US20140332361A1 - Touch inductive unit and touch panel - Google Patents

Touch inductive unit and touch panel Download PDF

Info

Publication number
US20140332361A1
US20140332361A1 US14/274,786 US201414274786A US2014332361A1 US 20140332361 A1 US20140332361 A1 US 20140332361A1 US 201414274786 A US201414274786 A US 201414274786A US 2014332361 A1 US2014332361 A1 US 2014332361A1
Authority
US
United States
Prior art keywords
branch
sub
main stem
branch portion
electrode pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/274,786
Other versions
US9455705B2 (en
Inventor
Chi-Ming Huang
Shyh-Jeng CHEN
Pei-Fang Tsai
Ming-Chuan Lin
Hsueh-Chih Wu
Wen-Hung Wang
Wen-Yi Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wintek Corp
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Assigned to WINTEK CORPORATION reassignment WINTEK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, CHI-MING, LIN, MING-CHUAN, WU, HSUEH-CHIH, CHEN, SHYH-JENG, TSAI, PEI-FANG, WANG, WEN-HUNG, WANG, WEN-YI
Publication of US20140332361A1 publication Critical patent/US20140332361A1/en
Application granted granted Critical
Publication of US9455705B2 publication Critical patent/US9455705B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • H03K2017/9604Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes
    • H03K2017/9613Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes using two electrodes per touch switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96038Inductive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960775Emitter-receiver or "fringe" type detection, i.e. one or more field emitting electrodes and corresponding one or more receiving electrodes

Definitions

  • the present disclosure relates to a touch inductive unit and a touch panel having the same, and more particularly, to a mutual capacitance touch inductive unit and a touch panel having the same.
  • touch panels are extensively used for various sizes or products such as mobile phone, GPS navigator system, tablet PC, PDA, and laptop PC, owing to their convenience and practicality.
  • the touch panels are categorized according to different sensing principles, and the capacitive touch panels draw attentions due to its multi touch function.
  • the capacitive touch panels are classified into two types: the self-capacitance touch panel and the mutual capacitance touch panel. Please refer to FIGS. 1 and 2 , wherein FIG. 1 is a schematic drawing of a top view of a mutual capacitance touch panel, and FIG. 2 is a schematic drawing illustrating the touched and untouched operations of mutual capacitance touch panel.
  • a sensing device 10 of the mutual capacitance touch panel includes a driving (Tx) electrode 12 and a receiving (Rx) electrode 14 that are formed correspondingly to each other.
  • the touch sensing function is realized. More specific, when a user's finger 20 closes to the mutual capacitance touch sensing device 10 , the electric fields between the Tx 12 and the Rx 14 are changed due to the ground capacitance of human body. Therefore, by detecting capacitance variation of the sensing device 10 between touched and untouched operations, a touch point of the user's finger 20 is recognized and identified.
  • the fringe capacitance of the sensing device 10 is related to a length L of the Tx electrode 12 and the Rx electrode 14 , and a spacing distance S 1 between the Tx electrode 12 and the Rx electrode 14 .
  • it is always in need to modify the length L of the Tx electrode 12 and the Rx electrode 14 and the spacing distance S 1 .
  • the present invention provides a touch inductive unit and a touch panel having the same.
  • the provided touch inductive unit is realized with one layer solution, therefore the receiving electrode patterns and the driving electrode patterns which construct the touch inductive units on the touch panel are coplanar. Because the receiving electrode pattern and the driving electrode pattern of each touch inductive unit are interdigitated and physically spaced apart from each other, sensitivity of the touch inductive unit is improved without increasing panel loading.
  • a touch inductive unit includes a receiving electrode pattern and a driving electrode pattern.
  • the receiving electrode pattern includes at least a receiving electrode branch and the driving electrode pattern includes at least a driving electrode branch. More important, the receiving electrode branch and the driving electrode branch are interdigitated and physically spaced apart from each other to generate a fringe capacitance.
  • the touch inductive unit includes a receiving electrode pattern and a driving electrode pattern.
  • the receiving electrode pattern includes a first main stem, a first branch portion, and a second branch portion.
  • the first branch portion and the second branch portion are extended from the first main stem.
  • the driving electrode pattern includes a second main stem, a third branch portion, and a fourth branch portion.
  • the third branch portion and the fourth branch portion are extended from the second main stem. It is noteworthy that the receiving electrode pattern and the driving electrode pattern are interdigitated and physically spaced apart from each other.
  • a touch panel includes a substrate, a plurality of receiving electrode patterns disposed on the substrate, and a plurality of driving electrode patterns disposed on the substrate.
  • the receiving electrode patterns are electrically isolated from each other, and the driving electrode patterns are respectively corresponding to one receiving electrode pattern.
  • Each of the receiving electrode patterns includes a first main stem, a first branch portion, and a second branch portion. The first branch portion and the second branch portion are extended from the first main stem.
  • Each of the driving electrode patterns includes a second main stem, a third branch portion, and a fourth branch portion. The third branch portion and the fourth branch portion are extended from the second main stem. It is noteworthy that the corresponding receiving electrode pattern and driving electrode pattern are interdigitated and physically spaced apart from each other. And thus a plurality of touch inductive units are formed on the substrate.
  • FIG. 1 is a schematic drawing of a top view of a mutual capacitance touch sensing device.
  • FIG. 2 is a schematic drawing illustrating the mutual capacitance touch sensing device before and after touch.
  • FIG. 3 is a schematic drawing illustrating a touch inductive unit provided by a preferred embodiment of the present invention.
  • FIG. 4 is a schematic drawing illustrating a modification to the touch inductive unit provided by the present invention.
  • FIG. 5 is a schematic drawing illustrating a touch panel provided by a preferred embodiment of the present invention.
  • FIG. 6 is a schematic drawing illustrating a modification to the touch panel provided by the present invention.
  • FIG. 3 is a schematic drawing illustrating a touch inductive unit provided by a preferred embodiment of the present invention.
  • a touch inductive unit 100 is provided.
  • the touch inductive unit 100 includes a first electrode pattern and a second electrode pattern.
  • the first electrode pattern is a receiving electrode pattern 110 and the second electrode patterns is a driving electrode pattern 120 , but not limited to this.
  • the receiving electrode pattern 110 includes at least a receiving electrode branch and the driving electrode pattern includes at least a driving electrode branch. More important, the receiving electrode branch and the driving electrode branch are interdigitated and thus a fringe capacitance is generated therebetween.
  • the receiving electrode pattern 110 includes a first main stem 112 , a first branch portion 114 , and a second branch portion 116 .
  • the first branch portion 114 and the second branch portion 116 are extended from the first main stem 112 .
  • the first branch portion 114 and the second branch portion 116 are exemplarily arranged in pair.
  • the first main stem 112 can be taken as a stem of a plant, which extends from one side of the touch inductive unit 100 toward its center.
  • the first branch portion 114 includes a pattern of opposite leave.
  • the first branch portion 114 includes a first sub-branch 114 a and a second sub-branch 114 b.
  • the first sub-branch 114 a and the second sub-branch 114 b are respectively disposed at two opposite sides of the first main stem 112 and thus are axisymmetric about the first main stem 112 .
  • the first branch portion 114 is arranged at a top of the first main stem 112 and therefore a tuning-fork pattern is obtained as shown in FIG. 3 , but not limited to this.
  • first sub-branch 114 a and the second sub-branch 114 b respectively include a parallel part 114 c, which is parallel with the first main stem 112 , and a perpendicular part 114 d, which is perpendicular to the first main stem 112 . Furthermore, the perpendicular part 114 d connects the parallel part 114 c to the first main stem 112 .
  • the second branch portion 116 of the receiving electrode pattern 110 also includes a pattern of opposite leaves. In detail, the second branch portion 116 includes a third sub-branch 116 a and a fourth sub-branch 116 b.
  • the third sub-branch 116 a and the fourth sub-branch 116 b are respectively arranged at two opposite sides of the first main stem 112 and thus are axisymmetric about the first main stem 112 . Furthermore, the second branch portion 116 is disposed at outside of the first branch portion 114 and surrounding at least apart of the first branch portion 114 as shown in FIG. 3 . In other words, the third sub-branch 116 a and the fourth sub-branch 116 b are arranged at outer sides of the first sub-branch 114 a and the second sub-branch 114 b. Consequently, the receiving electrode pattern 110 includes a scherd pattern with a tuning-fork type top, but not limited to this.
  • the third sub-branch 116 a and the fourth sub-branch 116 b respectively include a parallel part 116 c, which is parallel with the first main stem 112 , and a perpendicular part 116 d, which is perpendicular to the first main stem 112 .
  • the perpendicular part 116 d connects the parallel part 116 c to the first main stem 112 .
  • the third sub-branch 116 a and the fourth sub-branch 116 b can further include another perpendicular part 116 e, respectively. As shown in FIG.
  • the perpendicular part 116 e and the perpendicular part 116 d are disposed at two ends of the parallel part 116 c, respectively. It should be easily realized by those skilled in the art that though the receiving electrode branch in the preferred embodiment includes the first branch 114 and the second branch 116 , numbers of the receiving electrode branch can be adjusted to fit the needs.
  • the driving electrode pattern 120 of the touch inductive unit 100 includes a second main stem 122 , a third branch portion 124 , and a fourth branch portion 126 .
  • the third branch portion 124 and the fourth branch portion 126 are extended from the second main stem 122 .
  • the third branch portion 124 and the fourth branch portion 126 are exemplarily arranged in pair.
  • the second main stem 122 can be taken as a stem of a plant, which extends from one side of the touch inductive unit 100 toward its center.
  • the third branch portion 124 also includes a pattern of opposite leave.
  • the third branch portion 124 includes a fifth sub-branch 124 a and a sixth sub-branch 124 b.
  • the fifth sub-branch 124 a and the sixth sub-branch 124 b are respectively disposed at two opposite sides of the second main stem 122 and thus are axisymmetric about the second main stem 122 . Consequently, the second main stem 122 and the third branch portion 124 form a scherd pattern, but not limited to this. It is also noteworthy that the fifth sub-branch 122 a and the sixth sub-branch 122 b respectively include a parallel part 124 c, which is parallel with the second main stem 122 , and a perpendicular part 124 d, which is perpendicular to the second main stem 122 . The perpendicular part 124 d connects the parallel part 124 c to the second main stem 122 .
  • the fifth sub-branch 124 a and the sixth sub-branch 124 b can further include another perpendicular part 124 e, respectively.
  • the perpendicular part 124 e and the perpendicular part 124 d are respectively disposed at two ends of the parallel part 124 c as shown in FIG. 3 .
  • the fourth branch portion 126 of the driving electrode pattern 120 also includes a pattern of opposite leave.
  • the fourth branch portion 126 includes a seventh sub-branch 126 a and an eighth sub-branch 126 b.
  • the seventh sub-branch 126 a and the eighth sub-branch 126 b are respectively disposed at two opposite sides of the second main stem 122 and thus are axisymmetric about the second main stem 122 .
  • the fourth branch portion 126 is disposed at outer side of the third branch portion 124 and surrounding at least a part of the third branch portion 124 as shown in FIG. 3 .
  • the seventh sub-branch 126 a and the eighth sub-branch 126 b are arranged at outer side of the fifth sub-branch 124 a and the sixth sub-branch 124 b. Consequently, the second main stem 122 and the fourth branch portion 126 also forma scherd pattern, but not limited to this.
  • the seventh sub-branch 126 a and the eighth sub-branch 126 b respectively include a parallel part 126 c, which is parallel with the second main stem 122 , and a perpendicular part 126 d, which is perpendicular to the second main stem 122 .
  • the perpendicular part 126 d connects the parallel part 126 c to the second main stem 122 .
  • the receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 provided by the preferred embodiment are constructed by a conductive pattern formed in the same layer and interdigitated as shown in FIG. 3 .
  • a part of the second main stem 122 of the driving electrode pattern 120 extends in between the first sub-branch 114 a and the second sub-branch 114 b of the first branch portion 114 of the receiving electrode pattern 110 , which form the pattern of tuning fork. Extending directions of the first main stem 112 and the second main stem 122 are parallel with each other.
  • the first branch portion 114 of the receiving electrode pattern 110 is disposed in between the second main stem 122 and the third branch portion 124 of the driving electrode pattern 120 , therefore the first sub-branch 114 a is disposed in between the second main stem 122 and the fifth sub-branch 124 a, while the second sub-branch 114 b is disposed in between the second main stem 122 and the sixth sub-branch 124 b.
  • the third branch portion 124 of the driving electrode pattern 120 is disposed in between the first branch portion 114 and the second branch portion 116 of the receiving electrode pattern 110 , therefore the fifth sub-branch 124 a is disposed in between the first sub-branch 114 a and the third sub-branch 116 a while the sixth sub-branch 124 b is disposed in between the second sub-branch 114 b and the fourth sub-branch 116 b.
  • the second branch portion 116 of the receiving electrode pattern 110 is disposed in between the third branch portion 124 and the fourth branch portion 126 of the driving electrode pattern 120 , therefore the third sub-branch 116 a is disposed in between the fifth sub-branch 124 a and the seventh sub-branch 126 a while the fourth sub-branch 116 b is disposed in between the sixth sub-branch 124 b and the eighth sub-branch 126 b. Accordingly, the receiving electrode pattern 110 and the driving electrode pattern 120 are axisymmetric about a connecting line A formed of the first main stem 112 and the second main stem 122 .
  • any part of the receiving electrode pattern 110 is adjacent to the driving electrode pattern 120 , and more particularly, the parallel part 114 c / 116 c of the receiving electrode pattern 110 and the parallel part 124 c / 126 c of the driving electrode pattern 120 are alternately arranged with and therefore adjacent to each other. Accordingly, an arrangement order from periphery to center specified by the preferred embodiment is: the fourth branch portion 126 (of the driving electrode pattern 120 ), the second branch portion 116 (of the receiving electrode pattern 110 ), the third branch portion 124 (of the driving electrode pattern 120 ), the first branch portion 114 (of the receiving electrode pattern 110 ), and the second main stem 122 (of the driving electrode pattern 120 ).
  • the receiving electrode pattern 110 includes a first width W 1 and the driving electrode pattern 120 includes a second width W 2 . More important, the receiving electrode pattern 110 and the driving electrode pattern 120 are physically and electrically isolated from each other. As shown in FIG. 3 , a spacing S 2 is formed in between the receiving electrode pattern 110 and the driving electrode pattern 120 for rendering the physical and electrical isolation. By the way, owing to the symmetrically arrangement of the sub-branches, the equivalent resistance of each receiving electrode pattern 110 and each driving electrode pattern 120 can be decreased.
  • the resistances of the first sub-branch 114 a and second sub-branch 114 b are shunt because the sub-branch 114 a and 114 b are symmetrically arranged about the main stem 112 .
  • FIG. 4 is a schematic drawing illustrating a modification to the touch inductive unit provided by the present invention.
  • a plurality of dummy patterns 130 are disposed in the spacing S 2 between the receiving electrode pattern 110 and the driving electrode pattern 120 .
  • the dummy patterns 130 are floated and thus electrically isolated from the receiving electrode pattern 110 and the driving electrode pattern 120 .
  • the dummy patterns 130 are provided in order to prevent the receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 from being observed and thus adverse optical effect to the users is avoided.
  • the mutual capacitance generated by the receiving electrode pattern 110 and the driving electrode pattern 120 is related to the corresponding length of the receiving electrode pattern 110 and the driving electrode pattern 120 .
  • the effective length for generating the mutual capacitance is efficaciously increased by providing the receiving electrode pattern 110 including the main stem 112 and the branch portions 114 / 116 and the driving electrode pattern 120 including the main stem 122 and the branch portions 124 / 126 , which are interdigitated. Consequently, the mutual capacitance in per unit area is increased and thus sensitivity of the touch inductive unit 100 is improved.
  • FIG. 5 is a schematic drawing illustrating a touch panel provided by a preferred embodiment of the present invention.
  • the touch inductive unit and the touch panel provided by the preferred embodiment can be integrated into all categories of flat display device, such as a liquid crystal display (LCD) device, a field emission display (FED) device, a plasma display device, an organic light emitting display (OLED) device, or an electrophoretic display (EPD) device, but not limited to this.
  • the touch panel provided by the preferred embodiment can be an in cell touch panel or an out cell touch panel. In the out cell touch panel with the touch inductive unit of the present invention, the touch inductive unit can be disposed on a color filter substrate, an array substrate, or an encapsulation of the aforementioned display devices.
  • the touch panel 200 provided by the preferred embodiment includes at least a substrate 202 .
  • the substrate 202 may include a rigid substrate, such as a glass substrate, a cover lens, and a protection glass, a flexible substrate/thin-film substrate, such as a plastic substrate or other substrate composed of suitable materials.
  • a transparent conductive material layer is formed on a surface of the substrate 202 .
  • the transparent conductive material layer includes indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium gallium zinc oxide (IGZO), nano-silver yarn or other suitable transparent conductive materials.
  • the transparent conductive material layer is then patterned by a patterning process and a plurality of receiving electrode patterns 110 , a plurality of driving electrode patterns 120 , and a plurality of conducting lines 140 are formed on the substrate 202 .
  • the receiving electrode patterns 110 , the driving electrode patterns 120 and the conductive lines 140 are all formed by the same transparent conductive material layer and thus are all coplanar.
  • the conductive lines 140 can be formed by metal.
  • each of the receiving electrode patterns 110 and the driving electrode patterns 120 can be formed by metal mesh pattern.
  • the metal mesh pattern includes a plurality of metal lines each having the width ranging from 0.08 micrometer to 10 micrometer.
  • each of the receiving electrode patterns 110 are electrically isolated from each other in the preferred embodiment, and the conductive lines 140 are electrically isolated from each other, too. However each of the receiving electrode patterns 110 is electrically connected to one corresponding conducting line 140 . More important, each of the receiving electrode patterns 110 corresponds to one driving electrode pattern 120 , and therefore a plurality of touch inductive units 100 formed by the corresponding receiving electrode pattern 110 and the driving electrode pattern 120 pattern 120 are formed on the substrate 202 . As shown in FIG. 5 , the touch inductive units are arranged in a matrix. Since the touch panel 200 can be integrated into the aforementioned display panel, each of the touch inductive units 100 corresponds to few to dozens of pixel units in the display panel.
  • Each of the touch inductive units 100 includes one receiving electrode pattern 110 , one driving electrode pattern 120 , and one conductive line 140 that electrically connected to the corresponding receiving electrode pattern 110 . It should be noted that the receiving electrode pattern 110 and the driving electrode pattern 120 of each touch inductive unit 100 are interdigitated, but physically and electrically isolated.
  • each touch inductive unit 100 includes a configuration as described above.
  • Each receiving electrode pattern 110 includes a first main stem 112 , a first branch portion 114 , and a second branch portion 116 , and the first branch portion 114 and the second branch portion 116 are axisymmetric about the first main stem 112 .
  • the second branch portion 116 is disposed at outer side of the first branch portion 114 for surrounding at least a part of the first branch portion 114 . At least a part of the first branch portion 114 and at least a part of the second branch portion 116 are perpendicular to the first main stem 112 .
  • the driving electrode pattern 120 of each touch inductive unit 100 includes a configuration as described above.
  • Each driving electrode pattern 120 includes a second main stem 122 , a third branch portion 124 and a fourth branch portion 126 , and the third branch portion 124 and the fourth branch portion 126 are axisymmetric about the second main stem 122 .
  • the fourth branch portion 126 is disposed at outer side of the third branch portion 124 for surrounding at least a part of the third branch portion 124 . At least a part of the third branch portion 124 and at least a part of the fourth branch portion 126 are perpendicular to the second main stem 122 . Since the configuration of the driving electrode patterns 120 are identical with those described above, those details are omitted in the interest of brevity.
  • the touch inductive units 100 are arranged in the matrix as mentioned above. More important, the driving electrode patterns 120 of the touch inductive units 100 in the same column are electrically connected to each other.
  • the driving electrode pattern 120 of each touch inductive unit 100 includes the second main stem 122 , the third branch portion 124 , and the fourth branch portion 126 as mentioned above, and the fourth branch portion 126 is disposed at the outermost side of the touch inductive unit 100 . Therefore the fourth branch portions 126 of the driving electrode patterns 120 in the same column are physically and electrically connected to each other. Additionally, a width of the second branch portions 126 of the driving electrode patterns 122 in the same column may by larger than the width of the first branch portions 124 and the second main stems 122 as shown in FIG. 5 .
  • the receiving electrode pattern 110 of each touch inductive unit 100 includes the first width W 1 while the driving electrode pattern 120 of each touch inductive unit 100 includes the second width W 2 .
  • the fourth branch portions 126 of the driving electrode patterns 120 in the same column include the larger width, only the width of the third branch portions 124 and the second main stems 122 of the driving electrode patterns 120 are provided according to the preferred embodiment.
  • the first width W 1 is between 100 micrometer ( ⁇ m) and 500 ⁇ m
  • the second width W 2 is between 100 ⁇ m and 500 ⁇ m. It should be noted that a sum of the first width W 1 and the second width W 2 are not larger than 600 ⁇ m according to the preferred embodiment.
  • the first width W 1 is preferably larger than the second width W 2 in the preferred embodiment, but not limited to this.
  • the driving electrode pattern 120 itself may include different widths.
  • the driving electrode pattern 120 can include a third width W 3 and a fourth width W 4 .
  • the second width W 2 , the third width W 3 , and the fourth width W 4 can be different from each other as shown in FIG. 3 , or be identical to each other if required.
  • the receiving electrode pattern 110 and the driving electrode pattern 120 of each touch inductive unit 100 are spaced apart from each other by the spacing S 2 .
  • the spacing S 2 is, for example but not limited to, 300 ⁇ m.
  • the mutual capacitance generated from the receiving electrode pattern 110 and the driving electrode pattern 120 is related to the corresponding length of the receiving electrode pattern 110 and the driving electrode pattern 120 .
  • the effective length for generating the mutual capacitance is efficaciously increased by providing the receiving electrode pattern 110 including the main stem 112 and the branch portions 114 / 116 and the driving electrode pattern 120 including the main stem 122 and the branch portions 124 / 126 , which are interdigitated. Consequently, the mutual capacitance in per unit area (such as a predetermined area with the dimension of 1 mm*1 mm) is increased and thus sensitivity of the touch inductive unit 100 is improved.
  • the sensitivity the touch inductive unit 100 of the touch panel 200 is also influenced by the first width W 1 of the receiving electrode pattern 110 , the second width W 2 of the driving electrode pattern 120 , and the spacing S 2 . Additionally, it should be understood by those skilled in the art that the sensitivity of the touch inductive unit 100 can be described with the delta C ( ⁇ C, the capacitance difference between touched and untouched operations) and the differential couple ration (hereinafter abbreviated as DCR), which is a quotient of the ⁇ C over the total capacitance: the higher ⁇ C and DCR means the more improved sensitivity of the touch inductive unit.
  • ⁇ C the capacitance difference between touched and untouched operations
  • DCR differential couple ration
  • the ⁇ C gets 0.27 and DCR reaches 36.38%.
  • the first width W 1 is 400 ⁇ m
  • the second width W 2 is 200 ⁇ m
  • the spacing S 2 is 300 ⁇ m
  • the ⁇ C gets 0.27 and DCR reaches 39.99%.
  • the first width W 1 is 500 ⁇ m
  • the second width W 2 is 100 ⁇ m
  • the spacing S 2 is 300 ⁇ m
  • the ⁇ C gets 0.26 and DCR reaches 43.72%.
  • the sensitivity of touch inductive units 100 having the receiving electrode pattern 110 and the driving electrode pattern 120 with special configuration provided by the preferred embodiment is improved. Consequently, the sensitivity of the touch inductive unit 100 is improved without increasing panel loading.
  • FIG. 6 is a schematic drawing illustrating a modification to the touch panel provided by the present invention.
  • a plurality of dummy patterns 130 are disposed in the spacing S 2 between the receiving electrode pattern 110 and the driving electrode pattern 120 .
  • the dummy patterns 130 are provided in order to prevent the receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 from being observed and thus adverse optical effect to the users is avoided.
  • the touch inductive unit and the touch panel having the same provided by the present invention is realized with one layer solution, therefore the receiving electrode patterns and the driving electrode patterns which construct the touch inductive units on the touch panel are coplanar. Because the receiving electrode pattern and the driving electrode pattern of each touch inductive unit are interdigitated and physically spaced apart from each other, sensitivity of the touch inductive unit is improved without increasing panel loading. Additionally, dummy patterns are disposed in the spacing between the receiving electrode pattern and the driving electrode pattern. The dummy patterns are provided in order to prevent the receiving electrode pattern and the driving electrode pattern having the special configuration from being observed and thus adverse optical effect to the users is avoided.

Landscapes

  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

A touch inductive unit includes a receiving electrode pattern and a driving electrode pattern. The receiving electrode pattern includes a first main stem, a first branch portion and a second branch portion. The first branch portion and the second branch portion are extended from the first main stem. The driving electrode pattern includes a second main stem, a third branch portion and a fourth branch portion. The third branch portion and the fourth branch portion are extended from the second main stem. The receiving electrode pattern and the driving electrode pattern are interdigitated and physically spaced apart from each other.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present disclosure relates to a touch inductive unit and a touch panel having the same, and more particularly, to a mutual capacitance touch inductive unit and a touch panel having the same.
  • 2. Description of the Prior Art
  • Along with the development of the touch sensing technique, the commercially available touch panels are extensively used for various sizes or products such as mobile phone, GPS navigator system, tablet PC, PDA, and laptop PC, owing to their convenience and practicality.
  • The touch panels are categorized according to different sensing principles, and the capacitive touch panels draw attentions due to its multi touch function. The capacitive touch panels are classified into two types: the self-capacitance touch panel and the mutual capacitance touch panel. Please refer to FIGS. 1 and 2, wherein FIG. 1 is a schematic drawing of a top view of a mutual capacitance touch panel, and FIG. 2 is a schematic drawing illustrating the touched and untouched operations of mutual capacitance touch panel. As shown in FIG. 1, a sensing device 10 of the mutual capacitance touch panel includes a driving (Tx) electrode 12 and a receiving (Rx) electrode 14 that are formed correspondingly to each other. When a user touches the panel, the mutual capacitance between the Tx 12 and the Rx 14 is changed and thus the touch point is recognized. Accordingly, the touch sensing function is realized. More specific, when a user's finger 20 closes to the mutual capacitance touch sensing device 10, the electric fields between the Tx 12 and the Rx 14 are changed due to the ground capacitance of human body. Therefore, by detecting capacitance variation of the sensing device 10 between touched and untouched operations, a touch point of the user's finger 20 is recognized and identified.
  • Please refer to FIG. 1 again. It is well-known to those skilled in the art that the fringe capacitance of the sensing device 10 is related to a length L of the Tx electrode 12 and the Rx electrode 14, and a spacing distance S1 between the Tx electrode 12 and the Rx electrode 14. In order to improve sensitivity of the sensing device, it is always in need to modify the length L of the Tx electrode 12 and the Rx electrode 14 and the spacing distance S1.
  • SUMMARY OF THE INVENTION
  • In accordance with the foregoing discussion, it is therefore an objective of the present invention to provide a touch inductive unit and a touch panel having the same. The provided touch inductive unit is realized with one layer solution, therefore the receiving electrode patterns and the driving electrode patterns which construct the touch inductive units on the touch panel are coplanar. Because the receiving electrode pattern and the driving electrode pattern of each touch inductive unit are interdigitated and physically spaced apart from each other, sensitivity of the touch inductive unit is improved without increasing panel loading.
  • According to a preferred embodiment of the present invention, a touch inductive unit is provided. The touch inductive unit includes a receiving electrode pattern and a driving electrode pattern. The receiving electrode pattern includes at least a receiving electrode branch and the driving electrode pattern includes at least a driving electrode branch. More important, the receiving electrode branch and the driving electrode branch are interdigitated and physically spaced apart from each other to generate a fringe capacitance.
  • According to a preferred embodiment of the present invention, another touch inductive unit is provided. The touch inductive unit includes a receiving electrode pattern and a driving electrode pattern. The receiving electrode pattern includes a first main stem, a first branch portion, and a second branch portion. The first branch portion and the second branch portion are extended from the first main stem. The driving electrode pattern includes a second main stem, a third branch portion, and a fourth branch portion. The third branch portion and the fourth branch portion are extended from the second main stem. It is noteworthy that the receiving electrode pattern and the driving electrode pattern are interdigitated and physically spaced apart from each other.
  • According to a preferred embodiment of the present invention, a touch panel is provided. The touch panel includes a substrate, a plurality of receiving electrode patterns disposed on the substrate, and a plurality of driving electrode patterns disposed on the substrate. The receiving electrode patterns are electrically isolated from each other, and the driving electrode patterns are respectively corresponding to one receiving electrode pattern. Each of the receiving electrode patterns includes a first main stem, a first branch portion, and a second branch portion. The first branch portion and the second branch portion are extended from the first main stem. Each of the driving electrode patterns includes a second main stem, a third branch portion, and a fourth branch portion. The third branch portion and the fourth branch portion are extended from the second main stem. It is noteworthy that the corresponding receiving electrode pattern and driving electrode pattern are interdigitated and physically spaced apart from each other. And thus a plurality of touch inductive units are formed on the substrate.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic drawing of a top view of a mutual capacitance touch sensing device.
  • FIG. 2 is a schematic drawing illustrating the mutual capacitance touch sensing device before and after touch.
  • FIG. 3 is a schematic drawing illustrating a touch inductive unit provided by a preferred embodiment of the present invention.
  • FIG. 4 is a schematic drawing illustrating a modification to the touch inductive unit provided by the present invention.
  • FIG. 5 is a schematic drawing illustrating a touch panel provided by a preferred embodiment of the present invention.
  • FIG. 6 is a schematic drawing illustrating a modification to the touch panel provided by the present invention.
  • DETAILED DESCRIPTION
  • A more complete understanding of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment.
  • Please refer to FIG. 3, which is a schematic drawing illustrating a touch inductive unit provided by a preferred embodiment of the present invention. As shown in FIG. 3, a touch inductive unit 100 is provided. The touch inductive unit 100 includes a first electrode pattern and a second electrode pattern. According to the preferred embodiment, the first electrode pattern is a receiving electrode pattern 110 and the second electrode patterns is a driving electrode pattern 120, but not limited to this. The receiving electrode pattern 110 includes at least a receiving electrode branch and the driving electrode pattern includes at least a driving electrode branch. More important, the receiving electrode branch and the driving electrode branch are interdigitated and thus a fringe capacitance is generated therebetween. Details about the receiving electrode branch of the receiving electrode pattern 110 and the driving electrode branch of the driving electrode pattern 120 is elucidated hereinafter. As shown in FIG. 3, the receiving electrode pattern 110 includes a first main stem 112, a first branch portion 114, and a second branch portion 116. The first branch portion 114 and the second branch portion 116 are extended from the first main stem 112. And the first branch portion 114 and the second branch portion 116 are exemplarily arranged in pair. Specifically, the first main stem 112 can be taken as a stem of a plant, which extends from one side of the touch inductive unit 100 toward its center. The first branch portion 114 includes a pattern of opposite leave. In detail, the first branch portion 114 includes a first sub-branch 114 a and a second sub-branch 114 b. The first sub-branch 114 a and the second sub-branch 114 b are respectively disposed at two opposite sides of the first main stem 112 and thus are axisymmetric about the first main stem 112. In the preferred embodiment, the first branch portion 114 is arranged at a top of the first main stem 112 and therefore a tuning-fork pattern is obtained as shown in FIG. 3, but not limited to this. It is also noteworthy that the first sub-branch 114 a and the second sub-branch 114 b respectively include a parallel part 114 c, which is parallel with the first main stem 112, and a perpendicular part 114 d, which is perpendicular to the first main stem 112. Furthermore, the perpendicular part 114 d connects the parallel part 114 c to the first main stem 112. The second branch portion 116 of the receiving electrode pattern 110 also includes a pattern of opposite leaves. In detail, the second branch portion 116 includes a third sub-branch 116 a and a fourth sub-branch 116 b. The third sub-branch 116 a and the fourth sub-branch 116 b are respectively arranged at two opposite sides of the first main stem 112 and thus are axisymmetric about the first main stem 112. Furthermore, the second branch portion 116 is disposed at outside of the first branch portion 114 and surrounding at least apart of the first branch portion 114 as shown in FIG. 3. In other words, the third sub-branch 116 a and the fourth sub-branch 116 b are arranged at outer sides of the first sub-branch 114 a and the second sub-branch 114 b. Consequently, the receiving electrode pattern 110 includes a halberd pattern with a tuning-fork type top, but not limited to this. It is also noteworthy that the third sub-branch 116 a and the fourth sub-branch 116 b respectively include a parallel part 116 c, which is parallel with the first main stem 112, and a perpendicular part 116 d, which is perpendicular to the first main stem 112. The perpendicular part 116 d connects the parallel part 116 c to the first main stem 112. In the preferred embodiment, the third sub-branch 116 a and the fourth sub-branch 116 b can further include another perpendicular part 116 e, respectively. As shown in FIG. 3, the perpendicular part 116 e and the perpendicular part 116 d are disposed at two ends of the parallel part 116 c, respectively. It should be easily realized by those skilled in the art that though the receiving electrode branch in the preferred embodiment includes the first branch 114 and the second branch 116, numbers of the receiving electrode branch can be adjusted to fit the needs.
  • Please refer to FIG. 3 again. The driving electrode pattern 120 of the touch inductive unit 100 includes a second main stem 122, a third branch portion 124, and a fourth branch portion 126. The third branch portion 124 and the fourth branch portion 126 are extended from the second main stem 122. And the third branch portion 124 and the fourth branch portion 126 are exemplarily arranged in pair. Specifically, the second main stem 122 can be taken as a stem of a plant, which extends from one side of the touch inductive unit 100 toward its center. The third branch portion 124 also includes a pattern of opposite leave. In detail, the third branch portion 124 includes a fifth sub-branch 124 a and a sixth sub-branch 124 b. The fifth sub-branch 124 a and the sixth sub-branch 124 b are respectively disposed at two opposite sides of the second main stem 122 and thus are axisymmetric about the second main stem 122. Consequently, the second main stem 122 and the third branch portion 124 form a halberd pattern, but not limited to this. It is also noteworthy that the fifth sub-branch 122 a and the sixth sub-branch 122 b respectively include a parallel part 124 c, which is parallel with the second main stem 122, and a perpendicular part 124 d, which is perpendicular to the second main stem 122. The perpendicular part 124 d connects the parallel part 124 c to the second main stem 122. In the preferred embodiment, the fifth sub-branch 124 a and the sixth sub-branch 124 b can further include another perpendicular part 124 e, respectively. The perpendicular part 124 e and the perpendicular part 124 d are respectively disposed at two ends of the parallel part 124 c as shown in FIG. 3. The fourth branch portion 126 of the driving electrode pattern 120 also includes a pattern of opposite leave. In detail, the fourth branch portion 126 includes a seventh sub-branch 126 a and an eighth sub-branch 126 b. The seventh sub-branch 126 a and the eighth sub-branch 126 b are respectively disposed at two opposite sides of the second main stem 122 and thus are axisymmetric about the second main stem 122. Furthermore, the fourth branch portion 126 is disposed at outer side of the third branch portion 124 and surrounding at least a part of the third branch portion 124 as shown in FIG. 3. In other words, the seventh sub-branch 126 a and the eighth sub-branch 126 b are arranged at outer side of the fifth sub-branch 124 a and the sixth sub-branch 124 b. Consequently, the second main stem 122 and the fourth branch portion 126 also forma halberd pattern, but not limited to this. It is also noteworthy that the seventh sub-branch 126 a and the eighth sub-branch 126 b respectively include a parallel part 126 c, which is parallel with the second main stem 122, and a perpendicular part 126 d, which is perpendicular to the second main stem 122. The perpendicular part 126 d connects the parallel part 126 c to the second main stem 122. It should be easily realized by those skilled in the art that though the driving electrode branch in the preferred embodiment includes the third branch portion 124 and the third branch portion 126, numbers of the driving electrode branch can be adjusted to fit the needs.
  • Please still refer to FIG. 3. The receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 provided by the preferred embodiment are constructed by a conductive pattern formed in the same layer and interdigitated as shown in FIG. 3. In detail, a part of the second main stem 122 of the driving electrode pattern 120 extends in between the first sub-branch 114 a and the second sub-branch 114 b of the first branch portion 114 of the receiving electrode pattern 110, which form the pattern of tuning fork. Extending directions of the first main stem 112 and the second main stem 122 are parallel with each other. The first branch portion 114 of the receiving electrode pattern 110 is disposed in between the second main stem 122 and the third branch portion 124 of the driving electrode pattern 120, therefore the first sub-branch 114 a is disposed in between the second main stem 122 and the fifth sub-branch 124 a, while the second sub-branch 114 b is disposed in between the second main stem 122 and the sixth sub-branch 124 b. The third branch portion 124 of the driving electrode pattern 120 is disposed in between the first branch portion 114 and the second branch portion 116 of the receiving electrode pattern 110, therefore the fifth sub-branch 124 a is disposed in between the first sub-branch 114 a and the third sub-branch 116 a while the sixth sub-branch 124 b is disposed in between the second sub-branch 114 b and the fourth sub-branch 116 b. The second branch portion 116 of the receiving electrode pattern 110 is disposed in between the third branch portion 124 and the fourth branch portion 126 of the driving electrode pattern 120, therefore the third sub-branch 116 a is disposed in between the fifth sub-branch 124 a and the seventh sub-branch 126 a while the fourth sub-branch 116 b is disposed in between the sixth sub-branch 124 b and the eighth sub-branch 126 b. Accordingly, the receiving electrode pattern 110 and the driving electrode pattern 120 are axisymmetric about a connecting line A formed of the first main stem 112 and the second main stem 122.
  • Briefly speaking, any part of the receiving electrode pattern 110 is adjacent to the driving electrode pattern 120, and more particularly, the parallel part 114 c/116 c of the receiving electrode pattern 110 and the parallel part 124 c/126 c of the driving electrode pattern 120 are alternately arranged with and therefore adjacent to each other. Accordingly, an arrangement order from periphery to center specified by the preferred embodiment is: the fourth branch portion 126 (of the driving electrode pattern 120), the second branch portion 116 (of the receiving electrode pattern 110), the third branch portion 124 (of the driving electrode pattern 120), the first branch portion 114 (of the receiving electrode pattern 110), and the second main stem 122 (of the driving electrode pattern 120). Additionally, the receiving electrode pattern 110 includes a first width W1 and the driving electrode pattern 120 includes a second width W2. More important, the receiving electrode pattern 110 and the driving electrode pattern 120 are physically and electrically isolated from each other. As shown in FIG. 3, a spacing S2 is formed in between the receiving electrode pattern 110 and the driving electrode pattern 120 for rendering the physical and electrical isolation. By the way, owing to the symmetrically arrangement of the sub-branches, the equivalent resistance of each receiving electrode pattern 110 and each driving electrode pattern 120 can be decreased. For example, in the equivalent electric path of the receiving electrode pattern 110, the resistances of the first sub-branch 114 a and second sub-branch 114 b are shunt because the sub-branch 114 a and 114 b are symmetrically arranged about the main stem 112.
  • Please refer to FIG. 4, which is a schematic drawing illustrating a modification to the touch inductive unit provided by the present invention. According to the modification, a plurality of dummy patterns 130 are disposed in the spacing S2 between the receiving electrode pattern 110 and the driving electrode pattern 120. The dummy patterns 130 are floated and thus electrically isolated from the receiving electrode pattern 110 and the driving electrode pattern 120. The dummy patterns 130 are provided in order to prevent the receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 from being observed and thus adverse optical effect to the users is avoided.
  • It is well-known to those skilled in the art that the mutual capacitance generated by the receiving electrode pattern 110 and the driving electrode pattern 120 is related to the corresponding length of the receiving electrode pattern 110 and the driving electrode pattern 120. According to the preferred embodiment, the effective length for generating the mutual capacitance is efficaciously increased by providing the receiving electrode pattern 110 including the main stem 112 and the branch portions 114/116 and the driving electrode pattern 120 including the main stem 122 and the branch portions 124/126, which are interdigitated. Consequently, the mutual capacitance in per unit area is increased and thus sensitivity of the touch inductive unit 100 is improved.
  • Please refer to FIG. 5, which is a schematic drawing illustrating a touch panel provided by a preferred embodiment of the present invention. It should be noted that the touch inductive unit and the touch panel provided by the preferred embodiment can be integrated into all categories of flat display device, such as a liquid crystal display (LCD) device, a field emission display (FED) device, a plasma display device, an organic light emitting display (OLED) device, or an electrophoretic display (EPD) device, but not limited to this. Additionally, the touch panel provided by the preferred embodiment can be an in cell touch panel or an out cell touch panel. In the out cell touch panel with the touch inductive unit of the present invention, the touch inductive unit can be disposed on a color filter substrate, an array substrate, or an encapsulation of the aforementioned display devices.
  • Please refer to FIG. 5. The touch panel 200 provided by the preferred embodiment includes at least a substrate 202. The substrate 202 may include a rigid substrate, such as a glass substrate, a cover lens, and a protection glass, a flexible substrate/thin-film substrate, such as a plastic substrate or other substrate composed of suitable materials. Next, a transparent conductive material layer is formed on a surface of the substrate 202. The transparent conductive material layer includes indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium gallium zinc oxide (IGZO), nano-silver yarn or other suitable transparent conductive materials. The transparent conductive material layer is then patterned by a patterning process and a plurality of receiving electrode patterns 110, a plurality of driving electrode patterns 120, and a plurality of conducting lines 140 are formed on the substrate 202. In other words, because the preferred embodiment adopts the one layer solution, the receiving electrode patterns 110, the driving electrode patterns 120 and the conductive lines 140 are all formed by the same transparent conductive material layer and thus are all coplanar. Additionally, the conductive lines 140 can be formed by metal. Furthermore, each of the receiving electrode patterns 110 and the driving electrode patterns 120 can be formed by metal mesh pattern. The metal mesh pattern includes a plurality of metal lines each having the width ranging from 0.08 micrometer to 10 micrometer.
  • It is noteworthy that the receiving electrode patterns 110 are electrically isolated from each other in the preferred embodiment, and the conductive lines 140 are electrically isolated from each other, too. However each of the receiving electrode patterns 110 is electrically connected to one corresponding conducting line 140. More important, each of the receiving electrode patterns 110 corresponds to one driving electrode pattern 120, and therefore a plurality of touch inductive units 100 formed by the corresponding receiving electrode pattern 110 and the driving electrode pattern 120 pattern 120 are formed on the substrate 202. As shown in FIG. 5, the touch inductive units are arranged in a matrix. Since the touch panel 200 can be integrated into the aforementioned display panel, each of the touch inductive units 100 corresponds to few to dozens of pixel units in the display panel. Each of the touch inductive units 100 includes one receiving electrode pattern 110, one driving electrode pattern 120, and one conductive line 140 that electrically connected to the corresponding receiving electrode pattern 110. It should be noted that the receiving electrode pattern 110 and the driving electrode pattern 120 of each touch inductive unit 100 are interdigitated, but physically and electrically isolated.
  • Please refer to FIG. 5 again. The receiving electrode pattern 110 of each touch inductive unit 100 includes a configuration as described above. Each receiving electrode pattern 110 includes a first main stem 112, a first branch portion 114, and a second branch portion 116, and the first branch portion 114 and the second branch portion 116 are axisymmetric about the first main stem 112. The second branch portion 116 is disposed at outer side of the first branch portion 114 for surrounding at least a part of the first branch portion 114. At least a part of the first branch portion 114 and at least a part of the second branch portion 116 are perpendicular to the first main stem 112. Since the configuration of the receiving electrode patterns 110 are identical with those described above, those details are omitted in the interest of brevity. And those skilled in the art would easily realize the placement and spatial relationships between sub-branches 114 a/114 b and 116 a/116 b according to the aforementioned embodiment.
  • The driving electrode pattern 120 of each touch inductive unit 100 includes a configuration as described above. Each driving electrode pattern 120 includes a second main stem 122, a third branch portion 124 and a fourth branch portion 126, and the third branch portion 124 and the fourth branch portion 126 are axisymmetric about the second main stem 122. The fourth branch portion 126 is disposed at outer side of the third branch portion 124 for surrounding at least a part of the third branch portion 124. At least a part of the third branch portion 124 and at least a part of the fourth branch portion 126 are perpendicular to the second main stem 122. Since the configuration of the driving electrode patterns 120 are identical with those described above, those details are omitted in the interest of brevity. And those skilled in the art would easily realize the placement and spatial relationships between sub-branches 124 a/124 b and 126 a/126 b. It should be noted that the touch inductive units 100 are arranged in the matrix as mentioned above. More important, the driving electrode patterns 120 of the touch inductive units 100 in the same column are electrically connected to each other. In detail, the driving electrode pattern 120 of each touch inductive unit 100 includes the second main stem 122, the third branch portion 124, and the fourth branch portion 126 as mentioned above, and the fourth branch portion 126 is disposed at the outermost side of the touch inductive unit 100. Therefore the fourth branch portions 126 of the driving electrode patterns 120 in the same column are physically and electrically connected to each other. Additionally, a width of the second branch portions 126 of the driving electrode patterns 122 in the same column may by larger than the width of the first branch portions 124 and the second main stems 122 as shown in FIG. 5.
  • Please still refer to FIG. 5. The receiving electrode pattern 110 of each touch inductive unit 100 includes the first width W1 while the driving electrode pattern 120 of each touch inductive unit 100 includes the second width W2. It is noteworthy that since the fourth branch portions 126 of the driving electrode patterns 120 in the same column include the larger width, only the width of the third branch portions 124 and the second main stems 122 of the driving electrode patterns 120 are provided according to the preferred embodiment. In the preferred embodiment, the first width W1 is between 100 micrometer (μm) and 500 μm, and the second width W2 is between 100 μm and 500 μm. It should be noted that a sum of the first width W1 and the second width W2 are not larger than 600 μm according to the preferred embodiment. Furthermore, the first width W1 is preferably larger than the second width W2 in the preferred embodiment, but not limited to this. Additionally, the driving electrode pattern 120 itself may include different widths. For example, the driving electrode pattern 120 can include a third width W3 and a fourth width W4. The second width W2, the third width W3, and the fourth width W4 can be different from each other as shown in FIG. 3, or be identical to each other if required. As shown in FIG. 5, the receiving electrode pattern 110 and the driving electrode pattern 120 of each touch inductive unit 100 are spaced apart from each other by the spacing S2. In the preferred embodiment, the spacing S2 is, for example but not limited to, 300 μm.
  • As mentioned above, the mutual capacitance generated from the receiving electrode pattern 110 and the driving electrode pattern 120 is related to the corresponding length of the receiving electrode pattern 110 and the driving electrode pattern 120. According to the preferred embodiment, the effective length for generating the mutual capacitance is efficaciously increased by providing the receiving electrode pattern 110 including the main stem 112 and the branch portions 114/116 and the driving electrode pattern 120 including the main stem 122 and the branch portions 124/126, which are interdigitated. Consequently, the mutual capacitance in per unit area (such as a predetermined area with the dimension of 1 mm*1 mm) is increased and thus sensitivity of the touch inductive unit 100 is improved.
  • Except the corresponding length of the receiving electrode pattern 110 and the driving electrode pattern 120, the sensitivity the touch inductive unit 100 of the touch panel 200 is also influenced by the first width W1 of the receiving electrode pattern 110, the second width W2 of the driving electrode pattern 120, and the spacing S2. Additionally, it should be understood by those skilled in the art that the sensitivity of the touch inductive unit 100 can be described with the delta C (ΔC, the capacitance difference between touched and untouched operations) and the differential couple ration (hereinafter abbreviated as DCR), which is a quotient of the ΔC over the total capacitance: the higher ΔC and DCR means the more improved sensitivity of the touch inductive unit. According to one preferred embodiment, when the first width W1 is 300 μm, the second width W2 is 300 μm, and the spacing S2 is 300 μm, the ΔC gets 0.27 and DCR reaches 36.38%. In another preferred embodiment when the first width W1 is 400 μm, the second width W2 is 200 μm, and the spacing S2 is 300 μm, the ΔC gets 0.27 and DCR reaches 39.99%. In still another preferred embodiment when the first width W1 is 500 μm, the second width W2 is 100 μm, and the spacing S2 is 300 μm, the ΔC gets 0.26 and DCR reaches 43.72%.
  • Accordingly, the sensitivity of touch inductive units 100 having the receiving electrode pattern 110 and the driving electrode pattern 120 with special configuration provided by the preferred embodiment is improved. Consequently, the sensitivity of the touch inductive unit 100 is improved without increasing panel loading.
  • Please refer to FIG. 6, which is a schematic drawing illustrating a modification to the touch panel provided by the present invention. According to the modification, a plurality of dummy patterns 130 are disposed in the spacing S2 between the receiving electrode pattern 110 and the driving electrode pattern 120. The dummy patterns 130 are provided in order to prevent the receiving electrode pattern 110 and the driving electrode pattern 120 of the touch inductive unit 100 from being observed and thus adverse optical effect to the users is avoided.
  • Briefly speaking, the touch inductive unit and the touch panel having the same provided by the present invention is realized with one layer solution, therefore the receiving electrode patterns and the driving electrode patterns which construct the touch inductive units on the touch panel are coplanar. Because the receiving electrode pattern and the driving electrode pattern of each touch inductive unit are interdigitated and physically spaced apart from each other, sensitivity of the touch inductive unit is improved without increasing panel loading. Additionally, dummy patterns are disposed in the spacing between the receiving electrode pattern and the driving electrode pattern. The dummy patterns are provided in order to prevent the receiving electrode pattern and the driving electrode pattern having the special configuration from being observed and thus adverse optical effect to the users is avoided.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (28)

What is claimed is:
1. A touch inductive unit comprising:
a receiving electrode pattern comprising a first main stem, a first branch portion, and a second branch portion, the first branch portion and the second branch portion being extended from the first main stem; and
a driving electrode pattern comprising a second main stem, a third branch portion, and a fourth branch portion, the third branch portion and the fourth branch portion being extended from the second main stem,
wherein the receiving electrode pattern and the receiving electrode pattern are interdigitated and physically spaced apart from each other.
2. The touch inductive unit according to claim 1, further comprising a spacing formed in between the receiving electrode pattern and the driving electrode pattern.
3. The touch inductive unit according to claim 2, further comprising a plurality of dummy patterns disposed in the spacing, wherein the dummy patterns, the receiving electrode pattern, and the driving electrode pattern are electrically isolated from each other.
4. The touch inductive unit according to claim 1, wherein the second branch portion is disposed at outer side of the first branch portion and surrounding at least a part of the first branch portion, the fourth branch portion is disposed at outer side of the third branch portion and surrounding at least a part of the third branch portion, at least a part of the first branch portion and at least a part of the second branch portion are perpendicular to the first main stem, and at least a part of the third branch portion and at least a part of the fourth branch portion are perpendicular to the second main stem.
5. The touch inductive unit according to claim 4, wherein the receiving electrode pattern comprises a plurality of parallel parts being parallel with the first main stem, the driving electrode pattern comprises a plurality of parallel parts being parallel with the second main stem, and the parallel parts of the receiving electrode pattern and the parallel parts of the driving electrode pattern are alternately disposed.
6. The touch inductive unit according to claim 1, wherein the first branch portion comprises a first sub-branch and a second sub-branch, the second branch portion comprises a third sub-branch and a fourth sub-branch, the third branch portion comprises a fifth sub-branch and a sixth sub-branch, and the fourth branch portion comprises a seventh sub-branch and an eighth sub-branch.
7. The touch inductive unit according to claim 6, wherein the first sub-branch and the second sub-branch are respectively disposed at two opposite sides of the first main stem, the third sub-branch and the fourth sub-branch are respectively arranged at two opposite sides of the first main stem, the fifth sub-branch and the sixth sub-branch are respectively disposed at two opposite sides of the second main stem, and the seventh sub-branch and the eighth sub-branch are respectively disposed at two opposite sides of the second main stem.
8. The touch inductive unit according to claim 7, wherein the first sub-branch and the second sub-branch are axisymmetric about the first main stem, the third sub-branch and the fourth sub-branch are axisymmetric about the first main stem, the fifth sub-branch and the sixth sub-branch are axisymmetric about the second main stem, and the seventh sub-branch and the eighth sub-branch are axisymmetric about the second main stem.
9. A touch panel comprising:
a substrate;
a plurality of receiving electrode patterns disposed on the substrate and electrically isolated from each other, each of the receiving electrode patterns comprising a first main stem, a first branch portion, and a second branch portion, and the first branch portion and the second branch portion being extended from the first main stem;
a plurality of driving electrode patterns disposed on the substrate and respectively corresponding to one receiving electrode pattern, each of the driving electrode patterns comprising a second main stem, a third branch portion, and a fourth branch portion, and the third branch portion and the fourth branch portion being extended from the second main stem,
wherein the corresponding receiving electrode pattern and driving electrode pattern are interdigitated and physically spaced apart from each other to form a plurality of touch inductive units on the substrate.
10. The touch panel according to claim 9, wherein the touch inductive units are arranged in a matrix, and the driving electrode patterns of the touch inductive units in the same column are electrically connected.
11. The touch panel according to claim 9, further comprising a spacing in between the corresponding receiving electrode pattern and the driving electrode pattern.
12. The touch panel according to claim 11, further comprising a plurality of dummy patterns disposed in the spacing, wherein the dummy patterns, the receiving electrode pattern, and the driving electrode pattern are electrically isolated from each other.
13. The touch panel according to claim 9, wherein the receiving electrode pattern and the driving electrode pattern are axisymmetric about a connecting line formed of the first main stem and the second main stem.
14. The touch panel according to claim 9, wherein the receiving electrode pattern and the driving electrode pattern are alternately disposed.
15. The touch panel according to claim 9, wherein the second branch portion is disposed at outer side of the first branch portion and surrounding at least a part of the first branch portion, and at least a part of the first branch portion and at least a part of the second branch portion are perpendicular to the first main stem, the fourth branch portion is disposed at outer side of the third branch portion and surrounding at least a part of the third branch portion, and at least a part of the third branch portion and at least a part of the fourth branch portion are perpendicular to the second main stem.
16. The touch panel according to claim 9, wherein the first branch portion comprises a first sub-branch and a second sub-branch, the second branch portion comprises a third sub-branch and a fourth sub-branch, the third branch portion comprises a fifth sub-branch and a sixth sub-branch, and the fourth branch portion comprises a seventh sub-branch and an eighth sub-branch.
17. The touch panel according to claim 16, wherein the first sub-branch and the second sub-branch are respectively disposed at two opposite sides of the first main stem, the third sub-branch and the fourth sub-branch are respectively arranged at two opposite sides of the first main stem, the fifth sub-branch and the sixth sub-branch are respectively disposed at two opposite sides of the second main stem, and the seventh sub-branch and the eighth sub-branch are respectively disposed at two opposite sides of the second main stem.
18. The touch panel according to claim 17, wherein the first sub-branch and the second sub-branch are axisymmetric about the first main stem, the third sub-branch and the fourth sub-branch are axisymmetric about the first main stem, the fifth sub-branch and the sixth sub-branch are axisymmetric about the second main stem, and the seventh sub-branch and the eighth sub-branch are axisymmetric about the second main stem.
19. A touch inductive unit comprising:
a receiving electrode pattern comprising at least a receiving electrode branch; and
a driving electrode pattern comprising at least a driving electrode branch,
wherein the receiving electrode branch and the driving electrode branch are physically spaced apart from each other to form a fringe capacitance.
20. The touch inductive unit according to claim 19, wherein the receiving electrode branch and the driving electrode branch are interdigitated.
21. The touch inductive unit according to claim 19, wherein the receiving electrode branch comprises a first main stem, a first branch portion and a second branch portion disposed at outer side of the first branch portion and surrounding at least a part of the first branch portion, the driving electrode branch comprises a second main stem, a third branch portion and a fourth branch portion disposed at outer side of the third branch portion and surrounding at least a part of the third branch portion, at least a part of the first branch portion and at least a part of the second branch portion are perpendicular to the first main stem, and at least apart of the third branch portion and at least a part of the fourth branch portion are perpendicular to the second main stem.
22. The touch inductive unit according to claim 21, wherein the receiving electrode pattern comprises a plurality of parallel parts being parallel with the first main stem, the driving electrode pattern comprises a plurality of parallel parts being parallel with the second main stem, and the parallel parts of the receiving electrode pattern and the parallel parts of the driving electrode pattern are alternately disposed.
23. The touch inductive unit according to claim 21, wherein the first branch portion comprises a first sub-branch and a second sub-branch, the second branch portion comprises a third sub-branch and a fourth sub-branch, the third branch portion comprises a fifth sub-branch and a sixth sub-branch, and the fourth branch portion comprises a seventh sub-branch and an eighth sub-branch.
24. The touch inductive unit according to claim 23, wherein the first sub-branch and the second sub-branch are respectively disposed at two opposite sides of the first main stem, the third sub-branch and the fourth sub-branch are respectively arranged at two opposite sides of the first main stem.
25. The touch inductive unit according to claim 23, wherein the fifth sub-branch and the sixth sub-branch are respectively disposed at two opposite sides of the second main stem, and the seventh sub-branch and the eighth sub-branch are respectively disposed at two opposite sides of the second main stem.
26. The touch inductive unit according to claim 23, wherein the first sub-branch and the second sub-branch are axisymmetric about the first main stem, the third sub-branch and the fourth sub-branch are axisymmetric about the first main stem.
27. The touch inductive unit according to claim 23, wherein the fifth sub-branch and the sixth sub-branch are axisymmetric about the second main stem, and the seventh sub-branch and the eighth sub-branch are axisymmetric about the second main stem.
28. The touch inductive unit according to claim 19, further comprising a plurality of dummy patterns disposed in between the receiving electrode and the driving electrode, wherein the dummy patterns, the receiving electrode pattern, and the driving electrode pattern are electrically isolated from each other.
US14/274,786 2013-05-10 2014-05-12 Touch inductive unit and touch panel Active 2035-03-14 US9455705B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW102116645A TW201443723A (en) 2013-05-10 2013-05-10 Touch sensing unit and touch panel
TW102116645A 2013-05-10
TW102116645 2013-05-10

Publications (2)

Publication Number Publication Date
US20140332361A1 true US20140332361A1 (en) 2014-11-13
US9455705B2 US9455705B2 (en) 2016-09-27

Family

ID=51851962

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/274,786 Active 2035-03-14 US9455705B2 (en) 2013-05-10 2014-05-12 Touch inductive unit and touch panel

Country Status (3)

Country Link
US (1) US9455705B2 (en)
CN (1) CN104142765B (en)
TW (1) TW201443723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150309638A1 (en) * 2014-04-24 2015-10-29 Raydium Semiconductor Corporation Capacitive touch panel
US20160011694A1 (en) * 2014-07-11 2016-01-14 Raydium Semiconductor Corporation Capacitive touch panel
US20160313858A1 (en) * 2015-04-24 2016-10-27 Apple Inc. Merged floating pixels in a touch screen
US20180314386A1 (en) * 2017-04-28 2018-11-01 Himax Technologies Limited Touch sensor device
FR3105495A1 (en) * 2019-12-24 2021-06-25 Somfy Activites Sa Sensitive key for a touch box, capacitive film comprising such a sensitive key and touch box comprising such a capacitive film
EP3382897B1 (en) * 2017-03-28 2022-06-01 Electrolux Appliances Aktiebolag Control device, in particular for a domestic appliance
US11460969B2 (en) * 2020-09-28 2022-10-04 Nxp Usa, Inc. Mutually capacitive sensor for a touchpad

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866150B (en) * 2015-04-29 2018-12-11 业成光电(深圳)有限公司 touch module
TWI621987B (en) * 2017-06-29 2018-04-21 Electrode plate for projected capacitive touch device
CN110737360B (en) * 2019-09-26 2022-05-17 武汉华星光电半导体显示技术有限公司 Touch electrode layer and touch display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169626A1 (en) * 2010-12-31 2012-07-05 Au Optronics Corporation Touch panel and touch display panel
US20140028627A1 (en) * 2011-04-15 2014-01-30 Sharp Kabushiki Kaisha Touch panel equipped display device and control method for same
US20150001060A1 (en) * 2011-12-19 2015-01-01 Lg Innotek Co., Ltd. Electrode pattern of touch panel
US20150041303A1 (en) * 2012-03-27 2015-02-12 Shenzhen Baoming Technology Ltd. Novel ito crossover integrated capacitive touch screen and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073349A1 (en) * 2006-09-18 2010-03-25 Silicon Quest Kabushiki-Kaisha. Pixel driver with low voltage transistors
TWI407341B (en) * 2009-12-23 2013-09-01 Edamak Corp Touch panel with tonometer-shaped electrode pattern
TW201122972A (en) * 2009-12-23 2011-07-01 Edamak Corp Touch panel with H-shaped electrode pattern
CN102253751A (en) * 2011-07-22 2011-11-23 苏州瀚瑞微电子有限公司 Wiring structure and positioning method of single-layer ITO (Indium Tin Oxide)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169626A1 (en) * 2010-12-31 2012-07-05 Au Optronics Corporation Touch panel and touch display panel
US20140028627A1 (en) * 2011-04-15 2014-01-30 Sharp Kabushiki Kaisha Touch panel equipped display device and control method for same
US20150001060A1 (en) * 2011-12-19 2015-01-01 Lg Innotek Co., Ltd. Electrode pattern of touch panel
US20150041303A1 (en) * 2012-03-27 2015-02-12 Shenzhen Baoming Technology Ltd. Novel ito crossover integrated capacitive touch screen and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9477340B2 (en) * 2014-04-24 2016-10-25 Raydium Semiconductor Corporation On-cell capacitive touch panel
US20150309638A1 (en) * 2014-04-24 2015-10-29 Raydium Semiconductor Corporation Capacitive touch panel
US9696851B2 (en) * 2014-07-11 2017-07-04 Raydium Semiconductor Corporation Capacitive touch panel having an on-cell type and a laminated structure
US20160011694A1 (en) * 2014-07-11 2016-01-14 Raydium Semiconductor Corporation Capacitive touch panel
US9612699B2 (en) * 2014-07-11 2017-04-04 Raydium Semiconductor Corporation Capacitive touch panel
US20170139543A1 (en) * 2014-07-11 2017-05-18 Raydium Semiconductor Corporation Capacitive Touch Panel
US20160313858A1 (en) * 2015-04-24 2016-10-27 Apple Inc. Merged floating pixels in a touch screen
US10353516B2 (en) * 2015-04-24 2019-07-16 Apple Inc. Merged floating pixels in a touch screen
US11893183B2 (en) 2015-04-24 2024-02-06 Apple Inc. Merged floating pixels in a touch screen
EP3382897B1 (en) * 2017-03-28 2022-06-01 Electrolux Appliances Aktiebolag Control device, in particular for a domestic appliance
US20180314386A1 (en) * 2017-04-28 2018-11-01 Himax Technologies Limited Touch sensor device
US10310671B2 (en) * 2017-04-28 2019-06-04 Himax Technologies Limited Touch sensor device
FR3105495A1 (en) * 2019-12-24 2021-06-25 Somfy Activites Sa Sensitive key for a touch box, capacitive film comprising such a sensitive key and touch box comprising such a capacitive film
EP3843271A3 (en) * 2019-12-24 2021-08-25 Somfy Activites SA Sensitive key for touch-sensitive housing, capacitive film comprising such a sensitive key and touch-sensitive housing comprising such a capacitive film
US11460969B2 (en) * 2020-09-28 2022-10-04 Nxp Usa, Inc. Mutually capacitive sensor for a touchpad

Also Published As

Publication number Publication date
CN104142765B (en) 2017-04-12
US9455705B2 (en) 2016-09-27
CN104142765A (en) 2014-11-12
TW201443723A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
US9455705B2 (en) Touch inductive unit and touch panel
KR101706242B1 (en) In-cell Type Touch Panel
US11599216B2 (en) Touch sensing device and display device including the same
US10282012B2 (en) Touch display panel with force sensor
KR101517458B1 (en) Touch panel with mesh alloy electrodes
US8269743B2 (en) Touch sensing display panel and touch sensing substrate
KR101960532B1 (en) Electrostatic capacity type touch screen panel for display device and method of manufacturing the same
US9086766B2 (en) Touch panel and touch display panel
US20140347319A1 (en) Touch panel
US10564743B2 (en) Touch sensor device having a circular touch sensing area
KR101893111B1 (en) Display device including sensor
US20150029422A1 (en) Touch panel and touch display panel
WO2016000338A1 (en) Array substrate and touch display device
US11269465B2 (en) Mutual capacitive touch panel with double-layer electrodes
US9823795B2 (en) Touch substrate
CN106406602A (en) Touch detector, touch detection chip and touch input device
US10303309B2 (en) Display device including touch key electrodes
TWI518571B (en) Touch device and driving method thereof
KR102183655B1 (en) Display apparatus
US9910547B2 (en) Anti-interference touch sensing structure
US9411448B2 (en) Touch display apparatus
TWM484751U (en) Capacitive touch panel
KR102230843B1 (en) In Cell Touch Liquid Crystal Display Device
US20170147122A1 (en) Capacitive Touch Substrate and Touch Display Screen
CN202771402U (en) Single-layer ITO (indium-tin oxide) mutual capacitance touch screen

Legal Events

Date Code Title Description
AS Assignment

Owner name: WINTEK CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, CHI-MING;CHEN, SHYH-JENG;TSAI, PEI-FANG;AND OTHERS;SIGNING DATES FROM 20140508 TO 20140509;REEL/FRAME:032866/0809

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY