US20140339486A1 - Security barrier - Google Patents

Security barrier Download PDF

Info

Publication number
US20140339486A1
US20140339486A1 US14/237,125 US201214237125A US2014339486A1 US 20140339486 A1 US20140339486 A1 US 20140339486A1 US 201214237125 A US201214237125 A US 201214237125A US 2014339486 A1 US2014339486 A1 US 2014339486A1
Authority
US
United States
Prior art keywords
fence
barrier
post
fences
posts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/237,125
Inventor
Graham Sharp
Simon Box
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hill and Smith PLC
Original Assignee
Hill and Smith PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hill and Smith PLC filed Critical Hill and Smith PLC
Assigned to HILL & SMITH LIMITED reassignment HILL & SMITH LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOX, Simon, SHARP, GRAHAM
Publication of US20140339486A1 publication Critical patent/US20140339486A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/04Continuous barriers extending along roads or between traffic lanes essentially made of longitudinal beams or rigid strips supported above ground at spaced points
    • E01F15/0476Foundations
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/04Continuous barriers extending along roads or between traffic lanes essentially made of longitudinal beams or rigid strips supported above ground at spaced points
    • E01F15/0461Supports, e.g. posts
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F13/00Arrangements for obstructing or restricting traffic, e.g. gates, barricades ; Preventing passage of vehicles of selected category or dimensions
    • E01F13/12Arrangements for obstructing or restricting traffic, e.g. gates, barricades ; Preventing passage of vehicles of selected category or dimensions for forcibly arresting or disabling vehicles, e.g. spiked mats
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/06Continuous barriers extending along roads or between traffic lanes essentially made of cables, nettings or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/22Sockets or holders for poles or posts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/22Sockets or holders for poles or posts
    • E04H12/2253Mounting poles or posts to the holder
    • E04H12/2269Mounting poles or posts to the holder in a socket
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/009Footing elements for fence posts or fence sections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/14Fences constructed of rigid elements, e.g. with additional wire fillings or with posts
    • E04H17/1413Post-and-rail fences, e.g. without vertical cross-members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/14Fences constructed of rigid elements, e.g. with additional wire fillings or with posts
    • E04H17/16Fences constructed of rigid elements, e.g. with additional wire fillings or with posts using prefabricated panel-like elements, e.g. wired frames
    • E04H17/161Fences constructed of rigid elements, e.g. with additional wire fillings or with posts using prefabricated panel-like elements, e.g. wired frames using wire panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/14Fences constructed of rigid elements, e.g. with additional wire fillings or with posts
    • E04H17/20Posts therefor
    • E04H17/22Anchoring means therefor, e.g. specially-shaped parts entering the ground; Struts or the like

Definitions

  • This invention relates to security barriers and, in particular but not exclusively, to barriers that provide an effective perimeter protection against wilful intrusion into high security installations such as airports.
  • a known anti-vehicle barrier is described in the Applicant's co-pending patent application number GB2447783.
  • This document discloses a perimeter security barrier for restraining a vehicle impacting the barrier from a direction substantially perpendicular thereto or between 25 and 90 degrees relative to the barrier.
  • the barrier comprises a plurality of wire ropes supported by a series of posts configured to restrain heavy impacting vehicles.
  • the present invention has been devised with the problem of how to effectively protect against breaches by both persons and vehicles.
  • a security barrier comprising a first fence and a second fence, the first fence comprising a first series of posts and the second fence comprising a second series of posts, the first and second fences being provided adjacent to each other with the first fence being coupled below ground level with the second fence, wherein the barrier further comprises a footing having a first post socket for receiving a first post from the first fence and a second post socket for receiving a first post from the second fence.
  • the coupling between the first and second fences is provided between the first post socket and the second post socket.
  • the footing is formed of concrete.
  • the first and second post sockets may be of different dimensions.
  • the sockets may be of the same dimensions.
  • One or both post sockets may comprise separate inserts—e.g. a liner, preferably of metal—provided within correspondingly sized apertures within the footing. This enables easy replacement of the sockets and/or posts in the event of damage due to an impact. Alternatively, the posts may be fixed directly within the footing etc.
  • the common footing provided for posts of the first and second fences provides a secure foundation and adds strength to the barrier, which may be subjected to a high energy impact from an oncoming vehicle.
  • the common footing also helps to dissipate energy from the impact through the posts to the footing and ground thus assists in arresting the vehicle.
  • the barrier further comprises connecting means for connecting the first post of the first fence to the first post of the second fence below ground level.
  • the connecting means may comprise one or more bolts connecting the first and second posts and/or sockets. This further strengthens the foundation and aids energy dissipation in the event of an impact by a vehicle.
  • first and second sockets are separated by a spacing means.
  • the posts are separated by a distance of between 2 and 20 cm.
  • the separation is less than 10 cm.
  • the first and second sockets are separated by a distance of 5.0 or 5.5 cm.
  • the two fences are preferably provided as close together as possible, just leaving space therebetween to allow maintenance access—e.g. for rope tensioning or replacement/re-hanging of ropes following an impact.
  • Mounting the two fences close together advantageously reduces the footprint required on the land. It furthermore facilitates maintenance of the surrounding land and/or environment as maximum access is provided to the land near the barrier without the need to interfere with the barrier itself (which may be dangerous due to the threat of attack of the installation). Furthermore, if the two fences were separated further with a ‘no-man's land’ therebetween, it would be visually more obtrusive.
  • the barrier comprises a plurality of footings, each for coupling a first fence with a second fence such that the first and second fences extend substantially in the same direction as one another.
  • the first fence may be an anti-personnel fence configured to prevent access from pedestrian intruders and the second fence may be a vehicle mitigating fence configured to withstand and absorb energy from an impact by a vehicle.
  • the anti-personnel fence is disposed with respect to the vehicle mitigating fence such that the anti-personnel fence will be impacted first by an oncoming vehicle.
  • the vehicle mitigating fence is thus provided on the opposite side of the barrier (i.e. the side immediately adjacent the area to be protected).
  • This arrangement helps to minimise the damage to the barrier as collapse of the anti-personnel fence into the vehicle mitigating fence has less of an effect on the vehicle mitigating fence than if the vehicle mitigating fence was disposed on the impact side of the barrier with the antipersonnel fence being provided on the installation side thereof.
  • Mounting the two fences close together advantageously controls damage to the antipersonnel fence since, in the event of a vehicle impact, the vehicle engages with the anti-personnel fence first and then with the vehicle mitigating fence shortly thereafter.
  • the closeness of the fences and the effectiveness of the vehicle mitigating fence in arresting the vehicle means that minimal damage to the anti-personnel fence occurs. If the anti-personnel fence were provided at a greater distance from the vehicle mitigating fence, it would be more susceptible to damage over a greater length since it is inherently not as strong or resistant to damage as the vehicle mitigating fence.
  • the vehicle mitigating fence is disposed on the impact side of the barrier with the antipersonnel fence being provided on the installation side thereof.
  • the vehicle mitigating fence comprises a plurality of wire ropes supported by the second series of posts, and the anti-personnel fence comprises a series of meshed panels supported on the first series of posts. This advantageously allows a clear line of sight through the fence, enabling visual security checks to be performed.
  • the vehicle mitigating fence may comprise one or more ropes woven with respect to the posts and/or one or more unwoven ropes disposed on one side of the series of posts.
  • One or each end of the plurality of ropes of the vehicle mitigating fence may terminate in a terminal, preferably a terminal provided on or in the ground.
  • the last post in the series of posts of the vehicle mitigating fence may comprise means on or within the post for supporting the ropes. It is preferable for the ropes to enter the terminal from the end post at an angle that enables the separation of the vehicle mitigating fence and the anti-personnel fence to remain substantially constant. That is to say, even though a terminal for receiving the ends of the ropes of the vehicle mitigating fence is provided, this does not alter the line of the anti-vehicle or anti-personnel fence and no interruption or deviation thereof is required.
  • the damage to the anti-personnel fence is localised such as to only affect a single or a small number of panels. Panels away from the vicinity of the impact remain intact or at least in a condition to withstand further impacts.
  • the vehicle mitigating fence also remains in place with only a small number of posts in the area local to the impact itself being bent/deformed. The combined fence thus remains operable allowing time for repairs to be made thereto whilst still providing a good degree of security.
  • a post footing for use with a security barrier is provided, as described above.
  • FIG. 1 shows a perspective view of a security barrier according to an embodiment of the invention
  • FIGS. 2 a to 2 c show front elevational views of sections of the security barrier according to an embodiment of the invention
  • FIGS. 3 a and 3 b are end views of the security barrier of FIGS. 2 a to 2 c;
  • FIG. 4 a is a top plan view of an end post and terminal according to an embodiment of the invention.
  • FIG. 4 b is a top plan view of an end post and terminal according to another embodiment of the invention.
  • FIG. 4 c is a top plan view of an end post and terminal according to a further embodiment of the invention.
  • FIG. 5 a is a front perspective view of the end post of the embodiment of FIG. 4 a;
  • FIG. 5 b is a rear perspective view of an end post
  • FIGS. 6 to 8 show the security barrier of FIG. 1 before and after an impact by a vehicle.
  • FIG. 1 shows a security barrier 10 .
  • the barrier 10 comprises a vehicle mitigating fence 20 for protecting an installation (not shown) against otherwise penetrative vehicular attacks.
  • the barrier 10 further comprises an anti-personnel fence 40 designed to keep pedestrian intruders out of the installation.
  • the anti-vehicle fence 20 e.g. Bristorm® manufactured by Hill & Smith Limited, is intended to restrain heavy vehicles impacting from a direction that is substantially perpendicular, or at an angle of between 25 and 90 degrees, to the line of the barrier. Breach of the barrier by a heavy goods vehicle in the order of 7500 kg inertial mass impacting the barrier at speeds of about 64-80 km/hr is prevented.
  • the vehicle mitigating fence 20 comprises a series of posts 22 mounted in the ground.
  • a plurality of ropes 24 are supported on the posts 22 .
  • the ropes 24 may be plastic coated, high tensile steel ropes or cables that are pre-tensioned between the posts 22 .
  • the ropes 24 may be disposed at a height of between 300 mm and 2 metres above the ground.
  • the height position of at least some of the ropes 24 is selected to be such that the engine of an impacting vehicle will impact them.
  • Ropes 24 may be provided at varying heights above the ground, for absorbing energy from a range of vehicles of varying sizes.
  • a pair of wire ropes 24 a , 24 b is provided at or approximately at the midpoint of the posts 22 (i.e. approximately halfway from the ground level to the top of the posts 22 ).
  • the ropes 24 a , 24 b are sinuously woven with respect to the posts such that a first rope 24 a of the pair passes on a first side of a first post 22 , and on an opposite, second side of an adjacent post 22 , and so on.
  • the second rope 24 b of the pair passes on a corresponding second side of the first post 22 , and on a first side of the adjacent post, etc.
  • An additional rope 24 c is sinuously woven between the posts 22 at a vertical position lower than the rope pair 24 a , 24 b
  • a further rope 24 d is sinuously woven between the posts 22 at a vertical position higher than the rope pair 24 a , 24 b
  • These additional ropes 24 c , 24 d are oppositely woven with respect to each other such that one passes on a first side of one post and the other passes on the opposite, second side thereof.
  • a further rope 24 e is provided within a slot 26 in the top of the posts 22 .
  • Other configurations are envisaged, e.g. a different combination of woven and unwoven ropes, or with further woven rope pairs or additional woven or unwoven ropes.
  • the ropes 24 are supported on the posts 22 using one or more hooks 28 e.g. formed/angled from a stainless steel bar and fixed within corresponding apertures provided within the posts 22 e.g. with bolts.
  • the design parameters of the barrier are such that, on impact, the intermediate posts are pushed back to incline away from the impact direction by up to 40 degrees.
  • the angle of the hook 28 is such that the ropes 24 will tend to separate from the hook 28 when the posts 22 are pushed back during impact.
  • the intermediate posts may be inclined relative to the vertical towards the predetermined direction, that is, towards the oncoming vehicle.
  • the inclination of the intermediate post(s) to the vertical may be between 0 and 45 degrees, preferably between 0 and 20 degrees, and more preferably 10 degrees.
  • the barrier 10 may be provided as a perimeter security barrier—i.e. extending around and enclosing an installation, or a length thereof may be provided to e.g. span the distance between two buildings, walls or other solid structures.
  • the ropes 24 pass around, or are supported by an end post 30 .
  • the end post 30 is vertical and anchored in the ground.
  • a rope support device is provided on the end post 30 .
  • the rope support device is a tab 31 welded or integrally formed with the post 30 .
  • One or more apertures 31 a are provided within the tab 31 for receiving one or more ropes 24 .
  • each of the five ropes 24 pass through and are thus supported by a separate tab aperture 31 a .
  • the ropes may be supported by other means e.g. apertures or grooves/notches provided directly within the post 30 , or hooks or provided on the post 30 .
  • the ropes 24 are anchored at each end thereof and terminate in a rope terminal 32 .
  • the terminal 32 is provided on or in the ground.
  • the ground terminal 32 may be in the form of bolts or another suitable mechanical rope gripping device.
  • the terminal 32 also holds the ropes in tension.
  • the ropes may be tensioned after hanging on the posts 22 , and the terminal 32 then acts to maintain the tension therein.
  • a load or energy-absorbing device (not shown) may be provided between respective ends of the ropes 24 and the posts 30 /terminal 32 . This device may be in the form of a hot rolled channel section or hollow tube that is configured to absorb energy transmitted from the impacting vehicle by the ropes.
  • the energy-absorption means is designed to deform under the increased tension load in the ropes during impact by a vehicle. This limits the peak rope loads to tolerable levels and restrains the ropes in order that they develop tension to resist penetration or breach of the barrier by the impacting vehicle.
  • FIG. 4 a shows an example of termination of the vehicle mitigating fence 20 earlier than the anti-personnel fence 40 .
  • FIG. 4 b shows an alternative embodiment wherein two runs of vehicle-mitigating fence 20 , 20 ′ are terminated using a common end post 30 .
  • the ropes 24 of a first vehicle mitigating fence 20 pass around the end post 30 as described above and terminate in a terminal 32 .
  • the ropes 24 ′ of a second vehicle mitigating fence 20 ′ pass around the end post 30 as described above and terminate in a second terminal 32 ′.
  • the ropes 24 , 24 ′ pass through tab apertures 31 a as described above. Separate or common apertures 31 a may be provided for the ropes of each of the two fences 20 , 20 ′.
  • the terminals 32 are inset from the line of the barrier 10 a little such that the ropes 24 of the vehicle mitigating fence 20 , 20 ′ enter the terminals 32 , 32 ′ at an angle slightly greater than 90° relative to the original direction of the fence 20 .
  • This enables the vehicle mitigating fence 20 , 20 ′ and the anti-personnel fence 40 to be situated close together, at substantially the same separation along the length of the barrier 10 (apart from in the vicinity of where the ropes 24 pass around the end post 30 —as can be seen in FIGS. 4 a , 4 b ).
  • FIGS. 4 a , 4 b In the embodiments of FIGS.
  • this enables the barrier 10 to be provided with a 90° change of direction. If the terminals 32 , 32 ′ were provided at 90° to the original line of the vehicle mitigating fence 20 , this would necessitate a change in the line of the anti-personnel fence 20 e.g. by flaring it out around the terminals 32 . Similarly, in some known wire rope barriers used for other purposes, the ropes thereof terminate in the end post itself (i.e. a ground terminal is not used) which, if incorporated in embodiments of the present invention, would also require flaring out of an adjacent anti-personnel fence.
  • terminals 32 , 32 ′ could be provided at different locations in order to provide a different change of angle (i.e. other than 90°) at which lengths of vehicle mitigating fence 20 , 20 ′ are provided.
  • Posts similar to the end posts 30 shown in FIGS. 4 a and 5 a could also be utilised in directing the ropes 24 of a single fence 20 to continue at a different angle—90° or otherwise—e.g. as would be required if the barrier 10 is employed as a perimeter barrier.
  • FIG. 4 c shows an alternative embodiment wherein termination of two runs of vehicle mitigating fence 20 , 20 ′ is required without any change of angle.
  • the ropes 24 , 24 ′ pass through tab apertures 31 a on the post 30 and exit at an angle to terminate in respective terminals 32 , 32 ′ such that the vehicle mitigating fences 20 , 20 ′ are provided substantially in line with each other with no change of angle therebetween. This enables the vehicle mitigating fence 20 , 20 ′ to run substantially in a straight line parallel to the anti-personnel fence 40 .
  • the fences 20 , 40 are thus arranged to extend substantially in the same direction as one another and, when a change in direction is required they remain close together and continue to extend in substantially the same direction after the change in angle.
  • the fences 20 , 40 may run in a straight line, approximately parallel to one another, at least over a length thereof. Depending on the nature of the installation to be protected, the fences 20 , 40 may be required to change direction at certain locations along the length thereof.
  • the ropes 24 can be anchored at any angle relative to the original direction of a length of fence 20 , or in line therewith, depending on the site topography and/or installation requirements.
  • the fences 20 , 40 may also be terminated in different locations. This provides flexibility to protect a variety of areas of land/installations.
  • the anti-personnel fence 40 e.g. SecureguardTM provided by Barkers Fencing, provides protection against wilful intrusion by people and is designed to mitigate against intruders climbing over and cutting through the fence.
  • a series of posts 42 are mounted in the ground.
  • a plurality of mesh panels 44 are secured to the posts 42 e.g. with tamper-proof bolts 45 (shown in FIG. 3 b ).
  • the anti-personnel fence may be of the chain link or palisade type.
  • the mesh size is small (e.g. 75 mm ⁇ 12.5 mm produced with 4.00 mm+/ ⁇ 0.10 mm wire).
  • the posts 42 are taller than those 22 of the anti-vehicle fence 20 , e.g.
  • the anti-personnel fence 40 extends vertically beyond the vehicle mitigating fence 20 .
  • the anti-personnel fence 40 is required to be tall in order to keep intruders out of the installation.
  • the anti-personnel fence can be provided with or without strainer posts 46 e.g. as shown in FIGS. 4 b , 4 c .
  • strainer posts are used at corners and intermediate posts of the anti-personnel fence 40 where tensioned line wires are used to support the mesh (not shown).
  • the strainer post has a “leg” bolted to the side of the post at an angle of about 45 degrees.
  • the vehicle mitigating fence 20 and the anti-personnel fence 40 are mounted in the ground in close proximity to one another.
  • the minimum spacing required therebetween is determined by the diameter of the rope 24 plus space to allow access for installing/rehanging ropes etc.
  • a typical rope diameter used is 15.7 mm (excluding the plastic coating that is preferably provided on the rope).
  • the gap between adjacent faces on the posts 22 , 42 may be within approximately 2-15 cm, and preferably substantially at a separation of 5.5 cm. Larger spacings e.g. 20 cm or more are envisaged, but this would compromise the benefit of the barrier 10 occupying only a small footprint on the land. This spacing allows for the fitting or removal of one of the ropes 24 without the need to dismantle the entire fence 20 . This is particularly important when repairing the barrier 10 following an impact.
  • the vehicle mitigating fence 20 and the anti-personnel fence 40 are mounted in the ground in a common footing or foundation 50 .
  • the footing 50 is provided entirely within the ground.
  • a first channel 52 is sized to receive the lower end of post 22 of the anti-vehicle fence 20 .
  • a second channel 54 is sized to receive the lower end of post 42 of the anti-intruder fence 40 .
  • the channel 52 for the vehicle mitigating barrier post 22 is wider and shallower than the channel 54 for the anti-personnel barrier post 42 . It will, however, be appreciated that each channel 52 , 54 may be of any width, depth and height to accommodate different sized posts 22 , 42 .
  • FIG. 3 b shows the footing 50 and details of how the ends of the posts 22 , 42 are provided therein.
  • a socket 53 a is provided within the channel 52 , the end of the post 22 being received therein.
  • a similar socket 53 b is provided within the channel 54 with the end of post 42 being received therein.
  • Each socket 53 a , 53 b is a metal insert or sleeve corresponding in size externally to the internal dimensions of the channels 52 , 54 .
  • the internal size of the socket 53 a , 53 b correspond to the external dimensions of the end of the posts 22 , 42 .
  • the depth of the sockets 53 a , 53 b define the height of the posts 22 , 42 of the vehicle-mitigating fence 20 and the anti-personnel fence 40 above ground and can vary from post to post and for different installations.
  • One or more spacer blocks 55 are provided within the footing 50 between the socket 53 a for the vehicle-mitigating fence post 22 and the socket 53 b for the anti-personnel fence post 42 .
  • two spacer blocks 55 are provided, welded or otherwise secured to the anti-vehicle post socket 53 a .
  • the spacer blocks 55 can be of any size chosen to define the desired spacing between the posts 22 , 42 —e.g. 5.5 cm in width as discussed above.
  • the socket 53 b for the anti-personnel fence post 42 is provided with one or more apertures (corresponding to the number of spacer blocks 55 being used) through which a bolt 57 is provided.
  • the bolt 57 couples the socket 53 b of the anti-personnel fence post 42 to the socket 53 a and thus to the vehicle-mitigating fence post 22 .
  • the anti-personnel fence post 42 is provided with one or more apertures corresponding to the apertures in the socket 53 b .
  • the bolt 57 can therefore pass through the apertures of the anti-personnel fence post 42 to couple the socket 53 b and the anti-personnel fence post 42 .
  • the position of the apertures in the socket 53 b , anti-personnel posts 42 and thus the position of the spacer blocks 55 can be chosen relative to the socket 53 a for the post 22 of the vehicle-mitigating fence 20 to control the height of the anti-personnel fence 40 above the ground.
  • the post 42 of the anti-personnel fence 40 could be provided in a sleeve (not shown) such that one or both posts 22 , 42 are mounted in a sleeve in the footing 50 .
  • the spacer block 55 could be welded or bolted (for example) to either or both sleeves.
  • a footplate 56 may be provided on the base of one or each of the posts 22 , 42 .
  • the footplate 56 helps to secure the post 22 , 42 in the footing 50 , especially since the post 22 , 42 may be subject to a high-energy impact from a colliding vehicle.
  • the two fences 20 , 40 are thus coupled together underground via the coupling between the sockets 53 a , 53 b but remain independent of each other above ground level.
  • the footing 50 is a concrete footing such that the ends of the posts 22 , 42 are embedded within the concrete.
  • the coupled sockets 53 a , 53 b and anti-personnel fence post 42 are positioned and suspended within a hole in the ground at the desired height within the hole (defined by the predetermined height of the sockets 53 a , 53 b ). Concrete is then poured into the hole in order to secure the sockets 53 a , 53 b and post 42 therein.
  • the mesh panels 44 are then attached to the posts 42 of the anti-personnel fence, and the ropes 24 are mounted on the posts 22 of the vehicle-mitigating fence 20 , terminating at the end posts 30 and terminals 32 .
  • a larger common footing 60 is provided in which an end post 30 and one or more adjacent fence posts 22 , 22 ′, 42 are mounted.
  • the common footing 60 preferably concrete, can be of any size to accommodate the required number of posts 22 , 22 ′, 42 , 60 .
  • the ground terminals 32 , 32 ′ can also be mounted on/within the footing 60 .
  • FIG. 6 shows a security fence 10 according to embodiments of the invention just prior to a collision by an oncoming vehicle.
  • the fence 10 is constructed so that an impacting vehicle will first make contact with the anti-personnel fence 40 , and then with the vehicle mitigating fence 20 .
  • the majority of the ropes 24 of the vehicle mitigating fence 20 are provided at a height that corresponds to the front/bumper of the vehicle.
  • An impacting vehicle makes contact with the ropes 24 which push back on the posts 22 . This transmits energy to the posts 22 adjacent to the impact zone, thereby spreading the impact load along the length of the fence 20 . Impact energy is also dissipated through the posts into the common footing 50 and into the ground.
  • FIGS. 7 and 8 show the security barrier 10 after an impact has occurred. It can be seen that the posts 22 of the vehicle mitigating fence 20 in the vicinity of the impact have been bent or deformed, but are still standing with at least some of the ropes 24 being maintained in position with respect to the posts 22 . Away from the impact zone, the posts 22 remain upright with the ropes 24 substantially in their original positions. Although damaged, the anti-vehicle fence 20 is still capable of withstanding further impacts from vehicles along its length, and especially away from the point of impact.
  • Embodiments of the invention employ separate anti-personnel and anti-vehicle fences, independent above ground, which advantageously provide great flexibility in that the design can be adapted to match an existing perimeter or to provide whatever level of perimeter protection is desired.

Abstract

A security barrier (10) comprises a first fence (20) and a second fence (40). The first fence comprises a first series of posts (22) and the second fence comprises a second series of posts (42). The first and second fences are provided adjacent to each other with the first fence being coupled below ground level with a the second fence. A footing having first and second post sockets is also provided for receiving a first post from each of the first and second fences respectively.

Description

  • This invention relates to security barriers and, in particular but not exclusively, to barriers that provide an effective perimeter protection against wilful intrusion into high security installations such as airports.
  • A known anti-vehicle barrier is described in the Applicant's co-pending patent application number GB2447783. This document discloses a perimeter security barrier for restraining a vehicle impacting the barrier from a direction substantially perpendicular thereto or between 25 and 90 degrees relative to the barrier. The barrier comprises a plurality of wire ropes supported by a series of posts configured to restrain heavy impacting vehicles.
  • High security installations such as airports, defence installations etc are, however, not only prone to attacks by vehicles but also by pedestrians wishing to gain access thereto. The anti-vehicle fence discussed above would be ineffective against intrusion by persons who could simply climb over or through the wire ropes. Specialist anti-personnel fences, comprising panels of small mesh spacing, are known in the art that are resistant to cutting and climb-over.
  • The present invention has been devised with the problem of how to effectively protect against breaches by both persons and vehicles.
  • According to the present invention, there is provided a security barrier comprising a first fence and a second fence, the first fence comprising a first series of posts and the second fence comprising a second series of posts, the first and second fences being provided adjacent to each other with the first fence being coupled below ground level with the second fence, wherein the barrier further comprises a footing having a first post socket for receiving a first post from the first fence and a second post socket for receiving a first post from the second fence.
  • It is an advantage that two separate fences are used for the purpose of preventing access by both vehicles and persons since this avoids providing a single dual-purpose barrier that is more complex to manufacture and expensive to repair in the event of a vehicle impact or other damage. However, coupling the fences together underground provides the further advantage of strengthening the foundations of the barrier and therefore the barrier itself. It is a further advantage in providing sockets for each fence post as, in the event of damage to one of the fences, such as by a vehicle impact, the sockets allow easier and quicker repair of the damaged fence post and therefore the barrier. Furthermore, by providing both sockets in the same footing, the strength of the barrier footing is increased relative to providing separate footings for each socket. Manufacture of the footing for the barrier is also easier with a single footing.
  • In an embodiment, the coupling between the first and second fences is provided between the first post socket and the second post socket. By coupling the fences in this way, the energy from any impact with one of the fences is at least partially insulated from the second fence. This is advantageous as it minimises the area of the barrier damaged thus minimising the area of any breach in the fence that may require guarding.
  • Preferably, the footing is formed of concrete. The first and second post sockets may be of different dimensions. Alternatively, the sockets may be of the same dimensions.
  • One or both post sockets may comprise separate inserts—e.g. a liner, preferably of metal—provided within correspondingly sized apertures within the footing. This enables easy replacement of the sockets and/or posts in the event of damage due to an impact. Alternatively, the posts may be fixed directly within the footing etc.
  • The common footing provided for posts of the first and second fences provides a secure foundation and adds strength to the barrier, which may be subjected to a high energy impact from an oncoming vehicle. The common footing also helps to dissipate energy from the impact through the posts to the footing and ground thus assists in arresting the vehicle.
  • In an embodiment, the barrier further comprises connecting means for connecting the first post of the first fence to the first post of the second fence below ground level. The connecting means may comprise one or more bolts connecting the first and second posts and/or sockets. This further strengthens the foundation and aids energy dissipation in the event of an impact by a vehicle.
  • In an embodiment the first and second sockets are separated by a spacing means. Preferably, the posts are separated by a distance of between 2 and 20 cm. Preferably the separation is less than 10 cm. Desirably, the first and second sockets are separated by a distance of 5.0 or 5.5 cm. The two fences are preferably provided as close together as possible, just leaving space therebetween to allow maintenance access—e.g. for rope tensioning or replacement/re-hanging of ropes following an impact.
  • Mounting the two fences close together advantageously reduces the footprint required on the land. It furthermore facilitates maintenance of the surrounding land and/or environment as maximum access is provided to the land near the barrier without the need to interfere with the barrier itself (which may be dangerous due to the threat of attack of the installation). Furthermore, if the two fences were separated further with a ‘no-man's land’ therebetween, it would be visually more obtrusive.
  • In a preferred embodiment the barrier comprises a plurality of footings, each for coupling a first fence with a second fence such that the first and second fences extend substantially in the same direction as one another.
  • The first fence may be an anti-personnel fence configured to prevent access from pedestrian intruders and the second fence may be a vehicle mitigating fence configured to withstand and absorb energy from an impact by a vehicle. Preferably, the anti-personnel fence is disposed with respect to the vehicle mitigating fence such that the anti-personnel fence will be impacted first by an oncoming vehicle. The vehicle mitigating fence is thus provided on the opposite side of the barrier (i.e. the side immediately adjacent the area to be protected). This arrangement helps to minimise the damage to the barrier as collapse of the anti-personnel fence into the vehicle mitigating fence has less of an effect on the vehicle mitigating fence than if the vehicle mitigating fence was disposed on the impact side of the barrier with the antipersonnel fence being provided on the installation side thereof.
  • Mounting the two fences close together advantageously controls damage to the antipersonnel fence since, in the event of a vehicle impact, the vehicle engages with the anti-personnel fence first and then with the vehicle mitigating fence shortly thereafter. The closeness of the fences and the effectiveness of the vehicle mitigating fence in arresting the vehicle means that minimal damage to the anti-personnel fence occurs. If the anti-personnel fence were provided at a greater distance from the vehicle mitigating fence, it would be more susceptible to damage over a greater length since it is inherently not as strong or resistant to damage as the vehicle mitigating fence. If the two fences were separated at a distance approximately equal to or less than the height of the anti-personnel fence, a vehicle impacting the anti-personnel fence could force it down onto the vehicle mitigating fence such that the former acts as a ramp for a vehicle to breach the latter.
  • Alternatively, the vehicle mitigating fence is disposed on the impact side of the barrier with the antipersonnel fence being provided on the installation side thereof.
  • In an embodiment, the vehicle mitigating fence comprises a plurality of wire ropes supported by the second series of posts, and the anti-personnel fence comprises a series of meshed panels supported on the first series of posts. This advantageously allows a clear line of sight through the fence, enabling visual security checks to be performed. The vehicle mitigating fence may comprise one or more ropes woven with respect to the posts and/or one or more unwoven ropes disposed on one side of the series of posts.
  • One or each end of the plurality of ropes of the vehicle mitigating fence may terminate in a terminal, preferably a terminal provided on or in the ground. The last post in the series of posts of the vehicle mitigating fence may comprise means on or within the post for supporting the ropes. It is preferable for the ropes to enter the terminal from the end post at an angle that enables the separation of the vehicle mitigating fence and the anti-personnel fence to remain substantially constant. That is to say, even though a terminal for receiving the ends of the ropes of the vehicle mitigating fence is provided, this does not alter the line of the anti-vehicle or anti-personnel fence and no interruption or deviation thereof is required.
  • It is a further advantage that, in the event of an impact to the combined barrier, the damage to the anti-personnel fence is localised such as to only affect a single or a small number of panels. Panels away from the vicinity of the impact remain intact or at least in a condition to withstand further impacts. The vehicle mitigating fence also remains in place with only a small number of posts in the area local to the impact itself being bent/deformed. The combined fence thus remains operable allowing time for repairs to be made thereto whilst still providing a good degree of security.
  • In another aspect, a post footing for use with a security barrier is provided, as described above.
  • FIG. 1 shows a perspective view of a security barrier according to an embodiment of the invention;
  • FIGS. 2 a to 2 c show front elevational views of sections of the security barrier according to an embodiment of the invention;
  • FIGS. 3 a and 3 b are end views of the security barrier of FIGS. 2 a to 2 c;
  • FIG. 4 a is a top plan view of an end post and terminal according to an embodiment of the invention;
  • FIG. 4 b is a top plan view of an end post and terminal according to another embodiment of the invention;
  • FIG. 4 c is a top plan view of an end post and terminal according to a further embodiment of the invention;
  • FIG. 5 a is a front perspective view of the end post of the embodiment of FIG. 4 a;
  • FIG. 5 b is a rear perspective view of an end post;
  • FIGS. 6 to 8 show the security barrier of FIG. 1 before and after an impact by a vehicle.
  • FIG. 1 shows a security barrier 10. The barrier 10 comprises a vehicle mitigating fence 20 for protecting an installation (not shown) against otherwise penetrative vehicular attacks. The barrier 10 further comprises an anti-personnel fence 40 designed to keep pedestrian intruders out of the installation.
  • The anti-vehicle fence 20, e.g. Bristorm® manufactured by Hill & Smith Limited, is intended to restrain heavy vehicles impacting from a direction that is substantially perpendicular, or at an angle of between 25 and 90 degrees, to the line of the barrier. Breach of the barrier by a heavy goods vehicle in the order of 7500 kg inertial mass impacting the barrier at speeds of about 64-80 km/hr is prevented.
  • The vehicle mitigating fence 20 comprises a series of posts 22 mounted in the ground. A plurality of ropes 24 are supported on the posts 22. The ropes 24 may be plastic coated, high tensile steel ropes or cables that are pre-tensioned between the posts 22.
  • The ropes 24 may be disposed at a height of between 300 mm and 2 metres above the ground. The height position of at least some of the ropes 24 is selected to be such that the engine of an impacting vehicle will impact them. Ropes 24 may be provided at varying heights above the ground, for absorbing energy from a range of vehicles of varying sizes.
  • In the embodiment of FIGS. 1, 2 a-c, 3 a and 5 a-8, a pair of wire ropes 24 a, 24 b is provided at or approximately at the midpoint of the posts 22 (i.e. approximately halfway from the ground level to the top of the posts 22). The ropes 24 a, 24 b are sinuously woven with respect to the posts such that a first rope 24 a of the pair passes on a first side of a first post 22, and on an opposite, second side of an adjacent post 22, and so on. The second rope 24 b of the pair passes on a corresponding second side of the first post 22, and on a first side of the adjacent post, etc. An additional rope 24 c is sinuously woven between the posts 22 at a vertical position lower than the rope pair 24 a, 24 b, and a further rope 24 d is sinuously woven between the posts 22 at a vertical position higher than the rope pair 24 a, 24 b. These additional ropes 24 c, 24 d are oppositely woven with respect to each other such that one passes on a first side of one post and the other passes on the opposite, second side thereof. A further rope 24 e is provided within a slot 26 in the top of the posts 22. Other configurations are envisaged, e.g. a different combination of woven and unwoven ropes, or with further woven rope pairs or additional woven or unwoven ropes.
  • As shown in FIGS. 1, 3 a and 5 b, the ropes 24 are supported on the posts 22 using one or more hooks 28 e.g. formed/angled from a stainless steel bar and fixed within corresponding apertures provided within the posts 22 e.g. with bolts. The design parameters of the barrier are such that, on impact, the intermediate posts are pushed back to incline away from the impact direction by up to 40 degrees. The angle of the hook 28 is such that the ropes 24 will tend to separate from the hook 28 when the posts 22 are pushed back during impact.
  • The intermediate posts may be inclined relative to the vertical towards the predetermined direction, that is, towards the oncoming vehicle. The inclination of the intermediate post(s) to the vertical may be between 0 and 45 degrees, preferably between 0 and 20 degrees, and more preferably 10 degrees.
  • The barrier 10 may be provided as a perimeter security barrier—i.e. extending around and enclosing an installation, or a length thereof may be provided to e.g. span the distance between two buildings, walls or other solid structures.
  • Referring to FIGS. 4 a-c and 5 a-b, at an end of the vehicle mitigating fence 20, the ropes 24 pass around, or are supported by an end post 30. The end post 30 is vertical and anchored in the ground. A rope support device is provided on the end post 30. In the embodiment of FIG. 5 b, the rope support device is a tab 31 welded or integrally formed with the post 30. One or more apertures 31 a are provided within the tab 31 for receiving one or more ropes 24. In the embodiment shown in FIG. 5 b, each of the five ropes 24 pass through and are thus supported by a separate tab aperture 31 a. In alternative embodiments (not shown), the ropes may be supported by other means e.g. apertures or grooves/notches provided directly within the post 30, or hooks or provided on the post 30.
  • The ropes 24 are anchored at each end thereof and terminate in a rope terminal 32. In the embodiments of FIGS. 4 a, 4 b, 4 c and 5 a, the terminal 32 is provided on or in the ground. The ground terminal 32 may be in the form of bolts or another suitable mechanical rope gripping device. The terminal 32 also holds the ropes in tension. The ropes may be tensioned after hanging on the posts 22, and the terminal 32 then acts to maintain the tension therein. A load or energy-absorbing device (not shown) may be provided between respective ends of the ropes 24 and the posts 30/terminal 32. This device may be in the form of a hot rolled channel section or hollow tube that is configured to absorb energy transmitted from the impacting vehicle by the ropes. The energy-absorption means is designed to deform under the increased tension load in the ropes during impact by a vehicle. This limits the peak rope loads to tolerable levels and restrains the ropes in order that they develop tension to resist penetration or breach of the barrier by the impacting vehicle.
  • In the embodiment shown in FIG. 4 a, the ropes pass around the end post 30 and are fed into the terminal 32 at an angle that is, generally speaking, approximately equal to or slightly greater than 90° relative to the initial direction of the fences 20, 40. The ropes 24 pass through tab apertures 31 a as described above. FIG. 4 a shows an example of termination of the vehicle mitigating fence 20 earlier than the anti-personnel fence 40.
  • FIG. 4 b shows an alternative embodiment wherein two runs of vehicle-mitigating fence 20, 20′ are terminated using a common end post 30. The ropes 24 of a first vehicle mitigating fence 20 pass around the end post 30 as described above and terminate in a terminal 32. The ropes 24′ of a second vehicle mitigating fence 20′ pass around the end post 30 as described above and terminate in a second terminal 32′. The ropes 24, 24′ pass through tab apertures 31 a as described above. Separate or common apertures 31 a may be provided for the ropes of each of the two fences 20, 20′.
  • In each of the embodiments of FIGS. 4 a and 4 b, the terminals 32 are inset from the line of the barrier 10 a little such that the ropes 24 of the vehicle mitigating fence 20, 20′ enter the terminals 32, 32′ at an angle slightly greater than 90° relative to the original direction of the fence 20. This enables the vehicle mitigating fence 20, 20′ and the anti-personnel fence 40 to be situated close together, at substantially the same separation along the length of the barrier 10 (apart from in the vicinity of where the ropes 24 pass around the end post 30—as can be seen in FIGS. 4 a, 4 b). In the embodiments of FIGS. 4 a and 4 b, this enables the barrier 10 to be provided with a 90° change of direction. If the terminals 32, 32′ were provided at 90° to the original line of the vehicle mitigating fence 20, this would necessitate a change in the line of the anti-personnel fence 20 e.g. by flaring it out around the terminals 32. Similarly, in some known wire rope barriers used for other purposes, the ropes thereof terminate in the end post itself (i.e. a ground terminal is not used) which, if incorporated in embodiments of the present invention, would also require flaring out of an adjacent anti-personnel fence.
  • It will also be appreciated that the terminals 32, 32′ could be provided at different locations in order to provide a different change of angle (i.e. other than 90°) at which lengths of vehicle mitigating fence 20, 20′ are provided. Posts similar to the end posts 30 shown in FIGS. 4 a and 5 a could also be utilised in directing the ropes 24 of a single fence 20 to continue at a different angle—90° or otherwise—e.g. as would be required if the barrier 10 is employed as a perimeter barrier.
  • FIG. 4 c shows an alternative embodiment wherein termination of two runs of vehicle mitigating fence 20, 20′ is required without any change of angle. Again, the ropes 24, 24′ pass through tab apertures 31 a on the post 30 and exit at an angle to terminate in respective terminals 32, 32′ such that the vehicle mitigating fences 20, 20′ are provided substantially in line with each other with no change of angle therebetween. This enables the vehicle mitigating fence 20, 20′ to run substantially in a straight line parallel to the anti-personnel fence 40.
  • The fences 20, 40 are thus arranged to extend substantially in the same direction as one another and, when a change in direction is required they remain close together and continue to extend in substantially the same direction after the change in angle. The fences 20, 40 may run in a straight line, approximately parallel to one another, at least over a length thereof. Depending on the nature of the installation to be protected, the fences 20, 40 may be required to change direction at certain locations along the length thereof. The ropes 24 can be anchored at any angle relative to the original direction of a length of fence 20, or in line therewith, depending on the site topography and/or installation requirements. The fences 20, 40 may also be terminated in different locations. This provides flexibility to protect a variety of areas of land/installations.
  • The anti-personnel fence 40, e.g. Secureguard™ provided by Barkers Fencing, provides protection against wilful intrusion by people and is designed to mitigate against intruders climbing over and cutting through the fence. A series of posts 42 are mounted in the ground. A plurality of mesh panels 44 are secured to the posts 42 e.g. with tamper-proof bolts 45 (shown in FIG. 3 b). Alternatively, the anti-personnel fence may be of the chain link or palisade type. The mesh size is small (e.g. 75 mm×12.5 mm produced with 4.00 mm+/−0.10 mm wire). The posts 42 are taller than those 22 of the anti-vehicle fence 20, e.g. by approximately a factor of 2, such that the anti-personnel fence 40 extends vertically beyond the vehicle mitigating fence 20. The anti-personnel fence 40 is required to be tall in order to keep intruders out of the installation. The anti-personnel fence can be provided with or without strainer posts 46 e.g. as shown in FIGS. 4 b, 4 c. In an embodiment, strainer posts are used at corners and intermediate posts of the anti-personnel fence 40 where tensioned line wires are used to support the mesh (not shown). The strainer post has a “leg” bolted to the side of the post at an angle of about 45 degrees.
  • The vehicle mitigating fence 20 and the anti-personnel fence 40 are mounted in the ground in close proximity to one another. Typically, the minimum spacing required therebetween is determined by the diameter of the rope 24 plus space to allow access for installing/rehanging ropes etc. A typical rope diameter used is 15.7 mm (excluding the plastic coating that is preferably provided on the rope). Based on this, plus a small margin for tolerances plus allowing space for fitting/maintenance access, the gap between adjacent faces on the posts 22, 42 may be within approximately 2-15 cm, and preferably substantially at a separation of 5.5 cm. Larger spacings e.g. 20 cm or more are envisaged, but this would compromise the benefit of the barrier 10 occupying only a small footprint on the land. This spacing allows for the fitting or removal of one of the ropes 24 without the need to dismantle the entire fence 20. This is particularly important when repairing the barrier 10 following an impact.
  • Referring again to FIGS. 3 a and 3 b, the vehicle mitigating fence 20 and the anti-personnel fence 40 are mounted in the ground in a common footing or foundation 50. The footing 50 is provided entirely within the ground. A first channel 52 is sized to receive the lower end of post 22 of the anti-vehicle fence 20. A second channel 54 is sized to receive the lower end of post 42 of the anti-intruder fence 40. In the embodiment shown, the channel 52 for the vehicle mitigating barrier post 22 is wider and shallower than the channel 54 for the anti-personnel barrier post 42. It will, however, be appreciated that each channel 52, 54 may be of any width, depth and height to accommodate different sized posts 22, 42.
  • FIG. 3 b shows the footing 50 and details of how the ends of the posts 22, 42 are provided therein. A socket 53 a is provided within the channel 52, the end of the post 22 being received therein. A similar socket 53 b is provided within the channel 54 with the end of post 42 being received therein. Each socket 53 a, 53 b is a metal insert or sleeve corresponding in size externally to the internal dimensions of the channels 52, 54. The internal size of the socket 53 a, 53 b correspond to the external dimensions of the end of the posts 22, 42. The depth of the sockets 53 a, 53 b define the height of the posts 22, 42 of the vehicle-mitigating fence 20 and the anti-personnel fence 40 above ground and can vary from post to post and for different installations.
  • One or more spacer blocks 55 are provided within the footing 50 between the socket 53 a for the vehicle-mitigating fence post 22 and the socket 53 b for the anti-personnel fence post 42. In the embodiment shown, two spacer blocks 55 are provided, welded or otherwise secured to the anti-vehicle post socket 53 a. The spacer blocks 55 can be of any size chosen to define the desired spacing between the posts 22, 42—e.g. 5.5 cm in width as discussed above. The socket 53 b for the anti-personnel fence post 42 is provided with one or more apertures (corresponding to the number of spacer blocks 55 being used) through which a bolt 57 is provided. The bolt 57 couples the socket 53 b of the anti-personnel fence post 42 to the socket 53 a and thus to the vehicle-mitigating fence post 22. Additionally, the anti-personnel fence post 42 is provided with one or more apertures corresponding to the apertures in the socket 53 b. The bolt 57 can therefore pass through the apertures of the anti-personnel fence post 42 to couple the socket 53 b and the anti-personnel fence post 42. The position of the apertures in the socket 53 b, anti-personnel posts 42 and thus the position of the spacer blocks 55 can be chosen relative to the socket 53 a for the post 22 of the vehicle-mitigating fence 20 to control the height of the anti-personnel fence 40 above the ground. It will be appreciated that the post 42 of the anti-personnel fence 40 could be provided in a sleeve (not shown) such that one or both posts 22, 42 are mounted in a sleeve in the footing 50. The spacer block 55 could be welded or bolted (for example) to either or both sleeves.
  • A footplate 56 may be provided on the base of one or each of the posts 22, 42. The footplate 56 helps to secure the post 22, 42 in the footing 50, especially since the post 22, 42 may be subject to a high-energy impact from a colliding vehicle.
  • The two fences 20, 40 are thus coupled together underground via the coupling between the sockets 53 a, 53 b but remain independent of each other above ground level. Preferably, the footing 50 is a concrete footing such that the ends of the posts 22, 42 are embedded within the concrete.
  • In order to erect the barrier 10, the coupled sockets 53 a, 53 b and anti-personnel fence post 42 are positioned and suspended within a hole in the ground at the desired height within the hole (defined by the predetermined height of the sockets 53 a, 53 b). Concrete is then poured into the hole in order to secure the sockets 53 a, 53 b and post 42 therein. The mesh panels 44 are then attached to the posts 42 of the anti-personnel fence, and the ropes 24 are mounted on the posts 22 of the vehicle-mitigating fence 20, terminating at the end posts 30 and terminals 32.
  • As can be seen in FIGS. 2, 4 a, 4 b and 4 c a larger common footing 60 is provided in which an end post 30 and one or more adjacent fence posts 22, 22′, 42 are mounted. The common footing 60, preferably concrete, can be of any size to accommodate the required number of posts 22, 22′, 42, 60. The ground terminals 32, 32′ can also be mounted on/within the footing 60.
  • FIG. 6 shows a security fence 10 according to embodiments of the invention just prior to a collision by an oncoming vehicle. The fence 10 is constructed so that an impacting vehicle will first make contact with the anti-personnel fence 40, and then with the vehicle mitigating fence 20. As discussed above, the majority of the ropes 24 of the vehicle mitigating fence 20 are provided at a height that corresponds to the front/bumper of the vehicle. An impacting vehicle makes contact with the ropes 24 which push back on the posts 22. This transmits energy to the posts 22 adjacent to the impact zone, thereby spreading the impact load along the length of the fence 20. Impact energy is also dissipated through the posts into the common footing 50 and into the ground.
  • FIGS. 7 and 8 show the security barrier 10 after an impact has occurred. It can be seen that the posts 22 of the vehicle mitigating fence 20 in the vicinity of the impact have been bent or deformed, but are still standing with at least some of the ropes 24 being maintained in position with respect to the posts 22. Away from the impact zone, the posts 22 remain upright with the ropes 24 substantially in their original positions. Although damaged, the anti-vehicle fence 20 is still capable of withstanding further impacts from vehicles along its length, and especially away from the point of impact.
  • Directly in the vicinity of the impact the panels 44 of the anti-personnel fence 40 have been damaged. The construction of the fence 40, whereby mesh panels 44 are bolted to the posts 42, means that in the event of an impact the panels 44 in the impact area are stripped from the posts 42, shown clearly in FIG. 8. Since the fence 40 more easily succumbs to damage under impact, the degree of damage away from the point of impact is less such that only one, two or three panels 44 and posts 42 may be damaged. The remainder of the fence 40 remains substantially undamaged.
  • It is therefore easy and inexpensive to replace damaged panels 44 and posts 42, 22 in order to return the security barrier 10 to full containment.
  • Embodiments of the invention employ separate anti-personnel and anti-vehicle fences, independent above ground, which advantageously provide great flexibility in that the design can be adapted to match an existing perimeter or to provide whatever level of perimeter protection is desired.

Claims (21)

1-17. (canceled)
18. A security barrier comprising:
a first fence having a first series of posts;
a second fence having a second series of posts, the first and second fences being adjacent to each other; and
a plurality of common footings, each footing having a first post socket for receiving a first post from the first fence and a second post socket for receiving a first post from the second fence, the first and second post sockets separated from one another by a distance,
wherein, for at least a portion of the security barrier, the common footings couple the first and second fences to one another below ground level and the first and second fences extend in substantially a same direction as each other.
19. The barrier of claim 18, wherein the coupling between the first and second fences is provided between the first post socket and the second post socket.
20. The barrier of claim 18 wherein the footing is formed of concrete.
21. The barrier of claim 18, wherein the first post socket and/or the second post socket is a liner provided within the footing.
22. The barrier of claim 18, wherein the first and second post sockets are of different dimensions.
23. The barrier of claim 18, further comprising a connector for connecting the first post of the first fence with the first post of the second fence within the footing.
24. The barrier of claim 23, wherein the connector comprises one or more bolts connecting the respective posts of the first fence and the second fence.
25. The barrier of claim 18, further comprising a spacer for separating the first post socket from the second post socket within the footing.
26. The barrier of claim 18, wherein the first posts of the first and second fences are separated by a distance of about 2 cm to 10 cm.
27. The barrier of claim 26, wherein the first posts of the first and second fences are separated by a distance of about 5.5 cm.
28. The barrier of claim 18 wherein the first fence is an anti-personnel fence configured to prevent access from personnel and the second fence is a vehicle mitigating fence configured to withstand an impact from a vehicle.
29. The barrier of claim 28, wherein the anti-personnel fence is situated with respect to the vehicle mitigating fence such that the anti-personnel fence will be impacted first in the event of an impact by a vehicle.
30. The barrier of claim 18, wherein the second fence comprises a plurality of wire ropes supported on the second series of posts.
31. The barrier of claim 30, wherein at least one of the plurality of ropes terminates in a ground terminal.
32. The barrier of claim 31, wherein a last post in the second series of posts comprises a support provided on or within the post for supporting at least one of the plurality of ropes.
33. The barrier of claim 32, wherein the ropes of the second fence enter the ground terminal from an end post at an angle that such that a separation of the first and second fences remains substantially constant.
34. A security barrier comprising:
first and second spaced apart fences, at least a portion of the first and second fences extending in substantially the same direction as one another, the first and second fences each defined, in part by posts,
wherein at least some of the respective posts of the first and second fences are coupled to one another below a ground level.
35. The security barrier of claim 34 wherein one of the fences is an anti-personnel barrier and the other fence is a vehicle mitigating fence.
36. The security barrier of claim 34 wherein the first and second fences are coupled to one another by footings disposed so as to secure respective posts of the first and second fences to each other in a spaced relationship.
37. The security barrier of claim 36 wherein the footings include sleeves for receiving the respective posts of the first and second fences, the sleeves being formed from a material different from a material of the footings.
US14/237,125 2011-08-05 2012-08-06 Security barrier Abandoned US20140339486A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1113601.7 2011-08-05
GBGB1113601.7A GB201113601D0 (en) 2011-08-05 2011-08-05 Security barrier
PCT/GB2012/051904 WO2013021189A1 (en) 2011-08-05 2012-08-06 Security barrier

Publications (1)

Publication Number Publication Date
US20140339486A1 true US20140339486A1 (en) 2014-11-20

Family

ID=44735559

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/237,125 Abandoned US20140339486A1 (en) 2011-08-05 2012-08-06 Security barrier

Country Status (5)

Country Link
US (1) US20140339486A1 (en)
EP (1) EP2739789A1 (en)
AU (1) AU2012293507A1 (en)
GB (2) GB201113601D0 (en)
WO (1) WO2013021189A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299968A1 (en) * 2012-11-27 2015-10-22 Highway Care Limited Barrier System
US20170138535A1 (en) * 2015-11-13 2017-05-18 Joseph Edward Jill Safety guard
US20180044983A1 (en) * 2016-08-12 2018-02-15 Rajiv R. Prasad Fence opening and fence system
USD877932S1 (en) 2018-03-27 2020-03-10 Industrial Fence, Inc. Security fence
USD886325S1 (en) 2018-04-04 2020-06-02 Industrial Fence, Inc. Security fence
US10889977B1 (en) * 2019-11-26 2021-01-12 A.H. Beck Foundation Co. Inc. Border security barrier
CN112610068A (en) * 2021-01-14 2021-04-06 深圳市开而美科技有限公司 Lifting fence
US11021843B2 (en) * 2018-12-18 2021-06-01 Korea Institute Of Civil Engineering And Building Technology Energy absorbing post having sliding rail assembly
USD945015S1 (en) 2020-01-16 2022-03-01 Industrial Fence, Inc. Fence post with rails
US20220136275A1 (en) * 2020-08-14 2022-05-05 Jeffrey Julian Temporary shelter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905671B2 (en) * 2013-03-08 2014-12-09 John Weatherwax High speed raceway barrier
GB2519788B (en) * 2013-10-30 2020-06-10 Hill & Smith Ltd Safety Barrier
CH714271A2 (en) * 2017-10-27 2019-04-30 Scandic Staal Ab Road safety barriers.
RU191852U1 (en) * 2019-04-30 2019-08-26 Закрытое акционерное общество "Центр специальных инженерных сооружений научно-исследовательского и конструкторского института радиоэлектронной техники" (ЗАО "ЦеСИС НИКИРЭТ") ANTI-BAR
GB2622766A (en) * 2022-07-19 2024-04-03 Barkers Eng Ltd Crash fence assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1828349A (en) * 1930-12-26 1931-10-20 Malleable Iron Fittings Co Automatic compensating device for highway guard fence cables
US20110062402A1 (en) * 2005-07-06 2011-03-17 Neusch Innovations Anti-Ram Vehicle Barrier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR630182A (en) * 1927-02-09 1927-11-24 Protective means arranged on the roads to prevent automobile accidents
JPS6011137Y2 (en) * 1982-02-01 1985-04-13 株式会社新潟フエンス工業 Intermediate terminal support for guard cable
US4673166A (en) * 1986-02-04 1987-06-16 Macdougall Ellis C Security fence
DE4207104A1 (en) * 1991-05-22 1992-11-26 Uwe Mersch Constructional system for erecting fencing - uses fence panel posts interlinked by connecting piece at foot and head
JP2889911B2 (en) * 1995-11-29 1999-05-10 積水樹脂株式会社 Protective fence with anti-reflective fence
JP3430312B2 (en) * 1999-04-01 2003-07-28 宏至 浦 Fences for wind, sand, snow, etc.
DE20113388U1 (en) * 2001-08-11 2001-10-18 Vos, Martin De Noise barrier made of fence elements
DE202007003263U1 (en) * 2007-03-02 2007-06-06 Draht Christ Gmbh Basket container for rock material, to reinforce embankments and the like, is a mesh structure of rods with ends bonded to pillars with flat irons to hold neighboring pillars together at an adjustable gap
GB2447783B (en) 2007-03-20 2012-03-07 Hill & Smith Ltd Perimeter Security barriers
CN101892642A (en) * 2010-07-02 2010-11-24 茅金声 Traffic guardrail with convenient assembly and disassembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1828349A (en) * 1930-12-26 1931-10-20 Malleable Iron Fittings Co Automatic compensating device for highway guard fence cables
US20110062402A1 (en) * 2005-07-06 2011-03-17 Neusch Innovations Anti-Ram Vehicle Barrier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Specification Translation of DE 4207104. Mersch, Uwe. Constructional system for erecting fencing - uses fence panel posts interlinked by connecting piece at foot and head. 29 November 1992. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299968A1 (en) * 2012-11-27 2015-10-22 Highway Care Limited Barrier System
US20170138535A1 (en) * 2015-11-13 2017-05-18 Joseph Edward Jill Safety guard
US20180044983A1 (en) * 2016-08-12 2018-02-15 Rajiv R. Prasad Fence opening and fence system
US10202804B2 (en) * 2016-08-12 2019-02-12 Rajiv R. Prasad Fence opening and fence system
USD877932S1 (en) 2018-03-27 2020-03-10 Industrial Fence, Inc. Security fence
USD886325S1 (en) 2018-04-04 2020-06-02 Industrial Fence, Inc. Security fence
US11021843B2 (en) * 2018-12-18 2021-06-01 Korea Institute Of Civil Engineering And Building Technology Energy absorbing post having sliding rail assembly
US10889977B1 (en) * 2019-11-26 2021-01-12 A.H. Beck Foundation Co. Inc. Border security barrier
USD945015S1 (en) 2020-01-16 2022-03-01 Industrial Fence, Inc. Fence post with rails
US20220136275A1 (en) * 2020-08-14 2022-05-05 Jeffrey Julian Temporary shelter
CN112610068A (en) * 2021-01-14 2021-04-06 深圳市开而美科技有限公司 Lifting fence

Also Published As

Publication number Publication date
WO2013021189A1 (en) 2013-02-14
GB2493829A (en) 2013-02-20
GB201113601D0 (en) 2011-09-21
EP2739789A1 (en) 2014-06-11
GB201213952D0 (en) 2012-09-19
AU2012293507A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
US20140339486A1 (en) Security barrier
US8197156B2 (en) Shallow mounted fixed vehicle barrier device
US10233601B2 (en) Crash barrier
US5186438A (en) Modular rock catchment barrier
US9435088B2 (en) Structural tube based vehicle crash fence
CA2583791C (en) Combined guardrail and cable safety system
US4989835A (en) Vehicle barrier
US10370807B2 (en) Collapsible perimeter barricade
AU2010207632B2 (en) Fencing assembly
US9670631B2 (en) Vehicle and personal barrier for construction site
US20120251238A1 (en) Vehicle barrier with access delay
US20140312289A1 (en) Vehicle safety catch fence
AU2018207262B2 (en) Security system
EP3737796B1 (en) Cable safety fence with noise absorbing panel
US9051699B2 (en) Pedestrian and vehicle barrier
WO2007071725A1 (en) Anti-vehicle barrier
US9458584B2 (en) Perimeter security barriers
US11499336B2 (en) Security fence
GB2447783A (en) Perimeter security barrier
US20230349116A1 (en) Vehicle mitigation system
GB2481647A (en) Security fence
AU2018202474A1 (en) A security barrier device for stopping, redirecting or disabling hostile vehicles.
Hirsh Vehicle barrier

Legal Events

Date Code Title Description
AS Assignment

Owner name: HILL & SMITH LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARP, GRAHAM;BOX, SIMON;SIGNING DATES FROM 20140207 TO 20140502;REEL/FRAME:032886/0671

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION