a calculation circuit which, if the indicator is detected from the output from the inertial sensor, outputs the trigger signal and instructs a main body unit to carry out processing.
11. The motion detection device according to claim 10 , wherein a first indicator and a second indicator may be specified as the indicator, and
the calculation circuit outputs the trigger signal to the main body unit to start measurement if the first indicator is detected from the output from the inertial sensor, and outputs the trigger signal to the main body unit to stop measurement if the second indicator is detected from the output from the inertial sensor.
12. The motion detection device according to claim 10 , wherein the calculation circuit is loaded in a sensor unit in which the inertial sensor is loaded.
13. The motion detection device according to claim 1 , wherein the inertial sensor is an angular velocity sensor, and
the indicator is specified using an angular velocity generated about an axis of a shaft portion of the sporting gear.
14. The motion detection device according to claim 1 , wherein the inertial sensor is an acceleration sensor, and
the indicator is specified using an acceleration generated in the sporting gear.
15. A motion analysis system comprising:
the motion detection device according to claim 10 ; and
the main body unit executing processing in response to reception of the trigger signal.
16. The motion analysis system according to claim 15 , wherein the main body unit processes the output from the inertial sensor at a first sampling rate before receiving the trigger signal and processes the output from the inertial sensor at a second sampling rate that is higher than the first sampling rate in response to reception of the trigger signal.
17. The motion analysis system according to claim 15 , wherein the trigger signal is a signal indicating start or stop of execution of processing by the main body unit.
18. A motion detection device comprising:
a unit which stores a movement of a subject or a sporting gear as an indicator, using an output from an inertial sensor; and
a unit which outputs a trigger signal to a main body unit if the indicator is detected from the output from the inertial sensor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013141722A JP2015013008A (en) | 2013-07-05 | 2013-07-05 | Movement detection device, movement detection program, and movement analysis system |
JP2013-141722 | 2013-07-05 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/195,931 Continuation-In-Part US8450269B2 (en) | 2006-02-03 | 2011-08-02 | Long-acting growth hormone and methods of producing same |
US14/059,134 Continuation-In-Part US20140113860A1 (en) | 2006-02-03 | 2013-10-21 | Long-acting polypeptides and methods of producing and administering same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/555,353 Continuation US10221228B2 (en) | 2006-02-03 | 2014-11-26 | Long-acting polypeptides and methods of producing and administering same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150007658A1 true US20150007658A1 (en) | 2015-01-08 |
Family
ID=52131909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/309,446 Abandoned US20150007658A1 (en) | 2013-07-05 | 2014-06-19 | Motion detection device and motion analysis system |
Country Status (2)
Country | Link |
---|---|
US (1) | US20150007658A1 (en) |
JP (1) | JP2015013008A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039527B2 (en) | 2010-08-26 | 2015-05-26 | Blast Motion Inc. | Broadcasting method for broadcasting images with augmented motion data |
US9235765B2 (en) | 2010-08-26 | 2016-01-12 | Blast Motion Inc. | Video and motion event integration system |
US9247212B2 (en) | 2010-08-26 | 2016-01-26 | Blast Motion Inc. | Intelligent motion capture element |
US9261526B2 (en) | 2010-08-26 | 2016-02-16 | Blast Motion Inc. | Fitting system for sporting equipment |
US20160086347A1 (en) * | 2014-09-22 | 2016-03-24 | Casio Computer Co., Ltd. | Image processing apparatus which identifies characteristic time points from variations of pixel values in images, image processing method, and recording medium |
US9320957B2 (en) | 2010-08-26 | 2016-04-26 | Blast Motion Inc. | Wireless and visual hybrid motion capture system |
US9349049B2 (en) | 2010-08-26 | 2016-05-24 | Blast Motion Inc. | Motion capture and analysis system |
US9361522B2 (en) | 2010-08-26 | 2016-06-07 | Blast Motion Inc. | Motion event recognition and video synchronization system and method |
US9396385B2 (en) | 2010-08-26 | 2016-07-19 | Blast Motion Inc. | Integrated sensor and video motion analysis method |
US9401178B2 (en) | 2010-08-26 | 2016-07-26 | Blast Motion Inc. | Event analysis system |
US9406336B2 (en) | 2010-08-26 | 2016-08-02 | Blast Motion Inc. | Multi-sensor event detection system |
US9418705B2 (en) | 2010-08-26 | 2016-08-16 | Blast Motion Inc. | Sensor and media event detection system |
US9604142B2 (en) | 2010-08-26 | 2017-03-28 | Blast Motion Inc. | Portable wireless mobile device motion capture data mining system and method |
US9607652B2 (en) | 2010-08-26 | 2017-03-28 | Blast Motion Inc. | Multi-sensor event detection and tagging system |
US9619891B2 (en) | 2010-08-26 | 2017-04-11 | Blast Motion Inc. | Event analysis and tagging system |
US9626554B2 (en) | 2010-08-26 | 2017-04-18 | Blast Motion Inc. | Motion capture system that combines sensors with different measurement ranges |
US20170124388A1 (en) * | 2014-08-04 | 2017-05-04 | Panasonic Corporation | Moving body tracking method and moving body tracking device |
US9646209B2 (en) | 2010-08-26 | 2017-05-09 | Blast Motion Inc. | Sensor and media event detection and tagging system |
US9694267B1 (en) | 2016-07-19 | 2017-07-04 | Blast Motion Inc. | Swing analysis method using a swing plane reference frame |
US9773330B1 (en) | 2016-12-29 | 2017-09-26 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US9940508B2 (en) | 2010-08-26 | 2018-04-10 | Blast Motion Inc. | Event detection, confirmation and publication system that integrates sensor data and social media |
US10124230B2 (en) | 2016-07-19 | 2018-11-13 | Blast Motion Inc. | Swing analysis method using a sweet spot trajectory |
US10265602B2 (en) | 2016-03-03 | 2019-04-23 | Blast Motion Inc. | Aiming feedback system with inertial sensors |
US10352962B2 (en) | 2016-12-29 | 2019-07-16 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis and feedback |
US10786728B2 (en) | 2017-05-23 | 2020-09-29 | Blast Motion Inc. | Motion mirroring system that incorporates virtual environment constraints |
US10973439B2 (en) | 2016-12-29 | 2021-04-13 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US11318350B2 (en) | 2016-12-29 | 2022-05-03 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US11565163B2 (en) | 2015-07-16 | 2023-01-31 | Blast Motion Inc. | Equipment fitting system that compares swing metrics |
US11577142B2 (en) | 2015-07-16 | 2023-02-14 | Blast Motion Inc. | Swing analysis system that calculates a rotational profile |
US11833406B2 (en) | 2015-07-16 | 2023-12-05 | Blast Motion Inc. | Swing quality measurement system |
US11990160B2 (en) | 2015-07-16 | 2024-05-21 | Blast Motion Inc. | Disparate sensor event correlation system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6413290B2 (en) * | 2014-03-27 | 2018-10-31 | セイコーエプソン株式会社 | Golf club determination method, golf club determination device, and golf club determination program |
JP6766292B2 (en) * | 2015-07-28 | 2020-10-14 | 株式会社ユピテル | Equipment and programs |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638300A (en) * | 1994-12-05 | 1997-06-10 | Johnson; Lee E. | Golf swing analysis system |
US20050054457A1 (en) * | 2003-09-08 | 2005-03-10 | Smartswing, Inc. | Method and system for golf swing analysis and training |
US7602301B1 (en) * | 2006-01-09 | 2009-10-13 | Applied Technology Holdings, Inc. | Apparatus, systems, and methods for gathering and processing biometric and biomechanical data |
US20120277018A1 (en) * | 2011-04-28 | 2012-11-01 | Nike, Inc. | Golf Clubs and Golf Club Heads |
US20120295726A1 (en) * | 2011-05-19 | 2012-11-22 | Harvey H. Newman | Golf swing analyzer and analysis methods |
US20120316004A1 (en) * | 2011-06-09 | 2012-12-13 | Seiko Epson Corporation | Swing analyzing device, swing analyzing program, and recording medium |
US20130260923A1 (en) * | 2012-03-30 | 2013-10-03 | Sumitomo Rubber Industries, Ltd. | Golf club shaft fitting method |
US8696482B1 (en) * | 2010-10-05 | 2014-04-15 | Swingbyte, Inc. | Three dimensional golf swing analyzer |
US20140200093A1 (en) * | 2013-01-17 | 2014-07-17 | Skyhawke Technologies, Llc. | Apparatus for providing motion sensors on a golf club |
US20140200094A1 (en) * | 2013-01-17 | 2014-07-17 | Gordon PARKE | Device and method for reconstructing and analyzing motion of a rigid body |
US8972779B2 (en) * | 2010-12-08 | 2015-03-03 | Electronics And Telecommunications Research Institute | Method of calculating parity in asymetric clustering file system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8996332B2 (en) * | 2008-06-24 | 2015-03-31 | Dp Technologies, Inc. | Program setting adjustments based on activity identification |
US8545340B2 (en) * | 2009-09-10 | 2013-10-01 | Cobra Golf Incorporated | Golf club with directional based graphic |
-
2013
- 2013-07-05 JP JP2013141722A patent/JP2015013008A/en not_active Withdrawn
-
2014
- 2014-06-19 US US14/309,446 patent/US20150007658A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638300A (en) * | 1994-12-05 | 1997-06-10 | Johnson; Lee E. | Golf swing analysis system |
US20050054457A1 (en) * | 2003-09-08 | 2005-03-10 | Smartswing, Inc. | Method and system for golf swing analysis and training |
US7602301B1 (en) * | 2006-01-09 | 2009-10-13 | Applied Technology Holdings, Inc. | Apparatus, systems, and methods for gathering and processing biometric and biomechanical data |
US8696482B1 (en) * | 2010-10-05 | 2014-04-15 | Swingbyte, Inc. | Three dimensional golf swing analyzer |
US8972779B2 (en) * | 2010-12-08 | 2015-03-03 | Electronics And Telecommunications Research Institute | Method of calculating parity in asymetric clustering file system |
US20120277018A1 (en) * | 2011-04-28 | 2012-11-01 | Nike, Inc. | Golf Clubs and Golf Club Heads |
US20120295726A1 (en) * | 2011-05-19 | 2012-11-22 | Harvey H. Newman | Golf swing analyzer and analysis methods |
US20120316004A1 (en) * | 2011-06-09 | 2012-12-13 | Seiko Epson Corporation | Swing analyzing device, swing analyzing program, and recording medium |
US20130260923A1 (en) * | 2012-03-30 | 2013-10-03 | Sumitomo Rubber Industries, Ltd. | Golf club shaft fitting method |
US20140200093A1 (en) * | 2013-01-17 | 2014-07-17 | Skyhawke Technologies, Llc. | Apparatus for providing motion sensors on a golf club |
US20140200094A1 (en) * | 2013-01-17 | 2014-07-17 | Gordon PARKE | Device and method for reconstructing and analyzing motion of a rigid body |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10748581B2 (en) | 2010-08-26 | 2020-08-18 | Blast Motion Inc. | Multi-sensor event correlation system |
US9349049B2 (en) | 2010-08-26 | 2016-05-24 | Blast Motion Inc. | Motion capture and analysis system |
US9247212B2 (en) | 2010-08-26 | 2016-01-26 | Blast Motion Inc. | Intelligent motion capture element |
US9261526B2 (en) | 2010-08-26 | 2016-02-16 | Blast Motion Inc. | Fitting system for sporting equipment |
US11355160B2 (en) | 2010-08-26 | 2022-06-07 | Blast Motion Inc. | Multi-source event correlation system |
US9320957B2 (en) | 2010-08-26 | 2016-04-26 | Blast Motion Inc. | Wireless and visual hybrid motion capture system |
US11311775B2 (en) | 2010-08-26 | 2022-04-26 | Blast Motion Inc. | Motion capture data fitting system |
US9361522B2 (en) | 2010-08-26 | 2016-06-07 | Blast Motion Inc. | Motion event recognition and video synchronization system and method |
US9396385B2 (en) | 2010-08-26 | 2016-07-19 | Blast Motion Inc. | Integrated sensor and video motion analysis method |
US9401178B2 (en) | 2010-08-26 | 2016-07-26 | Blast Motion Inc. | Event analysis system |
US9406336B2 (en) | 2010-08-26 | 2016-08-02 | Blast Motion Inc. | Multi-sensor event detection system |
US9418705B2 (en) | 2010-08-26 | 2016-08-16 | Blast Motion Inc. | Sensor and media event detection system |
US9604142B2 (en) | 2010-08-26 | 2017-03-28 | Blast Motion Inc. | Portable wireless mobile device motion capture data mining system and method |
US9607652B2 (en) | 2010-08-26 | 2017-03-28 | Blast Motion Inc. | Multi-sensor event detection and tagging system |
US9619891B2 (en) | 2010-08-26 | 2017-04-11 | Blast Motion Inc. | Event analysis and tagging system |
US9626554B2 (en) | 2010-08-26 | 2017-04-18 | Blast Motion Inc. | Motion capture system that combines sensors with different measurement ranges |
US9633254B2 (en) | 2010-08-26 | 2017-04-25 | Blast Motion Inc. | Intelligent motion capture element |
US10881908B2 (en) | 2010-08-26 | 2021-01-05 | Blast Motion Inc. | Motion capture data fitting system |
US9646199B2 (en) | 2010-08-26 | 2017-05-09 | Blast Motion Inc. | Multi-sensor event analysis and tagging system |
US9039527B2 (en) | 2010-08-26 | 2015-05-26 | Blast Motion Inc. | Broadcasting method for broadcasting images with augmented motion data |
US10706273B2 (en) | 2010-08-26 | 2020-07-07 | Blast Motion Inc. | Motion capture system that combines sensors with different measurement ranges |
US10607349B2 (en) | 2010-08-26 | 2020-03-31 | Blast Motion Inc. | Multi-sensor event system |
US9814935B2 (en) | 2010-08-26 | 2017-11-14 | Blast Motion Inc. | Fitting system for sporting equipment |
US9824264B2 (en) | 2010-08-26 | 2017-11-21 | Blast Motion Inc. | Motion capture system that combines sensors with different measurement ranges |
US9830951B2 (en) | 2010-08-26 | 2017-11-28 | Blast Motion Inc. | Multi-sensor event detection and tagging system |
US9866827B2 (en) | 2010-08-26 | 2018-01-09 | Blast Motion Inc. | Intelligent motion capture element |
US9911045B2 (en) | 2010-08-26 | 2018-03-06 | Blast Motion Inc. | Event analysis and tagging system |
US10406399B2 (en) | 2010-08-26 | 2019-09-10 | Blast Motion Inc. | Portable wireless mobile device motion capture data mining system and method |
US9940508B2 (en) | 2010-08-26 | 2018-04-10 | Blast Motion Inc. | Event detection, confirmation and publication system that integrates sensor data and social media |
US9235765B2 (en) | 2010-08-26 | 2016-01-12 | Blast Motion Inc. | Video and motion event integration system |
US9646209B2 (en) | 2010-08-26 | 2017-05-09 | Blast Motion Inc. | Sensor and media event detection and tagging system |
US10109061B2 (en) | 2010-08-26 | 2018-10-23 | Blast Motion Inc. | Multi-sensor even analysis and tagging system |
US10350455B2 (en) | 2010-08-26 | 2019-07-16 | Blast Motion Inc. | Motion capture data fitting system |
US10133919B2 (en) | 2010-08-26 | 2018-11-20 | Blast Motion Inc. | Motion capture system that combines sensors with different measurement ranges |
US10339978B2 (en) | 2010-08-26 | 2019-07-02 | Blast Motion Inc. | Multi-sensor event correlation system |
US20170124388A1 (en) * | 2014-08-04 | 2017-05-04 | Panasonic Corporation | Moving body tracking method and moving body tracking device |
US10002289B2 (en) * | 2014-08-04 | 2018-06-19 | Panasonic Corporation | Moving body tracking method and moving body tracking device |
US20160086347A1 (en) * | 2014-09-22 | 2016-03-24 | Casio Computer Co., Ltd. | Image processing apparatus which identifies characteristic time points from variations of pixel values in images, image processing method, and recording medium |
US9934582B2 (en) * | 2014-09-22 | 2018-04-03 | Casio Computer Co., Ltd. | Image processing apparatus which identifies characteristic time points from variations of pixel values in images, image processing method, and recording medium |
US11565163B2 (en) | 2015-07-16 | 2023-01-31 | Blast Motion Inc. | Equipment fitting system that compares swing metrics |
US11577142B2 (en) | 2015-07-16 | 2023-02-14 | Blast Motion Inc. | Swing analysis system that calculates a rotational profile |
US11833406B2 (en) | 2015-07-16 | 2023-12-05 | Blast Motion Inc. | Swing quality measurement system |
US11990160B2 (en) | 2015-07-16 | 2024-05-21 | Blast Motion Inc. | Disparate sensor event correlation system |
US10265602B2 (en) | 2016-03-03 | 2019-04-23 | Blast Motion Inc. | Aiming feedback system with inertial sensors |
US10617926B2 (en) | 2016-07-19 | 2020-04-14 | Blast Motion Inc. | Swing analysis method using a swing plane reference frame |
US9694267B1 (en) | 2016-07-19 | 2017-07-04 | Blast Motion Inc. | Swing analysis method using a swing plane reference frame |
US10716989B2 (en) | 2016-07-19 | 2020-07-21 | Blast Motion Inc. | Swing analysis method using a sweet spot trajectory |
US10124230B2 (en) | 2016-07-19 | 2018-11-13 | Blast Motion Inc. | Swing analysis method using a sweet spot trajectory |
US9773330B1 (en) | 2016-12-29 | 2017-09-26 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US11318350B2 (en) | 2016-12-29 | 2022-05-03 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US10089763B2 (en) | 2016-12-29 | 2018-10-02 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis and feedback |
US10352962B2 (en) | 2016-12-29 | 2019-07-16 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis and feedback |
US10973439B2 (en) | 2016-12-29 | 2021-04-13 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US11679300B2 (en) | 2016-12-29 | 2023-06-20 | BioMech Sensor LLC | Systems and methods for real-time data quantification, acquisition, analysis, and feedback |
US12005344B2 (en) | 2017-05-23 | 2024-06-11 | Blast Motion Inc. | Motion mirroring system that incorporates virtual environment constraints |
US11400362B2 (en) | 2017-05-23 | 2022-08-02 | Blast Motion Inc. | Motion mirroring system that incorporates virtual environment constraints |
US10786728B2 (en) | 2017-05-23 | 2020-09-29 | Blast Motion Inc. | Motion mirroring system that incorporates virtual environment constraints |
Also Published As
Publication number | Publication date |
---|---|
JP2015013008A (en) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150007658A1 (en) | Motion detection device and motion analysis system | |
US20150012240A1 (en) | Motion analysis device | |
US10478707B2 (en) | Motion analysis method and motion analysis device | |
US10459002B2 (en) | Motion analysis method and motion analysis device | |
US9717969B2 (en) | Motion analyzing apparatus and motion analyzing program | |
US20150111657A1 (en) | Movement analysis method, movement analysis apparatus, and movement analysis program | |
US20140378239A1 (en) | Motion analysis method and motion analysis device | |
US20140379295A1 (en) | Motion analysis device | |
US20170239520A1 (en) | Motion analysis apparatus, motion analysis system, motion analysis method, recording medium, and display method | |
US20160089568A1 (en) | Exercise analysis device, exercise analysis system, exercise analysis method, and program | |
US20170007880A1 (en) | Motion analysis method, motion analysis apparatus, motion analysis system, and program | |
US20150119159A1 (en) | Motion analyzing apparatus, motion analyzing method, and motion analyzing program | |
JP2015073821A (en) | Motion analysis method, motion analyzer, and motion analysis program | |
JP6862931B2 (en) | Motion analysis device, motion analysis method, motion analysis system and display method | |
US20150143870A1 (en) | Azimuth angle calibration method and motion analysis apparatus | |
JP6255737B2 (en) | Motion analysis apparatus, motion analysis program, and display method | |
JP6428815B2 (en) | Motion analysis device, motion analysis system, and motion analysis method | |
JP2015100478A (en) | Motion analysis method, motion analysis display method, motion analysis device, and motion analysis program | |
JP6255738B2 (en) | Motion analysis apparatus, motion analysis program, and display method | |
JP2015134008A (en) | Motion analysis method, motion analysis device, and motion analysis program | |
JP2016101314A (en) | Form analysis device, form analysis system, form analysis method, and form analysis program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEIKO EPSON CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIKAWA, YUYA;KODAIRA, KENYA;SIGNING DATES FROM 20140418 TO 20140423;REEL/FRAME:033142/0027 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |