US20140322034A1 - Offset valve bore for a reciprocating pump - Google Patents
Offset valve bore for a reciprocating pump Download PDFInfo
- Publication number
- US20140322034A1 US20140322034A1 US14/195,196 US201414195196A US2014322034A1 US 20140322034 A1 US20140322034 A1 US 20140322034A1 US 201414195196 A US201414195196 A US 201414195196A US 2014322034 A1 US2014322034 A1 US 2014322034A1
- Authority
- US
- United States
- Prior art keywords
- flowpath
- plunger
- longitudinal center
- center axis
- pump chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/053—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
- F04B1/0536—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders with two or more serially arranged radial piston-cylinder units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0452—Distribution members, e.g. valves
- F04B1/0456—Cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/06—Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/122—Cylinder block
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B47/00—Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
Definitions
- a maximum pressure and thus stress can occur within a given pump chamber as the plunger moves longitudinally in the fluid end towards top dead center (TDC), compressing the fluid therein.
- TDC top dead center
- One of the other pump chambers will be in discharge and thus at a very low pressure, and the other pump chamber will have started to compress the fluid therein.
- the axes of both the suction and discharge valve bores may be inwardly or outwardly offset.
- the fluid end may comprise three or five plunger bores, and three or five corresponding suction and discharge valve bores.
- the end support may add from about 0.1% to about 25% to a portion of the longitudinal dimension of the first and second opposing sides.
- the plunger 35 reciprocates, or moves longitudinally, toward and away from the chamber 39 , as the crankshaft 25 rotates.
- the pressure of the fluid inside the chamber 39 decreases, creating a differential pressure across the inlet valve 41 , which actuates the valve 41 and allows the fluid to enter the cylinder chamber 39 from the fluid inlet 19 .
- the fluid continues to enter the cylinder chamber 39 as the plunger 35 continues to move longitudinally away from the cylinder 17 until the pressure difference between the fluid inside the chamber 39 and the fluid in the fluid inlet 19 is small enough for the inlet valve 41 to actuate to its closed position.
- the additional material regions 18 A and 18 B cover a lower part of their respective first and second opposing sides of the fluid end. This can correspond with a region or point of maximum stress arising from the outward offset of a lateral suction valve bore. As a result, the longitudinal dimension of the bottom part of the fluid end is greater than the longitudinal dimension of the top part of the fluid end.
- FIG. 2 a partial sectional view of the fluid end 15 of the pump 12 taken on the line 2 - 2 of FIG. 1A is schematically depicted.
- the pump 12 is a triplex having three plunger bores 17 corresponding to three cylinder bores.
- the pump can have a different number of cylinders and plunger bores, such as five.
- a central bore of the three plunger bores lies on a central axis of the fluid end, with the other two plunger bores arranged evenly on either side of the central plunger bore.
- the offset may be with respect to a central axis of the fluid end.
- some or all of the lateral (outside) valve bores 57 a , 57 c , 59 a , 59 c at the discharge and suction side may be inwardly offset so that an axis 65 of at least some of the plunger bores (that is, the lateral plunger bore axes 65 a 65 c ) does not intersect with a common valve bore axis 63 such that at least one of the lateral valve bore axis 63 a or 63 c is inwardly offset from its respective lateral plunger bore axes 65 a or 65 c .
- This inward lateral offset has been observed to noticeably reduce the stress in the fluid end 15 that arises as a result of fluid flowing therein, especially at the high pressures that can be employed in oilfield operations (for example, with oil well fracking fluid).
- each common axis 63 of the valve bores 57 and 59 extends perpendicularly to the plunger bore axis 65 , although the lateral axes 63 a and 63 c do not intersect.
- the suction valve bores 59 a , 59 b , 59 c and the discharge valve bores 57 a , 57 b , 57 c corresponding to each plunger bore 61 a , 61 b , 61 c are offset to one side (in this case to the left of the fluid end) and to the same extent, or alternatively may be offset to the right (not shown).
- the common axis 63 i.e. 63 a , 63 b , 63 c ) of each of the valve bores 59 , 57 is offset to the left of an axis 65 (i.e.
- offsetting of just the discharge valve bores 57 can also be employed in a quint fluid end set-up.
- each plunger bore 91 is indicated schematically with the reference numeral 95 (that is, 95 a , 95 b , 95 c , 95 d and 95 e ).
- the common axis of each of the valve bores 89 , 87 is indicated schematically with the reference numeral 93 (that is, 93 a , 93 b , 93 c , 93 d and 93 e ). This nomenclature will also be used hereafter with reference to the different quint fluid end embodiments described herein.
- Non-limiting examples are provided to illustrate how the offsetting of a lateral valve bore can surprisingly and unexpectedly reduce stress in a fluid end during operation at high pressures as compared to a fluid end having conventional unmodified valve bores.
- Example 1 discusses data modeled for an inward offsetting
- Example 2 discusses data modeled for an outward offsetting.
- finite element analysis (FEA) tests were conducted for a triplex fluid end, although it was noted that the findings also applied to a quintuplex fluid end.
- a single (or mono) block fluid end and a triplex fluid end were each modeled.
- the single block fluid end was modeled with one of the valve bores offset and an end was modified with an end support.
- the triplex fluid end one of the lateral (outside) valve bores was inwardly offset, as compared with a triplex pump in which both lateral valve bores may be inwardly offset.
- the fluid end configurations modeled included one (e.g. lateral) discharge 57 and suction 59 bore being inwardly offset by 1.5 inches and by 2 inches.
- the FEA modeling of the tested fluid ends resulted in a 2 inch inward offset of a triplex fluid end having the greatest amount of stress reduction as compared to no offset and to 1.5 inches inward offset for the triplex or single block.
- the single block fluid end with an offset surprisingly did not produce much of reduction in stress.
- the overall stress reduction in the triplex fluid end for a 2 inch inward offset was noted to be approximately 30% (that is, from ⁇ 97,000 psi to less than 69,000 psi as shown in FIGS. 18 and 19 ). It was noted that such a stress reduction would be likely to significantly extend the useful operating life of the fluid end.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Reciprocating Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
A fluid end 15 for a multiple reciprocating pump assembly 12 comprises at least three plunger bores 61 or 91, each for receiving a reciprocating plunger 35. Each plunger bore has a plunger bore axis 65 or 95. The plunger bores are arranged across the fluid end to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. The fluid end 15 also comprises at least three respective suction valve bores 59 or 89 in fluid communication with the plunger bores. Each suction valve bore can receive a suction valve 41 and has a suction valve bore axis 63 or 93. The fluid end 15 also comprises at least three respective discharge valve bores 57 or 87 in fluid communication with the plunger bores. Each discharge valve bore can receive a discharge valve 43 and has a discharge valve bore axis 63 or 93. At least one of the axes of at least one of the suction and discharge valve bores is offset in the fluid end from its respective plunger bore axis.
Description
- This application claims priority to
provisional application 61/421,453 filed Dec. 9, 2010. - An arrangement is disclosed whereby a valve bore is offset from a plunger bore in a fluid end of a reciprocating pump to relieve stress.
- In oil field operations, reciprocating pumps are used for various purposes. Reciprocating pumps are used for operations such as cementing, acidizing, or fracturing of a subterranean well. These reciprocating pumps run for relatively short periods of time, but they operate on a frequent basis and oftentimes at extremely high pressures. A reciprocating pump is mounted to a truck or a skid for transport to various well sites and must be of appropriate size and weight for road and highway regulations.
- Reciprocating pumps or positive displacement pumps for oil field operations deliver a fluid or slurry, which may carry solid particles (for example, a sand proppant), at pressures up to 20,000 psi to the wellbore. A known pump for oilfield operations includes a power end driving more than one plunger reciprocally in a corresponding fluid end or pump chamber. The fluid end may comprise three or five plunger bores arranged transversely across a fluid head, and each plunger bore may be intersected by suction and discharge valve bores. In a known reciprocating pump, the axis of each plunger bore intersects perpendicularly with a common axis of the suction and discharge valve bores.
- In a mode of operating a known three plunger bore reciprocating pump at high fluid pressures (for example, around or greater than 20,000 psi), a maximum pressure and thus stress can occur within a given pump chamber as the plunger moves longitudinally in the fluid end towards top dead center (TDC), compressing the fluid therein. One of the other pump chambers will be in discharge and thus at a very low pressure, and the other pump chamber will have started to compress the fluid therein.
- It has been discovered that, in a given pump chamber, the areas of highest stress occur at the intersection of each plunger bore with its suction and discharge valve bores as the plunger moves to TDC. The occurrence of high stress at these areas can shorten the life of the fluid end.
- JP 2000-170643 is directed to a multiple reciprocating pump having a small size. The pump has three piston bores in which the pistons reciprocate but, so that a compact pump configuration can be provided, the axis of each suction valve bore is arranged perpendicularly to its respective discharge valve bore (that is, so that there is a laterally directed discharge from the fluid end).
- JP 2000-170643 also teaches that a limit as to the volume of fluid that can be pumped by a small reciprocating pump is the size of suction and discharge valve bores. Contrary to the embodiments disclosed herein, the teaching of JP 2000-170643 is not concerned with reducing stresses arising at the intersection of piston, suction and discharge bores. Rather, JP 2000-170643 teaches moving the axes of each of the outside suction and discharge valve bores outwardly with respect to their plunger bore axis to enable the volume of each of the suction and discharge valve bores to be increased. Thus, with an increased pump speed, an increased volumetric flow can be achieved with a pump that still has a similar overall dimensional profile. In addition, JP 2000-170643 teaches that the valve bores are moved outwardly without increasing the amount of material between the suction and discharge bores. This is because the reconfiguration of the pump in JP 2000-170643 is not concerned with reducing stresses within the pump in use.
- In a first aspect there is disclosed a fluid end for a multiple reciprocating pump assembly. The multiple reciprocating pump assembly may, for example, comprise three or five plunger bores, and may find application in oilfield operations and/or may operate with fluids at high pressures (for example, as high as 20,000 psi or greater). The fluid end comprises at least three plunger bores (for example, three or five plunger bores), each can receive a reciprocating plunger, and each can have a plunger bore axis. The plunger bores can be arranged across the fluid end to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore (for example, one or two lateral plunger bores located on either side of the central plunger bore, to define a fluid end with three or five plunger bores respectively). At least three respective suction valve bores (for example, three or five suction valve bores) can be provided for and be in fluid communication with the plunger bores. Each suction valve bore can receive a suction valve and have a suction valve bore axis. At least three respective discharge valve bores (e.g. three or five discharge valve bores) can be provided for and be in fluid communication with the plunger bores. Each discharge valve bore can receive a discharge valve and have a discharge valve bore axis. In accordance with the first aspect, at least one of the axes of at least one of the suction and discharge valve bores is offset in the fluid end from its respective plunger bore axis. The offset can be such that overall stress within the fluid in use is reduced (e.g. as the plunger moves to TDC). This reduction in overall stress is a surprising discovery, with an outcome that the useful operating life of the fluid end can be increased.
- In certain embodiments for each of the plunger bores, the suction valve bore may oppose the discharge valve bore. This arrangement is easier to manufacture, maintain and service than, for example, arrangements in which the axis of each suction valve bore is e.g. perpendicular to the discharge valve bore. In addition, the opposing bore arrangement may induce less stress in the fluid end in use than, for example, a perpendicular bore arrangement.
- In certain embodiments for each of the plunger bores, the axes of the suction and discharge valve bores may be aligned, for even greater ease of manufacture, maintenance and service. In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 10% to about 60% of the diameter of the plunger bore. In certain other embodiments, the offset axis may be offset in an amount ranging from about 20% to about 50%, or from about 30% to about 40%, of the diameter of the plunger bore.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 0.5 to about 2.5 inches. In certain other embodiments, the offset axis may be offset in an amount ranging from about 1.5 to 2.5 inches. These dimensions may represent an optimal range for many bore diameters of fluid end configurations employed in fracking pumps in oilfield and related applications.
- In a second aspect, there is provided a fluid end for a multiple reciprocating pump assembly. The fluid end comprises at least three plunger bores each for receiving a reciprocating plunger, with each plunger bore having a plunger bore axis. The plunger bores are arranged across the fluid end to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. At least three respective suction valve bores are in fluid communication with the plunger bores. Each suction valve bore is able to receive a suction valve and has a suction valve bore axis. At least three respective discharge valve bores are in fluid communication with the plunger bores. Each discharge valve bore is able to receive a discharge valve and has a discharge valve bore axis. In accordance with the second aspect at least one of the axes of at least one of the suction and discharge valve bores is offset in the fluid end from its respective plunger bore axis in such a manner that overall stress within the fluid end in use is reduced. This reduction in overall stress is a surprising discovery with an outcome that the useful operating life of the fluid end can be increased.
- In certain embodiments for each of the plunger bores, the suction valve bore may oppose the discharge valve bore.
- In certain embodiments for each of the plunger bores, the axes of the suction and discharge valve bores may be aligned.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 10% to about 60% of the diameter of the plunger bore. In certain other embodiments, the offset axis may be offset in an amount ranging from about 20% to about 50%, or from about 30% to about 40%, of the diameter of the plunger bore.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 0.5 to about 2.5 inches. In certain other embodiments, the offset axis may be offset in an amount ranging from about 1.5 to 2.5 inches. These dimensions may represent an optimal range for many bore diameters of fluid end configurations employed in fracking pumps in oilfield and related applications.
- In a third aspect, there is provided a fluid end for a multiple reciprocating pump assembly. The fluid end comprises at least three plunger bores each for receiving a reciprocating plunger. Each plunger bore has a plunger bore axis, with the plunger bores being arranged across the fluid end to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. At least three respective suction valve bores are in fluid communication with the plunger bores. Each suction valve bore is able to receive a suction valve and has a suction valve bore axis. At least three respective discharge valve bores are in fluid communication with the plunger bores. Each discharge valve bore is able to receive a discharge valve and has a discharge valve bore axis. Each discharge valve bore opposes a respective suction valve bore. In accordance with the third aspect, at least one of the axes of at least one of the suction and discharge valve bores is offset in the fluid end from its respective plunger bore axis.
- In certain embodiments for each of the plunger bores, the axes of the suction and discharge valve bores may be aligned.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 10% to about 60% of the diameter of the plunger bore. In certain other embodiments, the offset axis may be offset in an amount ranging from about 20% to about 50%, or from about 30% to about 40%, of the diameter of the plunger bore.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 0.5 to about 2.5 inches. In certain other embodiments, the offset axis may be offset in an amount ranging from about 1.5 to 2.5 inches. These dimensions may represent an optimal range for many bore diameters of fluid end configurations employed in fracking pumps in oilfield and related applications.
- In certain embodiments at least one of the axes of the suction and discharge valve bores for each of the lateral plunger bores may be inwardly or outwardly offset. For example, for a three or five plunger bore fluid end that has a central plunger bore (such as may be arranged on a central axis of the fluid end), the inward or outward offset may comprise a lateral offset (that is, towards or away from a given one of the sides of the fluid end). The offset may, in addition, be with respect to an axis of the central plunger bore, or in further embodiments with respect to the central axis of the fluid end in the case of offsetting a central suction and/or discharge valve bore.
- In certain embodiments, for the lateral plunger bores, for reasons of uniformity of design and stress reduction in the fluid end, the at least one offset axis may be inwardly or outwardly offset to the same extent as the other at least one offset axis.
- In certain embodiments, the axes of both the suction and discharge valve bores may be inwardly or outwardly offset.
- In certain embodiments, the axes of both the suction and discharge valve bores may be inwardly or outwardly offset to the same extent.
- In other certain embodiments, the fluid end may comprise three or five plunger bores, and three or five corresponding suction and discharge valve bores.
- In a fourth aspect, there is provided a fluid end for a multiple reciprocating pump assembly. The fluid end comprises first and second opposing sides having a longitudinal dimension, first and second opposing end surfaces, a top surface having a longitudinal dimension, and a bottom surface having a longitudinal dimension. At least three plunger bores are provided, each for receiving a reciprocating plunger, and each plunger bore having a plunger bore axis. The plunger bores are arranged across the fluid end to define a central plunger bore and lateral plunger bores located on either side of the central plunger bore. At least three respective suction valve bores are in fluid communication with the plunger bores. Each suction valve bore is able to receive a suction valve and has a suction valve bore axis. At least three respective discharge valve bores are in fluid communication with the plunger bores. Each discharge valve bore is able to receive a discharge valve and has a discharge valve bore axis. In accordance with the fourth aspect at least one of the axes of at least one of the suction and discharge valve bores is offset in the fluid end from its respective plunger bore axis. The offset can be such that overall stress within the fluid end in use is reduced (for example as the plunger moves to TDC). Again this reduction in overall stress is a surprising discovery with an outcome that the useful operating life of the fluid end can be increased.
- In certain embodiments for each of the plunger bores, the suction valve bore may oppose the discharge valve bore.
- In other certain embodiments for each of the plunger bores, the axes of the suction and discharge valve bores may be aligned.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 10% to about 60% of the diameter of the plunger bore. In certain other embodiments, the offset axis may be offset in an amount ranging from about 20% to about 50%, or from about 30% to about 40%, of the diameter of the plunger bore.
- In other certain embodiments, the at least one offset axis may be offset in an amount ranging from about 0.5 to about 2.5 inches. In certain other embodiments, the offset axis may be offset in an amount ranging from about 1.5 to 2.5 inches. These dimensions may represent an optimal range for many bore diameters of fluid end configurations employed in fracking pumps in oilfield and related applications.
- In certain embodiments, at least one of the first and second end surfaces may further comprise an end support. The end support may be configured such that overall stress within the fluid in use is reduced. The end support may comprise the arrangement or addition of further material (for example, metal) to the fluid end.
- In other certain embodiments, the end support may add from about 0.1% to about 25% to a portion of the longitudinal dimension of the first and second opposing sides.
- In certain embodiments, the end support may cover from about 20% to about 80% of the surface on at least one of the first and second ends. In certain other embodiments the end support may cover from about 30% to about 70%, or from about 40% to about 60%, or around 50% of the surface on at least one of the first and second ends.
- In other certain embodiments, the end support may cover the entire surface on at least one of the first and second ends.
- In certain embodiments, the longitudinal dimension of the bottom surface may be greater than the longitudinal dimension of the top surface.
- Other aspects, features, and advantages will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of the fluid end as disclosed herein.
- Notwithstanding any other forms which may fall within the scope of the fluid end as set forth in the Summary, specific embodiments of the fluid end and reciprocating pump will now be described, by way of example only, with reference to the accompanying drawings.
- In the Description of the Figures and in the Detailed Description of Specific Embodiments, a pump that comprises three plunger, suction and discharge bores is hereafter referred to as a “triplex”, and a pump that comprises five plunger, suction and discharge bores is hereafter referred to as a “quint”, being an abbreviation of “quintuplex”.
- In the drawings:
-
FIGS. 1A and 1B illustrate, in sectional and perspective views, an embodiment of a reciprocating pump.FIG. 1A may depict either a triplex or quint, althoughFIG. 1B specifically depicts a triplex. -
FIGS. 1C and 1D illustrate, in end and perspective views, an embodiment of a triplex fluid end for a reciprocating pump, in which cover plates have been removed for clarity, to illustrate the provision of end supports on opposing sides of the fluid end. -
FIG. 2 schematically depicts an embodiment of a triplex, being a partial section ofFIG. 1A taken on the line 2-2, to illustrate both lateral (or outside) valve bore pairs being offset inwardly from their respective plunger bores. -
FIG. 3 is an underside schematic view of the section ofFIG. 2 to show a bolt pattern on a fluid end. -
FIG. 4 schematically depicts another embodiment of a triplex, being a partial section similar toFIG. 2 , to illustrate some of the valve bores outwardly offset from their respective plunger bores. -
FIG. 5 is an underside schematic view of the section ofFIG. 4 to show a bolt pattern on a fluid end of a cylinder. -
FIG. 6 schematically depicts another embodiment of a triplex, being a partial section similar toFIG. 2 to illustrate the valve bores offset to the left of their respective plunger bores. -
FIG. 7 is an underside schematic view of the section ofFIG. 6 to show a bolt pattern on a fluid end of a cylinder. -
FIG. 8 schematically depicts another embodiment of a triplex, being a partial section similar toFIG. 2 to illustrate discharge valve bores offset from respective plunger bores. -
FIG. 9 schematically depicts another embodiment of a triplex, being a partial section similar toFIG. 2 to illustrate suction valve bores offset from respective plunger bores. -
FIG. 10 schematically depicts a first embodiment of a quint, being a partial section ofFIG. 1A taken on the line 2-2, to illustrate the two lateral valve bore pairs on either side of the central valve bore pair being offset inwardly from their respective plunger bores. -
FIG. 11 is an underside schematic view of the section ofFIG. 10 to show a bolt pattern on a fluid end of a cylinder. -
FIG. 12 is a similar view of the quint ofFIG. 10 , but illustrates both the innermost and outermost lateral valve bore pairs, and not the central valve bore pair, being offset outwardly from their respective plunger bores. -
FIG. 13 is a similar view of the quint ofFIG. 10 , but illustrates all the valve bore pairs being offset to the left of their respective plunger bores. -
FIG. 14 is a similar view of the quint ofFIG. 10 , but illustrates the innermost lateral valve bore pairs being offset inwardly and the outermost lateral valve bore pairs being offset outwardly, and the central valve bore pair not being offset, from their respective plunger bores. -
FIG. 15 is a similar view of the quint ofFIG. 10 , but illustrates the innermost lateral valve bore pairs being offset outwardly and the outermost lateral valve bore pairs being offset inwardly, and the central valve bore pair not being offset, from their respective plunger bores. -
FIGS. 16 and 17 schematically depict side sectional elevations as generated by finite element analysis (FEA), and taken from opposite sides, through a triplex fluid end, to illustrate where maximum stress, as indicated by FEA, occurs for the intersection of a plunger bore with the suction and discharge valve bores; withFIG. 16 showing no offset andFIG. 17 showing 2 inch inward offset. -
FIG. 18 is a data point graph that plot Von Mises yield criterion (that is, for the maximum stress, in psi, as determined by FEA) against the amount of valve bore offset (in inches) for a single (mono) fluid end and a triplex fluid end. -
FIGS. 19 and 20 are two different bar graphs that plot Von Mises yield criterion (that is, for the maximum stress, in psi, as determined by FEA) against different amounts of valve bore offset (in inches), both inward and outward, for a single (mono) fluid end and a triplex fluid end. - Referring to
FIGS. 1A and 1B , an embodiment of areciprocating pump 12 housed within acrankshaft housing 13 is shown. Thecrankshaft housing 13 may comprise a majority of the outer surface of reciprocatingpump 12. Stayrods 14 connect the crankshaft housing 13 (the so-called “power end”) to afluid end 15. When the pump is to be used at high pressures (for instance, in the vicinity of 20,000 psi or greater), up to four stay rods can be employed for each plunger of the multiple reciprocating pump. The stay rods may optionally be enclosed in a housing. - The
pump 12 is a triplex having a set of threecylinders 16, each including a respective plunger bore 17. The three (or, in the case of a quint, five) cylinders/plunger bores can be arranged transversely across thefluid end 15. Aplunger 35 reciprocates in a respective plunger bore 17 and, inFIG. 1A , theplunger 35 is shown fully extended at its top dead centre position. In the embodiment depicted, fluid is only pumped at oneside 51 of theplunger 35, therefore thereciprocating pump 12 is a single-acting reciprocating pump. - Each plunger bore 17 is in communication with a fluid inlet or
suction manifold 19 and afluid outlet side 20 in communication with a pump outlet 21 (FIG. 1B ). Asuction cover plate 22 for eachcylinder 16 and plunger bore 17 is mounted to thefluid end 15 at a location that opposes the plunger bore 17. Thepump 12 can be free-standing on the ground, can be mounted to a trailer that can be towed between operational sites, or mounted to a skid such as for offshore operations. -
Crankshaft housing 13 encloses acrankshaft 25, which can be mechanically connected to a motor (not shown). The motor rotates thecrankshaft 25 in order to drive the reciprocatingpump 12. In one embodiment, thecrankshaft 25 is cammed so that fluid is pumped from eachcylinder 16 at alternating times. As is readily appreciable by those skilled in the art, alternating the cycles of pumping fluid from each of thecylinders 16 helps minimize the primary, secondary, and tertiary (et al.) forces associated with the pumping action. - A
gear 24 is mechanically connected to thecrankshaft 25, with thecrankshaft 25 being rotated by the motor (not shown) throughgears crank pin 28 attaches to themain shaft 23, shown substantially parallel to an axis AX of thecrankshaft 25. Aconnector rod 27 is connected to thecrankshaft 25 at one end. The other end ofconnector rod 27 is secured by a bushing to a crosshead orgudgeon pin 31, which pivots within acrosshead 29 inhousing 30 as thecrankshaft 25 rotates at the one end of theconnector rod 27. Thepin 31 also functions to hold theconnector rod 27 longitudinally relative to thecrosshead 29. Apony rod 33 extends from thecrosshead 29 in a longitudinally opposite direction from thecrankshaft 25. Theconnector rod 27 and thecrosshead 29 convert rotational movement of thecrankshaft 25 into longitudinal movement of thepony rod 33. - The
plunger 35 is connected to thepony rod 33 for pumping the fluid passing through eachcylinder 16. Eachcylinder 16 includes an interior orcylinder chamber 39, which is where theplunger 35 compresses the fluid being pumped by reciprocatingpump 12. Thecylinder 16 also includes an inlet (or suction)valve 41 and an outlet (or discharge)valve 43. Usually the inlet andoutlet valves cylinder 16 and may, for example, lie on a common axis. - The
valves valve 41 actuates to control fluid flow from thefluid inlet 19 into thecylinder chamber 39, and the outlet (discharge)valve 43 actuates to control fluid flow from thecylinder chamber 39 to theoutlet side 20 and thence to thepump outlet 21. Depending on the size of thepump 12, theplunger 35 may be one of a plurality of plungers, for example, three or five plungers may be utilized. - The
plunger 35 reciprocates, or moves longitudinally, toward and away from thechamber 39, as thecrankshaft 25 rotates. As theplunger 35 moves longitudinally away from thecylinder chamber 39, the pressure of the fluid inside thechamber 39 decreases, creating a differential pressure across theinlet valve 41, which actuates thevalve 41 and allows the fluid to enter thecylinder chamber 39 from thefluid inlet 19. The fluid continues to enter thecylinder chamber 39 as theplunger 35 continues to move longitudinally away from thecylinder 17 until the pressure difference between the fluid inside thechamber 39 and the fluid in thefluid inlet 19 is small enough for theinlet valve 41 to actuate to its closed position. - As the
plunger 35 begins to move longitudinally into thecylinder 16, the pressure on the fluid inside of thecylinder chamber 39 begins to increase. Fluid pressure inside thecylinder chamber 39 continues to increase as theplunger 35 approaches thechamber 39 until the differential pressure across theoutlet valve 43 is large enough to actuate thevalve 43 and allow the fluid to exit thechamber 39 through thefluid outlet 21. - The
inlet valve 41 is located within a suction valve bore 59 and theoutlet valve 43 is located within a discharge valve bore 57. In the embodiment depicted, both valve bores 57, 59 are in communication with, and extend orthogonally to the plunger bore 17. The valve bores 57, 59 as shown are also co-axial (that is, lying on a common axis, or with parallel axes), but they may be offset relative to each other as described below. - It should be noted that the opposing arrangement of the valve bores 57, 59 depicted in
FIG. 1 is easier to manufacture (for example, by casting and machining), and is easier to maintain and easier to service than, for example, a perpendicular arrangement of the valve bores (that is, where the axes of the bores are perpendicular). In the opposing bores arrangement, the bores can be easily accessed, packed, unpacked, serviced, etc from under and above the fluid end, without interfering with inlet and outlet manifolds. - In addition, it is understood that, where stress reduction in the fluid end is desirable, the opposing arrangement of the valve bores 57, 59 may induce less stress in the fluid end, especially at high operating pressures of 20,000 psi or greater, when compared with a perpendicular or other angled bore arrangement.
- In
FIGS. 1A and 1B , thefluid end 15 is shown without an end support and can be from about 36 to about 45 inches in length as measured from the first and second opposing sides. An embodiment of thefluid end 15 provides that the length is about 36 inches or about 39 inches in length as measured from the first and second opposing sides. A quintuplex fluid end can be from about 60 inches to about 80 inches in length as measured from the first and second opposing sides. An embodiment of the quintuplex fluid end has a length of about 52 inches, 63 inches or about 70.5 inches. - Referring now to
FIGS. 1C and 1D , a triplexfluid end 15′ for a reciprocating pump is illustrated. In these Figures the cover plates are removed for clarity. Thefluid end 15′ ofFIGS. 1C and 1D comprises a modified end in comparison to thefluid end 15 ofFIGS. 1A and 1B . In this regard, end supports in the form ofadditional material regions fluid end 15′. InFIG. 1C theregions - The distance between the first and second opposing
sides longitudinal dimension 210 for thefluid end 15′. Thefluid end 15′ also comprises atop surface 212 having alongitudinal dimension 214 and abottom surface 216 having alongitudinal dimension 210. Because theadditional material regions sides longitudinal dimension 210 for thebottom surface 216 is greater than thelongitudinal dimension 214 for thetop surface 212. Thelongitudinal dimension 210 for a triplexfluid end 15′ having an end support 18 can be greater than 35 inches to 40 inches, from about 36.1 inches to about 45 inches, from about 36.5 inches to about 39 inches, from about 37 inches to about 39 inches, is about 38 inches, or is about 39 inches. Thelongitudinal dimension 210 for a quintuplex fluid end having an end support 18 can be greater than 50 inches, greater than 52 inches, from about 50 inches to about 80 inches, from about 52.1 inches to about 85 inches, from about 71 inches to about 85 inches, is about 56 inches, is about 67 inches, or is about 74.5 inches. - This form of end support may be employed where, for example, one or both lateral (outside) valve bores 57, 59 are to be offset outwardly in the fluid end. In such an instance, the additional material in the
regions additional material region - As depicted in the drawings, the
additional material regions - As depicted in the drawings, the
additional material regions regions FIG. 1D , eachregion regions - As depicted in the drawings, the
additional material regions - Referring now to
FIG. 2 , a partial sectional view of thefluid end 15 of thepump 12 taken on the line 2-2 ofFIG. 1A is schematically depicted. In the embodiment ofFIGS. 2 and 3 , thepump 12 is a triplex having three plunger bores 17 corresponding to three cylinder bores. However, as described hereafter with reference toFIGS. 10 to 15 , the pump can have a different number of cylinders and plunger bores, such as five. For a symmetric triplex fluid end, a central bore of the three plunger bores lies on a central axis of the fluid end, with the other two plunger bores arranged evenly on either side of the central plunger bore. The offset may be with respect to a central axis of the fluid end. - In the embodiment of
FIGS. 2 and 3 each of the three plunger bores 17 is indicated schematically with the reference numeral 61 (that is, 61 a, 61 b and 61 c); each of the three suction valve bores is indicated schematically with the reference numeral 59 (i.e. 59 a, 59 b and 59 c); and each of the three discharge valve bores is indicated schematically with the reference numeral 57 (that is, 57 a, 57 b and 57 c). Similarly, the axis of each plunger bore 61 is indicated schematically with the reference numeral 65 (that is, 65 a, 65 b and 65 c). Also, the common axis of each of the valve bores 59 and 57 is indicated schematically with the reference numeral 63 (that is, 63 a, 63 b and 63 c). This nomenclature will also be used hereafter with reference to each of the different triplex fluid end embodiments described herein inFIGS. 2 to 9 . - It has been discovered that the highest point of stress concentration in
pump 12 occurs at the intersection of a plunger bore with the suction (or inlet) and discharge (or outlet) valve bores. The maximum stress in the fluid end occurs when one plunger (for example a lateral plunger) is approaching Top Dead Center (TDC), another is approaching Bottom Dead Center (BDC), and a third has just started moving from BDC to TDC. - It has further been discovered that, to reduce fluid end stress, some or all of the lateral (outside) valve bores 57 a, 57 c, 59 a, 59 c at the discharge and suction side may be inwardly offset so that an axis 65 of at least some of the plunger bores (that is, the lateral plunger bore axes 65 a 65 c) does not intersect with a common
valve bore axis 63 such that at least one of the lateral valve boreaxis fluid end 15 that arises as a result of fluid flowing therein, especially at the high pressures that can be employed in oilfield operations (for example, with oil well fracking fluid). - In the three cylinder triplex pump embodiment of
FIGS. 2 and 3 the lateral (or outside) suction and discharge valve bores 59 a, 57 a and 59 c, 57 c are each shown as being inwardly offset and to the same extent from the associated lateral (or outside) plunger bores 61 a and 61 c. The central discharge and suction valve bores 57 b, 59 b are not offset from their respective plunger bores 61 b. Thus, the terminology “offset inwardly and to the same extent” can be considered as meaning offset inwardly in relation, or with reference, to the central plunger bore 61 b and central valve bores 57 b, 59 b. In addition, thecommon axis 63 a of the valve bores 59 a, 57 a is offset inwardly from theaxis 65 a of plunger bore 61 a. Further, thecommon axis 63 c of the valve bores 59 c, 57 c is offset inwardly and to the same extent from theaxis 65 c of the plunger bore 61 c. - Furthermore, whilst in this embodiment the amount of inward offset from both the lateral plunger bores and axes toward the central plunger bore and axis is the same, the amount of offset can be different. For example, the suction and discharge valve bores on one side can be more or less laterally offset to that of the suction and discharge valve bores on the other side of the fluid end. Additionally, either or both of the suction and discharge valve bores on one side may be laterally offset by different extents, or one may not be offset at all, and this offset may be different to each of the suction and discharge valve bores on the other side of the fluid end, which also may be offset differently to each other.
- In any case, the inward offsetting of both the lateral suction and discharge valve bores 59 a, 57 a and 59 c, 57 c, by the same amount and to the same extent, has been surprisingly observed to reduce stress within the fluid end at the high fluid operating pressures, as explained in Example 1.
- As indicated above, in the three cylinder triplex pump embodiment of
FIGS. 2 and 3 , thecommon axis 63 b of the central suction and discharge valve bores 59 b, 57 b intersects withaxis 65 b of the central plunger bore 61 b. It has been observed that in a fluid end having three or more cylinders, there is less stress concentration at the intersection of the central plunger bore 61 b with the central valve bores 57 b, 59 b as compared to the stress at the intersections of the lateral bores and their respective plungers, and hence offsetting the central valve bores 57 b, 59 b may not be required. However, the embodiments ofFIGS. 5 and 6 provide that the central valve bores 59 b, 57 b and axes can also be offset (e.g. maybe to a lesser degree than the lateral bores) to reduce stress concentration thereat. - In the embodiment of
FIGS. 2 and 3 , eachcommon axis 63 of the valve bores 57 and 59 extends perpendicularly to the plunger bore axis 65, although the lateral axes 63 a and 63 c do not intersect. - The amount of inward offset of the valve bores 59, 57 and the plunger bores 61 can be significant. For example, for 4.5 inch diameter bores, the valve bore 59, 57, may be inwardly offset 2 inches from a respective plunger bore 61. The amount of inward offset may be measured from axis to axis. For example, the distance can be set by referring to the distance that the
common axis axis axis 65 b (or where the central valve bore is not offset, as offset from the centralcommon axis 63 b of the valve bores 57 b and 59 b). - In any case, the amount of the offset can be about 40% of the diameter of the plunger bore, though it can, for example, range from about 10% to about 60%. Where the inward offset of each of the lateral valve bores 59 a, 59 c and 57 a, 59 c is 2 inches, the distance from
axis 63 a of valve bores 59 a, 57 c toaxis 63 c of valve bores 59 c, 57 c thus becomes 4 inches closer than in known fluid ends of similar dimensions. - In other embodiments, the inward offset of each lateral valve bore can range from about 0.25 inch to about 2.5 inch, from about 0.5 inch to about 2.0 inch, from about 0.75 inch to about 2.0 inch, from about 1 inch to about 2 inch, from about 0.25 inch to about 1.25 inch, from about 1.5 inch to about 2.5 inch, from about 1.5 inch to about 2.0 inch, or from about 1.5 inch to about 1.75 inch.
- This moving of the lateral valve bores inwardly can represent a significant reduction in the overall dimension and weight of the fluid end. However, one limit to the amount of inward offset of the lateral (or outside) valve bores toward the central valve bore can be the amount of supporting metal between the valve bores.
- When the lateral (or outside) suction valve bores 59 are inwardly offset as described with reference to
FIG. 2 , modification of the suction manifold 19 (FIGS. 1A and 1B ) can allow for its easy connection to the newfluid end 15. Similar modifications can be employed for the discharge manifold. - A conventional suction manifold corresponds to conventional bolt patterns that would be located at a greater distance than that occurring between the valve bores 59 a, 57 a, to valve bores 59 c, 57 c depicted in
FIG. 2 . Thenew bolt pattern 71 is illustrated inFIG. 3 , which schematically depicts an underside of thefluid end 15. In this regard, thedistance 74 of theaxis 63 a of the valve bore 59 a to theaxis 63 c of the valve bore 59 c is shorter than thedistance 72 between theaxis 65 a of the plunger bore 61 a to theaxis 65 c of the plunger bore 61 c, the latter of which corresponds to the conventional bolt pattern. It is feasible to modify and utilize a manifold with the new bolt pattern. - Referring now to the embodiment of
FIGS. 4 and 5 , the lateral (or outer) discharge and suction valve bores 57 a, 59 a, 57 c, 59 c are depicted as being offset outwardly from their respective plunger bores 61 a, 61 c. For example, theaxis 63 a of the valve bores 59 a, 57 a is outwardly offset from theaxis 65 a of the plunger bore 61 a. Similarly, theaxis 63 c of the valve bores 59 c, 57 c is outwardly offset from theaxis 65 c of the plunger bore 61 c. Although the amount of offset of the valve bores 59 a and 59 c depicted inFIGS. 4 and 5 are equal, each valve bore 59 a, 59 c may have a different offset. - The
axis 63 b of the central valve bores 57 b, 59 b is again shown intersecting with theaxis 65 b of the plunger bore 61 b. However, the central valve bores 59 b, 57 b may also be offset. In the embodiment ofFIGS. 4 and 5 , as in the embodiment ofFIGS. 2 and 3 , thesuction manifold 19 can be modified to connect to the newfluid end 15. Thenew bolt pattern 71′ is illustrated in the underside view of thefluid end 15 inFIG. 5 . In thenew bolt pattern 71′, thedistance 74′ fromaxis 63 a of valve bore 59 a toaxis 63 c of valve bore 59 c is greater than thedistance 72′ betweenaxis 65 a of plunger bore 61 a andaxis 65 c of plunger bore 61 c, the latter of which is the conventional bolt pattern. Again, it is feasible to modify and utilize suction and discharge manifolds 19 with the new bolt pattern. However, where the amount of outward offset from the central valve bore is too close to the outer sides of the fluid end, this can cause an increase in stress as discussed hereafter with respect to the data of Example 2. This can be compensated for by adding a support end, such as theadditional material regions FIGS. 1C and 1D , to the opposing end surfaces of the fluid end. The reduction in overall stress within the fluid end as a result of providing such support ends is also discussed hereafter with respect to the stress data of Example 2. - Referring now to the embodiment shown in
FIGS. 6 and 7 , the suction valve bores 59 a, 59 b, 59 c and the discharge valve bores 57 a, 57 b, 57 c corresponding to each plunger bore 61 a, 61 b, 61 c are offset to one side (in this case to the left of the fluid end) and to the same extent, or alternatively may be offset to the right (not shown). Thus, the common axis 63 (i.e. 63 a, 63 b, 63 c) of each of the valve bores 59, 57 is offset to the left of an axis 65 (i.e. 65 a, 65 b, 65 c) of each respective plunger bore 61. Due to the uniform offset of the valve bores 59, 57 associated with each of the plunger bores 61, a bolt patterns 77 can also be spaced uniformly. Thedistance 78 from thecommon axis 63 a of the valve bores 59 a, 57 a to thecommon axis 63 c of the valve bores 59 c, 57 c is equal to thedistance 79 between theaxis 65 a of the plunger bore 61 a to theaxis 65 c of the plunger bore 61 c, the latter of which is the conventional bolt pattern. Thus, in this embodiment, a conventional suction manifold 19 (FIG. 1 ) may be bolted onto thefluid end 15 depicted inFIG. 7 . - In another embodiment shown in
FIG. 8 , the discharge valve bores 57 a, 57 b, 57 c are shown being offset to the same extent to the right (or to the left—not shown) while the suction valve bores 59 a, 59 b, 59 c remain aligned with each plunger bore 61 a, 61 b, 61 c. Thus, anaxis 63′ of each of the discharge valve bores 57 is offset to the right of an axis 65 of each respective plunger bore 61, whereas theaxis 63″ of each suction valve bore 59 intersects the axis 65 of its respective plunger bore 61. Due to the uniform offset of the discharge valve bores 57 associated with each of the plunger bores 61, the bolt patterns are also spaced uniformly. In this regard, thedistance 81 from theaxis 63′a of the valve bore 57 a to theaxis 63′c of the valve bore 57 c is equal to thedistance 82 between theaxis 65 a of the plunger bore 61 a to theaxis 65 c of the plunger bore 61 c, the latter of which is the conventional bolt pattern. Thus, the fluid end of this embodiment employs a conventional discharge manifold set up. In this embodiment, the offset of at least one of the valve bores, here the discharge valve bores 57, can again provide a reduction in stress within the fluid end at the cross bore intersections. - In another embodiment shown in
FIG. 9 , the suction valve bores 59 a, 59 b, 59 c can be offset by the same extent to the right (or to the left—not shown) while the discharge valve bores 57 a, 57 b, 57 c remain aligned with each plunger bore 61 a, 61 b, 61 c. Thus, anaxis 63″ of each of the suction valve bores 59 is offset to the right of an axis 65 of each respective plunger bore 61, whereas theaxis 63′ of each discharge, valve bore 57 intersects the axis 65 of its respective plunger bore 61. Due to the uniform offset of the discharge valve bores 57 associated with each of the plunger bores 61, the bolt patterns are also spaced uniformly. In this regard, the distance 83 from anaxis 63″a of the valve bore 59 a to anaxis 63″c of the valve bore 59 c is equal to thedistance 84 between anaxis 65 a of the plunger bore 61 a to theaxis 65 c of the plunger bore 61 c, the latter of which is the conventional bolt pattern. Thus, a conventional suction manifold 19 (FIG. 1 ) may be bolted onto thefluid end 15. As with the embodiment described inFIG. 8 , the offset of at least one of the valve bores, here the suction valve bore 59, can provide a reduction in stress at the cross bores of thefluid end 15. - It should be noted that the offsetting of just the discharge valve bores 57, or the offsetting of just the suction valve bores 59, can also be employed in a quint fluid end set-up.
- Referring now to
FIGS. 10 and 11 , a first embodiment of a quint fluid end (that is, a quintuplex fluid end having five plungers, five suction valves and five discharge valve bores) is shown.FIG. 10 is a partial section ofFIG. 1A taken on the line 2-2 (i.e. noting thatFIG. 1A can also relate to a quint).FIG. 11 is an underside schematic view of the section ofFIG. 10 to show a bolt pattern on a fluid end. For a symmetrical quint fluid end, a central bore of the five plunger bores lies on a central axis of the fluid end, with two plunger bores arranged evenly on either side of the central plunger bore. Again, offset may be with respect to a central axis of the fluid end. - In the embodiment of
FIGS. 10 and 11 each of the five plunger bores 17 is indicated schematically with the reference numeral 91 (that is, 91 a, 91 b, 91 c, 91 d and 91 e); each of the three suction valve bores is indicated schematically with the reference numeral 89 (that is, 89 a, 89 b, 89 c, 89 d and 89 e); and each of the three discharge valve bores is indicated schematically with the reference numeral 87 (that is, 87 a, 87 b, 87 c, 87 d and 87 e). Similarly, the axis of each plunger bore 91 is indicated schematically with the reference numeral 95 (that is, 95 a, 95 b, 95 c, 95 d and 95 e). Also, the common axis of each of the valve bores 89, 87 is indicated schematically with the reference numeral 93 (that is, 93 a, 93 b, 93 c, 93 d and 93 e). This nomenclature will also be used hereafter with reference to the different quint fluid end embodiments described herein. - In the quint fluid end embodiment of
FIGS. 10 and 11 the two lateral valve bores 89 a and 87 a; 89 b and 87 b; 89 d and 87 d; 89 e and 87 e on each side of the central valve bores 89 c and 87 c are shown as being inwardly offset from their respective plunger bores 91 a, 91 b, 91 d and 91 e. - In the embodiment of
FIGS. 10 and 11 each of the two lateral valve bores on either side of the central valve bores is inwardly offset by the same amount and to the same extent. However, with a quint fluid end, many more variations and offset combinations are possible than with a triplex fluid end. For example, just two of the lateral discharge valve bores 87 a and 87 b (and not their respective suction valve bores 89 a and 89 b) may be inwardly offset, and these two discharge valve bores 87 a and 87 b may each be offset by the same or different amounts. This inward offset may not be employed for the opposite two lateral discharge valve bores 87 d and 87 e. The inward offset may be employed for the opposite two lateral suction valve bores 89 a and 89 b, which latter two might also each be offset by the same or by different amounts, and so on. - Referring to the new bolt pattern of
FIG. 11 , modification of the suction manifold can allow for its easy connection to the new quint fluid end. As mentioned above, a conventional suction manifold corresponds to conventional bolt patterns that are located at a greater distance than that occurring between the valve bores 89 a, 87 a, to valve bores 89 e, 87 e depicted inFIG. 11 . Thenew bolt pattern 101 is illustrated inFIG. 11 , which schematically depicts an underside of thefluid end 15. In this regard, thedistance 104 of theaxis 93 a of the valve bore 89 a to theaxis 93 e of the valve bore 89 e is shorter than thedistance 102 between theaxis 95 a of the plunger bore 91 a to theaxis 95 e of the plunger bore 91 e, the latter of which corresponds to the conventional bolt pattern. Again, it is feasible to modify and utilize a manifold with the new bolt pattern. - Referring now to
FIG. 12 , another embodiment of a quint fluid end is shown.FIG. 12 shows a similar view to the quint of 10, but in this embodiment illustrates the outward offsetting from their respective plunger bores 91 a, 91 b, 91 d and 91 e of the outermost and innermost lateral valve bores 89 a, 87 a, 89 b, 87, 89 d, 87 d and 89 e, 87 e on each side of the non-offset central valve bores 89 c and 87 c. - Referring now to
FIG. 13 , yet another embodiment of a quint fluid end is shown.FIG. 13 shows a similar view to the quint ofFIG. 10 , but in this embodiment illustrates the offsetting to the left, (although it may be, to the right) of each of the valve bores 89, 87. - Referring now to
FIG. 14 , yet a further embodiment of a quint fluid end is shown.FIG. 14 shows a similar view to the quint ofFIG. 10 , but in this embodiment illustrates the inward offsetting from their respective plunger bores 91 b and 91 d of the innermost lateral valve bores 89 b, 87 b and 89 d, 87 d, and the outward offsetting of the outermost lateral valve bores 89 a, 87 a and 89 e, 87 e. The central valve bores 89 c, 87 c are not offset. - Referring now to
FIG. 15 , a yet further embodiment of a quint fluid end is shown.FIG. 15 shows a similar view to the quint ofFIG. 10 , but in this embodiment illustrates the outward offsetting from their respective plunger bores 91 b and 91 d of the innermost lateral valve bores 89 b, 87 b and 89 d, 87 d, and the inward offsetting of the outermost lateral valve bores 89 a and 87 a, and 89 e and 87 e. Again, the central valve bores 89 c and 87 c are not offset. - Whilst not shown, with the quint fluid end many other combinations of valve bore offsets are possible, and material (metal) within the fluid end may be adjusted accordingly.
- Non-limiting examples are provided to illustrate how the offsetting of a lateral valve bore can surprisingly and unexpectedly reduce stress in a fluid end during operation at high pressures as compared to a fluid end having conventional unmodified valve bores. Example 1 discusses data modeled for an inward offsetting, and Example 2 discusses data modeled for an outward offsetting. In the following examples, finite element analysis (FEA) tests were conducted for a triplex fluid end, although it was noted that the findings also applied to a quintuplex fluid end.
- The FEA experiments were conducted to compare the stresses induced in a number of new fluid end configurations having three cylinders against a known (existing and unmodified) three cylinder fluid end configuration. In the unmodified fluid end configuration the axis of each plunger bore intersected perpendicularly with a common axis of the suction and discharge valve bores.
- In these FEA stress tests, each fluid end was subjected to a working fluid pressure of 15,000 psi, commensurate with that experienced in usual applications. The pressure of fluid in the lateral discharge bore was observed by FEA to be 16,800 psi.
-
FIGS. 16 and 17 show two of the schematics of a triplex fluid end that were generated by FEA at these model fluid pressures. InFIGS. 16 and 17 regions of stress are shaded according to the key adjacent toFIG. 17 . The view inFIG. 16 is from one side of the fluid end and shows no offset of the suction and discharge valve bores 59 and 57. The head of the arrow A illustrates where maximum stress occurred at the intersection of the plunger bore 61 with the suction valve bore 59 (that is, where the plunger bore 61 first intersects with the suction valve bore 59). This indicates that, in operation, stress in the fluid end may be reduced, for example, by offsetting just one of the suction valve bores 59. However, greater stress reduction may also be achieved by offsetting of the opposing lateral suction and discharge valve bores 59 and 57. - The view in
FIG. 17 is from an opposite side of the fluid end and shows a 2 inch inward offset of the discharge and suction valve bores 57 and 59. The offset was measured from the centerline of the respective plunger bore 65 a, 65 c. The head of the arrow A illustrates where maximum stress occurred at the intersection of the plunger bore 61 with the suction valve bore 59 (i.e. where the suction valve bore 59 intersects with the extension of the plunger cylinder which terminates at the suction cover plate 22). In other words, the region of maximum concentrated stress has been shifted out of the intersection of the plunger bore 61 with the suction valve bore 59. - In the first set of tests a single (or mono) block fluid end and a triplex fluid end were each modeled. The single block fluid end was modeled with one of the valve bores offset and an end was modified with an end support. With the triplex fluid end one of the lateral (outside) valve bores was inwardly offset, as compared with a triplex pump in which both lateral valve bores may be inwardly offset. The fluid end configurations modeled included one (e.g. lateral)
discharge 57 andsuction 59 bore being inwardly offset by 1.5 inches and by 2 inches. - The stress result modeled by FEA was correlated to the Von Mises yield criterion (in psi) and the results were plotted for each of zero offset (that is, an existing fluid end), and 1.5 inches and 2 inches offset (that is, a new fluid end) and offset with an end support. The results are shown in the graphs of
FIG. 18 (which shows data point results for both 1.5 inches and 2 inches offset) andFIG. 19 (which represents the results for 1.5 inches and 2 inches inward offset in a bar chart). - As can be seen, the FEA modeling of the tested fluid ends resulted in a 2 inch inward offset of a triplex fluid end having the greatest amount of stress reduction as compared to no offset and to 1.5 inches inward offset for the triplex or single block. Moreover, the single block fluid end with an offset surprisingly did not produce much of reduction in stress. However, as soon as the end was modified with the end support that was 2 inches in length (or thickness) and extended along the entire exterior end the stress dropped noticeably (
FIG. 19 ). The overall stress reduction in the triplex fluid end for a 2 inch inward offset was noted to be approximately 30% (that is, from ˜97,000 psi to less than 69,000 psi as shown inFIGS. 18 and 19 ). It was noted that such a stress reduction would be likely to significantly extend the useful operating life of the fluid end. - In the second set of tests, the outward offsetting of one of the lateral (outside) valve bores was modeled. The fluid end configurations tested included one
lateral suction 57 andsuction 59 bore being outwardly offset by 1.5 inches and by 2 inches. The results for a 2 inch offset are shown inFIG. 20 . For a 2 inch outward offset in a triplex, with no adjustment for a resultant thinning in adjacent wall material, the FEA modeling resulted in an increase in stress at the intersection of plunger and valve bores (2nd rightmost bar). However, in the FEA model, as soon as the wall was modified with an end support that was 2 inches in length (or thickness) extending along the entire surface of the outer wall (see e.g.FIGS. 1C and 1D ), the overall stress reduction in the fluid end was around 29% (from ˜97,000 psi to less than 69,000 psi). Again, it was noted that such a stress reduction would be likely to significantly extend the useful operating life of the fluid end. - In the foregoing description of certain embodiments, specific terminology has been resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes other technical equivalents which operate in a similar manner to accomplish a similar technical purpose. Terms such as “left” and right”, “front” and “rear”, “above” and “below”, “top” and “bottom” and the like are used as words of convenience to provide reference points and are not to be construed as limiting terms.
- In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
- In addition, the foregoing describes only some embodiments of the fluid end and reciprocating pump, and alterations, modifications, additions and/or changes can be made thereto without departing from the scope and spirit of the disclosed embodiments, the embodiments being illustrative and not restrictive.
- Furthermore, the fluid end and reciprocating pump have described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the fluid end and reciprocating pump are not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the disclosure. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment.
Claims (21)
1-41. (canceled)
42. A method of pumping fluid, the method comprising:
conveying fluid from a first flowpath to a second flowpath that is located above the first flowpath and that defines a first longitudinal center axis that is perpendicular to the first flowpath;
conveying the fluid from the second flowpath and into a pump chamber that is located above the second flowpath and thus also above the first flowpath;
pressurizing the fluid within the pump chamber, comprising reciprocatingly driving a plunger in the pump chamber along a second longitudinal center axis that is perpendicular to the first longitudinal center axis and either intersects, or is horizontally spaced from, the first longitudinal center axis;
conveying the pressurized fluid out of the pump chamber via a third flowpath that is located above the pump chamber, is opposed to the second flowpath, and defines a third longitudinal center axis that is perpendicular to the second longitudinal center axis and is either horizontally spaced in a parallel relation from, or coaxial with, the first longitudinal center axis defined by the second flowpath so that a plunger horizontal spacing is defined between the second longitudinal center axis and at least one of the first and third longitudinal center axes;
and
delivering the pressurized fluid from the third flowpath to a fourth flowpath that is:
located above the pump chamber and thus also above the second flowpath and the first flowpath;
perpendicular to the third flowpath and the second flowpath; and
spaced from the first flowpath in a parallel relation.
43. The method of pumping fluid of claim 42 , wherein reciprocatingly driving the plunger along the second longitudinal center axis comprises moving the plunger away from the pump chamber;
wherein conveying the fluid from the second flowpath and into the pump chamber comprises actuating, to a first open position, a first valve located in the second flowpath and thus below the pump chamber;
wherein the first valve located below the pump chamber is actuated to the first open position in response to moving the plunger away from the pump chamber;
and
wherein actuating the first valve located below the pump chamber to the first open position allows the fluid to enter the pump chamber via the second flowpath.
44. The method of pumping fluid of claim 43 , wherein pressurizing the fluid within the pump chamber further comprises actuating, to a first closed position, the first valve located below the pump chamber to prevent the fluid from exiting the pump chamber via the second flowpath.
45. The method of pumping fluid of claim 43 , wherein reciprocatingly driving the plunger along the second longitudinal center axis further comprises moving the plunger toward the pump chamber;
wherein conveying the pressurized fluid out of the pump chamber via the third flowpath comprises actuating, to a second open position, a second valve that is located in the third flowpath and thus above the pump chamber, and that is opposed to the first valve located in the second flowpath and below the pump chamber;
wherein the second valve located above the pump chamber is actuated to the second open position in response to moving the plunger toward the pump chamber;
and
wherein actuating the second valve located above the pump chamber to the second open position allows the fluid to exit the pump chamber via the third flowpath.
46. The method of pumping fluid of claim 45 , wherein, during moving the plunger toward the pump chamber, the plunger is located within the pump chamber, the first valve is located below the plunger, and the second valve is located above the plunger, so that the plunger is located between the first and second valves.
47. The method of pumping fluid of claim 42 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, intersects the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and the third longitudinal center axis defined by the third flowpath.
48. The method of pumping fluid of claim 42 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is coaxial with the first longitudinal center axis defined by the second flowpath; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and both of the coaxial third and first longitudinal center axes defined by the third and second flowpaths, respectively.
49. The method of pumping fluid of claim 42 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath; and
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath.
50. The method of pumping fluid of claim 49 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath to the same degree as the second longitudinal center axis is horizontally spaced from the first longitudinal center axis so that the third longitudinal center axis intersects the second longitudinal center axis; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and the first longitudinal center axis defined by the second flowpath.
51. A system for pumping fluid, the system comprising:
means for conveying fluid from a first flowpath to a second flowpath that is located above the first flowpath and that defines a first longitudinal center axis that is perpendicular to the first flowpath;
means for conveying the fluid from the second flowpath and into a pump chamber that is located above the second flowpath and thus also above the first flowpath;
means for pressurizing the fluid within the pump chamber, comprising means for reciprocatingly driving a plunger in the pump chamber along a second longitudinal center axis that is perpendicular to the first longitudinal center axis and either intersects, or is horizontally spaced from, the first longitudinal center axis;
means for conveying the pressurized fluid out of the pump chamber via a third flowpath that is located above the pump chamber, is opposed to the second flowpath, and defines a third longitudinal center axis that is perpendicular to the second longitudinal center axis and is either horizontally spaced in a parallel relation from, or coaxial with, the first longitudinal center axis defined by the second flowpath so that a plunger horizontal spacing is defined between the second longitudinal center axis and at least one of the first and third longitudinal center axes;
and
means for delivering the pressurized fluid from the third flowpath to a fourth flowpath that is:
located above the pump chamber and thus also above the second flowpath and the first flowpath;
perpendicular to the third flowpath and the second flowpath; and
spaced from the first flowpath in a parallel relation.
52. The system for pumping fluid of claim 51 , wherein means for reciprocatingly driving the plunger along the second longitudinal center axis comprises means for moving the plunger away from the pump chamber;
wherein means for conveying the fluid from the second flowpath and into the pump chamber comprises means for actuating, to a first open position, a first valve located in the second flowpath and thus below the pump chamber;
wherein the first valve located below the pump chamber is actuated to the first open position in response to moving the plunger away from the pump chamber;
and
wherein actuating the first valve located below the pump chamber to the first open position allows the fluid to enter the pump chamber via the second flowpath.
53. The system for pumping fluid of claim 52 , wherein means for pressurizing the fluid within the pump chamber further comprises means for actuating, to a first closed position, the first valve located below the pump chamber to prevent the fluid from exiting the pump chamber via the second flowpath.
54. The system for pumping fluid of claim 52 , wherein means for reciprocatingly driving the plunger along the second longitudinal center axis further comprises means for moving the plunger toward the pump chamber;
wherein means for conveying the pressurized fluid out of the pump chamber via the third flowpath comprises means for actuating, to a second open position, a second valve that is located in the third flowpath and thus above the pump chamber, and that is opposed to the first valve located in the second flowpath and below the pump chamber;
wherein the second valve located above the pump chamber is actuated to the second open position in response to moving the plunger toward the pump chamber;
and
wherein actuating the second valve located above the pump chamber to the second open position allows the fluid to exit the pump chamber via the third flowpath.
55. The system for pumping fluid of claim 54 , wherein, during moving the plunger toward the pump chamber, the plunger is located within the pump chamber, the first valve is located below the plunger, and the second valve is located above the plunger, so that the plunger is located between the first and second valves.
56. The system for pumping fluid of claim 51 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, intersects the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and the third longitudinal center axis defined by the third flowpath.
57. The system for pumping fluid of claim 51 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is coaxial with the first longitudinal center axis defined by the second flowpath; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and both of the coaxial third and first longitudinal center axes defined by the third and second flowpaths, respectively.
58. The system for pumping fluid of claim 51 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath; and
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath.
59. The system for pumping fluid of claim 58 , wherein:
the second longitudinal center axis, along which the plunger is reciprocatingly driven, is horizontally spaced from the first longitudinal center axis defined by the second flowpath;
the third longitudinal center axis defined by the third flowpath is horizontally spaced in a parallel relation from the first longitudinal center axis defined by the second flowpath to the same degree as the second longitudinal center axis is horizontally spaced from the first longitudinal center axis so that the third longitudinal center axis intersects the second longitudinal center axis; and
the plunger horizontal spacing is defined between the second longitudinal center axis, along which the plunger is reciprocatingly driven, and the first longitudinal center axis defined by the second flowpath.
60. A method of manufacturing a fluid end for a reciprocating pump assembly, the method comprising:
providing a block comprising horizontally spaced, opposing first and second end portions;
forming in the block a center plunger bore, the center plunger bore defining a longitudinal center axis;
forming in the block first and second lateral plunger bores on either side of, and horizontally spaced in a parallel relation from, the center plunger bore so that the first and second lateral plunger bores are symmetric about the longitudinal center axis and thus respective horizontal spacings between the longitudinal center axis and the first and second lateral plunger bores are equal;
forming in the block first and second lateral valve bores on either side of, horizontally spaced from, and perpendicular to, the center plunger bore so that:
the first and second lateral valve bores are asymmetric about the longitudinal center axis defined by the center plunger bore,
the horizontal spacing between the longitudinal center axis and the first lateral valve bore is greater than the horizontal spacing between the longitudinal center axis and the second lateral valve bore,
the first lateral valve bore is disposed between the first end portion and the center plunger bore, and
the second lateral valve bore is disposed between the second end portion and the center plunger bore;
and
connecting an end support to the first end portion;
wherein the horizontal spacing between the first end portion, to which the first end support is connected, and the first lateral valve bore is less than the horizontal spacing between the second end portion and the second lateral valve bore.
61. The method of claim 60 , wherein the end support comprises a plate, and wherein connecting the end support to the first end portion of the block comprises bolting the plate to the first end portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/195,196 US20140322034A1 (en) | 2010-12-09 | 2014-03-03 | Offset valve bore for a reciprocating pump |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42145310P | 2010-12-09 | 2010-12-09 | |
US13/314,745 US8668470B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore for a reciprocating pump |
US14/195,196 US20140322034A1 (en) | 2010-12-09 | 2014-03-03 | Offset valve bore for a reciprocating pump |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/314,745 Continuation US8668470B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore for a reciprocating pump |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140322034A1 true US20140322034A1 (en) | 2014-10-30 |
Family
ID=46198008
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/314,745 Expired - Fee Related US8668470B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore for a reciprocating pump |
US13/314,831 Expired - Fee Related US8662864B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore in a reciprocating pump |
US13/849,228 Expired - Fee Related US8662865B2 (en) | 2010-12-09 | 2013-03-22 | Offset valve bore in a reciprocating pump |
US14/195,196 Abandoned US20140322034A1 (en) | 2010-12-09 | 2014-03-03 | Offset valve bore for a reciprocating pump |
US14/195,165 Active US9784262B2 (en) | 2010-12-09 | 2014-03-03 | Offset valve bore in a reciprocating pump |
US15/728,180 Active US9989044B2 (en) | 2010-12-09 | 2017-10-09 | Offset valve bore in a reciprocating pump |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/314,745 Expired - Fee Related US8668470B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore for a reciprocating pump |
US13/314,831 Expired - Fee Related US8662864B2 (en) | 2010-12-09 | 2011-12-08 | Offset valve bore in a reciprocating pump |
US13/849,228 Expired - Fee Related US8662865B2 (en) | 2010-12-09 | 2013-03-22 | Offset valve bore in a reciprocating pump |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/195,165 Active US9784262B2 (en) | 2010-12-09 | 2014-03-03 | Offset valve bore in a reciprocating pump |
US15/728,180 Active US9989044B2 (en) | 2010-12-09 | 2017-10-09 | Offset valve bore in a reciprocating pump |
Country Status (14)
Country | Link |
---|---|
US (6) | US8668470B2 (en) |
EP (2) | EP2649315A4 (en) |
CN (2) | CN103339379A (en) |
AR (2) | AR084230A1 (en) |
AU (2) | AU2011338305B2 (en) |
BR (2) | BR112013014276A2 (en) |
CA (2) | CA2820648A1 (en) |
DK (1) | DK2649316T3 (en) |
EA (2) | EA024927B1 (en) |
MX (2) | MX2013006387A (en) |
PL (1) | PL2649316T3 (en) |
SG (2) | SG191012A1 (en) |
UA (2) | UA109683C2 (en) |
WO (2) | WO2012078870A2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9784262B2 (en) | 2010-12-09 | 2017-10-10 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
US9945362B2 (en) | 2012-01-27 | 2018-04-17 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
US11353117B1 (en) | 2020-01-17 | 2022-06-07 | Vulcan Industrial Holdings, LLC | Valve seat insert system and method |
US11384756B1 (en) | 2020-08-19 | 2022-07-12 | Vulcan Industrial Holdings, LLC | Composite valve seat system and method |
US11391374B1 (en) | 2021-01-14 | 2022-07-19 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US11421680B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US11421679B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing assembly with threaded sleeve for interaction with an installation tool |
US11434900B1 (en) | 2022-04-25 | 2022-09-06 | Vulcan Industrial Holdings, LLC | Spring controlling valve |
USD980876S1 (en) | 2020-08-21 | 2023-03-14 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD986928S1 (en) | 2020-08-21 | 2023-05-23 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD997992S1 (en) | 2020-08-21 | 2023-09-05 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
US11828277B2 (en) | 2019-09-20 | 2023-11-28 | Yantal Jereh Petroleum Equipment & Technologies Co., Ltd. | Turbine-driven fracturing system on semi-trailer |
US11920684B1 (en) | 2022-05-17 | 2024-03-05 | Vulcan Industrial Holdings, LLC | Mechanically or hybrid mounted valve seat |
US12049889B2 (en) | 2020-06-30 | 2024-07-30 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US12055221B2 (en) | 2021-01-14 | 2024-08-06 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US12065916B2 (en) | 2019-09-20 | 2024-08-20 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Hydraulic fracturing system for driving a plunger pump with a turbine engine |
US12091953B2 (en) | 2019-09-20 | 2024-09-17 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Hydraulic fracturing system for driving a plunger pump with a turbine engine |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG178980A1 (en) * | 2009-09-03 | 2012-04-27 | Prad Res & Dev Ltd | Pump assembly |
USD687125S1 (en) | 2011-08-19 | 2013-07-30 | S.P.M. Flow Control, Inc. | Fluid end |
USD679292S1 (en) | 2012-04-27 | 2013-04-02 | S.P.M. Flow Control, Inc. | Center portion of fluid cylinder for pump |
US9284953B2 (en) * | 2012-06-07 | 2016-03-15 | George H Blume | Multiple port discharge manifold fluid end |
USD706832S1 (en) | 2012-06-15 | 2014-06-10 | S.P.M. Flow Control, Inc. | Fluid cylinder for a pump |
USD705817S1 (en) | 2012-06-21 | 2014-05-27 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
US8707853B1 (en) | 2013-03-15 | 2014-04-29 | S.P.M. Flow Control, Inc. | Reciprocating pump assembly |
US20150219096A1 (en) * | 2013-07-23 | 2015-08-06 | Halliburton Energy Services, Inc. | Erosion, Corrosion, and Fatigue Prevention for High-Pressure Pumps |
US9989053B2 (en) | 2013-09-10 | 2018-06-05 | Serva Group Llc | Housing for high-pressure fluid applications |
CN103573615B (en) * | 2013-11-21 | 2016-05-25 | 四机赛瓦石油钻采设备有限公司 | The fluid end of high-pressure plunger pump |
US20150159647A1 (en) * | 2013-12-10 | 2015-06-11 | S.P.M. Flow Control, Inc. | Stay rod assembly |
CA2949708C (en) * | 2014-05-23 | 2021-05-18 | Fmc Technologies, Inc. | Reciprocating pump with improved fluid cylinder cross-bore geometry |
US9605767B2 (en) * | 2014-06-11 | 2017-03-28 | Strom, Inc. | Systems and methods utilizing a grooveless fluid end for high pressure pumping |
EA201692452A1 (en) | 2014-06-27 | 2017-05-31 | Эс.Пи.Эм. ФЛОУ КОНТРОЛ, ИНК. | SYSTEM OF DAMPING OF VIBRATIONS IN THE KINEMATIC CHAIN OF THE PUMP DRIVE AND SYSTEMS AND METHODS OF CONTROL FOR IT |
EA033624B1 (en) | 2014-07-25 | 2019-11-11 | Spm Flow Control Inc | Support for reciprocating pump |
EP3240957A4 (en) * | 2014-12-22 | 2018-08-15 | S.P.M. Flow Control, Inc. | Reciprocating pump with dual circuit power end lubrication system |
CN104500359B (en) * | 2014-12-25 | 2017-01-11 | 上海清河机械有限公司 | Hydraulic end assembly of five-cylinder plunger pump |
AU2016258571B2 (en) * | 2015-05-01 | 2020-01-30 | Graco Minnesota Inc. | Two piece pump rod |
CA2983096A1 (en) | 2015-05-01 | 2016-11-10 | Graco Minnesota Inc. | Pump transmission carriage assembly |
USD759728S1 (en) * | 2015-07-24 | 2016-06-21 | S.P.M. Flow Control, Inc. | Power end frame segment |
US10564020B2 (en) * | 2015-09-04 | 2020-02-18 | Halliburton Energy Services, Inc. | Flow-rate monitoring system for a pressure pump |
WO2017039700A1 (en) | 2015-09-04 | 2017-03-09 | Halliburton Energy Services, Inc. | Single-sensor analysis system |
US10480296B2 (en) | 2015-09-04 | 2019-11-19 | Halliburton Energy Services, Inc. | Critical valve performance monitoring system |
WO2017039701A1 (en) | 2015-09-04 | 2017-03-09 | Halliburton Energy Services, Inc. | Monitoring system for pressure pump cavitation |
WO2017039695A1 (en) | 2015-09-04 | 2017-03-09 | Halliburton Energy Services, Inc. | Pressure pump valve monitoring system |
US10436766B1 (en) | 2015-10-12 | 2019-10-08 | S.P.M. Flow Control, Inc. | Monitoring lubricant in hydraulic fracturing pump system |
US10302078B2 (en) | 2015-11-20 | 2019-05-28 | Valtek Industries, Inc. | Modified bores for a reciprocating high pressure fluid pump |
US11209124B2 (en) * | 2016-06-23 | 2021-12-28 | Spm Oil & Gas Inc. | Power frame and lubrication system for a reciprocating pump assembly |
WO2018044293A1 (en) | 2016-08-31 | 2018-03-08 | Halliburton Energy Services, Inc. | Pressure pump performance monitoring system using torque measurements |
CA3027292C (en) | 2016-09-15 | 2020-10-13 | Halliburton Energy Services, Inc. | Pressure pump balancing system |
US10731643B2 (en) * | 2017-09-29 | 2020-08-04 | S.P.M. Flow Control, Inc. | Fluid end crossbore |
US20190101109A1 (en) * | 2017-10-02 | 2019-04-04 | S.P.M. Flow Control, Inc. | Valve stop |
US20190226477A1 (en) * | 2018-01-24 | 2019-07-25 | Impact Solutions As | Pumps |
WO2020064781A1 (en) * | 2018-09-24 | 2020-04-02 | Burckhardt Compression Ag | Labyrinth piston compressor |
US11965503B2 (en) | 2019-05-14 | 2024-04-23 | Halliburton Energy Services, Inc. | Flexible manifold for reciprocating pump |
US11739748B2 (en) * | 2019-05-14 | 2023-08-29 | Halliburton Energy Services, Inc. | Pump fluid end with easy access suction valve |
US11773843B2 (en) | 2019-06-07 | 2023-10-03 | Schlumberger Technology Corporation | Integral reciprocating pump structure supporting spacer section |
US11773844B2 (en) | 2019-06-07 | 2023-10-03 | Schlumberger Technology Corporation | Reciprocating pump trunnions connecting crosshead and connecting rod |
WO2021016232A1 (en) * | 2019-07-22 | 2021-01-28 | S.P.M. Flow Control, Inc. | Valve and suction cover platformed assembly |
DE202020101551U1 (en) | 2020-03-23 | 2020-04-08 | Eva Löhden | Variable belt carrying system |
WO2021257570A1 (en) * | 2020-06-15 | 2021-12-23 | Schlumberger Technology Corporation | Crosshead bushing systems and methods |
US20240318644A1 (en) * | 2023-03-22 | 2024-09-26 | Spm Oil & Gas Inc. | Multiple-valve system for a fluid pump |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000170643A (en) * | 1998-09-30 | 2000-06-20 | Maruyama Mfg Co Ltd | Multiple reciprocating pump |
US20090123303A1 (en) * | 2007-11-13 | 2009-05-14 | Maruyama Mfg. Co., Inc. | Reciprocating pump |
Family Cites Families (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899247A (en) * | 1959-08-11 | Feed water pump | ||
US2732810A (en) | 1956-01-31 | simpson | ||
CA138269A (en) | 1911-02-10 | 1912-02-06 | William J. Kibby | Tub and sink |
CA144435A (en) | 1912-07-19 | 1912-12-03 | Albert A. Stibbard | Joint for concrete roadways |
CA146660A (en) | 1912-12-02 | 1913-03-18 | Neville Smith | Carburetter |
CA148192A (en) | 1913-01-18 | 1913-05-27 | Napoleon B. Douglas | Wall bed |
CA151028A (en) | 1913-01-27 | 1913-10-14 | Oliver Goerge Fimmons | File |
CA149166A (en) | 1913-06-06 | 1913-07-08 | Joseph Alphonse Begin | Lacing for shoes |
US1331483A (en) | 1919-02-25 | 1920-02-24 | Butterfield Arthur William | Safety-razor |
US1331474A (en) | 1919-07-11 | 1920-02-17 | Shaverksha D Master | Gun |
US2006879A (en) * | 1931-03-16 | 1935-07-02 | Hydraulic Press Mfg Co | Pump |
US2666026A (en) | 1949-01-06 | 1954-01-12 | Aldrich Pump Company | Corrosion inhibitor |
US2559659A (en) * | 1949-03-07 | 1951-07-10 | Oil Well Supply Co | Pump valve |
US2776701A (en) | 1954-08-03 | 1957-01-08 | Albert P Denis | Walking aid and chair combination |
US2901981A (en) * | 1955-10-07 | 1959-09-01 | Creamery Package Mfg Co | Homogenizing apparatus |
US3081252A (en) | 1959-09-30 | 1963-03-12 | Chemionics Engineering Lab Inc | Pipe plug anode |
US3159559A (en) | 1960-05-13 | 1964-12-01 | Iii Harry Alfred Eberhardt | Pump apparatus |
US3185103A (en) * | 1960-12-12 | 1965-05-25 | Union Pump Co | Readily dismountable reciprocating pump assembly |
US3427988A (en) * | 1967-03-21 | 1969-02-18 | United States Steel Corp | Fluid end construction for plunger pumps |
US3470077A (en) | 1967-09-07 | 1969-09-30 | Magnesium Elektron Ltd | Sacrificial anodes and method of using same |
US3679332A (en) | 1970-04-10 | 1972-07-25 | Union Pump Co | Reciprocating piston pump |
US3810716A (en) | 1972-10-27 | 1974-05-14 | Waters Associates Inc | Check valve and system containing same |
US3919068A (en) | 1972-11-15 | 1975-11-11 | Wildon A Gary | System stabilizer |
US3844921A (en) | 1972-12-18 | 1974-10-29 | Exxon Production Research Co | Anode containing pin-type inserts |
GB1449280A (en) | 1973-12-18 | 1976-09-15 | Frankel M I | Reciprocating piston compressor |
FR2278951A1 (en) | 1974-07-16 | 1976-02-13 | Semt | ANTI-EROSION DEVICE OF A SUCTION AND PRESSURE PUMP |
AU502514B2 (en) | 1975-07-21 | 1979-07-26 | Compagnie Generale Oielectricite Sa | Zinc regenerating method. and device |
US4264286A (en) * | 1977-12-27 | 1981-04-28 | Geosource, Inc. | Multiple fluid pump |
US4339227A (en) | 1980-05-09 | 1982-07-13 | Rockwell International Corporation | Inducer tip clearance and tip contour |
US4370211A (en) | 1980-09-23 | 1983-01-25 | Phillips Petroleum Company | Method and apparatus for cathodic protection |
US4412792A (en) | 1981-01-21 | 1983-11-01 | The Oilgear Company | Intensifier pump with integrated check valve |
US4378853A (en) | 1981-08-31 | 1983-04-05 | Smith International, Inc. | Cavitation nozzle plate adapter for rock bits |
US4520837A (en) | 1984-01-31 | 1985-06-04 | Halliburton Company | Cover retainer |
US4861241A (en) | 1988-02-08 | 1989-08-29 | Parker Technology, Inc. | Valve guide bracket |
US4878815A (en) | 1988-05-18 | 1989-11-07 | Stachowiak J Edward | High pressure reciprocating pump apparatus |
US5059101A (en) | 1989-01-23 | 1991-10-22 | Valavaara Viljo K | Fluid end |
US5127807A (en) | 1990-07-26 | 1992-07-07 | Halliburton Company | Ultra high pressure field end for a reciprocating pump |
US5102297A (en) | 1990-08-08 | 1992-04-07 | Thompson George A | Centrifugal pump with cavitation reducing propeller |
US5154589A (en) | 1990-11-09 | 1992-10-13 | National Instrument Company | Metering pump |
US5171136A (en) | 1991-01-28 | 1992-12-15 | Butterworth Jetting Systems, Inc. | Fluid flow control device |
US5273407A (en) * | 1992-04-30 | 1993-12-28 | Apv Gaulin Gmbh | Homogenizing system having improved fluid flow path |
US5246355A (en) | 1992-07-10 | 1993-09-21 | Special Projects Manufacturing, Inc. | Well service pumping assembly |
FR2693771B1 (en) | 1992-07-20 | 1994-09-23 | Schlumberger Cie Dowell | Pump comprising a partially hollow piston, and its applications in particular in the petroleum industry. |
USD354495S (en) | 1992-10-07 | 1995-01-17 | Maruyama Mgf. Co. Inc. | Reciprocating pump |
USD361575S (en) | 1993-04-09 | 1995-08-22 | Kaiyo Kogyo Kabushiki Kaisha | Pump |
USD355199S (en) | 1993-10-22 | 1995-02-07 | Ousey James I M | Submersible pump |
US5636975A (en) | 1994-04-04 | 1997-06-10 | Reynolds Metals Company | Inlet and discharge valve arrangement for a high pressure pump |
US5556264A (en) | 1995-07-28 | 1996-09-17 | Gp Companies, Inc. | Low profile positive displacement pump system |
US5839468A (en) | 1995-10-06 | 1998-11-24 | Gene Bias | Pump valve |
CA2162311C (en) | 1995-11-07 | 1998-12-22 | Robert A.R. Mills | Seal arrangement for the drivehead of a downhole rotary pump |
US5823541A (en) | 1996-03-12 | 1998-10-20 | Kalsi Engineering, Inc. | Rod seal cartridge for progressing cavity artificial lift pumps |
US5848878A (en) | 1996-06-21 | 1998-12-15 | Ingersoll-Rand Company | Pump with improved manifold |
US6386751B1 (en) | 1997-10-24 | 2002-05-14 | Diffusion Dynamics, Inc. | Diffuser/emulsifier |
US5947697A (en) | 1997-11-11 | 1999-09-07 | Morrison; Ronald L. | Monoblock gas compressor for pressurized gas |
DE19802476A1 (en) * | 1998-01-23 | 1999-07-29 | Bosch Gmbh Robert | Pump fitting to supply fuel at high pressure for common rail fuel injection system of internal combustion engine |
FR2774132B1 (en) | 1998-01-27 | 2000-04-07 | Semt Pielstick | DEVICE FOR AVOIDING CAVITATION IN INJECTION PUMPS |
USD420683S (en) | 1998-10-30 | 2000-02-15 | Smc Kabushiki Kaisha | Fluid pressure cylinder |
RU2168064C2 (en) | 1999-08-20 | 2001-05-27 | Смирнов Игорь Николаевич | Multiplunger pump |
RU2164629C1 (en) | 1999-10-04 | 2001-03-27 | Иванников Владимир Иванович | Method and device for cavitation of liquid flow |
CA2311036A1 (en) | 2000-06-09 | 2001-12-09 | Oil Lift Technology Inc. | Pump drive head with leak-free stuffing box, centrifugal brake and polish rod locking clamp |
CA2710783C (en) | 2000-06-09 | 2013-08-06 | Oil Lift Technology, Inc. | Pump drive head with stuffing box |
US6910871B1 (en) | 2002-11-06 | 2005-06-28 | George H. Blume | Valve guide and spring retainer assemblies |
US7513759B1 (en) | 2003-07-03 | 2009-04-07 | Blume George H | Valve guide and spring retainer assemblies |
US6623259B1 (en) | 2002-05-06 | 2003-09-23 | George H. Blume | High pressure plunger pump housing and packing |
US8147227B1 (en) | 2000-07-18 | 2012-04-03 | Blume George H | Valve guide and spring retainer assemblies |
US6544012B1 (en) | 2000-07-18 | 2003-04-08 | George H. Blume | High pressure plunger pump housing and packing |
US6382940B1 (en) | 2000-07-18 | 2002-05-07 | George H. Blume | High pressure plunger pump housing and packing |
US6419459B1 (en) | 2000-10-02 | 2002-07-16 | Gardner Denver, Inc. | Pump fluid cylinder mounting assembly |
US6670312B2 (en) | 2000-12-08 | 2003-12-30 | Takeshi Sugimoto | Composition for removal of calcium or magnesium compounds from an article |
US6701955B2 (en) | 2000-12-21 | 2004-03-09 | Schlumberger Technology Corporation | Valve apparatus |
US20040239115A1 (en) | 2001-01-19 | 2004-12-02 | Victaulic Company Of America | Mechanical pipe coupling derived from a standard fitting |
USD461733S1 (en) | 2001-03-22 | 2002-08-20 | Smc Kabushiki Kaisha | Fluid pressure cylinder |
USD461827S1 (en) | 2001-04-30 | 2002-08-20 | Eger Products, Inc. | One-piece plastic protector and seal for a fluid cylinder shaft |
US7036688B2 (en) | 2001-07-13 | 2006-05-02 | Crane Co. | System for whipping a fluid slurry and method therefore |
US20030084556A1 (en) | 2001-11-06 | 2003-05-08 | Dunlop Roy J | Pump plunger installation tool |
USD471563S1 (en) | 2001-11-09 | 2003-03-11 | Nordson Corporation | In line pump throat |
CA2368877C (en) | 2002-01-17 | 2005-03-22 | Tony M. Lam | Assembly for locking a polished rod in a pumping wellhead |
DE10214404A1 (en) | 2002-03-30 | 2003-10-09 | Bosch Gmbh Robert | Component, in particular housing a high pressure fuel pump, and method for its preparation |
US7341435B2 (en) | 2002-06-19 | 2008-03-11 | Gardner Denver, Inc. | Fluid end |
CA2436924C (en) | 2002-08-09 | 2010-09-21 | Oil Lift Technology Inc. | Stuffing box for progressing cavity pump drive |
WO2004092538A1 (en) | 2003-04-15 | 2004-10-28 | Sai Hydraulics Inc. | Improved pump drive head with integrated stuffing box |
US20070051508A1 (en) | 2003-04-15 | 2007-03-08 | Mariano Pecorari | Pump drive head with integrated stuffing box and clamp |
US20040213677A1 (en) * | 2003-04-24 | 2004-10-28 | Matzner Mark D. | Monitoring system for reciprocating pumps |
US7404704B2 (en) | 2003-04-30 | 2008-07-29 | S.P.M. Flow Control, Inc. | Manifold assembly for reciprocating pump |
US7118114B2 (en) | 2003-05-15 | 2006-10-10 | Woodward Governor Company | Dynamic sealing arrangement for movable shaft |
US20040234404A1 (en) | 2003-05-20 | 2004-11-25 | Vicars Berton L. | Fluid end assembly |
ITMO20030224A1 (en) | 2003-07-31 | 2005-02-01 | Caprari Spa | CORALSION GALVANIC PROTECTION SYSTEM. |
US6953026B2 (en) | 2003-10-16 | 2005-10-11 | Visteon Global Technologies, Inc. | Pressure regulating valve for automotive fuel system |
CN2677588Y (en) | 2004-02-18 | 2005-02-09 | 李书振 | Automatic offset centering guide |
DE102004011284A1 (en) | 2004-03-09 | 2005-09-29 | Robert Bosch Gmbh | High-pressure pump, in particular for a fuel injection device of an internal combustion engine |
CA2486223C (en) | 2004-04-30 | 2010-09-14 | S.P.M. Flow Control, Inc. | Manifold assembly for reciprocating pump |
US20050247353A1 (en) | 2004-05-07 | 2005-11-10 | Chih-Hung Kao | Control valve for adjusting temperature of water |
US7484452B2 (en) * | 2004-07-01 | 2009-02-03 | Dixie Iron Works, Ltd. | Fluid end for a plunger pump |
US7364412B2 (en) | 2004-08-06 | 2008-04-29 | S.P.M. Flow Control, Inc. | System, method, and apparatus for valve stop assembly in a reciprocating pump |
US7255163B2 (en) | 2004-08-10 | 2007-08-14 | Rivard Raymond P | Convertible rotary seal for progressing cavity pump drivehead |
GB2419642B (en) | 2004-10-29 | 2009-07-15 | Spm Flow Control Inc | Manifold assembly for reciprocating pumps |
US7367544B2 (en) | 2004-12-17 | 2008-05-06 | Tac, Llc | Apparatus and method for replacing existing actuator zone valves in an HVAC system with a ball valve |
US7488161B2 (en) | 2005-01-17 | 2009-02-10 | Denso Corporation | High pressure pump having downsized structure |
WO2006115370A1 (en) | 2005-04-26 | 2006-11-02 | Dolki Korea, Ltd. | Apparatus for manufacturing sterilized water, spraying apparatus thereof, and capsule containing salt using therein |
USD557286S1 (en) | 2005-05-12 | 2007-12-11 | Pedrollo S.P.A. | Electric pump |
US20060273277A1 (en) | 2005-06-02 | 2006-12-07 | Heller Mark J | Plasma resistant seal assembly with replaceable barrier shield |
USD552139S1 (en) | 2005-07-04 | 2007-10-02 | Korea Pneumatic System Co., Ltd | Ejector cover for vacuum pump |
EP1780415B1 (en) * | 2005-10-25 | 2015-08-05 | Delphi International Operations Luxembourg S.à r.l. | A component for high-pressure fluid applications and method for its manufacture |
JP4164513B2 (en) * | 2006-04-07 | 2008-10-15 | 株式会社丸山製作所 | Reciprocating pump device |
BRPI0710876A2 (en) | 2006-04-26 | 2012-09-18 | Tyco Valves & Controls Inc | mounting valve having a unitary valve sleeve |
USD556861S1 (en) | 2006-05-10 | 2007-12-04 | Smc Corporation | Fluid pressure cylinder |
USD556862S1 (en) | 2006-05-10 | 2007-12-04 | Smc Corporation | Fluid pressure cylinder |
US7857605B2 (en) | 2006-06-29 | 2010-12-28 | Caterpillar Inc | Inlet throttle controlled liquid pump with cavitation damage avoidance feature |
US7874369B2 (en) | 2006-09-13 | 2011-01-25 | Weatherford/Lamb, Inc. | Progressive cavity pump (PCP) drive head stuffing box with split seal |
CN200961570Y (en) * | 2006-09-24 | 2007-10-17 | 中国石化集团江汉石油管理局第四机械厂 | Five-cylinder pump case |
USD606629S1 (en) | 2006-12-05 | 2009-12-22 | Smc Corporation | Fluid pressure cylinder |
USD583389S1 (en) | 2007-04-26 | 2008-12-23 | Ateliers Busch Sa | Exhaust filter for a vacuum pump |
US8317498B2 (en) | 2007-05-11 | 2012-11-27 | Schlumberger Technology Corporation | Valve-seat interface architecture |
US8016027B2 (en) | 2007-07-30 | 2011-09-13 | Direct Drivehead, Inc. | Apparatus for driving rotating down hole pumps |
CN101397672A (en) | 2007-09-30 | 2009-04-01 | 濮阳市信宇石油机械化工有限公司 | Sacrificial anode and protective cathode-oil-well pump anti-corrosive apparatus |
CN201096243Y (en) | 2007-10-26 | 2008-08-06 | 广州美亚股份有限公司 | Asymmetric convex ring double caliper type pipe fitting |
CN201148968Y (en) | 2007-12-29 | 2008-11-12 | 天津市通洁高压泵制造有限公司 | Hydraulic end unit of reciprocating plunger pump |
USD584320S1 (en) | 2008-03-17 | 2009-01-06 | Hewlett-Packard Development Company, L.P. | Air pump |
CA128278S (en) | 2008-04-23 | 2009-07-28 | Abb Ab | Cut out switch |
US8037897B2 (en) | 2008-06-20 | 2011-10-18 | Mcintire William Ray | Valve apparatus |
USD603870S1 (en) | 2008-07-07 | 2009-11-10 | Wilo Se | Pump |
AU2009335645A1 (en) * | 2008-12-18 | 2011-07-14 | S.P.M. Flow Control, Inc. | Suction port lock nut with stub buttress threads |
USD629423S1 (en) | 2009-05-11 | 2010-12-21 | Piusi S.P.A. | Pump for liquids |
CN101571114B (en) * | 2009-05-27 | 2011-10-19 | 西南石油大学 | Reciprocating drilling pump used for conveying drilling fluid with gas |
US8105055B2 (en) | 2009-06-18 | 2012-01-31 | Fiac Tech Services, LLC | Suction manifold mounting for a fluid end for a high-pressure pump |
RU87318U1 (en) | 2009-06-18 | 2009-10-10 | Евгений Михайлович Пузырев | DRYING UNIT |
CN102713294A (en) | 2009-06-23 | 2012-10-03 | S·P·M·流量控制股份有限公司 | Readily removable pump crosshead |
US20100325888A1 (en) | 2009-06-30 | 2010-12-30 | Weir Spm, Inc. | Carrier for plunger during disassembly |
US20110030213A1 (en) | 2009-08-07 | 2011-02-10 | Weir Spm, Inc. | Hydraulic installation tool for pump plunger |
US8601687B2 (en) | 2009-08-13 | 2013-12-10 | Schlumberger Technology Corporation | Pump body |
CA2772741A1 (en) * | 2009-09-03 | 2011-03-10 | Schlumberger Canada Limited | Pump body |
USD657799S1 (en) | 2009-09-11 | 2012-04-17 | Jung & Co. Gerätebau GmbH | Screw pump |
US20110079302A1 (en) | 2009-10-07 | 2011-04-07 | Weir Spm, Inc. | Pump Valve with Full Elastomeric Contact on Seat |
EP2320084B1 (en) | 2009-11-06 | 2012-09-12 | Delphi Technologies Holding S.à.r.l. | Housing with intersecting passages for high pressure fluid applications |
US20110173814A1 (en) | 2009-11-16 | 2011-07-21 | Weir Spm, Inc. | Valve Seat Installation and Retrieval Tool |
US8132558B2 (en) | 2009-12-01 | 2012-03-13 | Stanadyne Corporation | Common rail fuel pump with combined discharge and overpressure relief valves |
USD623200S1 (en) | 2010-01-12 | 2010-09-07 | Nordson Corporation | Pump throat |
US20110189040A1 (en) | 2010-01-29 | 2011-08-04 | Vicars Berton L | Fluid end |
US8544535B2 (en) | 2010-02-12 | 2013-10-01 | Cameron International Corporation | Integrated wellhead assembly |
TWD144351S1 (en) | 2010-05-17 | 2011-12-11 | Smc股份有限公司 | Cylinder with table |
USD667532S1 (en) | 2010-06-04 | 2012-09-18 | Smc Corporation | Fluid pressure cylinder |
USD641382S1 (en) | 2010-06-08 | 2011-07-12 | S.P.M. Flow Control, Inc. | Stay rod for reciprocating pump |
CN103069167A (en) | 2010-06-17 | 2013-04-24 | S.P.M.流量控制股份有限公司 | Pump cavitation device |
US8465268B2 (en) | 2010-09-10 | 2013-06-18 | Phoinix Global LLC | Compression clamp for a modular fluid end for a multiplex plunger pump |
USD676111S1 (en) | 2010-11-16 | 2013-02-12 | Smc Corporation | Suck back valve |
US20120141308A1 (en) | 2010-12-07 | 2012-06-07 | Saini Rajesh K | Polymeric Pump Parts |
UA109683C2 (en) | 2010-12-09 | 2015-09-25 | PUMP PUMP PLACED PIPE | |
USD655314S1 (en) | 2011-01-20 | 2012-03-06 | Smc Corporation | Multi-position cylinder |
USD660191S1 (en) | 2011-02-15 | 2012-05-22 | Smc Kabushiki Kaisha | Fluid pressure cylinder with plate |
USD681164S1 (en) | 2011-02-15 | 2013-04-30 | Smc Kabushiki Kaisha | Fluid pressure cylinder with plate |
US20130020521A1 (en) | 2011-04-14 | 2013-01-24 | S.P.M. Flow Control, Inc. | Preconfigured seal for valve assemblies |
AR086188A1 (en) | 2011-04-20 | 2013-11-27 | Spm Flow Control Inc | AN ALTERNATIVE PUMP |
US8496224B1 (en) | 2011-07-18 | 2013-07-30 | Dennis W. Gilstad | Tunable valve assembly |
USD687125S1 (en) | 2011-08-19 | 2013-07-30 | S.P.M. Flow Control, Inc. | Fluid end |
US20130112074A1 (en) * | 2011-11-03 | 2013-05-09 | FTS International, LLC | Support Mechanism for the Fluid End of a High Pressure Pump |
USD670312S1 (en) | 2011-11-29 | 2012-11-06 | Fna Ip Holdings, Inc. | Pump |
USD679293S1 (en) | 2012-04-27 | 2013-04-02 | S.P.M Flow Control, Inc. | Center portion of fluid cylinder for pump |
USD679290S1 (en) | 2012-01-27 | 2013-04-02 | S.P.M. Flow Control, Inc. | Fluid end block for a reciprocating pump |
US9945362B2 (en) | 2012-01-27 | 2018-04-17 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
CA146660S (en) | 2012-01-27 | 2013-10-08 | Spm Flow Control Inc | Fluid end block for a reciprocating pump |
CA2863654A1 (en) | 2012-02-03 | 2013-08-08 | S.P.M. Flow Control, Inc. | Pump fluid cylinder including load transfer shoulder and valve seat for same |
CA2863641A1 (en) | 2012-02-03 | 2013-08-08 | S.P.M. Flow Control, Inc. | Pump assembly including fluid cylinder and tapered valve seats |
USD679292S1 (en) | 2012-04-27 | 2013-04-02 | S.P.M. Flow Control, Inc. | Center portion of fluid cylinder for pump |
USD706832S1 (en) | 2012-06-15 | 2014-06-10 | S.P.M. Flow Control, Inc. | Fluid cylinder for a pump |
USD705817S1 (en) | 2012-06-21 | 2014-05-27 | S.P.M. Flow Control, Inc. | Center portion of a fluid cylinder for a pump |
USD720047S1 (en) | 2013-09-30 | 2014-12-23 | Smc Corporation | Electromagnetic valve |
-
2011
- 2011-08-12 UA UAA201307884A patent/UA109683C2/en unknown
- 2011-08-12 UA UAA201307692A patent/UA109682C2/en unknown
- 2011-12-08 DK DK11847704.1T patent/DK2649316T3/en active
- 2011-12-08 MX MX2013006387A patent/MX2013006387A/en unknown
- 2011-12-08 US US13/314,745 patent/US8668470B2/en not_active Expired - Fee Related
- 2011-12-08 BR BR112013014276A patent/BR112013014276A2/en not_active IP Right Cessation
- 2011-12-08 PL PL11847704T patent/PL2649316T3/en unknown
- 2011-12-08 CN CN2011800669049A patent/CN103339379A/en active Pending
- 2011-12-08 EP EP11846478.3A patent/EP2649315A4/en not_active Withdrawn
- 2011-12-08 WO PCT/US2011/063946 patent/WO2012078870A2/en active Application Filing
- 2011-12-08 CN CN2011800668987A patent/CN103348139A/en active Pending
- 2011-12-08 AU AU2011338305A patent/AU2011338305B2/en not_active Ceased
- 2011-12-08 US US13/314,831 patent/US8662864B2/en not_active Expired - Fee Related
- 2011-12-08 CA CA2820648A patent/CA2820648A1/en not_active Abandoned
- 2011-12-08 SG SG2013043419A patent/SG191012A1/en unknown
- 2011-12-08 AU AU2011338323A patent/AU2011338323B2/en not_active Ceased
- 2011-12-08 EP EP11847704.1A patent/EP2649316B1/en not_active Not-in-force
- 2011-12-08 EA EA201390845A patent/EA024927B1/en not_active IP Right Cessation
- 2011-12-08 WO PCT/US2011/063968 patent/WO2012078888A2/en active Application Filing
- 2011-12-08 SG SG2013043393A patent/SG191011A1/en unknown
- 2011-12-08 BR BR112013014279A patent/BR112013014279A2/en not_active IP Right Cessation
- 2011-12-08 EA EA201390846A patent/EA024928B1/en not_active IP Right Cessation
- 2011-12-08 CA CA2820595A patent/CA2820595A1/en not_active Abandoned
- 2011-12-08 MX MX2013006402A patent/MX2013006402A/en active IP Right Grant
- 2011-12-12 AR ARP110104616A patent/AR084230A1/en not_active Application Discontinuation
- 2011-12-12 AR ARP110104617A patent/AR084231A1/en not_active Application Discontinuation
-
2013
- 2013-03-22 US US13/849,228 patent/US8662865B2/en not_active Expired - Fee Related
-
2014
- 2014-03-03 US US14/195,196 patent/US20140322034A1/en not_active Abandoned
- 2014-03-03 US US14/195,165 patent/US9784262B2/en active Active
-
2017
- 2017-10-09 US US15/728,180 patent/US9989044B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000170643A (en) * | 1998-09-30 | 2000-06-20 | Maruyama Mfg Co Ltd | Multiple reciprocating pump |
US20090123303A1 (en) * | 2007-11-13 | 2009-05-14 | Maruyama Mfg. Co., Inc. | Reciprocating pump |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9784262B2 (en) | 2010-12-09 | 2017-10-10 | S.P.M. Flow Control, Inc. | Offset valve bore in a reciprocating pump |
US9945362B2 (en) | 2012-01-27 | 2018-04-17 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
US10330097B2 (en) | 2012-01-27 | 2019-06-25 | S.P.M. Flow Control, Inc. | Pump fluid end with integrated web portion |
US11401930B2 (en) | 2012-01-27 | 2022-08-02 | Spm Oil & Gas Inc. | Method of manufacturing a fluid end block with integrated web portion |
US12091953B2 (en) | 2019-09-20 | 2024-09-17 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Hydraulic fracturing system for driving a plunger pump with a turbine engine |
US12065916B2 (en) | 2019-09-20 | 2024-08-20 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Hydraulic fracturing system for driving a plunger pump with a turbine engine |
US11828277B2 (en) | 2019-09-20 | 2023-11-28 | Yantal Jereh Petroleum Equipment & Technologies Co., Ltd. | Turbine-driven fracturing system on semi-trailer |
US11353117B1 (en) | 2020-01-17 | 2022-06-07 | Vulcan Industrial Holdings, LLC | Valve seat insert system and method |
US11421680B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US11421679B1 (en) | 2020-06-30 | 2022-08-23 | Vulcan Industrial Holdings, LLC | Packing assembly with threaded sleeve for interaction with an installation tool |
US12049889B2 (en) | 2020-06-30 | 2024-07-30 | Vulcan Industrial Holdings, LLC | Packing bore wear sleeve retainer system |
US11384756B1 (en) | 2020-08-19 | 2022-07-12 | Vulcan Industrial Holdings, LLC | Composite valve seat system and method |
USD980876S1 (en) | 2020-08-21 | 2023-03-14 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD986928S1 (en) | 2020-08-21 | 2023-05-23 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
USD997992S1 (en) | 2020-08-21 | 2023-09-05 | Vulcan Industrial Holdings, LLC | Fluid end for a pumping system |
US11391374B1 (en) | 2021-01-14 | 2022-07-19 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US12055221B2 (en) | 2021-01-14 | 2024-08-06 | Vulcan Industrial Holdings, LLC | Dual ring stuffing box |
US11761441B1 (en) | 2022-04-25 | 2023-09-19 | Vulcan Industrial Holdings, LLC | Spring controlling valve |
US11434900B1 (en) | 2022-04-25 | 2022-09-06 | Vulcan Industrial Holdings, LLC | Spring controlling valve |
US11920684B1 (en) | 2022-05-17 | 2024-03-05 | Vulcan Industrial Holdings, LLC | Mechanically or hybrid mounted valve seat |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9989044B2 (en) | Offset valve bore in a reciprocating pump | |
US11506189B2 (en) | Well service pump | |
US20190330923A1 (en) | Well service pump systems and related methods | |
CA2833635C (en) | Reciprocating pump with intersecting bore geometry | |
CA2921909C (en) | Housing for high-pressure fluid applications | |
US20190331100A1 (en) | Adaptive control system and methods for well service pump systems | |
CN103573615B (en) | The fluid end of high-pressure plunger pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: S.P.M. FLOW CONTROL., INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAYYOUK, JACOB A.;MANSON, DAVID A.;MACKENZIE, DONALD;AND OTHERS;SIGNING DATES FROM 20120208 TO 20120223;REEL/FRAME:033604/0026 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |