US20140335066A1 - Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile - Google Patents

Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile Download PDF

Info

Publication number
US20140335066A1
US20140335066A1 US14/244,284 US201414244284A US2014335066A1 US 20140335066 A1 US20140335066 A1 US 20140335066A1 US 201414244284 A US201414244284 A US 201414244284A US 2014335066 A1 US2014335066 A1 US 2014335066A1
Authority
US
United States
Prior art keywords
food product
composition
plantarum inducia
difficile
dsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/244,284
Inventor
Marika Mikelsaar
Epp Songisepp
Pirje Hütt
Imbi Smidt
Kai Truusalu
Merle Rätsep
Siiri Kõljalg
Jelena Stsepetova
Kalle Kilk
Mihkel Zilmer
Epp Sepp
Raik-Hiio Mikelsaar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tervisliku Piima Biotehnologiate Arenduskeskus OU
Original Assignee
Tervisliku Piima Biotehnologiate Arenduskeskus OU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tervisliku Piima Biotehnologiate Arenduskeskus OU filed Critical Tervisliku Piima Biotehnologiate Arenduskeskus OU
Priority to US14/244,284 priority Critical patent/US20140335066A1/en
Assigned to TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OÜ (BIO-COMPETENCE CENTRE OF HEALTH DIARY PRODUCTS) reassignment TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OÜ (BIO-COMPETENCE CENTRE OF HEALTH DIARY PRODUCTS) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIKELSAAR, MARIKA, MIKELSAAR, RAIK-HIIO, HÜTT, Pirje, KILK, KALLE, KÕLJALG, SIIRI, RÄTSEP, Merle, SEPP, EPP, SMIDT, IMBI, SONGISEPP, EPP, STSEPETOVA, JELENA, TRUUSALU, KAI, ZILMER, MIHKEL
Priority to JP2016560760A priority patent/JP2017515799A/en
Priority to EP14799963.5A priority patent/EP3193895B1/en
Priority to PCT/EE2014/000007 priority patent/WO2015149818A1/en
Priority to DK14799963.5T priority patent/DK3193895T3/en
Priority to EEP201400038A priority patent/EE05799B1/en
Priority to LTEP14799963.5T priority patent/LT3193895T/en
Priority to EEP201800005A priority patent/EE05809B1/en
Publication of US20140335066A1 publication Critical patent/US20140335066A1/en
Priority to US15/132,286 priority patent/US10272122B2/en
Assigned to TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OÜ (BIO-COMPETENCE CENTRE OF HEALTHY DAIRY PRODUCTS) reassignment TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OÜ (BIO-COMPETENCE CENTRE OF HEALTHY DAIRY PRODUCTS) CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 033219 FRAME 0162. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MIKELSAAR, MARIKA, MIKELSAAR, RAIK-HIIO, SEPP, EPP, HÜTT, Pirje, KILK, KALLE, KÕLJALG, SIIRI, RÄTSEP, Merle, SMIDT, IMBI, SONGISEPP, EPP, STSEPETOVA, JELENA, TRUUSALU, KAI, ZILMER, MIHKEL
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/061Addition of, or treatment with, microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/06Treating cheese curd after whey separation; Products obtained thereby
    • A23C19/061Addition of, or treatment with, microorganisms
    • A23C19/062Addition of, or treatment with, microorganisms using only lactic acid bacteria, e.g. pediococcus, leconostoc or bifidus sp., or propionic acid bacteria; Treatment with non-specified acidifying bacterial cultures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/02Making cheese curd
    • A23C19/05Treating milk before coagulation; Separating whey from curd
    • A23C19/054Treating milk before coagulation; Separating whey from curd using additives other than acidifying agents, NaCl, CaCl2, dairy products, proteins, fats, enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/169Plantarum
    • A23Y2220/67
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • A61K2035/115Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/25Lactobacillus plantarum

Definitions

  • the present invention relates to the field of microbiology and nutrition referring to Lactobacillus plantarum Inducia DSM21379 strain which has various applications in the field of biotechnology, food industry and medicine.
  • probiotics are live microorganisms, which, when administered in adequate scientifically proven amounts, confer a health benefit on the host.
  • Probiotic products may be conventional foods or dietary supplements.
  • a probiotic product is a strain-specific preparation targeting several host functions (anti-infectious, morphologic, immunologic, metabolic) in order to improve health by either supporting host physiologic activity or by reducing the risk of disease.
  • Probiotics are often used for enhancement of organisms' defense capability.
  • Enhancement of organisms' natural immunity has become essential in connection with the ageing of population and diseases connected with immunodeficiency (HIV infection, tissue transplantation induced immunosuppression).
  • HIV infection tissue transplantation induced immunosuppression
  • the cause of all of mentioned diseases is the decrease of the capability of several physiological functions of the organism (Timiras, P. S. Physiology of aging: standards for age-related functional competence In: Comprehensive Human Physiology. Greger, R (edt)/Windhorst, U (eds) Springer Verlag, 1996; pp 2391-2405).
  • Microbial metabolites play essential role in the integrity of mucosa, e.g. short chain fatty acids (SCFA), produced by lactic acid bacteria in the colon in the case of fiber (substances of plant origin) rich diet (Roy C C, Kien C L, Bouthillier L., Levy E. Short chain fatty acids: ready for prime time? Nutr. Clin. Pract., 2006; 21:351-366).
  • SCFA short chain fatty acids
  • Polyamines are linear aliphatic compound, in which amino acids are situated along the structure. Putrescine, spermidine and spermine belong to polyamines (Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95). Polyamines are produced by decarboxylation from amino acids ornithine and arginine. Putrescine is produced straight from ornithine; arginine, is primarily converted into agmantine which is then converted into putrescine (Halaris A, Plietz, Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs, 2007; 21: 885-90).
  • Polyamines possess the ability to induce apoptosis, avoiding the hyperproliferation of epithelium and destruction of primary cancer cells (Moinard C, Cynober L, De Bandt J P Polyamines: metabolism and implications in human disease. Clin Nutr. 2005; 24: 184-197). Polyamines are produced endogenously or they are obtained actively from food.
  • Lactobacilli comprise majority of microflora of the proximal colon. Lactobacilli produce polyamines through decarboxylation of amino acids, particularly at the high pH of the intestinal content (Lonvaud-Funel A, Biogenic amines in wine: role of lactic acid bacteria. FEMS Microbiol. Letters, 2001: 199: 9-13). On the other hand, strains of Lactobacillus acidophilus utilize putrescine and reduce odour of faces (WO 2008/019887, BASF AG).
  • Probi AB Estonian patent EE03597 discloses pharmaceutical composition that contains L. plantarum strains 299 and 299v together with arginine for prevention translocation of intestinal microbes during liver injury. Also in this patent no information is available concerning the end products of arginine utilization (putrescine, cadaverine, tyramine, enhancement of NO or antioxidativity) by L. plantarum , which are responsible for aforementioned effect. In close relationship with previous patent another Probi AB patent EE04097 does not disclose the polyamines or NO production ability of mentioned L. plantarum strains.
  • Lactobacillus rhamnosus GG could enhance NO production in the epithelial cells of the intestine or by proinflammatory cytokines and it has been indicated, that beneficial effects of Lactobacillus rhamnosus GG could be due to the production of NO by macrophages and epithelial cells (Korhonen K, Reijonen T M, Remes K, Malmstrom K, Klaukka T, Korppi M. Reasons for and costs of hospitalization for paediatric asthma: A prospective 1-year follow-up in a population-based setting. Pediatr Allergy Immunol 2001: 12:331-338).
  • USA patent application US20060078595 discloses method to avoid the excessive permeability of the intestinal barrier in newborns by glutamate and its precursors as well as by polyamines spermidine, spermine, putrescine in the case of different syndromes (malnutrition, allergy, sepsis, translocation of microbes, endotoxemia, viral diarrhoea). Lactobacillus Reuteri (BIOGAIA) served as glutamate source.
  • BIOGAIA Lactobacillus Reuteri
  • Polyamine spermidine has inflammation-lowering property. It has been demonstrated that spermidine, when added to human monocytes stimulated with lipopolysaccharides, inhibits effectively the synthesis of TNF, IL-1, IL-6 and other proinflammatory cytokines (Zang M, Caragine T. Wong H et al. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counter regulatory mechanism, that restrains the immune response. J. Exp. Med., 1997, 185: 1759-1768). Matsumoto with co-authors described the suppression of proinflammatory cytokine synthesis (Matsumoto M, Ohisshi H, Benno Y Impact of LKM512 yoghurt on improvement of intestinal environment of the elderly.
  • Bifidobacterium lactis LKM512 comprising yoghurt administration to elderly decreased the glukoprotein haptoglobuline caused inflammatory acute phase response due to IL-1, 11-6 and TNF-alfa, but the probiotic administration was also accompanied by decrease of mutagenicity of the intestinal epithelial cells.
  • different lactic acid bacteria incl. lactobacilli species and strains differ by their ability to induce pro- and anti-inflammatory cytokines and non-specific cellular immune response.
  • Lactobacillus plantarum is a widely spread representative of the genus Lactobacillus .
  • Aforementioned lactobacillus species is present on fermented plants (sauerkraut, pickles, and silage), fermented dairy/meat products (cheese, salami) as well as in human gastrointestinal tract. Lactobacillus plantarum is able to reorganize its metabolism according to environmental conditions.
  • Probiotic Lactobacillus plantarum is available in probiotic foods as well as in food supplements (e.g. Lactobacillus plantarum 299v DSM 9843, Probi AB, Sweden, Sk ⁇ nemejeriers' ProViva probiotic brand in Sweden or as one of the components in bacterial composition VSL#3 (VSL Pharmaceuticals, Inc. USA).
  • WO2007/108764 discloses the action mechanisms of Lactobacillus plantarum strains, which are able to enhance immunotolerance in the case on autoimmune coeliac disease.
  • putrescine with lactobacilli, bifidobacteria and propionibacteria from Gouda cheese milk ultrafiltration are either polymerization reactions for incorporating putrescine into casein or vice versa—purification of these compounds by ultrafiltration, that have already been produced into milk, methods are different from this one described in present invention, where putrescine, that has been produced by lactobacilli into milk is still present in cheese after 30 days of ripening.
  • lactobacillus paracasei Lactobacillus curvatus
  • lactobacillus curvatus which are able to gain energy for proliferation from ornithine (ornithine is released from milk casein arginine) after depletion of carbohydrates
  • LDL-c low density lipoprotein-cholesterol
  • LDL-c particles carry cholesterol, triglycerides, fat-soluble vitamins and antioxidants.
  • the LDL-cholesterol is an important modulator for prevention of atherosclerosis and maintenance of cardiovascular health.
  • the LDL-c is widely recognized as an established cardiovascular risk marker.
  • the close relation between mucosal epithelial cells of host gut and microbiota is of utmost importance for health.
  • BHS bile salt hydrolases
  • Lactobacillus spp strains are strain-specific and dependant on the origin and properties of a certain strain (Tanaka, H., K. Doesburg, T. Iwasaki and I. Mireau, Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 1999; 82: 2530-2535).
  • the colonic microbiota is well stabilised and due to mucosal microbiota it does not change easily. But it is well known that the application of broad-spectrum antimicrobial preparations for treatment of infections and inflammatory complications may cause profound imbalance among GI microbiota.
  • Clostridium difficile was identified in the 1970's as the causative agent of antibiotic associated diarrhoeae.
  • the anaerobic spore-forming intestinal pathogen Clostridium difficile is spread in hospitals and elderly homes (Britton, R. A., Young, V. B. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012; 20, 313-319).
  • C. difficile infection is initiated by infection with C. difficile spores. Endospore production is vital for the spread of Clostridium difficile infection. In order to cause disease, these spores must germinate and return to vegetative cell growth (Burns D. A, Heap J. T. Minton N. P.
  • Clostridium difficile spore germination an update. Res Microbiol. 2010; 161(9):730-4). C. difficile elicits disease through the actions of secreted toxins, which are produced by vegetative cells, not by spores.
  • C. difficile -associated diarrhea increases mortality rates, lengthens hospitalization and dramatically increases overall health care costs.
  • CDAD C. difficile -associated diarrhea
  • Clostridium difficile infection recurs in about 20% of patients, and increases to 40% and 60% with subsequent recurrences (Kelly, C. P., LaMont, J. T. Clostridium difficile -more difficult than ever. N Engl J Med. 2008; 359, 1932-1940).
  • Antimicrobial treatment disrupts the complex balance of diverse microorganisms and is a key factor in the pathogenesis of C. difficile colonization and disease. Preservation and restoration of the microbial diversity could represent novel strategies.
  • probiotics for prevention of CDI include combination L. acidophilus and L. casei, S. boulardii , or L. rhamnosus .
  • a dosage of >10 9 cfu/day is more effective than lower doses.
  • the antimicrobial activity of probiotic strains is one of the suggested mechanisms for competition with C. difficile .
  • Lactic acid bacteria produce short chain fatty acids that lower the pH of the local gut environment as well as prevent the adhesion of C. difficile (McFarland, L. V., Beneda, H. W., Clarridge, J. E., Raugi, G. J. Implications of the changing face of C. difficile disease for health care practitioners. Am J Infect Control. 2007; 35, 237-253).
  • the possibility for intestinal barrier protection with probiotics may result in interfering with the binding of C. difficile toxins A and B to colonic epithelial cells thus stabilizing gut permeability and inhibiting development of pseudomembranes on epithelia of gut.
  • Lactobacilli is an important factor to take into consideration when looking for potential probiotics in the prevention of C. difficile infection or binding the C. difficile toxins (Tejero-Sarinena S., Barlow J., Costabile A, Gibson G. R., I. Rowland Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 2013: 24; 60-65).
  • CDI Clostridium difficile associated diarrhea
  • Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients PLACIDE: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2013: 382, 1249-1257). After years of trials with different probiotics for treatment of CDI the strain, dose, and duration of probiotics are still under discussion (Naaber, P., Mikelsaar, M., Interactions between Lactobacilli and antibiotic-associated diarrhea. Adv Appl Microbiol, 2004: 54, 231-260).
  • Xylitol is a 5-C sugar alcohol, e.g. pentitol, and is found in plants, fungi and algae.
  • Xylitol is an important intermediate product in mammalian carbohydrate metabolism; i.e. human blood contains up to 8 ⁇ 10 ⁇ 5 M of xylitol. Consumed xylitol is not absorbed completely and the unabsorbed part can be used as a dietary fibre for bacterial fermentation to convert xylitol to short fatty acid chains utilized in energy pathways.
  • Xylitol influences the growth of some species of gut microbiota in the large intestines stimulating the growth and activities of indigenous microbiota.
  • xylitol contains 2.4 kcal as compared to one gram of glucose which has 3.87 kcal.
  • Xylitol is advertised as “safe” for diabetics and individuals with hyperglycaemia (Talbot J. M., K. P. Fisher The Need for Special Foods and Sugar Substitutes by Individuals with Diabetes Mellitus. Diabetes Care 1978: 1; 231-240).
  • the purpose of the present invention is to provide a strain Lactobacillus plantarum Inducia DSM 21379 for use as hypocholesterolemic agent for decreasing the level of LDL-cholesterol in blood for preventing the cholesterol metabolism disorders and consecutive cardiovascular disorders.
  • Another purpose of the instant invention is to provide the aforesaid strain for use as an antimicrobial agent for lowering risk of Clostridium difficile associated diarrhoeae (CDAD) by preventing germination of Clostridium difficile spores and by suppressing proliferation of Clostridium difficile vegetative cells.
  • CDAD Clostridium difficile associated diarrhoeae
  • the next purpose of this invention is to provide Lactobacillus plantarum Inducia DSM 21379 for use as anti-oxidative agent for enhancing anti-oxidative activity of blood by reducing the level of oxidized low density lipoprotein (ox-LDL) and by enhancing the total anti-oxidative activity (TAA) of a composition comprising said strain.
  • ox-LDL oxidized low density lipoprotein
  • TAA total anti-oxidative activity
  • the current invention also relates to the compositions comprising L. plantarum Inducia DSM 21379 for decreasing the levels of LDL-cholesterol and ox-LDL in blood, lowering risk of CDAD and for enhancing the natural defense potential and cellular immunity of a human.
  • L. plantarum Inducia DSM 21379 produces polyamines from ornithine and glutamate, nitric mono-oxide (NO), the composition comprising said strain possesses antioxidative activity and improves the intestinal barrier function, increases the number of immunocytes in blood and induces cytokine synthesis for enhancement of organisms' natural defense.
  • Lactobacillus plantarum Inducia DSM 21379 is used as enhancer of the natural defense potential and cellular immunity of a subject, and simultaneously as anti-oxidative agent as well as hypocholesterolemic agent.
  • the composition may further comprise xylitol.
  • the composition can be used for the production of food products, food supplements or pharmaceutical or veterinary products.
  • the food product can be dairy product (fermented milk, cheese) or meat product, sweets, etc.
  • the food supplement may be may be used in powder (capsules, lozenges, tablets, powder sachets etc.) or liquid (ampoules) form.
  • the strain may be used in compositions in freeze-dried form.
  • Lactobacillus plantarum Inducia DSM 21379 expresses in vitro on MRS agar medium antagonistic activity against several enteric pathogens (Table 1).
  • Lactobacillus plantarum Inducia DSM 21379 antimicrobial activity against pathogens and non-starter lactobacilli on modified MRS agar medium (pathogen growth inhibition zone, mm) Pathogen Growth inhibition zone (mm) Non-starter lactobacilli (NSLAB) 2.67 ⁇ 3.4 Listeria monocytogenes 22.7 ⁇ 2.4 Yersinia enterocolitica 11.2 ⁇ 2.7 Salmonella enteritidis 22.1 ⁇ 1.9 S.
  • Lactobacillus plantarum Inducia DSM 21379 antimicrobial activity in vitro in streak-line procedure was highest against E. coli , followed by growth inhibition of Salmonella sp., Shigella and Listeria . The lowest antimicrobial activity was detected against other lactobacilli (NSLAB).
  • TAA and TAS of the microbial cells were incubated in MRS broth (Oxoid, U.K.) for 24 h at 37° C. Microbial cells were harvested by centrifugation (1500 RPM, during 10 min) at 4° C. and the pellet was washed with isotonic saline (4° C.) and suspended in 1.15% KCl (Sigma, USA). The density of the suspension was OD 600 of 1.1 ⁇ 10 9 bacterial cells ml ⁇ 1 ). Total antioxidative activity (TAA) was assessed by using the linolenic acid test (LA-test).
  • LA-test linolenic acid test
  • Nitrogen mono-oxide production measurements were carried out with 24 h old intact cells in 500 ⁇ of MRS broth with Apollo 4000 free radical analyzer (WPI, Berlin, Germany) and electrodes of type. ISO-NOP electrode signals were registered during 5-7 minutes. Mean signal strength was calculated. Each experimental point was measured in 4 independent parallels and each parallel was measured twice. NO concentration was calculated according to the standard curves correlation with the strength of the electrodes signal.
  • Microbial strains were suspended in physiological saline according to McFarlandi turbidity standard (10 9 CFU/ml) and 0.5 ml of each strain suspension was seeded into decarboxylation medium (a 4.5 ml) and incubated at 37° C. for 4 days (Bover-Cid and Holzapfel W. H. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J food Microbiol 1999; 53, (1); 33-41(9)).
  • Lactobacillus plantarum strain Inducia DSM 21379 is able to produce cadaverine from arginine, putrescine both from glutamine as well as from ornithine. But the control strain was able to produce putrescine in low amounts only from ornithine ( FIG. 1 ). Traces of cadaverine were detected both in control strain as well as in Lactobacillus plantarum Inducia DSM 21379. No histamine production was detected (Table 4).
  • FIG. 1 Production of polyamines by L. plantarum DSM 21379 in vitro in the decarboxylation medium (Arena, M. E. and Manca de Nadra, M. C. Biogenic amine production by Lactobacillus . J Appl Microbiol, 2001; 90; 158-162) (a) from ornithine (b) from glutamine.
  • FIG. 2 a , 2 b , 2 c Lactobacillus species by Pearson UPMAG cluster analyses in L. plantarum Inducia DSM 21379 group.
  • FIG. 3 The pH values of in L. plantarum Inducia DSM 21379 in xylitol containing and control modified MRS media in microaerobic and anaerobic environment.
  • FIG. 4 Presence of toxA and B genes in C. difficile VPI 10643 by reverse transcription (RT) and real-time PCR amplification (qPCR).
  • FIG. 5 Presence of toxB gene in liver and small intestine of a hamster treated with ampicillin and C. difficile by reverse transcription (RT) and real-time PCR amplification (qPCR).
  • RT reverse transcription
  • qPCR real-time PCR amplification
  • FIG. 6 a) Normal mucosa of large intestine after probiotic administration and b) mucosa with C. difficile infection.
  • FIG. 7 Morphological changes in experimental CDAD infection. Moderate hyperaemia in a) small intestine and b) large intestine and intense hyperaemia in c) pancreas and d) spleen. Pseudomembrane in e) small intestine and PMN infiltration with pseudomembrane f) in large intestine.
  • Microorganism Lactobacillus plantarum Inducia DSM 21379 was added to the cheese milk of Dairy Cooperative E-Piim, (inoculation dose 3 ⁇ 10 8 CFU/vat) and the milk was renneted (25 min). The curds were cut (25 min), heated (34° C. 15 min), dried (25 min), pressed, drained (1 h), salted in brine (12° C.; 20% NaCl; pH 4.7) 20 h, drained and dried (8 h), backed into plastic and ripened at 12° C. for at least 4 weeks.
  • putrescine and tyramine were related to that: in different lots in comparison with control-cheese putrescine content increased 3-11 times and tyramine content accordingly 2-5 times.
  • Lactobacillus plantarum Inducia DSM 21379 belongs to the facultatively heterofermentative group of lactobacilli and therefore the content of tyramine in cheeses was significantly lower than that of strains of OHEL group. On the other hand, the content of putrescine was higher.
  • Permitted concentration of tyramine in food e.g. in cheese is 200 mg/kg (Karovicova and Kohajdova. Biogenic amines in food. Chem pap. 2005; 59 (1); 70-79; Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95). Tyramine is considered toxic in concentrations of 1000-8000 mg/kg.
  • Putrescine is considered toxic if detected in organism in concentration of 2000 mg/kg per body weight and total toxicity of polyamines is >300 mg/kg per food product (Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95).
  • Lactobacillus plantarum Inducia DSM 21379 comprising cheese the subject gets ca 3 mg of putrescine.
  • the concentration is up to 50 ⁇ g per kg, which does not express toxic effect.
  • mice consumed different cheeses during 30 days (control cheese with no additives, Lactobacillus plantarum strain Inducia DSM 21379 2 ⁇ 10 8 cfu/g comprising cheese).
  • mice stayed in good condition, no changes in fur and digestion was detected.
  • the mice were sacrificed by cervical dislocation at day 30. No translocation of lactobacilli or other bacteria of the microflora to blood or organs was detected at the autopsy.
  • Tissue samples from the liver, spleen, ileum and colon were fixed in formalin and embedded in paraffin.
  • Microtome-cut tissue samples were stained with hematoxyline-eosine.
  • mice organs after administration of Lactobacillus plantarum Inducia DSM 21379 comprising cheese.
  • Mice group Liver Spleen Ileum Colon L. plantarum Hyperaemia ii Lymph Lymph Inducia 6/10* follicles follicles DSM 21379 6/10* 8/10* comprising cheese consumed animals Control cheese Hyperaemia Hyperaemia Lymph Lymph consumed animals 3/10* 1/10 follicles follicles 3/10* 4/10* *p ⁇ 0.05
  • Lactobacillus plantarum Inducia DSM 21379 comprising cheese during 1 month enhanced liver hyperemia and raised significantly lymphatic follicles (immunocytes) of mice ileum and colon in comparison with control mice. These results refer to enhancement of the defense capability of intestinal mucosa and liver functions.
  • the double-blind placebo-controlled (DBPC) cross-over exploratory trial (International registration number ISRCTN38739209) was conducted according to the guidelines of Declaration of Helsinki. The trial was approved by the Ethics Review Committee on Human Research of the University of Tartu, Estonia (approval number 158/10, 26.03.2007). All participants signed their written informed consent at the enrollment and were given the possibility to withdraw from the study any time.
  • DBPC placebo-controlled
  • the clinical trial with healthy volunteers evaluated the impact of putrescine, NO and antioxidative compounds producing Lactobacillus plantarum Inducia DSM 21379 comprising food consumption on (Estonian cheese) 1) safety for the consumer; 2) humoral and cell immunity parameters of blood; 3) effect on intestinal microflora; 4) and urine metabolites, to detect possible health-promoting effects.
  • the study group consisted of healthy volunteers, both male and female (M/F 4/8) aged 20-48 years.
  • diabetes glucose and glycohemoglobin HbA1c from blood sera were detected.
  • the trial was randomized double-blind cross-over study. Trial started with 3-week consumption of test cheese. Volunteers consumed the test cheese for 3 weeks. After a 2-week washout period, volunteers were crossed over to another 3 weeks of control cheese administration.
  • Lactobacillus plantarum Inducia DSM 21379 content in 30 old test cheeses was 6 ⁇ 10 7 cfu/g.
  • test cheese Before consumption the test cheese was incubated with Lactobacillus plantarum Inducia DSM 21379 for 30 days at 12° C. Regular Estonian cheese of Edam type without Lactobacillus plantarum Inducia DSM 21379 served as a control.
  • the trial was a randomized blinded cross-over placebo controlled trial. Trial started with 3-week consumption of test cheese, followed by 2 week washout period, after which the control cheese was consumed for 3 weeks. Dose 50 g/day.
  • Lactobacillus plantarum Inducia DSM 21379 comprising cheese had no negative impact on organisms' kidney and liver function nor affected according parameters (ASAT, ALAT albumine, blood sera creatinine).
  • Lactobacillus plantarum DSM 21379 comprising cheese does not cause systemic inflammation, allergic sensibilisation or causes harm to essential organs.
  • Microbial DNA was isolated from cheese by QIAamp DNA Mini Kit (QIAGEN) and amplified with primers Uni-515-GC-rev (ATCGTATTACCGCGGCTGCTGGCA-GC), Lab-159-f (GGAAACAGA/GTGCTAATACCG) (Hilor H G, Zoetendal E G, Vaughan E E, Marteau P, Akkermans, A D L, de Vos W M, /et al./ Molecular diversity of / Lactobacillus / ssp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. /Appl Envir Microbiol /2002; 68: 114-123).
  • Lactobacillus plantarum Inducia DSM 21379 comprising cheese changed lactobacilli pattern profile in feces in 5 persons of 12. These changes remained stable in 3 persons of 5 even 2 weeks after completing the trial.
  • Lactobacillus plantarum Inducia DSM 21379 comprising cheese affects the composition of human intestinal lactoflora.
  • Enhancement of parameters of cellular immunity is in accordance with results on animal model described above; where the administration of Lactobacillus plantarum Inducia DSM 21379 induced significantly Peyer's patches i.e. lymph follicles in the intestine. In these follicles interaction of the components of the immune system occurs.
  • Proinflammatory cytokines incl. induction of IL-6 play important role in activation of TH1 type lymphocytes against bacteria through which macrophages i.e. blood monocytes are retroactive activated. Thereupon blood monocytes produce also IL-6.
  • the content of polyamines (putrescine, acetylputrescine and acetylspermidine) in urine increased after consumption of L. plantarum Inducia DSM 21379 comprising probiotic cheese.
  • Lactobacillus plantarum strain Inducia DSM 21379 is able to produce putrescine in vitro as well as in cheese. Consumption of probiotic Lactobacillus plantarum Inducia DSM 21379 cheese elevated the content of acetylputrescine in urine of trial participants.
  • Acetylputrescine represents a detoxified compound, elevated content of which proves putrescine production by Lactobacillus plantarum Inducia DSM 21379 in gastrointestinal tract of volunteers or absorption and metabolism of additional amounts of putrescine, consumed with cheese. On the other hand, this indicates the successful adaptational reaction of organism to deal with superfluous amounts of putrescine by excreting it with urine in acetylated form.
  • the immunostimulative effect of putrescine produced by Lactobacillus plantarum Inducia DSM 21379 was confirmed by the correlation between blood cytokine IL-6 and the quantity of macrophages (monocytes), which in this case could be considered activated macrophages.
  • the finding mentioned together with H 2 O 2 is essential for the organisms' defense against foreign cells (microbes, cancer cells).
  • Physiological doses of putrescine occurring in the gut due to Lactobacillus plantarum Inducia DSM 21379 could theoretically enhance the regeneration of the epithelium of intestinal mucosa and apoptosis of old cells, thus avoiding the hyperproliferation of epithelium. These mechanisms ensure the barrier function of intestinal mucosa and protects against penetration of allergens.
  • DSM 21379 cheese regulates the amount and activity of blood monocytes through IL-6 which finding together with lymph follicles (increase of carriers of cellular immunity) demonstrated in experimental animals improves the barrier function of intestinal mucosa and supports organisms' immunological defense functions.
  • the double-blind placebo-controlled (DBPC) cross-over exploratory trial (International registration number ISRCTN68198472) was conducted according to the guidelines of Declaration of Helsinki. The trial was approved by the Ethics Review Committee on Human Research of the University of Tartu, Estonia (approval number 178/T-13 19.01.2009). All participants signed their written informed consent at the enrollment and were given the possibility to withdraw from the study any time.
  • DBPC placebo-controlled
  • the objective of the clinical trial was to assess the safety and effect on the intestinal microflora of healthy volunteers of the Lactobacillus plantarum Inducia DSM 21379 containing yoghurt.
  • Test-yogurt contained Lactobacillus plantarum strain Inducia DSM 21379 (5 ⁇ 10 6 -10 7 cfu/ml). Yoghurt without probiotic additive served as control. The trial started 3 week consumption of test-yoghurt, followed by a two-week washout period, after that the participants consumed the control yoghurt for 3 weeks. The daily dose was 10 8 -5 ⁇ 10 9 cfu).
  • L. plantarum Inducia containing yoghurt activated the monocyte chemoattractant protein, which demonstrates the increased immune activity.
  • BSH Bile salt hydrolase
  • Yoghurt preparation The probiotic yoghurt was developed from adjusted and pasteurized (+92 . . . +95° C. 5 min) cow milk using L. plantarum Inducia DSM 21379 (2 ⁇ 10 11 cfu/g) as an adjunct starter (inoculation dose 1 g/t). Shortly, the pasteurized milk was cooled to +35 . . . +43° C. before mixing with starter cultures and the probiotic strain. The milk was fermented until a pH 4.2 . . . 4.5 was reached and cooled to +23 . . . +27° C. The yoghurt was sweetened with 5% of sugar, packaged in plastic cups and cooled to +2 . . . +6° C. A yoghurt without probiotic adjunct served as a control.
  • Body mass index was calculated as the weight (kg) divided by squared height (m 2 ). BMI was used to classify normal weight range (18.5-24.9 kg/m 2 ), overweight ( ⁇ 25.0 kg/m 2 ) and obesity ( ⁇ 30.0 kg/m 2 ) in healthy volunteers (WHO. The International Task Force. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity. Geneva, Switzerland. WHO/Nut/NCD/98. 1998; 1).
  • the samples of fasting blood were collected four times: at recruitment, after administration of either the L. plantarum Inducia DSM 21379 comprising product or control product, after wash-out period, and after the administration of the control or probiotic product at the end of the trial.
  • Haematological indices plasma lipids: total cholesterol, LDL-cholesterol (LDL), HDL-cholesterol (HDL) and triglycerides were determined by standard laboratory methods using certified assays in the local clinical laboratory (United Laboratories of Tartu University Clinics, Estonia). Intervals for routine laboratory tests proposed by Nordic Reference Interval Project (NORIP, Rustard P., Felding P., Franszon L., Kairisto V., Lahti A., Martensson A., Hyltoft Petersen P., Simonsson P., Steensland H., Uldall A. (2004) The Nordic Reference Interval Project 2000: recommended reference intervals for 25 common biochemical properties. Scand J Clin Lab Invest 64: 271-284) were used as reference.
  • L. plantarum Inducia DSM 21379 consumption were revealed in the content of LDL-cholesterol particles.
  • the LDL-cholesterol content was decreased after consumption of L. plantarum Inducia DSM 21379 comprising yoghurt (Table 15).
  • the purpose of the study was to assess the antagonistic activity of L. plantarum Inducia DSM 21379 against C difficile reference strains in anaerobic environment.
  • the tested strains were: L. plantarum Inducia DSM 21379 and C. difficile VPI 10463 (ATCC 43255), M 13042 hypervirulent strain.
  • bacteriological seedings for growth were performed (0.1 ml) to MRS and LAB160 media.
  • the plates were incubated in anaerobic and microaerobic conditions.
  • the growth was checked after 2-5 days and the results were expressed as log 10 CFU/ml.
  • L. plantarum Inducia DSM 21379 Complete suppression of C. difficile vegetative cells by L. plantarum Inducia DSM 21379 was discovered after co-cultivation in BHI medium further seeded on selective MRS and CD LAB180 media after 48 h incubation L. plantarum Inducia DSM 21379 showed the highest values at 24 h in the BHI medium. After 48 h the growth yield of L. plantarum Inducia DSM 21379 was modestly suppressed equally in single culture (6.3 log cfu/g) or if combined with C. difficile strains (7.3 and 6.0 log cfu/g).
  • the purpose of the following in vitro experiment was to determine the antimicrobial effect of L. plantarum Inducia DSM 21379 vegetative cells of on reference and clinical C. difficile strains.
  • the distinction between the suppressive effect of natural (acidic) and neutralised supernatant (inhibitory substances e.g. peptides) of L. plantarum Inducia DSM 21379 helps to discriminate between two mechanisms—either impact of organic acids or presence of bacteriocins.
  • the L. plantarum Inducia DSM 21379 was maintained at ⁇ 80° C. in microtubes on glass-beads and was activated trice in MRS broth with 0.15% agar, incubated under microaerobic conditions (10% CO 2 ) at 37° C. for 24 h. Overnight L. plantarum Inducia DSM 21379 culture was used to inoculate BHI broth 1% v/v and was incubated in microaerobic conditions for 24 h.
  • the extracellular cell free supernatant (CFS) was collected by centrifugation from a 24 h old BHI broth cultures. The pH of cell free supernatant was measured and divided in half. The on half was left acidic and the other half was neutralized with 6N NaOH to pH 6.0, the both supernatants were filter sterilized.
  • C. difficile strains were maintained at ⁇ 80° C. in microtubes on glass-beads and were activated trice on Fastidious Anaerobe Agar (FAA) with horse blood supplement for 24 h in anaerobic milieu (Anaerobic glove box, gases 90% N:5% CO 2 :5% H 2 ). Overnight C. difficile cultures were used for the suspension with density according to MacFarland 3.0. For evaluating the antimicrobial activity of L. plantarum Inducia DSM 21379, 20 ⁇ l of C.
  • FAA Fastidious Anaerobe Agar
  • the suppressive activity of L. plantarum Inducia DSM 21379 was tested with Kruskal-Wallis test, where the growth density (OD 620nm ) of C. difficile control was compared with the data of C. difficile growth density in natural and neutralised and in supernatants dilutions. The statistical analysis of data was performed using PAST Statistics Web provided program.
  • C. difficile CDE C. difficile CDE
  • CDP 1-9 reference strains: C. difficile VPI 10463 (ATCC 43255) and C. difficile M13042 (epidemic strain from Canada belonging to ribotype 027).
  • strain L. plantarum Inducia DSM 21379 possess antimicrobial activity against C. difficile relying both on acid production in natural product (pH lowering) and in a smaller extent also on some antimicrobial protein-like substance still active after neutralisation of the supernatant (neutralized product) (Table 17).
  • the purpose of the study was to find if xylitol influences the antagonistic activity of L. plantarum Inducia DSM 21379 against C. difficile.
  • Inducia (10 5 cfu/ml) was incubated in MRS media where glucose was substituted for 5% xylitol or used without sugar in microaerobic and anaerobic environment. The count of lactobacilli was registered as cfu/ml of media. We tested at 2, 6, 24, and 48 h if L. plantarum Inducia DSM 21379 uses xylitol for growth in vitro in microaerobic and anaerobic conditions.
  • the purpose of the study was to measure the use of xylitol by L. plantarum Inducia DSM 21379 in microaerobic and anaerobic environments.
  • Double experiments were performed by cultivation of L. plantarum Inducia DSM 21379 in in MRS medium with 5% xylitol in microaerobic and anaerobic environments for 2 to 120 h.
  • Xylitol was detected with mass spectrometry QTRAP 3200 (Applied Biosystems, USA).
  • the samples were centrifuged 3 min 10000 g, diluted 100 folds and 50 ⁇ l was mixed with 50 ⁇ l internal standard (5 mM D4-succinic acid in acetonitrile, 50 ⁇ l). 5 ⁇ l of dilutions were injected into mass spectrometry using 50% acetonitril/water eluent.
  • the substrates were identified by multiple reaction monitoring (MRM) ionpairs 151/101 (xylitol) and 121/77 (internal standard). Concentration was calculated from a calibration curve made from solutions with known concentrations of commercial xylitol (Sigma-Aldrich, Germany).
  • MRM multiple reaction monitoring
  • the purpose of the study was to mimic in vitro the gut environment similar to elaborated C. difficile infection model in Syrian hamsters.
  • the L. plantarum Inducia DSM 21379 and the two reference strains of C. difficile increased the number of CFU nearly for 2 to 4 logarithms after 48 h of cultivation in the control media of BHI. No changes were seen after influencing C. difficile strains with xylitol and ampicillin (Table 20).
  • the purpose of the study was to assess the growth of L. plantarum Inducia DSM 21379 and C. difficile reference strains by co-cultivation at different concentrations of xylitol and ampicillin.
  • the BHI media supplemented with 5% xylitol and 0.75 ⁇ l/ml ampicillin were applied for co-cultivation of L. plantarum Inducia DSM 21379 and C. difficile reference strains in anaerobic environment (workstation Concept 400, UK) for 24 and 48 h.
  • L. plantarum Inducia DSM 21379 , C. difficile VPI and M reference strains after cocultivation were tested as single in BHI media with ampicillin and xylitol 5% (1, 2a, 2b). After ten-fold serial dilutions for determining the count of L. plantarum Inducia in MRS broth was cultivated in CO 2 environment and for C. difficile on LAB 160 media in anaerobic milieu.
  • the purpose of the study was to assess the influence of L. plantarum Inducia DSM 21379 on Clostridium difficile reference strain VPI 10463 caused infection in the intestinal tract of C. difficile spores challenged hamsters.
  • L. plantarum Inducia was high in jejunum (range 0-6.0, median 4.0 CFU log 10/g and in ileum 6.0-7.6, median 6.7).
  • L. plantarum Inducia DSM 21379 acted seemingly via its acid production through its SCFAs profile.
  • the typical CDAD infection was modelled in hamster model as in C. difficile infection the toxin damage of organs is the leading pathogenetic modulator.
  • the severe enterocolitis developed the infiltration with red blood cells and polymorphonuclear leukocytes into gut mucosa, liver and spleen resulted in death of animals. In organs the hyperemia was present ( FIG. 7 a - f ).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Animal Husbandry (AREA)
  • Physiology (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A microorganism strain Lactobacillus plantarum Inducia DSM 21379 for use as hypocholesterolemic, antimicrobial and anti-oxidative agent and as enhancer of the natural defense potential of a subject. L. plantarum Inducia is used for reducing the level of LDL-cholesterol in blood for preventing the cholesterol metabolism disorders and cardiovascular disorders. L. plantarum Inducia enhances simultaneously the natural defense potential and cellular immunity, and as anti-oxidative agent enhances anti-oxidative activity of blood by reducing the level of oxidized low density lipoprotein (ox-LDL). The strain is also used as an antimicrobial agent for lowering risk of Clostridium difficile associated diarrhoeae (CDAD) by preventing germination of C. difficile spores and by suppressing proliferation of its vegetative cells. The compositions comprising L. plantarum Inducia decrease the levels of LDL-cholesterol and ox-LDL in blood, enhance the natural defense potential and lower risk of CDAD. The composition may further comprise xylitol.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part and claims the benefit under 35 U.S.C. §120 of U.S. application Ser. No. 12/992,862, filed Nov. 15, 2010, the entire contents of which are incorporated herein by reference, which is a 371 National Stage of International Application No. PCT/EE2009/000006, filed May 12, 2009, the entire contents of which are incorporated herein by reference, which claims priority from prior EE Application No. P200800027, filed May 13, 2008.
  • TECHNICAL FIELD
  • The present invention relates to the field of microbiology and nutrition referring to Lactobacillus plantarum Inducia DSM21379 strain which has various applications in the field of biotechnology, food industry and medicine.
  • BACKGROUND ART
  • During the past decades lactobacilli have widely been used as probiotics in functional foods. Food can be regarded as functional, if beyond adequate nutritional components it contains some natural additives (pre- or probiotics), which beneficially affect one or more target functions in the body, either improving the state of health and well-being and/or reducing disease risk. Probiotics are live microorganisms, which, when administered in adequate scientifically proven amounts, confer a health benefit on the host. Probiotic products may be conventional foods or dietary supplements. Currently a probiotic product is a strain-specific preparation targeting several host functions (anti-infectious, morphologic, immunologic, metabolic) in order to improve health by either supporting host physiologic activity or by reducing the risk of disease.
  • Probiotics are often used for enhancement of organisms' defense capability.
  • Enhancement of organisms' natural immunity has become essential in connection with the ageing of population and diseases connected with immunodeficiency (HIV infection, tissue transplantation induced immunosuppression). The cause of all of mentioned diseases is the decrease of the capability of several physiological functions of the organism (Timiras, P. S. Physiology of aging: standards for age-related functional competence In: Comprehensive Human Physiology. Greger, R (edt)/Windhorst, U (eds) Springer Verlag, 1996; pp 2391-2405).
  • The permeability of the intestinal mucosa frequently increases on the background of chronic inflammation. Microbial metabolites play essential role in the integrity of mucosa, e.g. short chain fatty acids (SCFA), produced by lactic acid bacteria in the colon in the case of fiber (substances of plant origin) rich diet (Roy C C, Kien C L, Bouthillier L., Levy E. Short chain fatty acids: ready for prime time? Nutr. Clin. Pract., 2006; 21:351-366).
  • For enhancement of mucosal barrier besides short chain fatty acids also polyamines are essential. Polyamines are linear aliphatic compound, in which amino acids are situated along the structure. Putrescine, spermidine and spermine belong to polyamines (Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95). Polyamines are produced by decarboxylation from amino acids ornithine and arginine. Putrescine is produced straight from ornithine; arginine, is primarily converted into agmantine which is then converted into putrescine (Halaris A, Plietz, Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs, 2007; 21: 885-90).
  • The physiological impact of polyamines is targeted to cell growth and differentiation, regulation of immune cells and inflammatory response, and several other effects. Polyamines possess the ability to induce apoptosis, avoiding the hyperproliferation of epithelium and destruction of primary cancer cells (Moinard C, Cynober L, De Bandt J P Polyamines: metabolism and implications in human disease. Clin Nutr. 2005; 24: 184-197). Polyamines are produced endogenously or they are obtained actively from food.
  • In the case of the damage of epithelial cells, the production of polyamines by the intestinal microflora is considered one of the compensatory mechanisms for modification of immune response and apoptosis regulation. Lactobacilli comprise majority of microflora of the proximal colon. Lactobacilli produce polyamines through decarboxylation of amino acids, particularly at the high pH of the intestinal content (Lonvaud-Funel A, Biogenic amines in wine: role of lactic acid bacteria. FEMS Microbiol. Letters, 2001: 199: 9-13). On the other hand, strains of Lactobacillus acidophilus utilize putrescine and reduce odour of faces (WO 2008/019887, BASF AG).
  • Probi AB Estonian patent EE03597 discloses pharmaceutical composition that contains L. plantarum strains 299 and 299v together with arginine for prevention translocation of intestinal microbes during liver injury. Also in this patent no information is available concerning the end products of arginine utilization (putrescine, cadaverine, tyramine, enhancement of NO or antioxidativity) by L. plantarum, which are responsible for aforementioned effect. In close relationship with previous patent another Probi AB patent EE04097 does not disclose the polyamines or NO production ability of mentioned L. plantarum strains.
  • It has been demonstrated, that Lactobacillus rhamnosus GG could enhance NO production in the epithelial cells of the intestine or by proinflammatory cytokines and it has been indicated, that beneficial effects of Lactobacillus rhamnosus GG could be due to the production of NO by macrophages and epithelial cells (Korhonen K, Reijonen T M, Remes K, Malmstrom K, Klaukka T, Korppi M. Reasons for and costs of hospitalization for paediatric asthma: A prospective 1-year follow-up in a population-based setting. Pediatr Allergy Immunol 2001: 12:331-338). It has been demonstrated, that NO protects mucosa for damages and excessive permeability, arising after reperfusion (Payne D, Kubes P. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol. 1993: 265 (1 Pt 1):G189-G195).
  • USA patent application US20060078595 (Friesland Brands B.V.) discloses method to avoid the excessive permeability of the intestinal barrier in newborns by glutamate and its precursors as well as by polyamines spermidine, spermine, putrescine in the case of different syndromes (malnutrition, allergy, sepsis, translocation of microbes, endotoxemia, viral diarrhoea). Lactobacillus Reuteri (BIOGAIA) served as glutamate source.
  • Polyamine spermidine has inflammation-lowering property. It has been demonstrated that spermidine, when added to human monocytes stimulated with lipopolysaccharides, inhibits effectively the synthesis of TNF, IL-1, IL-6 and other proinflammatory cytokines (Zang M, Caragine T. Wong H et al. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counter regulatory mechanism, that restrains the immune response. J. Exp. Med., 1997, 185: 1759-1768). Matsumoto with co-authors described the suppression of proinflammatory cytokine synthesis (Matsumoto M, Ohisshi H, Benno Y Impact of LKM512 yoghurt on improvement of intestinal environment of the elderly. FEMS immunol. Medical Microbiol, 2001; 31:181-186). Bifidobacterium lactis LKM512 comprising yoghurt administration to elderly decreased the glukoprotein haptoglobuline caused inflammatory acute phase response due to IL-1, 11-6 and TNF-alfa, but the probiotic administration was also accompanied by decrease of mutagenicity of the intestinal epithelial cells. At the same time it is evident, that different lactic acid bacteria incl. lactobacilli species and strains differ by their ability to induce pro- and anti-inflammatory cytokines and non-specific cellular immune response. Up to now, no lactobacillus species/strain has been described, which would be able to produce physiologically relevant amounts of polyamines, which could be detected in urine after the consumption of this particular strain comprising composition and which promote simultaneously the adaptive activation of immunocytes due to interleukin IL-6.
  • Proinflammatory cytokine IL-6 synthesis has been described after 24 h of stimulation with different strains of Bifidobacterium animalis and Lactobacillus rhamnosus (Miettinen M., Vuopio-Varkila J, Varkila K. Synthesis of human tumour necrosis factor alpha, interleukin-6 and interleukin-10 is induced by lactic acid bacteria. Infection and Immunity, 1996, 64:5403-5408). It is important to observe inflammation markers like counts of leucocytes (WBC) and amount of CRP in sera on the induction of IL-6 (Kiecolt-Glaser J K, Preacher K J, MacCallum R C et al. Chronic stress and age-related increases in the proinflammatory cytokine IL-6, PNAS, 2003; 100:9090-9095) to avoid the overproduction of IL-6. Aforementioned is associated with cardio-vascular diseases, arthritis, type II diabetes, cancer, periodontal diseases, cachexy and decrease of organisms functions (Rose-John S., J. Scheller, G. Elson, and S. A. Jones. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer J. Leukoc. Biol., Aug. 1, 2006; 80 (2): 227-236).
  • Lactobacillus plantarum is a widely spread representative of the genus Lactobacillus. Aforementioned lactobacillus species is present on fermented plants (sauerkraut, pickles, and silage), fermented dairy/meat products (cheese, salami) as well as in human gastrointestinal tract. Lactobacillus plantarum is able to reorganize its metabolism according to environmental conditions.
  • Probiotic Lactobacillus plantarum is available in probiotic foods as well as in food supplements (e.g. Lactobacillus plantarum 299v DSM 9843, Probi AB, Sweden, Skånemejeriers' ProViva probiotic brand in Sweden or as one of the components in bacterial composition VSL#3 (VSL Pharmaceuticals, Inc. USA). WO2007/108764 (Probac AB) discloses the action mechanisms of Lactobacillus plantarum strains, which are able to enhance immunotolerance in the case on autoimmune coeliac disease.
  • Cheese as a probiotic carrier has several controversial aspects. Incorporation lactobacilli of human origin into a food product different from other milk-based products and having a long ripening period could be complicated. At the same time fat and protein-rich cheese matrix protects a probiotic microbial strain throughout the passage of gastrointestinal tract better than other milk products (yoghurt, kefir). Antimicrobial and antioxidative probiotic cheese has been produced by using Lactobacillus fermentum ME-3 (DSM 14241) (Estonian patent EE04580, Russian patent RU2284354, USA patent U.S. Pat. No. 6,190,879). European patent EP1064857B1 (Snow Brand Milk Products Co Ltd., 2004) discloses methods for production substances incl. putrescine with lactobacilli, bifidobacteria and propionibacteria from Gouda cheese milk ultrafiltration. These methods are either polymerization reactions for incorporating putrescine into casein or vice versa—purification of these compounds by ultrafiltration, that have already been produced into milk, methods are different from this one described in present invention, where putrescine, that has been produced by lactobacilli into milk is still present in cheese after 30 days of ripening. Various non-starter lactobacilli have been described (Lactobacillus paracasei, Lactobacillus curvatus), which are able to gain energy for proliferation from ornithine (ornithine is released from milk casein arginine) after depletion of carbohydrates (Laht T.-M., Kask S., Elias P., Adamberg K., Paalme T. Role of arginine in the development of secondary microflora in Swiss-type cheese. Int. Dairy Journal, 2002, 12: 831-840).
  • Till now no lactobacillus species/strain have been described, the culture of which produces NO and additionally physiologically relevant amounts of polyamines in food product, whereas the latter could be detectable in urine after the consumption of this strain comprising food product (cheese) or composition and that is able to regulate through polyamines the apoptosis of intestinal epithelium and increase the count of the mucosal lymphfollicles and blood monocytes, regulating the condition of mucosa by NO and antioxidative compounds and to enhance the activation of immune cells particularly the activation of macrophages by central interleukine.
  • One of the factors leading to cardiovascular disease (CVD) is abnormally elevated cholesterol level. Recently, the view of high cholesterol as damaging agent has been reverted to abnormality of its particles, particularly low density lipoprotein-cholesterol (LDL-c). LDL-c accounts 60-70% of total cholesterol. LDL-c particles carry cholesterol, triglycerides, fat-soluble vitamins and antioxidants. The LDL-cholesterol is an important modulator for prevention of atherosclerosis and maintenance of cardiovascular health. Thus, the LDL-c is widely recognized as an established cardiovascular risk marker. The close relation between mucosal epithelial cells of host gut and microbiota is of utmost importance for health. Among indigenous microbiota of gastrointestinal tract (GIT) the lactic acid bacteria assimilate cholesterol from dietary products (Gilliland, S. E., Nelson, C. R., Maxwell, C., Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 1985; 49, 377-381). In patent of Cuñé Castellana, 2009 (EP2485743B1; AB Probiotics S.A.) Lactobacillus plantarum strains CECT 7528, CECT 7526 and CECT 7529 as single or in composition demonstrated both in vitro and in vivo the cholesterol lowering ability. These strains have bile salt hydrolases (BHS) activity, also the antagonistic activity to inhibit the growth of pathogenic strains (Salmonella enterica Enteritidis, Salmonella enterica Typhimurium, Yersinia pseudotuberculosis, Clostridium perfringens, Clostridium ramnosus, Enterococcus faecalis) and can be used as probiotic bacteria.
  • Pereira et al. (Pereira, D. I., McCartney, A. L., Gibson, G. R., An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol. 2003; 69, 4743-4752) have demonstrated the role of short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation as the major mechanism involved in the purported cholesterol-lowering properties of L. fermentum.
  • However, the effect of Lactobacillus spp strains on levels of serum cholesterol (and cholesterol fractions) is strain-specific and dependant on the origin and properties of a certain strain (Tanaka, H., K. Doesburg, T. Iwasaki and I. Mireau, Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 1999; 82: 2530-2535).
  • Disturbed Microbial Ecology of Gut
  • The colonic microbiota is well stabilised and due to mucosal microbiota it does not change easily. But it is well known that the application of broad-spectrum antimicrobial preparations for treatment of infections and inflammatory complications may cause profound imbalance among GI microbiota.
  • Clostridium difficile Infection
  • Clostridium difficile was identified in the 1970's as the causative agent of antibiotic associated diarrhoeae. The anaerobic spore-forming intestinal pathogen Clostridium difficile is spread in hospitals and elderly homes (Britton, R. A., Young, V. B. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012; 20, 313-319). C. difficile infection is initiated by infection with C. difficile spores. Endospore production is vital for the spread of Clostridium difficile infection. In order to cause disease, these spores must germinate and return to vegetative cell growth (Burns D. A, Heap J. T. Minton N. P. Clostridium difficile spore germination: an update. Res Microbiol. 2010; 161(9):730-4). C. difficile elicits disease through the actions of secreted toxins, which are produced by vegetative cells, not by spores.
  • In a quarter of patients (25%) infected with C. difficile develop serious sequela such as pseudomembraneous colitis (PMC). C. difficile-associated diarrhea (CDAD) increases mortality rates, lengthens hospitalization and dramatically increases overall health care costs. Clostridium difficile infection recurs in about 20% of patients, and increases to 40% and 60% with subsequent recurrences (Kelly, C. P., LaMont, J. T. Clostridium difficile-more difficult than ever. N Engl J Med. 2008; 359, 1932-1940). Antimicrobial treatment disrupts the complex balance of diverse microorganisms and is a key factor in the pathogenesis of C. difficile colonization and disease. Preservation and restoration of the microbial diversity could represent novel strategies. The crucial moment in prevention and treatment of this disease is to find the possibility to reconstitute the alteration of intestinal microbiota during and after antibiotic therapy with various regimens incl. administration of probiotics. Most probiotics colonize the gut temporarily, produce bactericidal acids and peptides and promote “competition” among microbes by competing for nutrients and epithelial adhesion. These effects appear to reduce the favourability of the environment for C. difficile. Previous studies suggest that probiotics for prevention of CDI include combination L. acidophilus and L. casei, S. boulardii, or L. rhamnosus. In addition, a dosage of >109 cfu/day is more effective than lower doses.
  • The antimicrobial activity of probiotic strains is one of the suggested mechanisms for competition with C. difficile. Lactic acid bacteria produce short chain fatty acids that lower the pH of the local gut environment as well as prevent the adhesion of C. difficile (McFarland, L. V., Beneda, H. W., Clarridge, J. E., Raugi, G. J. Implications of the changing face of C. difficile disease for health care practitioners. Am J Infect Control. 2007; 35, 237-253). Next, the possibility for intestinal barrier protection with probiotics may result in interfering with the binding of C. difficile toxins A and B to colonic epithelial cells thus stabilizing gut permeability and inhibiting development of pseudomembranes on epithelia of gut.
  • Strain-specificity of lactobacilli is an important factor to take into consideration when looking for potential probiotics in the prevention of C. difficile infection or binding the C. difficile toxins (Tejero-Sarinena S., Barlow J., Costabile A, Gibson G. R., I. Rowland Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 2013: 24; 60-65).
  • Furthermore, some clinical trials could not reach statistical evidence to demonstrate the effect for the prevention of Clostridium difficile associated diarrhea (CDAD) of certain probiotics. The authors of a large, randomized trial including 2941 elderly adults with antibiotic exposure noted that those who received probiotics (a multistrain preparation of Lactobacillus acidophilus and Bifidobacterium bifidum) did not show a risk reduction for CDI (RR 0.71; 95% CI 0.34-1.47; p=0.35) (Allen, S. J., Wareham, K., Wang, D., Bradley, C., Hutchings, H., Harris, W., Dhar, A., Brown, H., Foden, A., Gravenor, M. B., Mack, D. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2013: 382, 1249-1257). After years of trials with different probiotics for treatment of CDI the strain, dose, and duration of probiotics are still under discussion (Naaber, P., Mikelsaar, M., Interactions between Lactobacilli and antibiotic-associated diarrhea. Adv Appl Microbiol, 2004: 54, 231-260).
  • Xylitol Application
  • Xylitol is a 5-C sugar alcohol, e.g. pentitol, and is found in plants, fungi and algae. Xylitol is an important intermediate product in mammalian carbohydrate metabolism; i.e. human blood contains up to 8×10−5 M of xylitol. Consumed xylitol is not absorbed completely and the unabsorbed part can be used as a dietary fibre for bacterial fermentation to convert xylitol to short fatty acid chains utilized in energy pathways. Xylitol influences the growth of some species of gut microbiota in the large intestines stimulating the growth and activities of indigenous microbiota. One gram of xylitol contains 2.4 kcal as compared to one gram of glucose which has 3.87 kcal. Xylitol is advertised as “safe” for diabetics and individuals with hyperglycaemia (Talbot J. M., K. P. Fisher The Need for Special Foods and Sugar Substitutes by Individuals with Diabetes Mellitus. Diabetes Care 1978: 1; 231-240).
  • In our previous studies on Caco-2 cell lines we have discovered that 1% xylitol prevented the adhesion of vegetative cells of C. difficile reference strain VPI 10463, seemingly blocking the receptors on cells. In an applied hamster model (Naaber, P., Lehto, E., Salminen, S., Mikelsaar, M Inhibition of adhesion of Clostridium difficile to Caco-2 cells. FEMS Immunol Med Microbiol. 1996: 14, 205-209) 1 ml of 20% xylitol solution together with Lactobacillus rhamnosus GG significantly protected animals from development of severe enterocolitis (Naaber, P., Lehto, E., Salminen, S., Mikelsaar, M., 1996. Inhibition of adhesion of Clostridium difficile to Caco-2 cells. FEMS Immunol Med Microbiol, 14, 205-209). In these experimental studies with xylitol in combination with probiotic L. rhamnosus GG the vegetative cells of Clostridium difficile, precultivated in laboratory anaerobic environment, have applied for inoculation of cell cultures or hamsters.
  • In opposite, in clinical practice or elderly home the infection develops from inoculation with C. difficile extremely resistant spores surviving in the aerobic environment of these facilities. The spores start to germinate inside the intestine of host.
  • Some authors have postulated that in the animal model some of sugars similarly to glucose could block the expression of toxins A and B of C. difficile (Karlsson, S., Burman, L. G., Akerlund, T. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology, 2008: 154, 3430-3436).
  • There is still a need for probiotic strains effective in enhancing of cellular immunity, decreasing LDL-cholesterol as well as in lowering the risk of Clostridium difficile infection.
  • DISCLOSURE OF THE INVENTION
  • The purpose of the present invention is to provide a strain Lactobacillus plantarum Inducia DSM 21379 for use as hypocholesterolemic agent for decreasing the level of LDL-cholesterol in blood for preventing the cholesterol metabolism disorders and consecutive cardiovascular disorders.
  • Another purpose of the instant invention is to provide the aforesaid strain for use as an antimicrobial agent for lowering risk of Clostridium difficile associated diarrhoeae (CDAD) by preventing germination of Clostridium difficile spores and by suppressing proliferation of Clostridium difficile vegetative cells.
  • The next purpose of this invention is to provide Lactobacillus plantarum Inducia DSM 21379 for use as anti-oxidative agent for enhancing anti-oxidative activity of blood by reducing the level of oxidized low density lipoprotein (ox-LDL) and by enhancing the total anti-oxidative activity (TAA) of a composition comprising said strain.
  • The current invention also relates to the compositions comprising L. plantarum Inducia DSM 21379 for decreasing the levels of LDL-cholesterol and ox-LDL in blood, lowering risk of CDAD and for enhancing the natural defense potential and cellular immunity of a human.
  • Due to the fact that L. plantarum Inducia DSM 21379 produces polyamines from ornithine and glutamate, nitric mono-oxide (NO), the composition comprising said strain possesses antioxidative activity and improves the intestinal barrier function, increases the number of immunocytes in blood and induces cytokine synthesis for enhancement of organisms' natural defense. Lactobacillus plantarum Inducia DSM 21379 is used as enhancer of the natural defense potential and cellular immunity of a subject, and simultaneously as anti-oxidative agent as well as hypocholesterolemic agent.
  • The composition may further comprise xylitol. The composition can be used for the production of food products, food supplements or pharmaceutical or veterinary products. The food product can be dairy product (fermented milk, cheese) or meat product, sweets, etc. The food supplement may be may be used in powder (capsules, lozenges, tablets, powder sachets etc.) or liquid (ampoules) form. The strain may be used in compositions in freeze-dried form.
  • The fact that the microbial strain originates from the intestinal tract of a healthy child proves its GRAS (generally recognized as safe) status i.e. that this strain of microorganism is harmless for human organism and is suitable for oral application compositions.
  • Antimicrobial Activity
  • Lactobacillus plantarum Inducia DSM 21379 expresses in vitro on MRS agar medium antagonistic activity against several enteric pathogens (Table 1).
  • Functional Properties
  • TABLE 1
    Lactobacillus plantarum Inducia DSM 21379 antimicrobial
    activity against pathogens and non-starter
    lactobacilli on modified MRS agar medium
    (pathogen growth inhibition zone, mm)
    Pathogen Growth inhibition zone (mm)
    Non-starter lactobacilli (NSLAB) 2.67 ± 3.4
    Listeria monocytogenes 22.7 ± 2.4
    Yersinia enterocolitica 11.2 ± 2.7
    Salmonella enteritidis 22.1 ± 1.9
    S. typhimurium 20.8 ± 2.8
    Shigella sonnei 24.0 ± 0.1
    Escherichia coli 23.0 ± 1.4
    Enterobacter sakazakii 18.1 ± 1.8
    Campylobacter jejuni 12.0 ± 7.6
  • Lactobacillus plantarum Inducia DSM 21379 antimicrobial activity in vitro in streak-line procedure (antimicrobial effect of metabolites) was highest against E. coli, followed by growth inhibition of Salmonella sp., Shigella and Listeria. The lowest antimicrobial activity was detected against other lactobacilli (NSLAB).
  • Total Antioxidative Activity of Lactobacillus plantarum Inducia DSM 21379
  • Method. For the detection of TAA and TAS of the microbial cells, the strain L. plantarum Inducia was incubated in MRS broth (Oxoid, U.K.) for 24 h at 37° C. Microbial cells were harvested by centrifugation (1500 RPM, during 10 min) at 4° C. and the pellet was washed with isotonic saline (4° C.) and suspended in 1.15% KCl (Sigma, USA). The density of the suspension was OD600 of 1.1×109 bacterial cells ml−1). Total antioxidative activity (TAA) was assessed by using the linolenic acid test (LA-test). (Kullisaar, T, Songisepp, Mikelsaar M, Zilmer, K, Vihalemm, T, Zilmer, M. British J of Nutrition. Antioxidant probiotic fermented milk decreases oxidative stress-mediated atherogenicity in human. 2003: 90, 2, 449-456) and total antioxidative status (TAS) was measured by commercial kit (TAS, Randox Laboratories Ltd., UK).
  • TABLE 2
    Total antioxidative activity (TAA) and total antioxidative
    status (TAS) of Lactobacillus plantarum Inducia DSM 21379
    Strain TAA (%) TAS (mmol/l)
    L. plantarum Inducia DSM 21379 26 ± 1.2 0.13 ± 0.04
    L. plantarum DSM 21380 22 ± 5   0.05 ± 0.02
    Production of nitrogen mono-oxide (NO)
  • Method. Nitrogen mono-oxide production measurements were carried out with 24 h old intact cells in 500μ of MRS broth with Apollo 4000 free radical analyzer (WPI, Berlin, Germany) and electrodes of type. ISO-NOP electrode signals were registered during 5-7 minutes. Mean signal strength was calculated. Each experimental point was measured in 4 independent parallels and each parallel was measured twice. NO concentration was calculated according to the standard curves correlation with the strength of the electrodes signal.
  • TABLE 3
    NO concentration (μM) produced by Lactobacillus
    plantarum DSM 21379
    Strain number NO concentrations (μM)
    L. plantarum DSM 21379 2.7 ± 1.2
    L. plantarum DSM 21380 2.6 ± 0.8
    L. coprophilus 2.1 ± 1.1
    L. plantarum 2.1 ± 0.9
    L. paracasei ssp paracasei strain no 1 1.3 ± 0.8
    L. paracasei ssp paracasei strain no 2 1.8 ± 0.9
    L. paracasei ssp paracasei strain no 3 2.8 ± 1.6
    L. buchneri 2.0 ± 1.1
    In vitro polyamines production of Lactobacillus plantarum Inducia DSM 21379
  • Method. Microbial strains were suspended in physiological saline according to McFarlandi turbidity standard (109 CFU/ml) and 0.5 ml of each strain suspension was seeded into decarboxylation medium (a 4.5 ml) and incubated at 37° C. for 4 days (Bover-Cid and Holzapfel W. H. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J food Microbiol 1999; 53, (1); 33-41(9)).
  • For detection of BA 200 μl of medium was derivatized for GC analyze by modified method of Nakovich (Nakovich, L. Analysis of biogenic amines by GC/FID and GC/MS. Thesis, Virginia polytechnic institute, USA. 2003).
  • GC analysis were carried out by gas chromatograph HP 6890 Series GC System, with capillary colonna HP-5 19091J-413 (30 m×0.32 mm; 0.25 μm) with 160° C. 1 min, 20° C./min 280° C. 15 min; and detector (FID) 300° C.
  • TABLE 4
    Production of polyamines in vitro in the decarboxylation
    medium (Arena, M. E. and Manca de Nadra, M. C. Biogenic amine
    production by Lactobacillus. J Appl Microbiol, 2001; 90; 158-162)
    Polyamines (μg/ml) and biogenic amines
    Arginine Glutamine Lysine Ornithine Histi-dine
    Putres- Cadav- Putres- Cadav- Putres- Cadav- Putres- Cadav- Cadav-
    Sample cine erine cine erine cine erine cine erine erine
    L. plantarum 0 0.4 1.2 0.5 0 0.4 1.9 0 0
    Inducia DSM
    21379
    L. plantarum 0 0 0 0 0 0.3 0.5 0.6 0
    DSM
    2137980
  • Lactobacillus plantarum strain Inducia DSM 21379 is able to produce cadaverine from arginine, putrescine both from glutamine as well as from ornithine. But the control strain was able to produce putrescine in low amounts only from ornithine (FIG. 1). Traces of cadaverine were detected both in control strain as well as in Lactobacillus plantarum Inducia DSM 21379. No histamine production was detected (Table 4).
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1. Production of polyamines by L. plantarum DSM 21379 in vitro in the decarboxylation medium (Arena, M. E. and Manca de Nadra, M. C. Biogenic amine production by Lactobacillus. J Appl Microbiol, 2001; 90; 158-162) (a) from ornithine (b) from glutamine.
  • FIG. 2 a, 2 b, 2 c. Lactobacillus species by Pearson UPMAG cluster analyses in L. plantarum Inducia DSM 21379 group.
  • Subjects no 3, 6, 9, 11, 14, 15, 19, 20, 22, 23, 24 and 25.
  • Four samples: at the recruitment (1), after consumption of probiotic cheese (2), after wash-out period (3) and after consumption of control cheese (4).
  • FIG. 3. The pH values of in L. plantarum Inducia DSM 21379 in xylitol containing and control modified MRS media in microaerobic and anaerobic environment.
  • FIG. 4. Presence of toxA and B genes in C. difficile VPI 10643 by reverse transcription (RT) and real-time PCR amplification (qPCR).
  • FIG. 5. Presence of toxB gene in liver and small intestine of a hamster treated with ampicillin and C. difficile by reverse transcription (RT) and real-time PCR amplification (qPCR).
  • FIG. 6. a) Normal mucosa of large intestine after probiotic administration and b) mucosa with C. difficile infection.
  • FIG. 7. Morphological changes in experimental CDAD infection. Moderate hyperaemia in a) small intestine and b) large intestine and intense hyperaemia in c) pancreas and d) spleen. Pseudomembrane in e) small intestine and PMN infiltration with pseudomembrane f) in large intestine.
  • DESCRIPTION OF THE EMBODIMENTS Example 1 Obtaining Needed (Optimal) Viable Counts of Lactobacillus plantarum Inducia DSM 21379 in Food Product
  • Test with Estonia Cheese
  • Method. Microorganism Lactobacillus plantarum Inducia DSM 21379 was added to the cheese milk of Dairy Cooperative E-Piim, (inoculation dose 3×108 CFU/vat) and the milk was renneted (25 min). The curds were cut (25 min), heated (34° C. 15 min), dried (25 min), pressed, drained (1 h), salted in brine (12° C.; 20% NaCl; pH 4.7) 20 h, drained and dried (8 h), backed into plastic and ripened at 12° C. for at least 4 weeks.
  • TABLE 5
    Dynamics of microflora in Lactobacillus plantarum
    Inducia DSM 21379 comprising cheese.
    L. plantarum Inducia DSM Control
    21379 comprising cheese cheese
    Sample Day
    14 Day 21 Day 30 Day 14 Day 21 Day 30
    total counts 8 × 108 4 × 108 1010 2 × 108 3 × 108 2 × 108
    Lactobacillus 5 × 108 2 × 108 1010 105 3 × 103
    sp
    L. plantarum 5 × 108 2 × 108 1010 3 × 103
    cocci 3 × 108 2 × 108 109  2 × 108 3 × 108 108
    spore-forming 103  107 108
    microbes
    L. casei 105 .

    I. Lactobacillus plantarum Inducia DSM 21379 for Enhancing Cellular Immunity
  • Example 2 Production of Polyamines in Food Product by Lactobacillus plantarum Inducia DSM 21379
  • Method. Cheese samples were extracted (20 ml 50% methanol solution was added to 10 g of cheese and incubated at 45° C. for 1 h, cooled to 30° C. and centrifuged) and 200 μl of upper layer was derivatized for GC analyze by modified method of Nakovich (Nakovich, L. 2003 Analysis of biogenic amines by GC/FID and GC/MS).
  • GC analysis were carried out by gas chromatograph HP 6890 Series GC System, with capillary colonna HP-5 19091J-413 (30 m×0.32 mm; 0.25 μm). The column temperature program 160° C. 1 min, 20° C./min 280° C. 15 min; and detector (FID) 350° C.
  • The production of putrescine and tyramine was related to that: in different lots in comparison with control-cheese putrescine content increased 3-11 times and tyramine content accordingly 2-5 times.
  • Lactobacillus plantarum Inducia DSM 21379 belongs to the facultatively heterofermentative group of lactobacilli and therefore the content of tyramine in cheeses was significantly lower than that of strains of OHEL group. On the other hand, the content of putrescine was higher.
  • TABLE 6
    Biogenic amines and polyamines in Lactobacillus plantarum
    Inducia DSM 21379 comprising
    test-cheeses from industrial test-trials
    Viable counts
    of strain Viable
    incorporated count of L.
    into cheese Amines (mg/kg) Planta-rum
    (CFU/g) at Tyra- Putre- Cadav- Tensia DSM
    Sample day 3-4 after mine scine erine 21379 in
    L. plantarum   3 × 108 4.83 20.28 0 2 × 107
    Inducia
    DSM 21379,
    1. Batch
    Control cheese 2.31 1.82 0
    1. Batch
    L. plantarum 3.3 × 107 13.57 24.67 0 2 × 106
    Inducia
    DSM
    21379,
    2. Batch
    Control cheese 2.63 6.64 0
    2. Batch
  • Permitted concentration of tyramine in food e.g. in cheese is 200 mg/kg (Karovicova and Kohajdova. Biogenic amines in food. Chem pap. 2005; 59 (1); 70-79; Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95). Tyramine is considered toxic in concentrations of 1000-8000 mg/kg.
  • Putrescine is considered toxic if detected in organism in concentration of 2000 mg/kg per body weight and total toxicity of polyamines is >300 mg/kg per food product (Larque, M., Sabater-Molina, S. Zamora E. Biological significance of dietary polyamines. Nutrition 2007; 23(1): 87-95).
  • By consumption of 100 g Lactobacillus plantarum Inducia DSM 21379 comprising cheese the subject gets ca 3 mg of putrescine. Thus, in the case of person of 70 kg the concentration is up to 50 μg per kg, which does not express toxic effect.
  • Example 3 Enhancement of Defense Capability of Intestinal Mucosa with Lactobacillus plantarum Inducia DSM 21379 Comprising Food
  • In the experimental model with NIH mice 3 groups of mice consumed different cheeses during 30 days (control cheese with no additives, Lactobacillus plantarum strain Inducia DSM 21379 2×108 cfu/g comprising cheese).
  • Cheese was administered to mice at night (normal awake time for mice) 4.4 g/per mouse, daily ad libitum regular commercial diet. Consumed amount of cheese was 3.5-4.2 g/per night.
  • Mice stayed in good condition, no changes in fur and digestion was detected. Cheese administration caused increase of body weight: body weight at the beginning of the trial was 22.9-29.8 g and at the end of the trial a weight gain was 2-6.1 g. The mice were sacrificed by cervical dislocation at day 30. No translocation of lactobacilli or other bacteria of the microflora to blood or organs was detected at the autopsy.
  • TABLE 7
    Total counts of lactobatsilli in faeces, ileum and colon
    Sample
    Control group (cheese Test group (cheese
    without L. plantarum comprising L. plantarum
    Faecal Inducia DSM 21379 Inducia DSM 21379
    samples was administered) was administered)
    Day 0 6.7 7.6
    Day 10 8.0 8.3
    Day 15 7.0 8.0
    ileum 3.0-7.1/5.95* 6.3-7.7/6.95*
    colon 4.4-7.3/6.65* 6.9-7.8/7.45*
    *Student t-test p = 0.001
  • With seeding from ileum and colon from the mice administered with Lactobacillus plantarum Inducia DSM 21379 total counts of lactobacilli were found to be increased significantly both in ileum and colon.
  • Tissue samples from the liver, spleen, ileum and colon were fixed in formalin and embedded in paraffin. Microtome-cut tissue samples were stained with hematoxyline-eosine.
  • No morphological shifts were found in organs (liver and spleen), which proves the safety of Lactobacillus plantarum Inducia DSM 21379.
  • In the ileum quantity and shape of intestinal mucosa, count of goblet and Paneth cells was evaluated and formation of follicles and diffuse multiple deposits by lymphocytes.
  • In the colon attention was paid to the numerously goblet cells containing surface epithelium and to the characteristics of lymphatic tissue in connective tissue of mucosa.
  • TABLE 8
    Patomorphological evaluation of mice organs after administration of
    Lactobacillus plantarum Inducia DSM 21379 comprising cheese.
    Mice group Liver Spleen Ileum Colon
    L. plantarum Hyperaemia ii Lymph Lymph
    Inducia
    6/10* follicles follicles
    DSM 21379 6/10* 8/10*
    comprising cheese
    consumed animals
    Control cheese Hyperaemia Hyperaemia Lymph Lymph
    consumed animals 3/10* 1/10 follicles follicles
    3/10* 4/10*
    *p < 0.05
  • Administration of Lactobacillus plantarum Inducia DSM 21379 comprising cheese during 1 month enhanced liver hyperemia and raised significantly lymphatic follicles (immunocytes) of mice ileum and colon in comparison with control mice. These results refer to enhancement of the defense capability of intestinal mucosa and liver functions.
  • Example 4 Examination of Clinical Blood Indices of Healthy Volunteers Consumed Lactobacillus plantarum DSM 21379 Comprising Food and the Increase of Lactobacillus plantarum Percentage in the Intestinal Microflora
  • The double-blind placebo-controlled (DBPC) cross-over exploratory trial (International registration number ISRCTN38739209) was conducted according to the guidelines of Declaration of Helsinki. The trial was approved by the Ethics Review Committee on Human Research of the University of Tartu, Estonia (approval number 158/10, 26.03.2007). All participants signed their written informed consent at the enrollment and were given the possibility to withdraw from the study any time.
  • The clinical trial with healthy volunteers evaluated the impact of putrescine, NO and antioxidative compounds producing Lactobacillus plantarum Inducia DSM 21379 comprising food consumption on (Estonian cheese) 1) safety for the consumer; 2) humoral and cell immunity parameters of blood; 3) effect on intestinal microflora; 4) and urine metabolites, to detect possible health-promoting effects.
  • The study group consisted of healthy volunteers, both male and female (M/F 4/8) aged 20-48 years. For exclusion criteria diabetes, glucose and glycohemoglobin HbA1c from blood sera were detected. The trial was randomized double-blind cross-over study. Trial started with 3-week consumption of test cheese. Volunteers consumed the test cheese for 3 weeks. After a 2-week washout period, volunteers were crossed over to another 3 weeks of control cheese administration.
  • Lactobacillus plantarum Inducia DSM 21379 content in 30 old test cheeses was 6×107 cfu/g.
  • Before consumption the test cheese was incubated with Lactobacillus plantarum Inducia DSM 21379 for 30 days at 12° C. Regular Estonian cheese of Edam type without Lactobacillus plantarum Inducia DSM 21379 served as a control.
  • The trial was a randomized blinded cross-over placebo controlled trial. Trial started with 3-week consumption of test cheese, followed by 2 week washout period, after which the control cheese was consumed for 3 weeks. Dose 50 g/day.
  • Results
  • 1) Safety
  • No discomfort, abdominal pain or other negative symptoms were reported by trial participants. After cheese trial with volunteers, the values of systemic inflammation markers (U-CRP, ultrasensitive CRP, and leucocytes) were not changed and were within the normal range.
  • The consumption of probiotic Lactobacillus plantarum Inducia DSM 21379 cheese did not cause changes in WBC counts (leucogram) (Table 9). No change was also detected in the values of essential allergy marker IgE in comparison with pre-trial period.
  • Consumption of Lactobacillus plantarum Inducia DSM 21379 comprising cheese had no negative impact on organisms' kidney and liver function nor affected according parameters (ASAT, ALAT albumine, blood sera creatinine).
  • Thus in healthy subjects the consumption of Lactobacillus plantarum DSM 21379 comprising cheese does not cause systemic inflammation, allergic sensibilisation or causes harm to essential organs.
  • 2) Intestinal Microflora
  • Method. Microbial DNA was isolated from cheese by QIAamp DNA Mini Kit (QIAGEN) and amplified with primers Uni-515-GC-rev (ATCGTATTACCGCGGCTGCTGGCA-GC), Lab-159-f (GGAAACAGA/GTGCTAATACCG) (Heilig H G, Zoetendal E G, Vaughan E E, Marteau P, Akkermans, A D L, de Vos W M, /et al./ Molecular diversity of /Lactobacillus/ ssp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. /Appl Envir Microbiol /2002; 68: 114-123). Subsequently, the PCR product was separated by DGGE electrophoresis in 30-60% acrylamide containing gel with Dcode™ System technique. (Bio-Rad, Hercules, Calif.). Gels were analyzed by BioNumerics 2.5 (Applied Maths, Belgium) software according to Peasoni correlation (Fromin, N.; Hamelin, J.; Tarnawski, S.; Roesti, D.; Jourdain-Miserez, K.; Forestier, N.; Teyssier-Cuvelle, S.; Gillet, F.; Aragno, M.; Rossi, P. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns Environmental Microbiology 2002; 4 (11), 634-643) (FIG. 2 a, 2 b, 2 c).
  • Results
  • Consumption of Lactobacillus plantarum Inducia DSM 21379 comprising cheese changed lactobacilli pattern profile in feces in 5 persons of 12. These changes remained stable in 3 persons of 5 even 2 weeks after completing the trial.
  • Thus, consumption of Lactobacillus plantarum Inducia DSM 21379 comprising cheese affects the composition of human intestinal lactoflora.
  • 3) Humoral and Cellular Parameters of Blood Sera
  • It appeared that Lactobacillus plantarum Inducia DSM 21379 comprising cheese induces the raise of cytokine IL-6, in volunteers, which indicates the stimulation of cellular immunity. This finding was confirmed by the increase of blood monocytes at the end of the trial (p=0.015), whereas indices of blood cells were within the normal range.
  • Positive correlation after completing the cheese consumption appeared between IL-6 and blood monocytes (r=0.653, p=0.029, n=11). The linear regression model confirmed the correlation (R2=0.405, R2 adj=0.338, =0.035)
  • Enhancement of parameters of cellular immunity is in accordance with results on animal model described above; where the administration of Lactobacillus plantarum Inducia DSM 21379 induced significantly Peyer's patches i.e. lymph follicles in the intestine. In these follicles interaction of the components of the immune system occurs. Proinflammatory cytokines incl. induction of IL-6 play important role in activation of TH1 type lymphocytes against bacteria through which macrophages i.e. blood monocytes are retroactive activated. Thereupon blood monocytes produce also IL-6.
  • The increase of the share of cellular immunity is explainable also by the suppression of humoral response e.g. somewhat decreased production of antibodies (IgA, IgG), which however remained within the normal range.
  • TABLE 9
    Immunological parameters of blood after consumption of probiotic
    Lactobacillus plantarum Inducia DSM 21379 comprising cheese
    Immunity At the End of the P Normal range
    parameters recruitment trial values and units
    Ultrasensitive 1.9 ± 1.6 3.3 ± 2.7 1.0 <5 mg/L
    CRP
    Leukocyte 6.3 ± 1.7 6.9 ± 1.6 0.116   4-10 × 109/L
    counts × 109
    Lymphocytes 2.3 ± 0.5 2.2 ± 0.4 0.878  0.8-2.9 × 109/L
    Monocytes 0.55 ± 0.17 0.64 ± 0.15 0.032 0.15-0.75 × 109/L
    Cytokine IL-6 2.7 ± 1.0 3.8 ± 1.7 0.020 <3.4 ng/L
    IgA antibodies 2.5 ± 0.9 2.3 ± 0.8 0.009 0.7-4.0 g/L
    IgM antibodies 1.3 ± 0.5 1.3 ± 0.5 0.776 0.4-2.3 g/L
    IgG antibodies 12.9 ± 3.2  12.4 ± 3.0  0.017 7.0-16 g/L
    IgE antibodies 19.6 ± 21.2 21.4 ± 25.9 0.232 <85 kU/L
  • 4) The Urine Metabolites
  • For the evaluation of the content biogenic amines before the consumption of the probiotic and the efficiency of the stabilization period, the morning urine and gas chromatography method were used.
  • Method: urine samples were derivatized with propylchlorophormate for GC analyze by modified method of Uglandi (Ugland H G; Krough M, Rasmussen K E: Aqueous alkylchloroformate derivatization and solid-phase microextraction: determination of amphetamines in urine by capillary gas chromatography. J Chromatography B Biomed Sci Appl 1997; 701:29-38).
  • GC analysis were carried out by gas chromatograph HP 6890 Series GC System (Hewlett Packard, Avondale, Pa., USA), with capillar colonne HP-5 19091J-433 (30 m×0.25 mm; 0.25 μm) The column temperature program 150° C. 1 min, 20° C./min 280° C. for 5 min; and detector (FID) 250° C. The biogenic amines concentration was calculated according to nmol/mol creatinine
  • TABLE 10
    Polyamines and biogenic amines content in the morning
    urine (nmol/mol creatinine) of probiotic cheese consumers
    Control cheese (without
    Probiotic cheese comprising L. Lactobacillus plantarum
    plantarum Inducia DSM 21379 Inducia DSM 21379)
    BL1 PRO BL2 PL P values
    mean ± stdev mean ± stdev mean ± stdev mean ± stdev paired t-test
    range range range range BL1 vs PRO/
    (median) (median) (median) (median) BL2 vs PL
    Put 0.064 ± 0.072 0.082 ± 0.058 0.043 ± 0.044 0.044 ± 0.060 0.432/0.432
       0-0.191    0-0.191    0-0.126    0-0.216
    (0.030) (0.077) (0.033) (0.031)
    acPut 0.606 ± 0.559 1.087 ± 1.451 0.796 ± 0.689 0.635 ± 0.291 0.021/0.850
    0.151-2.104 0.307-5.049 0.068-2.167 0.154-1.219
    (0.435) (0.447) (0.600) (0.594)
    DAP 0.079 ± 0.092 0.059 ± 0.089 0.056 ± 0.089 0.117 ± 0.142 0.411/0.195
       0-0.249    0-0.216    0-0.253    0-0.418
    (0.055) (0) (0) (0.055)
    acSpd 0.251 ± 0.227 0.384 ± 0.198 0.354 ± 0.210 0.425 ± 0.260 0.089/0.464
       0-0.813 0.043-0.686 0.085-0.668 0.065-0.831
    (0.232) (0.384) (0.304) (0.396)
    Cad 0.066 ± 0.123 0.069 ± 0.162 0.067 ± 0.093 0.044 ± 0.085  1.0/0.540
       0-0.364    0-0.569    0-0.293    0-0.228
    (0) (0) (0.016) (0)
    His 0.231 ± 0.226 0.387 ± 0.524 0.211 ± 0.364 0.478 ± 0.684 0.910/0.250
       0-0.595    0-1.401    0-1.229    0-2.093
    (0.156) (0.122) (0) (0.235)
    Tyr 0.153 ± 0.161 0.101 ± 0.132 0.093 ± 0.096 0.212 ± 0.285  0.167/0.149]
       0-0.476    0-0.427    0-0.257    0-1.035
    (0.102) (0.050) (0.093) (0.179)
    Put—putrescine,
    acPut—N-acetylputrescine,
    DAP—1.3-diaminopropane,
    acSpd—N 8-acetylspermidine,
    Cad—cadaverine;
    His—histamine,
    Tyr—tyramine
  • The content of polyamines (putrescine, acetylputrescine and acetylspermidine) in urine increased after consumption of L. plantarum Inducia DSM 21379 comprising probiotic cheese. A significant correlation (R=0.383 p<0.01, n=48) appeared between the contents of acetylputrescine and acetylspermidine in the urine of volunteers.
  • At the same time the content of all polyamines incl. putrescine, acetylspermidine and acetylspermine as well as biogenic amines remained within the normal range in the urine.
  • Lactobacillus plantarum strain Inducia DSM 21379 is able to produce putrescine in vitro as well as in cheese. Consumption of probiotic Lactobacillus plantarum Inducia DSM 21379 cheese elevated the content of acetylputrescine in urine of trial participants.
  • Acetylputrescine represents a detoxified compound, elevated content of which proves putrescine production by Lactobacillus plantarum Inducia DSM 21379 in gastrointestinal tract of volunteers or absorption and metabolism of additional amounts of putrescine, consumed with cheese. On the other hand, this indicates the successful adaptational reaction of organism to deal with superfluous amounts of putrescine by excreting it with urine in acetylated form.
  • The immunostimulative effect of putrescine produced by Lactobacillus plantarum Inducia DSM 21379 was confirmed by the correlation between blood cytokine IL-6 and the quantity of macrophages (monocytes), which in this case could be considered activated macrophages. The finding mentioned together with H2O2 is essential for the organisms' defense against foreign cells (microbes, cancer cells).
  • Physiological doses of putrescine occurring in the gut due to Lactobacillus plantarum Inducia DSM 21379 could theoretically enhance the regeneration of the epithelium of intestinal mucosa and apoptosis of old cells, thus avoiding the hyperproliferation of epithelium. These mechanisms ensure the barrier function of intestinal mucosa and protects against penetration of allergens.
  • Consumption of Lactobacillus plantarum Inducia DSM 21379 cheese regulates the amount and activity of blood monocytes through IL-6 which finding together with lymph follicles (increase of carriers of cellular immunity) demonstrated in experimental animals improves the barrier function of intestinal mucosa and supports organisms' immunological defense functions.
  • Example 5 Examination of the Clinical Blood Parameters of the Volunteers Consuming Lactobacillus plantarum Inducia DSM 21379 Containing Yoghurt
  • The double-blind placebo-controlled (DBPC) cross-over exploratory trial (International registration number ISRCTN68198472) was conducted according to the guidelines of Declaration of Helsinki. The trial was approved by the Ethics Review Committee on Human Research of the University of Tartu, Estonia (approval number 178/T-13 19.01.2009). All participants signed their written informed consent at the enrollment and were given the possibility to withdraw from the study any time.
  • The objective of the clinical trial (randomised cross-over placebo controlled double-blind clinical trial, was to assess the safety and effect on the intestinal microflora of healthy volunteers of the Lactobacillus plantarum Inducia DSM 21379 containing yoghurt.
  • Subjects and Methods.
  • The participants were 27 voluntary healthy persons of both sexes (M/F 10/17, 29.2±9.3 yrs). For exclusion latent diabetes, glucose, and glycohemoglobione (HbA1c) were measured form blood serum. Test-yogurt contained Lactobacillus plantarum strain Inducia DSM 21379 (5×106-107 cfu/ml). Yoghurt without probiotic additive served as control. The trial started 3 week consumption of test-yoghurt, followed by a two-week washout period, after that the participants consumed the control yoghurt for 3 weeks. The daily dose was 108-5×109 cfu).
  • Serum Humoral and Cellular Immunity Parameters
  • It was found that yogurt containing Lactobacillus plantarum Inducia DSM 21379 induced chemoattractant protein (MCP, p=0.016) in the serum of volunteers, referring the stimulation of humoral part of the immune system. This finding was positively correlated with the increase of IL 10 (r=0.583; p=0.009).
  • The increase of the parameters of humnoral immunity was in accordance with the results obtained in the three weeks of administration of cheese comprising Lactobacillus plantarum DSM 21379 Inducia as described above.
  • TABLE 11
    Content (pg/ml) of cytocines in the blood seerum of volunteers during the trial
    Probiotic yoghurt Control yoghurt P valus
    BL1 PRO BL2 PL BL1 vs PRO/BL2 vs PL
    INFγ 2.9 ± 4.3 3.8 ± 4.2 3.7 ± 3.6 1.9 ± 1.8 0.084/0.107
    TNFα 4.6 ± 3.2 5.0 ± 2.6 4.0 ± 1.4 3.8 ± 1.2 0.225/0.376
    VEGF 158.8 ± 15.8    157 ± 120.4 152.2 ± 106.8 163.0 ± 157.7 0.465/0.841
    MCP 218.4 ± 98.1  251.3 ± 145.1 256.2 ± 142.2 230.8 ± 116.7 0.016/0.156
    EGF 54.8 ± 57.6 53.4 ± 38.4 53.2 ± 56.5 52.0 ± 45.1 0.679/0.353
    VEGF—vascular endothelial growth factor
    MCP—monocyte chemoattractant protein
    EGF—epidermal growth factor
  • Thus, administration of L. plantarum Inducia containing yoghurt activated the monocyte chemoattractant protein, which demonstrates the increased immune activity.
  • After the administration of Lactobacillus plantarum Inducia containing yoghurt, the content of acetylated putrescine increased in the morning urine of patients.
  • The content of acetylated putrescine was correlated to (r=0.439 p=0.037) the increase of the amount of spermidine in the morning urine of patients.
  • These results are consistent with the results of the clinical trial of probiotic cheese. At the same time, the concentration of both polyamines incl. putrescine and acetylated putrescine as well as biogenic amines in the morning urine remained within normal limits.
  • TABLE 12
    Content of polyamines and biogenic amines in the morning
    urine of the subjects consuming probiotic yoghurt (nmol/mol creatinine)
    Probiotic yoghurt Control yoghurt P values
    BL1 PRO BL2 PL BL1 vs PRO/BL2 vs PL
    Put 0.084 ± 0.170 0.032 ± 0.060 0.033 ± 0.039 0.029 ± 0.036 0.069/0.776
    acPut 0.275 ± 0.231 1.015 ± 1.816 0.349 ± 0.240 0.538 ± 0.719 0.002/0.160
    DAP 0 0.038 ± 0.109 0.005 ± 0.017 0.064 ± 0.200 0.181/0.059
    Spd 0.168 ± 0.081 0.221 ± 0.147 0.188 ± 0.117  0.64 ± 0.269 0.218/0.377
    Cad 0 0    0 ± 0.001 0.001 ± 0.005 NA/1.0
    Tyr 0 0 0 NA
    Put—putrescine,
    acPut—N-acetylputrescine,
    DAP—1.3-diaminopropane,
    acSpd—N 8-acetylspermidine,
    Cad—cadaverine;
    Tyr—tyramine.

    II. Use of L. plantarum Inducia DSM 21379 as Hypocholesterolemic Agent by Decreasing LDL-Cholesterol in Blood
  • Example 6 Bile Salt Hydrolase Activity of L. plantarum Inducia DSM 21379
  • Methods. Assessing the Bile Salt Hydrolase (BSH) activity L. plantarum Inducia DSM 21379 was performed according to Cuñé Castellana, 2009 (EP 2 485743 B1; AB Probiotics S.A.)
  • Three Lactobacillus spp strains were cultured overnight on MRS agar in microaerobic conditions at 37° C. After incubation, cultures were standardised to McFarland 3.0. The single-strain cultures were assayed for BSH activity. Cultures were impregnated around the sterilized paper disks on MRS agar plates supplemented with 4% (w/v) sodium salt of taurodeoxycholic acid (TDCA, Sigma, USA) and 0.37 g/1 CaCl2. Plates were anaerobically incubated at 37° C. for 72 h, and the diameter of the precipitation zones around the disks were measured. BSH activity was then calculated by subtracting the disc diameter (DD, mm) from the inhibition zone diameter (IZD, mm) and dividing this difference by two following the formula BSH activity=(IZD-DD)/2 (Table 13).
  • TABLE 13
    Bile salt hydrolase (BSH) activity of
    L. plantarum Inducia DSM 21379
    BSH activity (mm)
    L. plantarum Inducia DSM 21379 1.7
    L. plantarum BAA 793 1.5
    L. gasseri DSM 23882 0.75
  • BSH activity of L. plantarum Inducia DSM 21379 was higher than reference L. plantarum strain BAA793 and L. gasseri DSM 23882 (Table 13).
  • Example 8 LDL-Cholesterol Decreasing Ability of L. plantarum Inducia DSM 21379
  • The purpose of the human intervention trial ISRCTN79645828 “Effect of probiotic yoghurt on blood indices and intestinal microflora of healthy volunteers” was to assess the short term (3 weeks) LDL-cholesterol decreasing ability of L. plantarum Inducia DSM 21379 in volunteers blood when consumed with yoghurt comprising said strain.
  • Yoghurt preparation. The probiotic yoghurt was developed from adjusted and pasteurized (+92 . . . +95° C. 5 min) cow milk using L. plantarum Inducia DSM 21379 (2×1011 cfu/g) as an adjunct starter (inoculation dose 1 g/t). Shortly, the pasteurized milk was cooled to +35 . . . +43° C. before mixing with starter cultures and the probiotic strain. The milk was fermented until a pH 4.2 . . . 4.5 was reached and cooled to +23 . . . +27° C. The yoghurt was sweetened with 5% of sugar, packaged in plastic cups and cooled to +2 . . . +6° C. A yoghurt without probiotic adjunct served as a control.
  • Design of human volunteer trial. The double-blind placebo-controlled.
  • (DBPC) cross-over exploratory trial was conducted according to the guidelines of Declaration of Helsinki. The trial was approved by the Ethics Review Committee on Human Research of the University of Tartu, Estonia (approval number 190T-11, 2010). All participants signed their written informed consent at the enrollment and were given the possibility to withdraw from the study any time. The study was performed to investigate the effect of yoghurt comprising L. plantarum Inducia DSM 21379 on health biomarkers in healthy adults (n=49). Within one month prior to study participants were asked to continue their normal diet, and to avoid probiotic products (e.g. food supplements, yoghurts, cheese, kefir etc).
  • Two groups of participants started simultaneously with 3-week consumption of 150 g daily of test-yoghurt i.e. yoghurt comprising L. plantarum Inducia DSM 21379 (4×107 cfu/g) or control yoghurt. The daily dose of the probiotic L. plantarum Inducia was 6×109 cfu. After a two-week washout period, the volunteers were crossed over to another three weeks period of consumption of the probiotic yoghurt or control yoghurt.
  • Clinical Investigations
  • The subjects were clinically investigated and blood plasma samples were collected after an overnight fast and abstinence from any medications, tobacco, alcohol and tea or coffee. Each participant was evaluated for anthropometrical indices. Body mass index (BMI) was calculated as the weight (kg) divided by squared height (m2). BMI was used to classify normal weight range (18.5-24.9 kg/m2), overweight (≧25.0 kg/m2) and obesity (≧30.0 kg/m2) in healthy volunteers (WHO. The International Task Force. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity. Geneva, Switzerland. WHO/Nut/NCD/98. 1998; 1).
  • The samples of fasting blood were collected four times: at recruitment, after administration of either the L. plantarum Inducia DSM 21379 comprising product or control product, after wash-out period, and after the administration of the control or probiotic product at the end of the trial.
  • Haematological indices: plasma lipids: total cholesterol, LDL-cholesterol (LDL), HDL-cholesterol (HDL) and triglycerides were determined by standard laboratory methods using certified assays in the local clinical laboratory (United Laboratories of Tartu University Clinics, Estonia). Intervals for routine laboratory tests proposed by Nordic Reference Interval Project (NORIP, Rustard P., Felding P., Franszon L., Kairisto V., Lahti A., Martensson A., Hyltoft Petersen P., Simonsson P., Steensland H., Uldall A. (2004) The Nordic Reference Interval Project 2000: recommended reference intervals for 25 common biochemical properties. Scand J Clin Lab Invest 64: 271-284) were used as reference.
  • Change in oxidized LDL (oxLDL, pmol/L) was measured by using the enzyme-linked immunosorbent assay (ELISA) kit (Mercodia, Sweden, Cat No 10-1143-01).
  • Statistical Analysis
  • Statistical analysis was performed by using R 2.10.1 (http://www.r-project.org Retrieved 25.03.2014) and GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, Calif.). All data were expressed as mean and standard deviation (means±SD). Baseline and intervention data were compared by paired t-test or Wilcoxon rank sum test according to the distribution of data.
  • Differences were considered statistically significant if the value was p<0.05.
  • The two groups of healthy volunteers of the cross-over trial did not differ in their clinical data (Table 14).
  • TABLE 14
    Baseline values of healthy volunteers
    Group 1 n = 25 Group 2 n = 24 P value
    Age 35.8 ± 12.0 38.0 ± 12.7 0.617
    19.0-58.0 19.0-62.0
    (34.0) (36.5)
    Sex F/M) § 18/7 18/6 1.0
    HbA1c * 5.5 ± 0.2 5.5 ± 0.3 0.976
    BMI 23.8 ± 4.3  25.2 ± 5.2  0.297
    18.1-34.6 18.6-43.4
    (22.7) (25.3)
    Waist//hip 0.78 ± 0.06 0.79 ± 0.07 0.434
    0.68-0.97 0.68-0.94
    (0.77) (0.79)
    Systolic blood 118.3 ± 10   121.6 ± 15.5  0.660
    pressure 101.0-144.5  98.5-158.0
    (118.0) (117.8)
    Diastolic blood 77.5 ± 7.4  78.6 ± 8.8  0.719
    pressure 63.5-92.5 65.5-98.5
    (76.7) (79.3)
    Cholesterol 5.1 ± 1.1 5.2 ± 0.9 0.952
    LDL-cholesterol 3.4 ± 1.0 3.4 ± 1.2 0.873
    HDL-cholesterol 1.7 ± 0.4 1.7 ± 0.5 0.719
    Triglycerides 1.2 ± 1.0 1.1 ± 0.3 0.298
    Glucose 4.9 ± 0.5 4.9 ± 0.4 0.560
    * glucohaemoglobin,
    § Fisher exact test
  • TABLE 15
    Metabolic indices of blood sera during the trial
    P values
    *BL1 vs PRO/
    Probiotic yoghurt Control yoghurt BL2 vs PL
    Probiotic Placebo (BL1 vs BL2,
    Baseline 1 period Baseline 2 period PRO vs PL)
    Cholesterol 5.2 ± 1.0 5.1 ± 0.9 5.1 ± 0.9 5.1 ± 0.9 0.081/1.0 
    total 3.0-8.1 3.2-7.1 3.2-7.5 3.5-7.7 (0.588, 0.172)
    (5.1) (5.0) (4.9) (5.0)
    LDL- 3.3 ± 1.0 3.0 ± 0.9 3.3 ± 1.1 3.1 ± 1.0 <0.001/0.099  
    cholesterol 1.3-6.2 1.2-5.0 1.1-6.1 0.9-5.6 (0.358, 0.329)
    total (3.3) (2.9) (3.2) (2.9)
    HDL- 1.7 ± 0.5 1.7 ± 0.5 1.7 ± 0.5 1.7 ± 0.5 0.569/0.402
    cholesterol 0.8-3.1 1.0-3.3 0.9-3.0 0.9-3.1 (0.896, 0.788)
    total (1.8) (1.7) (1.8) (1.7)
    Triglycerides 1.1 ± 0.8 1.1 ± 0.6 1.1 ± 0.6 1.1 ± 0.6 0.694/0.456
    total 0.4-4.4 0.3-3.9 0.5-4.0 0.5-4.1 (0.834, 0.412)
    (0.9) (0.9) (1.0) (1.0)
    *BL1: baseline 1; PRO: probiotic period, BL2: baseline 2; PL: placebo period
  • Change in oxidized LDL (oxLDL, pmol/L) value during the trial: at the start 52.7±16.2 49.0±15.3 vs at the end of the 3-week probiotic treatment, p=0.001)
  • The main changes after L. plantarum Inducia DSM 21379 consumption were revealed in the content of LDL-cholesterol particles. The LDL-cholesterol content was decreased after consumption of L. plantarum Inducia DSM 21379 comprising yoghurt (Table 15).
  • Thus, the consumption of L. plantarum Inducia DSM 21379 yoghurt during 3 weeks reduced the LDL-cholesterol level for 9.1% and the oxidized LDL level for 7% in blood.
  • III. Use of L. plantarum Inducia DSM 21379 as antimicrobial agent by preventing germination of spores of C. difficile
  • Example 9 Antagonistic Activity of L. plantarum Inducia DSM 21379 Against Vegetative Cells of C difficile Reference Strains in Anaerobic Environment In Vitro
  • The purpose of the study was to assess the antagonistic activity of L. plantarum Inducia DSM 21379 against C difficile reference strains in anaerobic environment.
  • Methods. The tested strains were: L. plantarum Inducia DSM 21379 and C. difficile VPI 10463 (ATCC 43255), M 13042 hypervirulent strain.
  • Strains were seeded on solid media and incubated in an anaerobic environment. The suspension of bacteria in PBS was adjusted according to MacFarlandi standard (3 for 108 cfu/ml). Suspension (0.2 ml) in the 200 ml BHI media was inoculated for reaching the concentration 105 cfu/ml.
  • On different timescale the bacteriological seedings for growth were performed (0.1 ml) to MRS and LAB160 media. The plates were incubated in anaerobic and microaerobic conditions. The growth was checked after 2-5 days and the results were expressed as log10 CFU/ml.
  • TABLE 16
    Inhibition of growth of C. difficile reference strains after co-cultivation
    with L. plantarum Inducia DSM 21379 in BHI media after 0, 24, and 48 h
    Growth (log CFU/ml)
    0 h 24 h 48 h
    Growth of strains as single in BHI
    L. plantarum Inducia 5.3 8.0 6.3
    C. difficile VPI 10463 reference strain 5.8 4.6 7.5
    M 13042 clinical reference strain 5.3 5.3 7.5
    Growth of L. plantarum Inducia and C. difficile
    strains after co-cultivation in BHI
    L. plantarum Inducia with C. difficile VPI 5.8 8.8 7.3
    L. plantarum Inducia with M reference strain 5.6 8.5 6.0
    C. difficile VPI10463 strain with L. plantarum 5.5 0 0
    Inducia
    C. difficile M 13042 strain with L. plantarum 5.3 0 0
    Inducia
  • Complete suppression of C. difficile vegetative cells by L. plantarum Inducia DSM 21379 was discovered after co-cultivation in BHI medium further seeded on selective MRS and CD LAB180 media after 48 h incubation L. plantarum Inducia DSM 21379 showed the highest values at 24 h in the BHI medium. After 48 h the growth yield of L. plantarum Inducia DSM 21379 was modestly suppressed equally in single culture (6.3 log cfu/g) or if combined with C. difficile strains (7.3 and 6.0 log cfu/g).
  • Example 4 Effect of Supernatant of Lactobacillus plantarum Inducia DSM 21379 on Vegetative Cells of Clostridium difficile Reference and Clinical Strains In Vitro
  • The purpose of the following in vitro experiment was to determine the antimicrobial effect of L. plantarum Inducia DSM 21379 vegetative cells of on reference and clinical C. difficile strains. The distinction between the suppressive effect of natural (acidic) and neutralised supernatant (inhibitory substances e.g. peptides) of L. plantarum Inducia DSM 21379 helps to discriminate between two mechanisms—either impact of organic acids or presence of bacteriocins.
  • Material (Strains) (Table 17)
  • L. plantarum Inducia DSM 21379
  • Clostridium difficile Reference Strains VPI 10463 and M 13042
  • Clostridium difficile Clinical Strains (11 Strains)
  • Methods. Antimicrobial activity of L. plantarum Inducia DSM 21379 supernatant was determined against reference and clinical C. difficile strains by a microtitre plate (MTP) assay.
  • The L. plantarum Inducia DSM 21379 was maintained at −80° C. in microtubes on glass-beads and was activated trice in MRS broth with 0.15% agar, incubated under microaerobic conditions (10% CO2) at 37° C. for 24 h. Overnight L. plantarum Inducia DSM 21379 culture was used to inoculate BHI broth 1% v/v and was incubated in microaerobic conditions for 24 h. For detection of antimicrobial activity of L. plantarum Inducia DSM 21379, the extracellular cell free supernatant (CFS) was collected by centrifugation from a 24 h old BHI broth cultures. The pH of cell free supernatant was measured and divided in half. The on half was left acidic and the other half was neutralized with 6N NaOH to pH 6.0, the both supernatants were filter sterilized.
  • C. difficile strains were maintained at −80° C. in microtubes on glass-beads and were activated trice on Fastidious Anaerobe Agar (FAA) with horse blood supplement for 24 h in anaerobic milieu (Anaerobic glove box, gases 90% N:5% CO2:5% H2). Overnight C. difficile cultures were used for the suspension with density according to MacFarland 3.0. For evaluating the antimicrobial activity of L. plantarum Inducia DSM 21379, 20 μl of C. difficile cell suspension was added to 180 μl: (1) BHI broth (as control), (2) cell free BHI supernatant, (3) cell free neutralized BHI supernatant, (4) diluted cell free supernatant (1:1 in sterile BHI broth) and (5) diluted neutralized cell free supernatant (1:1 in sterile BHI broth).
  • Growth of C. difficile (change in optical density values) was measured after 48 h at OD620nm using an MTP reader and the growth rates were calculated.
  • The suppressive activity of L. plantarum Inducia DSM 21379 was tested with Kruskal-Wallis test, where the growth density (OD620nm) of C. difficile control was compared with the data of C. difficile growth density in natural and neutralised and in supernatants dilutions. The statistical analysis of data was performed using PAST Statistics Web provided program.
  • TABLE 17
    Antimicrobial activity L. plantarum Inducia DSM 21379
    supernatant neutral (acidic) and neutralised cell free
    supernatant and supernatant dilution against clinical
    and reference strains of C. difficile after 48 h of cultivation.
    The density of
    The density of C. difficile in
    C. difficile in L. plantarum
    L. plantarum Inducia supernatant
    The density Inducia dilution 1:1
    of C. supernatant (supernatant:BHI)
    difficile (natural or (natural or
    C. difficile in BHI neutralized) neutralized)
    strains (control) natural neutralized natural neutralized
    CDE 0.259 0.023 0.150 0.113 0.395
    CDP1 0.478 0.007 0.305 −0.007   0.294
    CDP2 0.510 0.001 0.550 0.193 0.651
    CDP3 0.493 0.009 0.363 0.114 0.334
    CDP4 0.386 0.004 0.247 0.084 0.343
    CDP5 0.311 0.003 0.192 0.097 0.369
    CDP6 0.503 0.003 0.208 0.107 0.264
    CDP7 0.402 0.091 0.315 0.126 0.325
    CDP8 0.110 0.002 0.170 0.019 0.316
    CDP9 0.090 0.032 0.170 0.103 0.334
    CDP10 0.209 0.023 0.050 0.093 0.331
    VPI 10643 0.420 0.044 0.076 0.329 0.290
    M 13042 0.402 0.005 0.249 0.083 0.304
    Mean ± SD 0.352 ± 0.019 ± 0.234 ± 0.112 ± 0.350 ±
    0.15a;b;c 0.03a;d;e;f 0.13b;d 0.08c;e 0.10f
    ap < 0.0001;
    bp < 0.05;
    cp < 0.01,
    dp < 0.001;
    ep < 0.01;
    fp < 0.001
  • Legend: vegetative cells of clinical strains: C. difficile CDE, CDP 1-9; reference strains: C. difficile VPI 10463 (ATCC 43255) and C. difficile M13042 (epidemic strain from Canada belonging to ribotype 027).
  • Thus, the strain L. plantarum Inducia DSM 21379 possess antimicrobial activity against C. difficile relying both on acid production in natural product (pH lowering) and in a smaller extent also on some antimicrobial protein-like substance still active after neutralisation of the supernatant (neutralized product) (Table 17).
  • Example 11 Testing of Growth and pH Values of L. plantarum Inducia DSM 21379 in the Media with Xylitol
  • The purpose of the study was to find if xylitol influences the antagonistic activity of L. plantarum Inducia DSM 21379 against C. difficile.
  • Inducia (105 cfu/ml) was incubated in MRS media where glucose was substituted for 5% xylitol or used without sugar in microaerobic and anaerobic environment. The count of lactobacilli was registered as cfu/ml of media. We tested at 2, 6, 24, and 48 h if L. plantarum Inducia DSM 21379 uses xylitol for growth in vitro in microaerobic and anaerobic conditions.
  • At 24 h there was no difference in growth of L. plantarum Inducia DSM 21379 using media provided with xylitol or without it, at 24 h the growth in 5% of xylitole media was the best in microaerobic environment but a 2 log lower in anaerobic environment than that with glucose (Table 6).
  • TABLE 18
    Counts of L. plantarum Inducia DSM 21379 (log cfu/ml)
    after growth in anaerobic and microaerobic conditions in
    modified MRS medium with 5% of xylitol or glucose
    Sugar The count of L. plantarum (log cfu/ml)
    Growth in the after different time of incubation
    conditions medium 0 2 h 6 h 24 h 48 h
    Microaerobic xylitol 5.6 5.60 6.24 8.0 7.2
    glucose 5.41 5.48 6.94 8.8 9.0
    Anaerobic xylitol 5.6 5.70 6.00 7.4 7.15
    glucose 5.41 5.70 6.96 9.1 9.1
  • This experiment proved that L. plantarum Inducia DSM 21379 did not effectively metabolise xylitol in MRS media. The change of pH after growth of L. plantarum Inducia DSM 21379 in 5% xylitol containing modified MRS media was tested.
  • The lowest pH values by production of organic acids were seen in control media with glucose incubated in anaerobic environment. In xylitol containing media still a pH drop from pH 6.2 to pH 5.0 was seen both in microaerobic and anaerobic conditions, still substantially different from pH of control media with glucose from pH 7.5 to pH=3.2 (FIG. 3).
  • Use of Xylitol in Metabolism of L. plantarum Inducia DSM 21379
  • The purpose of the study was to measure the use of xylitol by L. plantarum Inducia DSM 21379 in microaerobic and anaerobic environments.
  • Methods: Double experiments were performed by cultivation of L. plantarum Inducia DSM 21379 in in MRS medium with 5% xylitol in microaerobic and anaerobic environments for 2 to 120 h. Xylitol was detected with mass spectrometry QTRAP 3200 (Applied Biosystems, USA). The samples were centrifuged 3 min 10000 g, diluted 100 folds and 50 μl was mixed with 50 μl internal standard (5 mM D4-succinic acid in acetonitrile, 50 μl). 5 μl of dilutions were injected into mass spectrometry using 50% acetonitril/water eluent. The substrates were identified by multiple reaction monitoring (MRM) ionpairs 151/101 (xylitol) and 121/77 (internal standard). Concentration was calculated from a calibration curve made from solutions with known concentrations of commercial xylitol (Sigma-Aldrich, Germany).
  • In the repeated experiments Inducia used xylitol in very low amounts as the content of the sugar was sustained at Basal value ±up to 0-0.6 mM of change (Table 19).
  • TABLE 19
    Xylitol content (mM) after cultivation of L. plantarum
    Inducia DSM 21379 in 5% xylitol media
    microaerobically and anaerobically during 120 h
    Re-
    peated
    Xylitol 1 (mM) tests 0 h 2 h 6 h 24 h 48 h 120 h
    5% xylitol  I 3.1 ND 3.2 2.5 3.2 ND
    microaerobic II 3.4 3.4 3.3 3.2 3.3 3.3
    5% xylitol  I 3.1 ND 2.8 3.2 2.5 ND
    anaerobic II 3.4 3.4 3.2 3.2 3.3 3.5
    ND—not determined
  • Thus, we confirmed by mass spectrometry that L. plantarum Inducia metabolises xylitol in very low amounts.
  • Growth of C difficile Reference Strains in Environment Containing Xylitol and Ampicillin
  • The purpose of the study was to mimic in vitro the gut environment similar to elaborated C. difficile infection model in Syrian hamsters.
  • In vitro the impact of xylitol and ampicillin on growth of L. plantarum Inducia DSM 21379 and reference strains of C. difficile (VPI 10463 and the hypertoxic Ribotype 027 strain M13042) in Brain Heart medium (BHI) was tested.
  • TABLE 20
    Impact of different concentrations of xylitol (0.1-5%)
    and ampicillin (0.75 μl/ml) on 48 h growth of Clostridium
    difficile and L. plantarum Inducia DSM
    21379 as single in anaerobic milieu and BHI medium
    L. plantarum C. difficile C.difficile M strain
    Experimental Inducia log cfu/g VPI log cfu/g log cfu/g
    modulators 0 h 48 h 0 h 48 0 h 48 h
    BHI control 5.9 9.8 5.3 7.2 4.9 7.1
    0.1% xylitol 5.3 8.0 4.7 6.4 5.0 6.9
    1% xylitol 5.0 8.0 5.5 7.3 4.8 6.7
    2.5% xylitol 5.5 8.3 5.0 6.7 5.0 6.0
    5% xylitol 5.5 7.8 5.0 7.1 5.0 6.7
    Ampicillin 5.3 7.1 5.8 7.0 4.7 7.0
    0.75 μl/ml
  • The L. plantarum Inducia DSM 21379 and the two reference strains of C. difficile increased the number of CFU nearly for 2 to 4 logarithms after 48 h of cultivation in the control media of BHI. No changes were seen after influencing C. difficile strains with xylitol and ampicillin (Table 20).
  • Growth of strain L. plantarum Inducia DSM 21379 was suppressed for ˜2 logarithms both under 5% of xylitol and 0.75 μl/ml of ampicillin. Thus, in gut microenvironment with administered antibiotic ampicillin and up to 5% xylitole the survival of L. plantarum Inducia is granted.
  • Example 12 Growth of L. plantarum Inducia DSM 21379 and C. difficile Reference Strains by Co-Cultivation at Different Concentrations of Xylitol and Ampicillin
  • The purpose of the study was to assess the growth of L. plantarum Inducia DSM 21379 and C. difficile reference strains by co-cultivation at different concentrations of xylitol and ampicillin.
  • The BHI media supplemented with 5% xylitol and 0.75 μl/ml ampicillin were applied for co-cultivation of L. plantarum Inducia DSM 21379 and C. difficile reference strains in anaerobic environment (workstation Concept 400, UK) for 24 and 48 h.
  • The viability of L. plantarum Inducia DSM 21379, C. difficile VPI and M reference strains after cocultivation were tested as single in BHI media with ampicillin and xylitol 5% (1, 2a, 2b). After ten-fold serial dilutions for determining the count of L. plantarum Inducia in MRS broth was cultivated in CO2 environment and for C. difficile on LAB 160 media in anaerobic milieu.
  • TABLE 21
    Inhibition of C. difficile reference strains with growth of L. plantarum
    Inducia DSM 21379 after co-cultivation in BHI with 5% xylitol and
    0.75 μl/ml ampicillin after 0, 24, 48 h in anaerobic environment
    Growth (log, CFU/ml)
    Strains/co-cultivation 0 h 24 h 48 h
    1. L. plantarum Inducia 5.7 8.5 7.3
    2. a. C. difficile VPI 5.0 7.7 7.2
    2. b. C. difficile M reference strain 5.0 7.3 7.3
    3. L. plantarum Inducia C. difficile VPI 6.0 8.3 7.0
    M reference strain 5.5 8.5 8.0
    4. C. difficile VPI L. plantarum 5.0 0 0
    5. M reference strain Inducia 5.0 5.0 2.0
  • During in vitro co-cultivation of L. plantarum Inducia DSM 21379 (3) and reference strains of C. difficile (4, 5) in the BHI medium with xylitol and ampicillin (mimicking the hamster model) the growth of vegetative cells of both C. difficile strains was suppressed. Full suppression was detectable for VPI strain and substantial reduction for 5 logarithms (from 5.0 to 2.0 log cfu/ml) was detected in the case of C. difficile strain M.
  • Thus, the in vitro experiments mimicking the gut environment of experimental hamster model after antibiotic treatment showed either full or high suppression of C. difficile growth with L. plantarum Inducia DSM 21379 alone (Table 5) or combined it with xylitol (Table 21).
  • Example 13 Animal Experiment
  • The purpose of the study was to assess the influence of L. plantarum Inducia DSM 21379 on Clostridium difficile reference strain VPI 10463 caused infection in the intestinal tract of C. difficile spores challenged hamsters.
  • Syrian hamsters (Mesocricetus auratus) provide a well-characterized model of Clostridium difficile infection. The colonic microbiota of hamsters treated with antibiotics is disrupted and if afterwards exposed to C. difficile spores, the animals develop C. difficile associated diarrhea (CDAD) in less than 48 h with 100% of mortality. We tested if mortality of C. difficile challenged hamsters can be decreased by administration of L. plantarum Inducia DSM 21379 according to our in vitro results.
  • First, we pre-feeded hamsters daily with L. plantarum Inducia DSM 21379 in the concentration of 1010 cfu/ml by gastric gavage with/without 1 ml 20% xylitol for 5 consecutive days before administration of ampicillin (30 mg/kg). The administration of L. plantarum Inducia DSM 21379 in the aforementioned concentration was continued during the whole experiment. On Day 7 the hamsters were infected with 10-30 spores of C. difficile VPI 104631. For next 5 days the health of hamsters was followed and in case of symptoms indicating CDAD: wet tail—the C. difficile A/B toxin test was performed (X/pect Remel test). The group of hamsters infected with C. difficile VPI strain served as a control group.
  • TABLE 22
    Survival of C. difficile challenged hamsters (n = 15) pretreated
    with L. plantarum Inducia DSM 21379 and/or xylitol
    Number of survived hamsters Toxin test % of
    Test after challenge with C. difficile result/number survival
    groups Day 1 Day 2 Day 3 Day 4 Day 5 of animals in group on Day 5
    C. difficile VPI 15 6 4 2 2 2 negative/ 2/15
    10463I (n = 15) 15 13%
    C. difficile VPI + 5 2 2 1 0 0 negative/ 0/5
    Inducia (n = 5) 5  0%
    C. difficile VPI + 9 9 9 5 5 4 negative/ 5/9
    xylitol (n = 9) 9 56%
    C. difficile VPI + 9 7 7 7 7 7 negative/ 7/9
    xylitol + Inducia 9 78%
    (n = 9)
  • Thus, the highest survival was found in case of combining L. plantarum Inducia DSM 21379 with xylitol solution pre-feeding prior to challenge with C. difficile spores (Table 22). In this case the toxin tests were all negative in the survived hamsters (7/9), i.e. that the germination of spores C. difficile was suppressed. If xylitol alone was applied, the toxin tests of 4 out of 5 surviving animals were negative and only in one surviving animal the toxin test was positive.
  • Thus, the combination of xylitol with L. plantarum Inducia DSM 21379 works through suppression of germination of spores into vegetative cells of C. difficile able of toxin producing.
  • We tested if the growth of C. difficile was still present after the intervention with Inducia and xylitol and if the A and B toxins of C. difficile were found (Table 23). In survived hamsters prefeeded with combination of L. plantarum Inducia DSM 21379 and xylitol the C. difficile vegetative cells were not found 6/7 cases (only in one case the C. difficile growth was seen) in jejunum and ileum. Both the counts of anaerobes and L. plantarum Inducia substituting indigenous lactobacilli in jejunum and ileum were high showing the reconstruction and stabilisation of intestinal microbiota after administration of ampicillin, challenge with C. difficile spores and usage of the treatment with L. plantarum Inducia DSM 21379 and xylitol.
  • TABLE 23
    Total counts of anaerobes, lactobacilli, L. plantarum Inducia DSM
    21379 and C. difficile in jejunum and ileum of survived
    hamster prefeeded with xylitol and L. plantarum Inducia DSM 21379
    Cd
    Treat- tox jejunum ileum
    ment Hamster A/B (CFU log 10/g) (CFU log 10/g)
    groups ID test AN LB Inducia C.d AN LB Inducia C.d
    C. T2-1 Neg 6.48 0 4.00 0.00 7.48 0 6.70 0.00
    difficile T2-2 Neg 5.20 0 4.30 0.00 7.04 0 7.00 0.00
    VPI + T2-3 Neg 7.48 0 4.30 0.00 7.30 0 6.70 0.00
    xylitol + T2-4 Neg 8.70 0 6.00 5.00 8.11 0 7.60 7.00
    Inducia T2-5 Neg 4.48 0 0.00 0.00 7.30 0 6.00 0.00
    (n = 7) T2-7 Neg 7.18 7.08 5.00 0.00 8.11 8.08 6.78 0.00
    T2-8 Neg 8.34 6.70 6.00 0.00 8.43 7.65 6.00 0.00
    C. Xyl-1 Neg 5.30 3.00 ND 2.00 8.43 6.30 ND 0.00
    difficile Xyl-2 Neg 7.11 5.54 ND 0.00 8.30 5.00 ND 0.00
    VPI + Xyl-3 Pos 7.60 4.00 ND 5.00 8.38 5.00 ND 7.60
    xylitol 24-1 Neg 7.35 7.6 ND 0 7.0 7.78 ND 0
    (n = 5) 24-2 Neg 7.15 7.0 ND 0 7.8 7.78 ND 0
    Pre-
    feeded
    AN—anaerobes, LB—lactobacilli; C.d—Clostridium difficile
  • The survival rate of hamsters was 22% higher due to L. plantarum Inducia DSM 21379 (Table 22). This was proved also by absence of toxin from intestinal content of large intestine (Table 23).
  • The growth of L. plantarum Inducia was high in jejunum (range 0-6.0, median 4.0 CFU log 10/g and in ileum 6.0-7.6, median 6.7). L. plantarum Inducia DSM 21379 acted seemingly via its acid production through its SCFAs profile.
  • Morphological Evaluation of the C. difficile Infected Hamsters
  • The typical CDAD infection was modelled in hamster model as in C. difficile infection the toxin damage of organs is the leading pathogenetic modulator.
  • In our study the C. difficile VPI 10643 strain possessed both toxins A and B, and these were also present in liver and small intestine (FIGS. 4 and 5).
  • In hamsters surviving the C. difficile infection and examined during autopsy no extensive damage of mucosa, no pseudomembranes and severe infiltration with polymorphonuclear cells was seen (FIG. 6 a).
  • Some hours before death the characteristic morphological finding of damaged with C. difficile infection hamsters was the inflammation with polymorphonuclear infiltration in mucosa and presence of pseudomembranes.
  • The severe enterocolitis developed the infiltration with red blood cells and polymorphonuclear leukocytes into gut mucosa, liver and spleen resulted in death of animals. In organs the hyperemia was present (FIG. 7 a-f).

Claims (18)

What is claimed is:
1. A composition comprising the probiotic microorganism Lactobacillus plantarum Inducia DSM 21379
for enhancing the natural defense potential and cellular immunity of a subject, and simultaneously for use in preventing the cholesterol metabolism disorders and consecutive cardiovascular disorders by decreasing the level of LDL-cholesterol in blood, and simultaneously
for enhancing anti-oxidative activity of blood by reducing the level of oxidized low density lipoprotein (ox-LDL).
2. The composition of claim 1, which is selected from the group consisting a pharmaceutical composition, a food composition, a food supplement composition and a veterinary composition.
3. A food product comprising the composition of claim 1.
4. The food product according to claim 3, wherein the food product is a dairy product.
5. The food product according to claim 4, wherein the food product is a fermented milk product.
6. The food product according to claim 5, wherein the food product is cheese.
7. The food product according to claim 5, wherein the food product is yoghurt.
8. The composition comprising the probiotic microorganism Lactobacillus plantarum Inducia DSM 21379 for use in lowering risk of Clostridium difficile associated diarrhoeae (CDAD) by preventing germination of Clostridium difficile spores and suppressing proliferation of Clostridium difficile vegetative cells.
9. The composition of claim 8, which is selected from the group consisting a pharmaceutical composition, a food composition, a food supplement composition and a veterinary composition.
10. The composition of claim 9 further comprising xylitol.
11. The food product comprising the composition of claim 10.
12. The food product of claim 11, wherein the food product is a dairy product.
13. The food product of claim 12, wherein the food product is a fermented milk product.
14. The food product according to claim 12, wherein the food product is cheese.
15. The food product according to claim 12, wherein the food product is yoghurt.
16. Lactobacillus plantarum Inducia DSM 21379 for use as hypocholesterolemic agent by decreasing the level of LDL-cholesterol in blood for preventing cholesterol metabolism disorders and consecutive cardiovascular disorders, and simultaneously for use as anti-oxidative agent for enhancing anti-oxidative activity of blood by reducing the level of oxidized low density lipoprotein (ox-LDL) and by enhancing the total anti-oxidative activity (TAA) of a composition comprising said strain, and simultaneously for use as enhancer of the natural defense potential and cellular immunity of a subject.
17. Lactobacillus plantarum Inducia DSM 21379 for use as antimicrobial agent by preventing germination of Clostridium difficile spores and suppressing proliferation of Clostridium difficile vegetative cells for lowering risk of Clostridium difficile associated diarrhoeae (CDAD).
18. Lactobacillus plantarum Inducia DSM 21379 for use according to claim 17 together with xylitol.
US14/244,284 2008-05-13 2014-04-03 Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile Abandoned US20140335066A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/244,284 US20140335066A1 (en) 2008-05-13 2014-04-03 Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile
EEP201800005A EE05809B1 (en) 2008-05-13 2014-10-31 Composition comrising probiotic microorganism strain Lactobacillus plantarum Inducia DSM 21379 for use in reducing risk of Clostridium difficile associated diarrhoea (CDAD)
DK14799963.5T DK3193895T3 (en) 2008-05-13 2014-10-31 LACTOBACILLUS PLANTARUM STEM INDUCIA DSM 21379 AS A HYPOCHOLESTEROLEMIC AND ANTIMICROBIAL AGENT FOR CLOSTRIDIUM DIFFICILE
EP14799963.5A EP3193895B1 (en) 2008-05-13 2014-10-31 Lactobacillus plantarum inducia strain dsm 21379 as hypocholesterolemic agent and antimicrobial agent against clostridium difficile
PCT/EE2014/000007 WO2015149818A1 (en) 2014-04-03 2014-10-31 Lactobacillus plantarum inducia strain dsm 21379 as hypocholesterolemic agent and antimicrobial agent against clostridium difficile
JP2016560760A JP2017515799A (en) 2014-04-03 2014-10-31 Lactobacillus plantarum Inducia strain DSM 21379 as an antimicrobial agent against cholesterol lowering agents and Clostridium difficile
EEP201400038A EE05799B1 (en) 2014-04-03 2014-10-31 Composition comprising hypocholesterolemic probiotic microorganism strain Lactobacillus plantarum Inducia DSM 21379 for use in preventing cardiovascular disorders
LTEP14799963.5T LT3193895T (en) 2008-05-13 2014-10-31 Lactobacillus plantarum inducia strain dsm 21379 as hypocholesterolemic agent and antimicrobial agent against clostridium difficile
US15/132,286 US10272122B2 (en) 2008-05-13 2016-04-19 Lactobacillus plantarum inducia DSM 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against Clostridium difficile

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EEP200800027 2008-05-13
EEP200800027A EE05341B1 (en) 2008-05-13 2008-05-13 Isolated microorganism or Lactobacillus plantarum Inducia DSM 21379 as a probiotic that enhances the natural defenses of the organism, the food and the composition containing them, and the use of the microorganism in the preparation of a cell-mediated immunity
US12/992,862 US20110274789A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it
PCT/EE2009/000006 WO2009138092A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it
US14/244,284 US20140335066A1 (en) 2008-05-13 2014-04-03 Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/992,862 Continuation-In-Part US20110274789A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it
PCT/EE2009/000006 Continuation-In-Part WO2009138092A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/132,286 Division US10272122B2 (en) 2008-05-13 2016-04-19 Lactobacillus plantarum inducia DSM 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against Clostridium difficile

Publications (1)

Publication Number Publication Date
US20140335066A1 true US20140335066A1 (en) 2014-11-13

Family

ID=40957913

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/992,862 Abandoned US20110274789A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it
US14/244,284 Abandoned US20140335066A1 (en) 2008-05-13 2014-04-03 Lactobacillus plantarum inducia dsm 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against clostridium difficile
US15/132,286 Active US10272122B2 (en) 2008-05-13 2016-04-19 Lactobacillus plantarum inducia DSM 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against Clostridium difficile

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/992,862 Abandoned US20110274789A1 (en) 2008-05-13 2009-05-12 Isolated lactobacillus plantarum strain inducia dsm 21379 as probiotic that enhances natural immunity and food products and medicinal preparations comprising it

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/132,286 Active US10272122B2 (en) 2008-05-13 2016-04-19 Lactobacillus plantarum inducia DSM 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against Clostridium difficile

Country Status (10)

Country Link
US (3) US20110274789A1 (en)
EP (2) EP2288360B1 (en)
KR (1) KR101595042B1 (en)
AT (1) ATE536879T1 (en)
DK (2) DK2288360T3 (en)
EE (2) EE05341B1 (en)
LT (1) LT3193895T (en)
PL (1) PL2288360T3 (en)
RU (1) RU2486234C2 (en)
WO (1) WO2009138092A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083450A3 (en) * 2014-11-25 2016-07-21 Dsm Ip Assets B.V. Lactobillus for use as probiotic and blood cell populations used for evaluating immune response to agents, e.g. probiotics
CN112553115A (en) * 2020-12-23 2021-03-26 南昌大学 Application of lactobacillus plantarum ZDY2013 in preparation of products for relieving kidney injury

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE05341B1 (en) * 2008-05-13 2010-08-16 O� Tervisliku Piima Biotehnoloogiate Arenduskeskus Isolated microorganism or Lactobacillus plantarum Inducia DSM 21379 as a probiotic that enhances the natural defenses of the organism, the food and the composition containing them, and the use of the microorganism in the preparation of a cell-mediated immunity
WO2015149818A1 (en) 2014-04-03 2015-10-08 Oü Tervisliku Piima Biotehnoloogiate Arenduskeskus (Bio-Competence Centre Of Healthy Dairy Products) Lactobacillus plantarum inducia strain dsm 21379 as hypocholesterolemic agent and antimicrobial agent against clostridium difficile
FR2955774A1 (en) 2010-02-02 2011-08-05 Aragan PREPARATION FOR TREATING PONDERAL EXCES AND ASSOCIATED DISORDERS AND APPLICATIONS THEREOF
ES2402014B1 (en) 2011-09-07 2014-02-27 Consejo Superior De Investigaciones Científicas (Csic) PEPTIDE SECRETED BY LACTOBACILLUS PLANTARUM WITH IMMUNOMODULATORY FUNCTION
RU2606770C2 (en) * 2011-12-21 2017-01-10 Компани Жервэ Данон Lactobacillus mucosae strain for producing fermented food products
US10688129B2 (en) 2013-11-26 2020-06-23 Central Biomedia, Inc. Method of producing a designer blood product, method of using a designer blood product, and diet for selectively enhancing blood profile
JP6479768B2 (en) * 2014-03-24 2019-03-06 大塚製薬株式会社 New Lactobacillus paracasei strain
RU2567149C1 (en) * 2014-12-24 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Горский государственный аграрный университет" Lactobacillus plantarum STRAIN USED FOR OBTAINING OF FERMENTED MILK PRODUCTS AND PROBIOTIC PREPARATIONS
KR101675035B1 (en) * 2015-07-17 2016-11-22 주식회사 빙그레 Probiotics comprising Lactobacillus sp., additives for animal feedstuff and animal feedstuff
US9730969B2 (en) 2015-11-06 2017-08-15 Mead Johnson Nutrition Company Nutritional compositions for promoting gut barrier function and ameliorating visceral pain
KR101794772B1 (en) * 2016-06-08 2017-12-01 강원대학교산학협력단 Novel strains of Bacillus subtilis EE5 producing high amount of polyamine
US10166262B2 (en) 2017-04-20 2019-01-01 Ewelina Sosnowska-Turek Strain of bacteria and composition comprising the same
KR102486970B1 (en) * 2017-09-22 2023-01-10 주식회사 고바이오랩 Lactobacillus plantarum having inhibitory effect against Clostridium difficile
TWI740101B (en) * 2019-02-12 2021-09-21 大江生醫股份有限公司 Use of the reducing cholesterol probiotic strain
SK502019A3 (en) * 2019-05-15 2020-12-02 Labas Miroslav Method of production of milk and milk supplements with a unique composition of fatty acids, restoration of commensal, natural microbiota
WO2021207247A1 (en) * 2020-04-07 2021-10-14 Kalin Health Llc Spermidine-supplemented food products
KR102363975B1 (en) * 2020-12-11 2022-02-17 주식회사 바이오뱅크힐링 Lactobacillus plantarum strain, and vesicles from thereof and anti-inflammation and anti-bacteria uses of thereof
CN113881604B (en) * 2021-11-10 2023-02-28 深圳大学 Lactobacillus plantarum MM89 and polysaccharide and application thereof
CN115381005B (en) * 2022-08-25 2023-09-19 中国农业科学院饲料研究所 Application of Lactobacillus plantarum CICC 6240 in reducing antibiotic residues in aquatic products
CN117417847B (en) * 2023-08-22 2024-03-15 大理大学 Clostridium marble and application thereof in preparation of antioxidant functional substances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195095A2 (en) * 2000-10-05 2002-04-10 St. Ivel Limited Food products with antimicrobial lactic acid bacteria
US20090011087A1 (en) * 2006-03-03 2009-01-08 Compagnie Gervais Danone Process for the Manufacture of a Frozen Dessert and Frozen Dessert Thus Obtained

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895758A (en) * 1997-06-10 1999-04-20 Bio-Energy Systems Strain of lactobacillus Plantarum
IT1298918B1 (en) * 1998-02-20 2000-02-07 Mendes Srl USE OF ARGININE DEIMINASE BACTERIA TO INDUCE APOPTOSIS AND / OR REDUCE AN INFLAMMATORY REACTION AND PHARMACEUTICAL COMPOSITIONS
EA005649B1 (en) * 2000-08-11 2005-04-28 Дэвид Р. Уитлок Compositions including ammonia oxidizing bacteria to increase production of nitric oxide and nitric oxide precursors and methods of using same
ITMI20020399A1 (en) * 2002-02-28 2003-08-28 Ct Sperimentale Del Latte S P DIETARY AND / OR PHARMACEUTICAL COMPOSITIONS FOR HUMAN AND / OR ANIMAL USE BASED ON MICROBIAL PROBIOTIC PREPARATIONS
US8460917B2 (en) * 2002-03-21 2013-06-11 Bifodan A/S Lactobacillus strains
RU2247148C2 (en) * 2002-05-28 2005-02-27 Пименов Евгений Васильевич Strain of microorganism lactobacillus plantarum p4, strain of microorganism lactobacillus buchneri p0 and probiotic preparation based on thereof for correction of dysbacteriosis of different etiology in humans and animals
WO2004076615A2 (en) * 2003-02-27 2004-09-10 Bioneer A/S Immunomodulating probiotic compounds
SE527555C2 (en) * 2003-04-04 2006-04-11 Probi Ab Composition for treating cardiovascular disease, diabetes, cancer, Alzheimer's disease, has tannase-producing strains of Lactobacillus plantarum or Lactobacillus species that adhere to human intestinal mucosa in combination with tannin
GB0513556D0 (en) * 2005-07-01 2005-08-10 Matforsk As Product
EE05340B1 (en) * 2008-05-13 2010-08-16 O� Tervisliku Piima Biotehnoloogiate Arenduskeskus Lactobacillus plantarum Tensia DSM 21380 and its use as an antimicrobial and antihypertensive probiotic in the manufacture of a medicament and for the prolongation of food shelf-life and contamination of food
EE05341B1 (en) * 2008-05-13 2010-08-16 O� Tervisliku Piima Biotehnoloogiate Arenduskeskus Isolated microorganism or Lactobacillus plantarum Inducia DSM 21379 as a probiotic that enhances the natural defenses of the organism, the food and the composition containing them, and the use of the microorganism in the preparation of a cell-mediated immunity
EP2311473A1 (en) * 2009-10-09 2011-04-20 AB-Biotics Producciones Industriales De Microbiotas, S.L. Lactobacillus plantarum strains as probiotics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195095A2 (en) * 2000-10-05 2002-04-10 St. Ivel Limited Food products with antimicrobial lactic acid bacteria
US20090011087A1 (en) * 2006-03-03 2009-01-08 Compagnie Gervais Danone Process for the Manufacture of a Frozen Dessert and Frozen Dessert Thus Obtained

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mikelsaar, M et al. Intestinal lactobacilli of Estonian and Swedish children. Microbial Ecology in Health and Disease. 2002. 14: 75-80. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083450A3 (en) * 2014-11-25 2016-07-21 Dsm Ip Assets B.V. Lactobillus for use as probiotic and blood cell populations used for evaluating immune response to agents, e.g. probiotics
US10226492B2 (en) 2014-11-25 2019-03-12 Dsm Ip Assets B.V. Probiotic and new biomarker
CN112553115A (en) * 2020-12-23 2021-03-26 南昌大学 Application of lactobacillus plantarum ZDY2013 in preparation of products for relieving kidney injury

Also Published As

Publication number Publication date
US10272122B2 (en) 2019-04-30
RU2010147343A (en) 2012-06-20
US20160296570A1 (en) 2016-10-13
EE200800027A (en) 2009-12-15
RU2486234C2 (en) 2013-06-27
EP3193895B1 (en) 2020-04-15
EE05809B1 (en) 2018-09-17
EE05341B1 (en) 2010-08-16
US20110274789A1 (en) 2011-11-10
DK3193895T3 (en) 2020-07-20
KR20110018898A (en) 2011-02-24
PL2288360T3 (en) 2012-06-29
EP2288360A1 (en) 2011-03-02
EP2288360B1 (en) 2011-12-14
KR101595042B1 (en) 2016-02-17
LT3193895T (en) 2020-07-27
EE201800005A (en) 2018-07-16
DK2288360T3 (en) 2012-03-19
WO2009138092A1 (en) 2009-11-19
EP3193895A1 (en) 2017-07-26
ATE536879T1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US10272122B2 (en) Lactobacillus plantarum inducia DSM 21379 as enhancer of cellular immunity, hypocholesterolemic and anti-oxidative agent and antimicrobial agent against Clostridium difficile
de Souza et al. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions
Uriot et al. Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate?
JP7168558B2 (en) Treatment of Clostridium difficile infections
Ebel et al. Impact of probiotics on risk factors for cardiovascular diseases. A review
Torres-Maravilla et al. Identification of novel anti-inflammatory probiotic strains isolated from pulque
Dicks et al. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action
JP4706016B2 (en) Bifidobacterium in the treatment of inflammatory diseases
Sirilun et al. Characterisation of non human origin probiotic Lactobacillus plantarum with cholesterol-lowering property
Sanchez et al. Probiotic fermented milks: present and future
KR101587195B1 (en) Isolated microorganism strain lactobacillus plantarum tensia dsm 21380 as antimicrobial and antihypertensive probiotic, food product and composition comprising said microorganism and use of said microorganism for preparation of antihypertensive medicine and method for suppressing pathogens and non-starter lactobacilli in food product
Santos et al. Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses
Jeronymo-Ceneviva et al. Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese
Thakur et al. Probiotics, Selection criteria, safety and role in health and
CN112204129A (en) Lactobacillus plantarum KBL396 strain and application thereof
Songisepp et al. Safety of a probiotic cheese containing Lactobacillus plantarum Tensia according to a variety of health indices in different age groups
Önal Darilmaz et al. The effects of inulin as a prebiotic supplement and the synbiotic interactions of probiotics to improve oxalate degrading activity
JP2017515799A (en) Lactobacillus plantarum Inducia strain DSM 21379 as an antimicrobial agent against cholesterol lowering agents and Clostridium difficile
KR20170093586A (en) Novel Lactobacillus plantarum with probiotic activities and use thereof
EP2220210B1 (en) Strains of lactobacillus plantarum as probiotics with immunomodulatory specific effect
Zhijing et al. Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances
US20140328814A1 (en) Antimicrobial and antihypertensive probiotic composition, food product and dietary supplement comprising microorganism strain lactobacillus plantarum tensia dsm 21380 and method for suppressing contaminating microbes in a food product
Strompfová et al. Lactobacilli and enterococci—potential probiotics for dogs
Chaudhari et al. In vitro and in vivo evaluation of probiotic potential and safety assessment of Bacillus coagulans SKB LAB-19 (MCC 0554) in humans and animal healthcare
Sherwani Probiotics in processed dairy products and their role in gut microbiota health

Legal Events

Date Code Title Description
AS Assignment

Owner name: TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIKELSAAR, MARIKA;SONGISEPP, EPP;HUETT, PIRJE;AND OTHERS;SIGNING DATES FROM 20140620 TO 20140630;REEL/FRAME:033219/0162

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TERVISLIKU PIIMA BIOTEHNOLOOGIATE ARENDUSKESKUS OU

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 033219 FRAME 0162. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIKELSAAR, MARIKA;SONGISEPP, EPP;HUETT, PIRJE;AND OTHERS;SIGNING DATES FROM 20140620 TO 20140630;REEL/FRAME:040365/0821