US20140318086A1 - Apparatus and method for counting and filling - Google Patents
Apparatus and method for counting and filling Download PDFInfo
- Publication number
- US20140318086A1 US20140318086A1 US14/265,956 US201414265956A US2014318086A1 US 20140318086 A1 US20140318086 A1 US 20140318086A1 US 201414265956 A US201414265956 A US 201414265956A US 2014318086 A1 US2014318086 A1 US 2014318086A1
- Authority
- US
- United States
- Prior art keywords
- guide
- spiral groove
- materials
- counted
- route
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B5/00—Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
- B65B5/10—Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
- B65B5/101—Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by gravity
- B65B5/103—Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by gravity for packaging pills or tablets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B65/00—Details peculiar to packaging machines and not otherwise provided for; Arrangements of such details
- B65B65/08—Devices for counting or registering the number of articles handled, or the number of packages produced by the machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B35/00—Supplying, feeding, arranging or orientating articles to be packaged
- B65B35/06—Separating single articles from loose masses of articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B35/00—Supplying, feeding, arranging or orientating articles to be packaged
- B65B35/10—Feeding, e.g. conveying, single articles
- B65B35/12—Feeding, e.g. conveying, single articles by gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B35/00—Supplying, feeding, arranging or orientating articles to be packaged
- B65B35/10—Feeding, e.g. conveying, single articles
- B65B35/26—Feeding, e.g. conveying, single articles by rotary conveyors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B37/00—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged
- B65B37/08—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by rotary feeders
- B65B37/10—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by rotary feeders of screw type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B5/00—Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
- B65B5/10—Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
- B65B5/101—Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B57/00—Automatic control, checking, warning, or safety devices
- B65B57/20—Applications of counting devices for controlling the feed of articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B65/00—Details peculiar to packaging machines and not otherwise provided for; Arrangements of such details
- B65B65/003—Packaging lines, e.g. general layout
- B65B65/006—Multiple parallel packaging lines
Definitions
- the present invention relates to a method and apparatus for counting and filling, in which materials to be counted such as tablets, capsules, tablet type materials, and capsule type materials, are transported, counted, and filled into a container.
- a counting and filling apparatus for transporting the tablets by using a transport mechanism with a spiral groove rod (see Patent Document 2).
- the transport mechanism of this tablet counting and filling apparatus receives the tablets supplied from a hopper, at a spiral groove position between the spiral groove rod which is rotated by a motor and guide rods which are positioned at the left and right of the spiral groove rod, and transports the tablets in the transport direction by the rotating spiral groove rod.
- the tablet counting and filling apparatus described above is also proposed to be configured to transport the tablets from the hopper to a filling position by the rotation of the spiral groove rods by including the spiral groove rods of two stages.
- the conventional counting and filling apparatus leaves room for improvement as described below. Since the counting and filling apparatus receives the tablets directly from the hopper between the spiral groove rod and the guide rod, the tablets overlap near the outlet of the hopper depending on the shape of the tablet, and cannot be supplied smoothly from the hopper in some cases. Further, when the counting and filling apparatus uses the first stage and second stage transport mechanisms, and a plurality of first stage transport mechanisms with the spiral groove rods and the guide rods are arranged in parallel, the configuration becomes complicated and large, because a plurality of spiral groove rods are rotated via a gear box by one servomotor.
- the present invention has been made to solve the problems described above, and an object of the present invention is to provide a method and apparatus for counting and filling, each of which allows the materials to be counted to be supplied more smoothly from the hopper, and is hardly influenced by the shape of the materials to be counted, and further has a simple configuration.
- a counting and filling apparatus aligns materials to be counted in a guide route while changing postures of the materials to be counted by a delivery mechanism provided below a supply port of a hopper, and delivers the materials to a transport route of a transport mechanism which has a guide rod and a spiral groove rod continuing to the guide route, and then transports, counts, and fills the materials into a container
- the transport mechanism includes the spiral groove rod which is disposed from the guide route to the transport route, and a lateral guide portion which is provided facing to a base end side of the spiral groove rod and along the axis of the guide rod, and forms the guide route
- the counting and filling apparatus includes, between the supply port and the transport route, an adjusting unit which is provided so as to pass the materials supported via the lateral guide portion in the spiral grooves from the guide route to the transport route, and so as to prevent the materials excessively overlapped on the spiral groove rod or on the other materials from passing to the transport route and
- the counting and filling apparatus aligns the materials to be counted through the guide route while changing the postures of the materials falling from the supply port of the hopper by the delivery mechanism, delivers the materials via the lateral guide portion to the spiral grooves which are positioned in the guide route side of the spiral groove rod provided in the transport route and the guide route, and sends the materials to the transport route by the rotation of the spiral groove rod.
- the counting and filling apparatus passes the materials supported in the spiral grooves, and prevents passing of the other materials overlapped on the spiral groove rod and allows the materials to wait temporarily, and then sends out the materials supported properly in the spiral grooves to the transport route.
- the counting and filling apparatus is in a state capable of delivering the material to be counted, which are allowed to wait by the adjusting unit, if there is a vacant spiral groove of the rotating spiral groove rod. Note that, the counting and filling apparatus changes the postures of the materials to be counted, which fall by their own weight and have inappropriate postures, by a posture changing unit of the delivery mechanism, and aligns the materials to be counted, which have appropriate postures, in the guide route by a regulating unit of the delivery mechanism while keeping their postures.
- the counting and filling apparatus may be configured such that the adjusting unit constitutes side walls of a partition frame portion, which is disposed so as to surround the guide route at a position adjacent to the supply port and above the delivery mechanism, by a frame-front side wall which is provided between the guide route and the transport route, a shield-rotating plate which is provided along the frame-front side wall, and frame-left and right side walls which are provided to support the frame-front side wall and are continuous from the supply port of the hopper, wherein the delivery mechanism includes, below the supply port and the partition frame portion, a regulating unit which regulates a guide route width for guiding the materials to be counted to the spiral grooves which are on the base end side of the spiral groove rod, and a posture changing unit which is disposed along the guide route, wherein the regulating unit includes, below the supply port and the partition frame portion, a central guide portion which is disposed just above the spiral groove rod, and the lateral guide portion which is provided to be opposed to a lateral side of the spiral groove rod, and guides
- the materials to be counted which fall by their own weight from the supply port of the hopper, are overlapped in the delivery mechanism and after entering the guide route.
- the counting and filling apparatus changes the postures of the materials to be counted, which cannot pass through the guide route, while applying a frictional force in a direction different from the falling direction of the materials to be counted by the rotating roller as the posture changing unit provided along the guide route. Note that, if the materials to be counted take postures capable of passing through the guide route, the materials are aligned by falling by their own weight along the guide route without being changed the postures thereof by the rotating roller.
- the materials to be counted are aligned and supported in the spiral grooves of the spiral groove rod via the lateral guide portion. Further, some of the materials to be counted are sent toward the side of the frame-front side wall of the partition frame portion without being supported in the spiral grooves, however, by coming into contact with the shield-rotating plate, the materials are lifted temporarily in the rotation direction so that the postures thereof are changed, and are allowed to wait temporarily in the guide route surrounded by the partition frame portion.
- the materials to be counted which wait in the guide route in a range surrounded by the partition frame portion while being changed the postures thereof by the rotation of the rotating roller, enter to be supported in the spiral grooves when there is a vacant spiral groove, and are sent toward a transport end without being blocked by the shield-rotating plate and the front wall surface.
- a method for counting and filling for solving the above problems is a method for counting and filling by use of the counting and filling apparatus, wherein materials to be counted inputted into a hopper are aligned in a guide route while the postures of the materials to be counted are changed by a delivery mechanism, delivered to a transport route of a transport mechanism, supported, transported, and sent out by a guide rod and spiral grooves of a spiral groove rod which are the transport mechanism, and the materials to be counted are counted by a counting unit, and filled into a container, wherein the method for counting and filling comprises following steps: an input step of inputting the materials to be counted into the hopper; a delivery step of allowing the inputted materials to be counted to fall by their own weight from the supply port of the hopper, and to be aligned in a guide route formed by use of a regulating unit of the delivery mechanism while changing the postures of the materials to be counted by rotating a rotating roller which is a posture changing unit of the
- a pre-delivery step is performed together, the pre-delivery step including passing the materials to be counted, which are supported via the lateral guide portion opposed to the spiral grooves, to the transport route from the guide route, preventing passing of the materials to be counted, which are excessively overlapped on the spiral groove rod or on the other materials to be counted, allowing the materials to wait along the guide route, and delivering the material to a vacant spiral groove when there exists the vacant spiral groove of the rotating spiral groove rod.
- the materials to be counted when the materials to be counted are inputted into the hopper, the materials fall by their own weight from the supply port of the hopper, and become in a state of being overlapped between the supply port and the delivery mechanism and after entering the guide route. Further, in the method for counting and filling, by applying the frictional force for the materials to be counted in the direction different from the falling direction of the materials to be counted by the rotating roller which is the posture changing unit of the delivery mechanism, the postures of the materials to be counted, which cause a bridge against the guide route, are changed, and become in a state of being aligned by the regulating unit.
- the materials to be counted take postures capable of passing through the guide route, the materials are aligned by falling by their own weight along the guide route without being changed the postures thereof by the posture changing unit. Further, in the method for counting and filling, when the materials to be counted, which are supported in the spiral grooves by the rotation of the spiral groove rod, are transported from between the spiral groove rod and the lateral guide portion of the regulating unit to between the spiral groove rod and the guide rod, the materials supported in the spiral grooves are passed, and the materials not supported in the spiral grooves are prevented from passing to the transport route by the adjusting unit and allowed to wait temporarily along the guide route.
- the materials to be counted are supported sequentially in the spiral grooves.
- the materials to be counted which have passed through the adjusting unit are supported by the support space region between the spiral grooves of the spiral groove rod and the guide rod and transported to the transport end. Further, in the method for counting and filling, the materials to be counted are sent out from the transport end by the rotation of the spiral groove rod, and the falling materials to be counted are counted by the counting unit and filled into the container.
- a method and apparatus for counting and filling according to the present invention exhibit excellent effects described below. Since the adjusting unit is provided between the supply port and the transport route, the counting and filling apparatus is hardly influenced by the shape of the materials to be counted and can perform quickly and accurately the delivery of the materials to be counted from the guide route to the transport route. In the counting and filling apparatus, since the materials to be counted, which are not supported in the spiral grooves in the guide route, come into contact with the shield-rotating plate on the side of the frame-front side wall of the partition frame portion, the postures of the materials can be changed.
- the materials to be counted which are excessively overlapped on the spiral groove rod or the like, can be allowed to smoothly wait temporarily in the guide route in the range of the partition frame portion, and then delivered to the spiral grooves when there is a vacant spiral groove, even if the shape of the materials to be counted is an elongated shape such as a rugby ball shape and a capsule shape.
- the counting and filling apparatus allows the materials to be counted to wait in the guide route in the range of the partition frame portion while changing the postures of the materials to be counted which have not delivered to the spiral grooves by a delivery mechanism together with the rotating roller. Therefore, the counting and filling apparatus can realize that the materials to be counted are smoothly delivered from the delivery mechanism to the transport mechanism by a simple apparatus configuration compared with a conventional apparatus with a two-stage transport mechanism.
- the counting and filling apparatus may be configured to have the guide rod in parallel with the spiral groove rod and on one side thereof, or to have a plurality of transport mechanisms disposed in parallel to one another, wherein the guide rods are disposed in parallel to each other on the left and right of the spiral groove rod, and thereby it is possible to accurately fill a number of materials to be counted at a high speed.
- the counting and filling apparatus can collect dust such as friction particles generated from the materials to be counted, and by urging downward the materials to be counted which are sent by the transport route, the counting and filling apparatus can allow the postures of the materials to be stabilized. Therefore, the counting and filling apparatus can prevent falling of the materials to be counted during transport and perform accurate visual inspection by shooting the materials to be counted in the transport route.
- the method for counting and filling aligns the materials to be counted by the guide route of the regulating unit while changing the postures of the materials to be counted which cannot pass thorough the guide route, by applying the frictional force for the materials which are inputted into the hopper by the posture changing unit, in the direction different from the falling direction of the materials which fall by their own weight from the supply port of the hopper. Further, the method for counting and filling supports the materials to be counted in the spiral grooves of the spiral groove rod in the guide route while allowing the material to wait temporarily in the guide route in the adjusting unit (in the range of the partition frame portion by the shield-rotating plate provided on the tip end side of the rotating roller).
- the method for counting and filling is hardly influenced by the shape of the materials to be counted and can smoothly deliver the materials to be counted from the delivery mechanism to the support space region between the spiral grooves of the spiral groove rod and the guide rod, thereby quickly transporting, counting, and filling a large amount of materials to be counted.
- FIG. 1A is a schematic diagram schematically showing a whole of a counting and filling apparatus according to the present invention
- FIG. 1B is an enlarged perspective view of a part of a spiral groove rod surrounded by a thick dashed circle in FIG. 1A ;
- FIG. 1C is an enlarged view of a part of a spiral groove rod surrounded by a thick dashed circle in FIG. 1B ;
- FIG. 2 is a perspective view showing a whole of the counting and filling apparatus according to the present invention by omitting a part thereof;
- FIG. 3A is a plan view showing a whole of the counting and filling apparatus according to the present invention by omitting a part thereof;
- FIG. 3B is an enlarged view of a part surrounded by a thick dashed circle in FIG. 3A , and shows a connecting portion between a guide block and a lateral guide block;
- FIG. 3C is an enlarged view of a part surrounded by a thick dashed ellipse in FIG. 3A , and shows a part of the guide block and the spiral groove rod;
- FIG. 4 is an exploded perspective view showing a configuration of a delivery mechanism by omitting a part of the counting and filling apparatus according to the present invention
- FIG. 5A is a cross-sectional view schematically showing a configuration of a shield-rotating plate in the delivery mechanism which is a part of the counting and filling apparatus according to the present invention
- FIG. 5B is a perspective view showing the configuration of the shield-rotating plate in the delivery mechanism by omitting a part of the counting and filling apparatus according to the present invention
- FIG. 6 is a cross-sectional view from a line A-A direction in FIG. 4 of the counting and filling apparatus according to the present invention, and is a cross-sectional view schematically showing an interval adjusting mechanism for adjusting an interval between second support holders for supporting guide rods;
- FIG. 7 is a block diagram schematically showing a control mechanism of the counting and filling apparatus according to the present invention.
- FIGS. 8A to 8D are schematic diagrams schematically showing states in which materials to be counted are aligned by a regulating unit and a posture changing unit of the delivery mechanism and delivered to a spiral groove rod, and states in which postures of tablets are changed by the shield-rotating plate, in the counting and filling apparatus according to the present invention;
- FIG. 9A is a schematic diagram schematically showing another configuration of lateral guide portions of the counting and filling apparatus according to the present invention.
- FIG. 9B is a perspective view schematically showing another configuration of the lateral guide portions of the counting and filling apparatus according to the present invention.
- FIG. 10 is a schematic diagram schematically showing another configuration of the delivery mechanism of the counting and filling apparatus according to the present invention.
- FIG. 11A is a schematic diagram schematically showing another configuration of a partition frame portion of the counting and filling apparatus according to the present invention.
- FIG. 11B is a perspective view schematically showing another configuration of the partition frame portion of the counting and filling apparatus according to the present invention.
- FIGS. 12A to 12C are schematic diagrams showing another configurations of the materials to be counted which are counted and filled by the counting and filling apparatus according to the present invention.
- FIG. 13 is a cross-sectional view schematically showing a state in which a dust collecting suction mechanism is provided in the counting and filling apparatus according to the present invention by omitting a part thereof;
- FIGS. 14A to 14C are perspective views showing states in which the dust collecting suction mechanism is provided in the counting and filling apparatus according to the present invention by omitting a part thereof;
- FIG. 15 is an exploded perspective view showing another configuration of an adjusting unit of the counting and filling apparatus according to the present invention.
- FIG. 16A is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a perspective view showing an inside of the partition frame portion by cutting a part thereof;
- FIG. 16B is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a cross-sectional diagram showing the inclined plate from a front side by cutting a part thereof;
- FIG. 16C is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a schematic diagram showing the inclined plate from a lateral side by cutting a part thereof.
- the counting and filling apparatus will be described as a configuration in which five transport mechanisms including guide rods provided in parallel to each other on the left and right of a central spiral groove rod are disposed in parallel to one another. Further, a relationship between a size of the tablet to be used and that of each component of the counting and filling apparatus, or positions of the tablets with respect to each component of the counting and filling apparatus are appropriately deformed or schematically shown in the drawings in some cases.
- a counting and filling apparatus 1 is for counting a predetermined amount of tablets W and filling them into a container V while transporting the tablets W.
- the counting and filling apparatus 1 mainly includes a delivery mechanism 30 for delivering the tablets W to a transport mechanism 4 from a hopper 2 in which the tablets W are inputted, the transport mechanism 4 for receiving and transporting the tablets W from the delivery mechanism 30 , an adjusting unit Sm provided between a supply port 2 d of the hopper 2 and a transport route Sr of the transport mechanism 4 , a counting unit 14 for counting the transported tablets W, and a control unit 20 for controlling each mechanism and the like.
- the counting and filling apparatus 1 is, in this case, provided with an image capturing unit 22 such as a CCD camera above a predetermined transport route Sr of the transport mechanism 4 , and is configured to be able to determine defects such as notch of the tablets W, by data of images taken by the image capturing unit 22 being sent to the control unit 20 , and to select the chipped tablets W.
- an image capturing unit 22 such as a CCD camera above a predetermined transport route Sr of the transport mechanism 4 , and is configured to be able to determine defects such as notch of the tablets W, by data of images taken by the image capturing unit 22 being sent to the control unit 20 , and to select the chipped tablets W.
- the counting and filling apparatus 1 uses a transport conveyor 50 for continuously transporting the containers V in which the tablets W transported by the transport mechanism 4 and counted by the counting unit 14 are filled. Further, the counting and filling apparatus 1 includes a first support holder 31 and a second support holder 32 for holding a spiral groove rod 5 , guide rods 6 , 6 , and the like of the transport mechanism 4 , a base 100 for supporting the first support holder 31 and the second support holder 32 , and a holder moving mechanism 40 for moving the second support holder 32 close to or away from the first support holder 31 in order to adjust intervals of the guide rods 6 , 6 with respect to the spiral groove rod 5 .
- a guide route GR (see FIG. 1A ) is from a space between a central guide block 11 a and opposing rotating rollers 3 a , 3 a (see FIGS. 3A , 3 B), to a space between the spiral groove rod 5 and opposing lateral guide blocks 12 a
- the transport route Sr (see FIG. 1A ) is a space between the spiral groove rod 5 and the opposing guide rods 6 , 6
- a support space region Ts is a region for supporting the tablets W so that the tablets W can be transported between the guide rod 6 and spiral grooves 5 a of the spiral groove rod 5 .
- a capsule is a specific example of the material to be counted as the tablet W which is an object to be counted by the counting and filling apparatus 1 , however, the tablets to be counted such as a tablet of rugby ball shape, a round tablet, and a tablet of triangular rice ball shape, which have a curved portion in the external shape, are the objects.
- the material to be counted as the tablet W is, as areas commonly used, not specifically limited to areas such as medicine, supplement, and confectionary.
- the tablet W has a curved portion in the external shape, in particular, a disc shape, a lens shape, a rugby ball shape, an annular shape like a troche, or a capsule shape
- the tablet W can be rotated when transported, and can be stably transported at a high speed.
- the tablet W which is coated on the surface as a sugar-coated tablet or is not coated as a plain tablet, can be handled.
- the tablet W of capsule is transported in a state of rotating about a long axis as the long axis is in a horizontal direction.
- the base 100 of the counting and filling apparatus 1 supports the first support holder 31 and the second support holder 32 .
- the base 100 is formed with through holes 100 b , 100 c apart from each other on one side and the other side thereof, and formed with a hole 100 a which is a counting path 15 for the tablet W at a position of a transport end of the transport mechanism 4 (see FIGS. 2 , 3 A).
- Mounting frames 101 , 101 are provided on peripheral edges of the through holes 100 b , 100 c (see FIGS. 2 , 3 A).
- the mounting frame 101 is formed in annular and rectangular, and a holder guide plate 102 is provided on the mounting frame 101 (see FIG. 2 ).
- the holder guide plate 102 supports the first support holder 31 and the second support holder 32 .
- the holder guide plates 102 are respectively formed with opening holes 102 b , through which transmission gears 45 of the holder moving mechanism 40 are connected, in the centers facing a tip end rotation support holder 31 A and a base end rotation support holder 31 B of the first support holder 31 (see FIG. 6 : the transport mechanism 4 composed of the spiral groove rod 5 and the guide rods 6 , 6 on the left and right is shown as one unit in FIG. 4 , however, two units of the transport mechanism 4 are shown in FIG. 6 ).
- the holder moving mechanism 40 of the counting and filling apparatus 1 is for adjusting the intervals between the spiral groove rod 5 and the guide rods 6 , 6 by moving the second support holders 32 , 32 close to or away from the first support holder 31 .
- the holder moving mechanism 40 includes a tip end holder moving mechanism 40 A for moving tip end support holders 32 A, 32 A close to or away from the tip end rotation support holder 31 A, and a base end holder moving mechanism 40 B for moving base end support holders 32 B, 32 B close to or away from the base end rotation support holder 31 B. Since the tip end holder moving mechanism 40 A and the base end holder moving mechanism 40 B have the same configuration, one will be described.
- the base end holder moving mechanism 40 B includes a holder driving source 41 such as a drive motor, a driving force transmission unit 141 ( 42 , 43 , 44 , 45 ) for transmitting a driving force from the holder driving source 41 , and a linear moving unit 142 ( 46 , 47 , 48 , 49 (see FIG. 4 )) for linearly moving the base end support holders 32 B, 32 B by the driving force transmitted by the driving force transmission unit 141 .
- a holder driving source 41 such as a drive motor
- a driving force transmission unit 141 42 , 43 , 44 , 45
- a linear moving unit 142 46 , 47 , 48 , 49 (see FIG. 4 )
- the driving force transmission unit 141 has a coupling portion 42 which transmits the driving force from the holder driving source 41 by being connected to a rotating shaft, a transmission direction changing portion 43 such as bevel gears which changes the transmission direction of the driving force transmitted by the coupling portion 42 and transmits the driving force, a rotating shaft 44 rotated by the driving force which is changed the transmission direction by the transmission direction changing portion 43 , and the transmission gears 45 which are attached to the rotating shaft 44 with predetermined intervals intermittently at positions just below the base end rotation support holder 31 B and rotate together with the rotating shaft 44 .
- a transmission direction changing portion 43 such as bevel gears which changes the transmission direction of the driving force transmitted by the coupling portion 42 and transmits the driving force
- a rotating shaft 44 rotated by the driving force which is changed the transmission direction by the transmission direction changing portion 43
- the transmission gears 45 which are attached to the rotating shaft 44 with predetermined intervals intermittently at positions just below the base end rotation support holder 31 B and rotate together with the rotating shaft 44 .
- the driving force transmission unit 141 transmits the driving force to the linear moving unit 142 by the holder driving source 41 being operated, a rotation speed of the driving force being reduced by the transmission direction changing portion 43 , the direction of the driving force being changed to the horizontal direction from the vertical direction by the transmission direction changing portion 43 , and the rotating shaft 44 and the plural transmission gears 45 being rotated.
- the linear moving unit 142 has a driven gear 46 meshing with the transmission gear 45 , a rotating shaft 47 to which the driven gear 46 is secured and which is provided in the base end support holder 32 B rotatably via a bearing, nut portions 47 c , 47 d which support and mesh with threaded portions 47 a , 47 b formed on both ends of the rotating shaft 47 , and rotating shaft guides 48 , 49 (see FIG. 4 ) which are provided slidably in the base end support holder 32 B in parallel with the rotating shaft 47 .
- the linear moving unit 142 can move the base end support holders 32 B, 32 B along the holder guide plate 102 and the rotating shaft guides 48 , 49 , because the rotating shaft 47 is rotated together with the driven gear 46 driven by the rotation of the transmission gear 45 , and the threaded portions 47 a , 47 b of the rotating shaft 47 are formed to have threads opposite to each other.
- the tip end holder moving mechanism 40 A and the base end holder moving mechanism 40 B can be operated synchronously or operated separately.
- the tip end holder moving mechanism 40 A and the base end holder moving mechanism 40 B can be operated separately in a range of tolerance of a supporting component part.
- the hopper 2 is for inputting and storing the tablets W therein, and for supplying the tablets W via the delivery mechanism 30 (see FIG. 4 ) to a base end side of the transport mechanism 4 .
- the hopper 2 has a hopper main body 2 b which is formed narrower in the downward direction from an input port 2 a (see FIG. 4 ) which is open wide in the upward direction, and the supply port 2 d formed at the bottom is disposed to face just below the base end side of the delivery mechanism 30 .
- the hoppers 2 may be configured to be provided for each transport mechanism 4 (see FIG. 2 ), or a plurality of supply ports 2 d (not shown) may be configured to be provided in one housing for all of the transport mechanisms 4 provided side by side.
- an opening is formed by a notch at a position on a front side wall 2 c of the supply port 2 d , and a sliding side wall 2 e as a partition plate is provided on the opening so as to be stopped at a predetermined position in the vertical direction by a fixing unit (fixing bolt) 2 f .
- the sliding side wall 2 e is for changing the size of the opening in accordance with the size and shape of the tablets W to be inputted.
- the sliding side wall 2 e is, for an example, set to have an opening height (see FIGS. 5A , 5 B) such that the tablets W supplied from the supply port 2 d are overlapped in about five steps including a tablet taken (supported) in the spiral groove 5 a .
- the supply port 2 d is provided so as not to pass the tablets W between the lower end of the supply port 2 d and the upper end of the delivery mechanism 30 , by allowing a position of the lower end excluding the front side wall 2 c to be close to the delivery mechanism 30 so that an interval therebetween is smaller than a thickness of the tablet W.
- the frame-left and right side walls of a partition frame portion 9 and the left and right wall surfaces of the supply port 2 d of the hopper 2 are formed integrally.
- the supply port 2 d is formed of the sliding side wall 2 e , the frame-left and right side walls to the sliding side wall 2 e , and a rear side wall which is a surface opposed to the sliding side wall 2 e.
- the partition frame portion 9 is provided in the supply port 2 d , the partition frame portion 9 being provided with shield-rotating plates 112 , 112 and a frame-front side wall 19 as the adjusting unit Sm in adjacent manner.
- the partition frame portion 9 temporarily allows the tablets W to wait or stores the tablets W, which are supplied and not delivered to the spiral grooves 5 a of the spiral groove rod 5 by the delivery mechanism 30 just below the supply port 2 d , and is for providing a space for delivering via the delivery mechanism 30 the tablets W to the vacant spiral grooves 5 a just below the supply port 2 d .
- the partition frame portion 9 forms a rectangular space which is partitioned by the front side wall 2 c of the hopper 2 and other three side walls.
- the partition frame portion 9 is formed with a range between the front side wall 2 c (or the sliding side wall 2 e ) and the tip end side of the delivery mechanism 30 , and a range including the guide route GR (see FIG. 5A ) which is formed of a central guide portion 11 and a posture changing unit 3 of the delivery mechanism 30 .
- the frame-front side wall 19 of the partition frame portion 9 is formed with arc-shaped notch portions 19 a , 19 a , and is configured to cover the notch portions 19 a , 19 a with the shield-rotating plates 112 , 112 to be described later.
- the shield-rotating plates 112 , 112 to be described later is, for example, formed of a silicone resin and is provided so as not to damage the tablets W by momentum of the tablets W, which are conveyed in a state of overlapping on the spiral groove rod 5 and come into contact with the shield-rotating plates 112 , 112 .
- the tablets W are not supported in the spiral grooves 5 a , for example, in a state where the tablets W overlap at positions on the spiral groove rod 5 (not in the spiral grooves 5 a ), the tablets W cannot pass through the shield-rotating plates 112 , 112 and are temporarily held in positions along the guide route GR in a range of the partition frame portion 9 .
- the range of the partition frame portion 9 means both or at least one of the guide route GR on the lower side of the range surrounded by the partition frame portion 9 and the range surrounded by the frame-left and right side walls and the frame-front side wall 19 in the partition frame portion 9 .
- the delivery mechanism 30 is for aligning the tablets W supplied by falling by their own weight from the hopper 2 , and delivering them to the base end side of the transport mechanism 4 .
- the delivery mechanism 30 is provided just above a position of the base end side of the spiral groove rod 5 and at a position opposed to the partition frame portion 9 and the supply port 2 d .
- the delivery mechanism 30 includes the posture changing unit 3 and a regulating unit 13 , and forms the guide route GR (see FIG. 5A ) with the regulating unit 13 , and is configured to deliver the tablets W which are aligned in the guide route GR to the spiral grooves 5 a of the spiral groove rod 5 .
- the delivery mechanism 30 also plays a role of forming the guide route GR of the regulating unit 13 with the posture changing unit 3 .
- the delivery mechanism 30 is set to be able to deliver the tablets W to the transport mechanism 4 side, by introducing the tablets W to the guide route GR of the regulating unit 13 and aligning them while changing their postures by the posture changing unit 3 (rotating rollers 3 a , 3 a ) just below the partition frame portion 9 and the supply port 2 d.
- the posture changing unit 3 is for changing the postures of the tablets W and guiding the tablets W to the guide route GR, by applying a frictional force in a direction different from a falling direction of the tablets W which fall from the supply port 2 d .
- the posture changing unit 3 includes the rotating roller 3 a which is a posture changing roller, a connecting portion 3 b which connects the rotating roller 3 a to the base end support holder 32 B of the second support holder 32 , a roller drive motor 3 c which rotates the rotating roller 3 a via the connecting portion 3 b connected to the base end support holder 32 B, and a shield-rotating plate 112 which is provided on the tip end side of the rotating roller 3 a .
- applying a frictional force means that the rotating rollers 3 a , 3 a directly come into contact with the tablets W, or indirectly come into contact with the tablets W in need of the posture changes via the other tablets W.
- the rotating roller 3 a is a column or a cylindrical body which has substantially the same diameter as the guide rod 6 , and includes a connection structure for being connected with the connecting portion 3 b on the base end side.
- the rotating rollers 3 a , 3 a are opposed to the central guide block 11 a of the central guide portion 11 , and disposed facing each other just above the lateral guide blocks 12 a , 12 a of lateral guide portions 12 .
- the rotating rollers 3 a , 3 a are provided just below the partition frame portion 9 and the supply port 2 d so that lower ends of both side walls of the supply port 2 d of the hopper 2 are in a range of width of the rotating rollers 3 a , 3 a .
- lower ends of the partition frame portion 9 and the supply port 2 d are provided in a state close to upper portions of the shield-rotating plates 112 , 112 and the rotating rollers 3 a , 3 a so that a space therebetween is smaller than a thickness Wd of the tablet W.
- connection structure of the rotating roller 3 a may be a structure such as a general keyway which can be removably attached and connect a rotation driving force from the roller drive motor 3 c , and is not limited thereto.
- roller drive motor 3 c is not limited thereto, as long as it is a drive unit such as a common DC motor to rotate a rotating shaft.
- the second support holder 32 rotatably supports the rotating rollers 3 a , 3 a , and supports the lateral guide blocks 12 a , 12 a .
- the second support holder 32 includes the tip end support holder 32 A (see FIG. 2 ) and the base end support holder 32 B. Further, each of the base end support holders 32 B rotatably supports the rotating rollers 3 a , 3 a , and supports the lateral guide blocks 12 a , 12 a .
- Each of the base end support holders 32 B (on both sides of the base end rotation support holder 31 B of the first support holder 31 ) includes a bearing or the like (not shown) which transmits via the connecting portion 3 b the rotation driving force from the roller drive motor 3 c . Further, each of the base end support holders 32 B is configured to be able to move in a direction of being close to or away from the base end rotation support holder 31 B (the spiral groove rod 5 side) as a center. As shown in FIG. 6 , each of the base end support holders 32 B, 32 B includes, in a holder base 32 B 1 thereof, the nut portions 47 c , 47 d in which the threaded portions 47 a , 47 b of the linear moving unit 142 are screwed.
- the threaded portions 47 a , 47 b are formed to have threads opposite to each other. Therefore, in accordance with the rotation of the rotating shaft 47 , the base end support holders 32 B, 32 B can move close to or away from the base end rotation support holder 31 B, respectively.
- the rotating rollers 3 a rotate so as to apply the frictional force to the tablets W in the direction opposite to or different from the falling direction of the tablets W on both sides of the guide route GR (in FIG. 5A , the rotating roller 3 a on the right side rotates clockwise, and the rotating roller 3 a on the left side rotates anti-clockwise). Therefore, even if a tablet W is in a posture where a large area surface thereof faces the guide route GR, the posture of the tablet W is changed by the rotation of the rotating roller 3 a , to be in a posture capable of passing through (entering) the guide route GR.
- the rotating roller 3 a prevents the tablets W from being bridged to each other by applying the frictional force in the direction opposite to the falling direction of the tablets W.
- a tablet W originally in a posture capable of passing through the guide route GR falls without touching the rotating roller 3 a , or the interval to a side surface of the central guide block 11 a is small even if the tablet W touches the rotating roller 3 a , and thus the tablet W falls along the guide route GR without changing the posture capable of entering the guide route GR by being guided by the central guide block 11 a .
- a rotational speed of the rotating roller 3 a is set to be slower than a rotational speed of the spiral groove rod 5 .
- the posture changing unit 3 can deliver the tablets W more smoothly in a manner where a ratio of the tablets W received in the spiral grooves 5 a of the spiral groove rod 5 to the tablets W falling by their own weight is appropriate.
- the shield-rotating plate 112 is formed in a disc shape and disposed on a tip end surface (tip end side) of the rotating roller 3 a , and is configured to be rotatable together with the rotation of the rotating roller 3 a .
- the diameter of the shield-rotating plate 112 is formed larger than the diameter of the rotating roller 3 a , and the shield-rotating plate 112 includes, on the outside of the rotating roller 3 a , a surface thereof capable of coming into contact with the tablets W which are transported by the rotation of the spiral groove rod 5 in a state of not being supported in the spiral grooves 5 a .
- the shield-rotating plate 112 is formed of an elastic member such as a silicone rubber and a resin (polyacetal, ultrahigh molecular weight polyethylene) which are softer than metal.
- the shield-rotating plate 112 can also change the posture of the tablet W by temporarily moving the tablet W in the rotation direction of the shield-rotating plate 112 .
- the tablet W which has been changed the posture thereof is temporarily reserved in the range of the partition frame portion 9 . Further, the tablet W which has been changed the posture thereof by the shield-rotating plate 112 waits in a state (posture) to be easily delivered to a vacant spiral groove 5 a .
- the shield-rotating plates 112 , 112 are rotatable even if the diameter thereof is larger than the diameter of the rotating roller 3 a , by groove portions 6 f of the guide rods 6 , 6 to be described later and the arc-shaped notch portions 19 a , 19 a formed in the frame-front side wall 19 of the partition frame portion 9 .
- a space between the shield-rotating plates 112 , 112 and the notch portions 19 a , 19 a of the frame-front side wall 19 is set so that the shield-rotating plates 112 , 112 are rotatable and the tablets W not supported in the spiral grooves 5 a cannot be passed.
- the tablet W has a laterally long shape such as a rugby ball type and a capsule type having a large ratio of horizontal to vertical, a state in which the tablet W enters between the tablets W supported in the spiral grooves 5 a can be eliminated. Then, the tablet W is temporarily stored in the range of the partition frame portion 9 while the posture thereof is being changed by the rotating rollers 3 a , 3 a and the shield-rotating plates 112 , 112 , and waits for a vacant spiral groove 5 a .
- the tablet W waiting in the range of the partition frame portion 9 is changed the posture thereof by the rotation of the rotating rollers 3 a , 3 a and the shield-rotating plates 112 , 112 , and thus the tablet W is in a state of being aligned in the guide route GR, and becomes easy to enter the vacant spiral groove 5 a.
- the regulating unit 13 is for regulating a route width from the supply port 2 d , forming the guide route GR, aligning the tablets W which fall by their own weight from the supply port 2 d of the hopper 2 , and guiding the tablets W to the spiral grooves 5 a of the spiral groove rod 5 .
- the regulating unit 13 includes the central guide portion 11 which is disposed below the partition frame portion 9 and the supply port 2 d and is disposed just above the base end side of the spiral groove rod 5 , and the lateral guide portions 12 which are disposed in parallel with and on the left and right of the spiral groove rod 5 .
- the central guide portion 11 is for distributing the tablets falling by their own weight to the left and the right.
- the central guide portion 11 includes the central guide block 11 a and a central block support portion 11 b which supports the central guide block 11 a .
- the central guide block 11 a is, for example, an elongated block body which has an upper portion thereof formed in a convex curved surface, a lower portion thereof formed in a concave curved surface, and side surfaces formed flat between the upper portion and the lower portion.
- the central guide block 11 a is provided so that the lower portion of a concave curved surface is opposed to the spiral groove rod 5 , and the flat side surfaces are opposed to the rotating rollers 3 a , 3 a . Further, the lower portion of the central guide block 11 a is disposed to be in a state of being closer to the spiral groove rod 5 than the thickness of the tablet W.
- the central guide block 11 a is provided such that the base end side in the longitudinal direction thereof is supported by the central block support portion 11 b .
- the central block support portion 11 b supporting the central guide block 11 a is attached to the outside of the base end rotation support holder 31 B.
- the central guide portion 11 Since the central guide block 11 a is close to the spiral guide rod 5 , the central guide portion 11 does not allow the tablets W to enter between the central guide block 11 a and the spiral guide rod 5 in the guide route GR, and prevents the tablets W from being bridged to each other.
- the lateral guide portions 12 are for guiding and delivering the tablets W, which are aligned by the guide route GR between the central guide block 11 a and the rotating rollers 3 a , to the spiral grooves 5 a of the spiral groove rod 5 .
- the lateral guide portions 12 includes the lateral guide blocks 12 a , 12 a , which are disposed below the partition frame portion 9 and the supply port 2 d and are disposed in parallel with and on the left and right of the spiral groove rod 5 , and lateral guide support portions 12 d , 12 d , which respectively support the lateral guide blocks 12 a , 12 a individually. Note that the lateral guide blocks 12 a , 12 a on the left and the right are disposed symmetrically and are the same structure.
- the lateral guide block 12 a is disposed at a position of being opposed just below the rotating roller (posture changing unit) 3 a and being opposed to the base end side of the spiral groove rod 5 .
- the lateral guide block 12 a is a block body including a block side surface 12 b which has a flat side opposed to the spiral groove rod 5 , and a space guide protrusion 12 c which is extended to the rotating roller 3 a side from the upper end of the block side surface 12 b .
- the lateral guide block 12 a is supported by the lateral guide support portion 12 d (see FIG.
- the block side surface 12 b is at a position of equivalent to an outermost periphery (outer diameter) of the guide rod 6 (see FIGS. 5A , 5 B).
- the space guide protrusion 12 c is formed to be in a same plane with the block side surface 12 b .
- the lateral guide block 12 a is disposed such that an inside surface of the space guide protrusion 12 c is opposed to a rotating surface of the rotating roller 3 a.
- the space guide protrusion 12 c has a flat surface for forming the guide route GR, the flat surface being set at the same position as an outermost periphery of the rotating roller 3 a or inside of the outermost periphery (the side away from the spiral guide rod 5 or the central guide block 11 a ).
- tip end surfaces in the longitudinal direction (transport end sides) of the lateral guide blocks 12 a , 12 a include a connection structure (not shown) detachably connected to base end sides of the guide rods 6 , 6 .
- FIG. 4 tip end surfaces in the longitudinal direction (transport end sides) of the lateral guide blocks 12 a , 12 a include a connection structure (not shown) detachably connected to base end sides of the guide rods 6 , 6 .
- the lateral guide block 12 a is disposed to form the guide route GR at a position where the space guide protrusion 12 c and the central guide block 11 a are opposed to each other, and to form a guide space (guide route) GS at a position where the block side surface 12 b and the spiral groove rod 5 are opposed to each other.
- the lateral guide block 12 a is supported by the lateral guide support portion 12 d attached to the holder base 32 B 1 .
- the guide route GR (including the guide space GS) aligns the tablets W and delivers them to the spiral grooves 5 a .
- the guide route GR is formed by a space between the central guide block 11 a and the opposing rotating rollers 3 a , 3 a , a space between the central guide block 11 a and the opposing space guide protrusions 12 c , 12 c , and a space between the spiral groove rod 5 and the opposing block side surfaces 12 b , 12 b .
- the guide route GR is configured to continue to the guide space GS from the space between the central guide block 11 a and the rotating rollers 3 a , 3 a .
- the guide route GR is set to have a width less than twice the thickness Wd of the tablet W on the upper side thereof (here, the width is set to be 1.1 to 1.7 times the thickness Wd, preferably in a range of 1.2 to 1.4 times the thickness Wd), and formed to have an interval that can support the tablet W with the block side surface 12 b and the spiral groove 5 a of the spiral groove rod 5 on the lower side thereof.
- the guide space GS is set to be narrower than the interval of the guide route GR.
- the tablets W are aligned in a row along the spiral groove rod between the spiral groove rod 5 and the block side surface 12 b .
- other tablets W are overlapped in a state of being aligned along the guide route GR. Then, since the spiral groove rod 5 rotates, the tablets W are sent to the transport route Sr in which the spiral groove rod 5 and the guide rod 6 are opposed to each other, from the position of the guide space GS in which the spiral groove rod 5 and the block side surface 12 b are opposed to each other.
- the tablets W overlapping between the spiral grooves 5 a , 5 a of the spiral groove rod 5 are sent by the rotation of the spiral groove rod 5 and enter the vacant spiral grooves 5 a to be supported therein, or are sent as they are, to come into contact with the frame-front side wall 19 or the shield-rotating plates 112 , 112 , and forced to temporarily wait in the range of the partition frame portion 9 .
- the tablets W sent to the transport route Sr are sent to the transport end while being supported in a support space region Ts (see FIG. 3C ) formed of the guide rods 6 , 6 and the spiral groove rod 5 as the transport mechanism 5 .
- the transport mechanism 4 is for receiving the tablets W via the delivery mechanism 30 from the hopper 2 , and transporting the tablets W to the counting unit 14 .
- the transport mechanism 4 mainly includes the spiral groove rod 5 , the guide rods 6 , 6 disposed in parallel with the spiral groove rod 5 , a transport drive unit 5 G for rotating the spiral groove rod 5 , the first support holder 31 for rotatably supporting the spiral groove rod 5 , and the second support holders 32 , 32 for supporting the guide rods 6 , 6 .
- the spiral groove rod 5 is for transporting the tablets W in cooperation with the guide rod 6 .
- the spiral groove rod 5 is rotatably supported by the tip end rotation support holder 31 A and the base end rotation support holder 31 B as the first support holders 31 which are provided on one end side (tip end side) and the other end side (base end side) on the base 100 .
- the spiral groove rod 5 includes a groove rod portion 5 A formed with the spiral grooves 5 a at an interval of aligning the tablets W on a circumferential surface thereof, a thin shaft portion 5 b formed continuously to one end side of the groove rod portion 5 A, and a connecting portion 5 c formed continuously to the other end side as the base end side of the groove rod portion 5 A.
- Both ends of the thin shaft portion 5 b and the connecting portion 5 c of the spiral groove rod 5 are configured so as to be respectively rotatably connected via connection-rotating portions 5 d , 5 d to the tip end rotation support holder 31 A and the base end rotation support holder 31 B.
- the spiral groove rod 5 is configured such that a rotational force of a transport drive motor 5 f is transmitted via a shaft connecting portion 5 e connected to the connection-rotating portion 5 d.
- the thin shaft portion 5 b is formed to have a small diameter such that the tablets W transported on the transport route Sr can fall through between the thin shaft portion 5 b and a guide-thin shaft portion 6 b of the guide rod 6 to be described later at a position beyond an end of the spiral groove rod 5 .
- the connecting portion 5 c includes a protrusion (not shown) which can be detachably connected to the connection-rotating portion 5 d formed with a keyway or the like (not shown).
- the connecting portion 5 c and the connection-rotating portion 5 d are not limited thereto, as long as they can be detachably connected to each other and integrally rotated.
- the connection-rotating portion 5 d , 5 d are rotatably supported by a bearing or the like respectively in the tip end rotation support holder 31 A and the base end rotation support holder 31 B.
- At least one of the connecting portion 5 c and the connection-rotating portion 5 d is configured to be detachable by a connection structure such as a keyway, and urged to one side or in the center by an elastic member such as a helical spring. Therefore, by disconnecting the connection structure of the keyway or the like and pressing the spiral groove rod 5 against an urging force of the elastic member, the spiral groove rod 5 can be removed from the connection-rotating portion 5 d.
- the transport drive unit 5 G for rotating the spiral groove rod 5 includes the transport drive motor 5 f such as a servomotor, and the shaft connecting portion 5 e connected to a rotating shaft of the transport drive motor 5 f , and is supported by the base end rotation support holder 31 B of the first support holder 31 via a rotating shaft connected to the shaft connecting portion 5 e . Further, the rotating shaft connected to the shaft connecting portion 5 e is connected to the connection-rotating portion 5 d to transmit a driving force from the transport drive motor 5 f , and rotates the spiral groove rod 5 at a predetermined speed by the transport drive motor 5 f .
- the transport drive motor 5 f is not limited thereto, as long as it can rotate the spiral groove rod 5 via the shaft connecting portion 5 e and the connection-rotating portion 5 d.
- the spiral grooves 5 a are formed with a same groove pitch on a rod peripheral surface of the groove rod portion 5 A, and are formed in a shape, a size, and a depth, of a groove so as to correspond to a shape and a size of the tablet W.
- a groove forming angle with respect to the axial direction of the spiral groove 5 a is formed at an angle corresponding to the type of the tablet W.
- the spiral groove 5 a is formed such that a groove width thereof is equal to or larger than the diameter (length) of the tablet W, and formed to have an interval in which the tablet W does not contact with a tablet W located adjacent to each other.
- the spiral groove 5 a is formed to be in a curved shape (an arc, an ellipse, a parabolic curved surface, or the like) so that it can arrange the tablet W in a position in the groove.
- the spiral groove 5 a is formed to be in an arc shape.
- the tablet W to be transported is proactively rotated and facilitated to be transported, and thereby the transport speed can be increased.
- the tablet W has an elongated shape like a capsule, the tablet W is supported by the support space region Ts (see FIG. 3C ) which is a region between the spiral groove 5 a and the guide rod 6 , such that the axial direction of the tablet W is directed to the transport direction, and the tablet W is transported while rotating around the axis thereof.
- the groove pitch, groove shape, and groove depth of the spiral groove 5 a are changed by changing the spiral groove rod 5 .
- the interval adjustment of a space between the spiral groove 5 a and the guide rod 6 (and the lateral guide block 12 a ) is performed by the holder moving mechanism 40 .
- the spiral grooves 5 a are formed with the same groove pitch, but the groove pitch may be configured to be gradually enlarged.
- the guide rod 6 is for guiding the tablet W when transporting the tablet W in cooperation with the spiral groove rod 5 .
- the guide rod 6 is formed at the position corresponding to a section of the groove rod portion 5 A of the spiral groove rod 5 , and includes a guide portion 6 a which is formed in a columnar shape and guides the transport of the tablet W, the guide-thin shaft portion 6 b which is formed continuously to a tip end as a transport end side of the guide portion 6 a , and a guide-base end portion 6 c which is a base end side connected to the lateral guide block 12 a . Further, the guide rod 6 is in a state of being supported by the second support holder 32 .
- a tip end side of the guide-thin shaft portion 6 b of the guide rod 6 is supported by the tip end support holder 32 A of the second support holder 32 , and the guide-base end portion 6 c as the base end side of the guide rod 6 is supported by the base end support holder 32 B via the lateral guide block 12 a in a state of forming the groove portion 6 f .
- the guide rod 6 is supported in a state of not rotating.
- the guide rod 6 is configured such that the guide-base end portion 6 c is connected via the groove portion 6 f when it is connected to the lateral guide block 12 a .
- the groove portion 6 f is formed with a groove depth and groove width in which the shield-rotating plate 112 can rotate.
- a surface of the guide portion 6 a is preferably formed in a state of being polished such that the friction with the tablet W to be transported is small. Further, the guide portion 6 a may be formed such that the friction with the tablet W is small by covering the surface thereof with a coating film such as fluorine. Although a resin rod is used here as the guide rod 6 , however, a metal rod may be used.
- the guide-thin shaft portion 6 b is formed at a position corresponding to the thin shaft portion 5 b of the spiral groove rod 5 , and is formed to have a diameter so that the tablet W that has been transported can fall through between the thin shaft portion 5 b and the guide-thin shaft portion 6 b.
- the outer diameter of the spiral groove rod 5 and the diameter of the guide rod 6 are formed in the same size, and the diameter of the thin shaft portion 5 b of the spiral groove rod 5 and the diameter of the guide-thin shaft portion 6 b of the guide rod 6 are also formed in the same size. Further, the spiral groove rod 5 and the guide rod 6 are arranged to be in the same position in the height direction, and the interval therebetween is set such that the tablet W located in the spiral groove 5 a of the spiral groove rod 5 does not fall through the interval. A space region between the spiral groove rod 5 and the guide rod 6 when the interval therebetween is set as described above is referred to as the support space region Ts.
- the support space region Ts is set to the interval in which the tablet W can be supported between the spiral groove 5 a of the spiral groove rod 5 and the guide portion 6 a of the guide rod 6 . Further, the support space region Ts is set to the interval in which it guides the tablet W along the rotating spiral groove 5 a of the spiral groove rod 5 and can transport the tablet W along the transport route Sr to the transport end while the tablet W itself is rotating.
- the first support holder 31 is provided on the base 100 , and rotatably supports the spiral groove rod 5 .
- the first support holder 31 includes the tip end rotation support holder 31 A for rotatably supporting an end portion of the thin shaft portion 5 b of the spiral groove rod 5 , and the base end rotation support holder 31 B for rotatably supporting the connection-rotating portion 5 d connected to the connecting portion 5 c of the spiral groove rod 5 .
- the second support holder 32 is for rotatably supporting the rotating roller 3 a of the delivery mechanism 30 , and for supporting the guide rod 6 via the lateral guide block 12 a .
- the second support holder 32 includes the tip end support holder 32 A for supporting an end portion of the guide-thin shaft portion 6 b of the guide rod 6 , and the base end support holder 32 B for rotatably supporting the rotating roller 3 a and supporting the lateral guide block 12 a .
- the base end support holder 32 B of the second support holder 32 are, as already described, configured to also support the rotating roller 3 a.
- the first support holder 31 is provided at a position adjacent to the second support holder 32 . Then, at the positions adjacent to the left and right of the tip end rotation support holder 31 A of the first support holder 31 , the tip end support holders 32 A, 32 A of the second support holder 32 are provided, and at the positions adjacent to the left and right of the base end rotation support holder 31 B of the first support holder 31 , the base end support holders 32 B, 32 B of the second support holder 32 are provided. Note that, on the base 100 , the first support holder 31 and the second support holder 32 are provided on the holder guide plate 102 mounted on the mounting frame 101 .
- the tip end rotation support holder 31 A rotatably supports a shaft portion of the rotating shaft 47 formed with the threaded portions 47 a , 47 b on the both ends thereof, via a bearing at the lower portion side of the holder.
- the base end rotation support holder 31 B rotatably supports the shaft portion of the rotating shaft 47 formed with the threaded portions 47 a , 47 b on the both ends thereof.
- the threaded portions 47 a , 47 b are respectively supported via bearings by the holder bases 32 B 1 , 32 B 1 (see FIG. 4 ) which are the lower portion side of the holder.
- the tip end rotation support holder 31 A and the base end rotation support holder 31 B respectively include a space in which the driven gear 46 attached to the shaft portion of the rotating shaft 47 is provided.
- the rotating shaft guides 48 , 49 in parallel with the rotating shaft 47 are provided through the tip end rotation support holder 31 A and the tip end support holders 32 A, 32 A, and the tip end support holders 32 A, 32 A are configured to be slidable.
- the rotating shaft guides 48 , 49 in parallel with the rotating shaft 47 are provided through the base end rotation support holder 31 B and the base end support holders 32 B, 32 B, and the base end support holders 32 B, 32 B are configured to be slidable. As shown in FIG.
- the base end support holders 32 B, 32 B have the holder bases 31 B 1 , 31 B 1 which are provided with stepped portions from the upper portion thereof for supporting the rotating rollers 3 a , 3 a and are formed larger than the upper portion thereof.
- the rotating shaft 47 and the rotating shaft guides 48 , 49 are provided through the holder base 32 B 1 , and the holder base 32 B 1 is formed in a size allowing the lateral guide support portion 12 d to be attached to the outside thereof.
- the tip end support holder 32 A and the base end support holder 32 B of the second support holder 32 are, at the lower ends thereof, respectively provided with engaging portions 32 c so as to be movable along a guide groove 102 a provided in the holder guide plate 102 . Therefore, the tip end support holder 32 A and the base end support holder 32 B are guided by the guide groove 102 and the rotating shaft guides 48 , 49 , and slide (move) along the holder guide plate 102 .
- the base end rotation support holder 31 B (see FIG. 3A ) of the first support holder 31 is configured to support the spiral groove rod 5 and also support the central guide block 11 a .
- the base end support holder 32 B (see FIG. 4 ) of the second support holder 32 is configured to support the lateral guide block 12 a and also support the rotating roller 3 a.
- the transport mechanism 4 includes the configuration as described above, it is possible to input the tablets W from the hopper 2 into where the transport mechanism 4 is ready for transport by rotating the spiral groove rod 5 by the transport drive unit 5 G, and deliver the tablet W via the delivery mechanism 30 (from the guide route GR) to the support space region Ts in the transport route Sr, and then transport the tablet W to the transport end. Then, as shown in FIGS. 3A to 5B , the transport mechanism 4 alternately sends out the tablets W aligned on the spiral groove rod 5 and the guide rods 6 , 6 from the transport end to the counting path 15 , and allows the tablets W to fall to the counting path 15 so as to pass the counting unit 14 (see FIG. 1A ). Note that, as shown in FIG.
- the transport mechanism 4 is arranged such that a portion of the spiral groove rod 5 formed with the spiral groove 5 a is more protruded than a guide surface of the guide rod 6 at the transport end, and is thus set to reliably send out the tablets W to the counting path 15 .
- the counting unit 14 is for counting the tablets W which are transported and sent out.
- the counting unit 14 is set for each spiral groove rod 5 , and uses an optical sensor capable of counting the tablets W by determining a state in which light is blocked by the tablet W falling.
- the optical sensor a common sensor used for counting the tablets W is used. Note that, in a case of using the optical sensor, in a light emitting unit and a light receiving unit, two or more air chambers are configured to be arranged such that the volume of the air chamber is gradually reduced from a position where the tablet W falls, to a position of the light emitting unit and light receiving unit (for more information, refer to Japanese Patent No. 3041343). Therefore, even in a state where tablet powders generated from the tablets W in accordance with falling of the tablets W are falling, the tablet powders hardly adhere to a light receiving surface or the like, and accuracy of counting is not reduced.
- the counting unit 14 sets a first reference for counting the tablet W on the basis of an amount of light blocked in a light path, and counts the tablet W if the amount of light blocked reaches the reference.
- the counting unit 14 sets two or more comparison values of the amount of light blocked or time of light blocked, so that the comparison value can be reduced stepwise from the above-mentioned reference when the light receiving unit receives the light.
- the counting and filling apparatus 1 can determine whether or not the tablet W has a defect by processing the image from the image capturing unit 22 provided in the transport route.
- the counting and filling apparatus 1 determines that the tablet W has the defect by the image from the image capturing unit 22 , it controls the rotational speed of the transport drive motor 5 f to be slow, and is set to reliably eliminate only the tablet W with the defect by use of a path switching flap 16 .
- the counting path 15 is a path for storing the tablets W in the container V.
- the counting path 15 is configured to be cylindrical so that the tablet W having passed through the counting unit 14 can be stored in the container V which is disposed at the lower end. Further, the counting path 15 is provided in a tapered shape so that the path is gradually narrower toward the lower from the upper in this case.
- the path switching flap 16 is for distributing the falling tablets W to a non-defective product path 17 or a defective product discharge path 18 of the counting path 15 .
- the path switching flap 16 is configured to switch the paths under the control of the control unit 20 (see FIGS. 1A , 7 ).
- the container V is disposed below the counting path 15 , and is for storing a predetermined number of tablets W.
- the shape, size, material, color, and the like of the container V are not particularly limited.
- a mounting base on which the container V is mounted may be configured such that an operator replaces the container V manually, or may be, as shown in FIG. 1A , configured such that the transport conveyor 50 is provided, and moved when a predetermined quantity (a filling quantity: a quantity to be stored in the container) is filled into the container.
- the transport conveyor 50 may be disposed such that the transport direction thereof is a direction perpendicular to the longitudinal direction (transport direction) of the transport mechanism 4 so as to be across the counting path 15 of each transport mechanism 4 , or may be configured to be provided with the same number as the number of the transport mechanism 4 , and such that each conveyor 50 is provided along the transport direction of the transport mechanism 4 .
- the control unit 20 is for mainly controlling the transporting mechanism 4 , and is realized by a function of a computer with a CPU that performs calculation, comparison, determination, and the like on the basis of information (data) from an input means (a touch panel 21 as a display unit) or the like.
- the control unit 20 includes an input unit 20 a , a memory unit 20 b , a reset unit 20 c , an image processing unit 20 d , a comparison unit 20 e , and a drive control unit 20 f.
- the input unit 20 a is an interface for inputting the data or instruction from the touch panel 21 or the like.
- the input unit 20 a inputs, from the touch panel 21 , the filling quantity of the tablet W to be filled into the container V, a reference quantity, a reset signal, or an instruction for moving the second support holder 32 .
- the reference quantity is a value less than the filling quantity which is arbitrarily determined in advance by the operator, and is, for example, a quantity of 90 to 95 tablets when the filling quantity is 100 tablets, and it may be a value having a predetermined difference from the filling value so that the counting unit 14 can reliably count the tablets W when the number of tablets W filled into the container V reaches the filling quantity.
- the value of the reference quantity the speed of the tablets W transported by the transport mechanism 4 can be adjusted.
- the filling quantity and reference quantity inputted from the input unit 20 a are outputted to the memory unit 20 b .
- the reset signal to be described later which is inputted to the input unit 20 a
- the reset unit 20 c is outputted to the reset unit 20 c .
- the instruction for moving the second support holder 32 which is inputted to the input unit 20 a
- the memory unit 20 b is a common memory unit such as a hard disk, an optical disk, a memory.
- the memory unit 20 b stores the filling quantity, the reference quantity, and the like, which are inputted from the input unit 20 a.
- the reset unit 20 c receives the reset signal from the input unit 20 a or a container sensor Vs, and sends a reset control signal to the comparison unit 20 e , then resets the quantity counted by the counting unit 14 in the comparison unit 20 e .
- the reset unit 20 c receives the reset signal indicating that the container V is replaced from the container sensor Vs, or receives the reset signal which is inputted via the input unit 20 a by the operator, the reset unit 20 c outputs the reset control signal for resetting the comparison unit 20 e .
- the comparison unit 20 e resets the quantity of the counted tablets from the counting unit 14 .
- the image processing unit 20 d is for processing the image inputted from the image capturing unit 22 , and for example, extracts sampling image data sampled from captured images, or calculates brightness value data from the image, and sends the extracted sampling image data or the calculated brightness value data to the comparison unit 20 e .
- the image processing unit 20 d is not limited thereto, as long as it is configured to process the images by a well-known image processing means and compare the images with the reference data or reference values.
- the comparison unit 20 e receives the reset control signal from the reset unit 20 c , or data from the counting unit 14 , data from the image processing unit 20 d , and compares the received data with each reference data stored in the memory unit 20 b , and then controls the drive control unit 20 f and resets numeric values of the counting unit 14 .
- the comparison unit 20 e compares the predetermined filling quantity with the quantity of the tablets W currently counted by the counting unit 14 , and they are equal to each other, the comparison unit 20 e outputs a first control signal to the drive control unit 20 f .
- the comparison unit 20 e compares the reference quantity stored in the memory unit 20 b with the quantity of the tablets W currently counted by the counting unit 14 , and they are equal to each other, the comparison unit 20 e outputs a second control signal to the drive control unit 20 f . Furthermore, the comparison unit 20 e resets quantity values sent from the counting unit 14 by the reset control signal from the reset unit 20 c , and outputs a third control signal to the drive control unit 20 f.
- the comparison unit 20 e receives the data from the image processing unit 20 d , and compares the data with a reference image or a reference value and determines that the tablet W has a defect, the comparison unit 20 e outputs a fourth control signal indicating the defect to the drive control unit 20 f .
- the comparison unit 20 e determines that the tablet W has the defect, the comparison unit 20 e subtracts one from count data sent from the counting unit 14 , and then compares the subtracted data with the filling quantity or the reference quantity. By subtracting the number of the defective tablets W, the comparison unit 20 e accurately calculates the number of the tablets W which are currently filled into the container V.
- the drive control unit 20 f controls the transport drive motor 5 f of the transport mechanism 4 , the roller drive motor 3 c of the rotating roller 3 a , the path switching flap 16 , and the holder driving source 41 (holder moving mechanism 40 ) by the input signal or each control signal sent from the comparison unit 20 e .
- the drive control unit 20 f sends the control signal to the transport drive motor 5 f , and controls the rotational speed of the spiral groove rod 5 to be lower than the predetermined rotational speed.
- the predetermined rotational speed is, for example, 1000 rotation/min, the rotational speed is controlled to be 100 to 500 rotation/min.
- the drive control unit 20 f when the drive control unit 20 f is inputted the first control signal from the comparison unit 20 e , the drive control unit 20 f sends the control signal to the transport drive motor 5 f , and temporarily stops the rotation of the spiral groove rod 5 . At this time, since the tablets W reaches the predetermined quantity, the container V is replaced by a new container V. Further, when the drive control unit 20 f receives the third control signal from the comparison unit 20 e , it outputs the control signal for controlling the transport drive motor 5 f so that the rotational speed of the spiral groove rod 5 which has been temporarily stopped becomes the predetermined rotational speed.
- the drive control unit 20 f When the drive control unit 20 f receives the fourth control signal from the comparison unit 20 e , it controls the rotational speed for the transport by the transport drive motor 5 f to be smaller than the predetermined rotational speed, and outputs the control signal so as to send the defective tablet W to the defective product discharge path 18 by controlling the path switching flap 16 to be switched when the identified tablet W falls. Note that, immediately after the defective tablet W is discharged, the drive control unit 20 f switches the path switching flap 16 to the non-defective product path 17 of the counting path 15 , and outputs the control signal so that the rotational speed of the transport drive motor 5 f becomes the predetermined rotational speed for the transport. Further, the drive control unit 20 f controls the holder moving mechanism 40 by use of the signal inputted from the touch panel 21 via the input unit 20 a.
- the control unit 20 effectively performs the filling operation of filling the tablets W into the container V by controlling the transport mechanism 4 .
- the touch panel 21 can be used as a monitor for displaying the touch panel as the input unit and a state of the tablet W captured by the image capturing unit 22 , simultaneously or by switching.
- the image capturing unit 22 is, for example, a CCD camera, and captures the rotating tablet W in the image capturing range.
- the image capturing units 22 are arranged with the same number as the transport route Sr, and capture the tablets W which are transported on the transport route Sr formed by the spiral groove rod 5 and the guide rods 6 , 6 .
- FIG. 8A the drawings shown on the left side in FIGS. 8A to 8D schematically show only the structure on the right side of the spiral groove rod 5 by omitting the structure on the left side thereof. In other words, the drawings show only the structure corresponding to the right portion in FIG. 5A .
- the counting and filling apparatus 1 is inputted the tablets W into the hopper 2 by an input device (not shown) or the operator (input step).
- the tablets W fall by their own weight from the supply port 2 d of the hopper 2 , and are guided to the guide route GR formed by the central guide block 11 a and the rotating rollers 3 a , 3 a on the left and right.
- the tablets W take postures in a same direction by entering the guide route GR. Further, as shown by a tablet WA, some of the inputted tablets W take postures not capable of entering the guide route GR. However, since the rotating rollers 3 a , 3 a on the left and right rotate so as to apply the frictional force to the tablets W in the direction opposite to the falling direction of the tablets W, the tablet WA is changed the posture directly or indirectly via the other tablet W, and becomes a tablet WB which has a posture capable of entering the guide route GR.
- the tablets W are aligned by the guide route GR (see FIG. 8A ) of the delivery mechanism 30 which is formed by the rotating rollers 3 a , 3 a , the central guide block 11 a , and the lateral guide blocks 12 a , 12 a opposed to the spiral groove rod 5 .
- the tablets W are aligned in a row along the spiral groove rod 5 in the guide space GS (see FIG. 5A ), and aligned in a state of overlapping along the guide route GR in the upward direction where the tablets W are aligned in the row.
- the tablets W are delivered to the spiral groove 5 a by being aligned or by being guided directly, and are supported by the spiral groove 5 a (delivery step). Further, in a state of being supported in the spiral groove 5 a , the tablet W is sent out by the rotating spiral groove rod 5 from the position where the spiral groove rod 5 and the lateral guide blocks 12 a , 12 a are opposed to each other, to the transport routes Sr, Sr (see FIG. 1A ) where the spiral groove rod 5 and the guide rods 6 , 6 are opposed to each other.
- the tablet WC is sent by the rotation of the spiral groove rod 5 and comes into contact with the shield-rotating plates 112 , 112 , and thus the tablet WC is temporarily moved in the rotation direction of the shield-rotating plates 112 , 112 . Then, as shown in FIG. 9D , the tablet WC can have a proper posture to be supported in the spiral groove 5 a by being changed the posture thereof.
- the tablet W comes into contact with the shield-rotating plates 112 , 112 , and thus the tablet W can take a proper posture by changing the posture thereof by the rotation of the shield-rotating plates 112 , 112 .
- the shield-rotating plates 112 , 112 come into contact with the tablet W sent by the rotation of the spiral groove rod 5 without being supported in the spiral groove 5 a , and moves the tablet W in the rotation direction thereof to change the posture of the tablet W, and thus the shield-rotating plates 112 , 112 can temporarily store (allow to wait) the tablet W not supported in the spiral groove 5 a in the range of the partition frame portion 9 (in the range to the upper end of the partition frame portion 9 from above the spiral groove rod 5 below the partition frame portion 9 ).
- the tablet W waiting in the range of the partition frame portion 9 is fitted and supported in the vacant spiral groove rod 5 a , and sent out to the transport route Sr through under the shield-rotating plates 112 , 112 (pre-delivery step).
- the tablet W stored in the range of the partition frame portion 9 is waiting in the guide route GR at the position adjacent to the supply port 2 d .
- the tablet W is waiting in an aligned state or while being changed the posture thereof, in a space between the central guide block 11 a and the shield-rotating plates 112 , 112 , the rotating rollers 3 a , 3 a , and in a space between the spiral groove 5 and the lateral guide blocks 12 a , 12 a opposed to the spiral groove 5 . Therefore, if the spiral groove 5 a is in a vacant state, the tablet W smoothly enters the vacant spiral groove 5 a and is supported in the spiral groove 5 a in the range of the partition frame portion 9 . The tablet W sent out to the transport route Sr (see FIG.
- the transport mechanism 4 if the tablet W is a material to be counted having a capsule shape, the longitudinal axis thereof becomes horizontal and the tablet W is transported in the transport direction while rotating around the longitudinal axis.
- the tablets W are sent out to the counting path 15 alternately from the transport routes Sr, Sr on the left and the right of the spiral groove rod 5 .
- a tablet W in one transport route Sr is sent out toward the counting path 15 by the rotation of the spiral groove rod, and when the spiral groove rod 5 is rotated 180 degrees from the state, another tablet W in the other transport route Sr is sent out toward the counting path 15 .
- the tablets W sent out to the counting path 15 by being transported by the transport mechanism 4 can pass through a position of the counting unit 14 in a state where the tablets W are hardly overlapped with each other and easily counted, when they are counted by the counting unit 14 located in a path of the counting path 15 .
- the tablet W sent out to the counting path 15 is counted by the counting unit 14 and filled into the container V (filling step).
- a signal indicating that the tablet W has passed through the counting unit 14 is sent to the control unit 20 and counted up until the number of the passing tablets W reaches the filling quantity to be filled into the container V.
- the second control signal is issued by the control unit 20 , and the rotational speed of the spiral groove rod 5 is allowed to be slower than the set rotational speed.
- the counting unit 14 it is easy for the counting unit 14 to count the tablets W from the reference quantity to the filling quantity, and it can reliably count the tablets W.
- the counted signal is sent to the control unit 20 . Consequently, in the counting and filling apparatus 1 , the signal (first control signal) for stopping the operation is sent from the control unit 20 to the transport drive motor 5 f of the transport mechanism 4 , and the transport operation of the transport mechanism 4 is temporarily stopped.
- the counting and filling apparatus 1 Since the counting and filling apparatus 1 operates as described above, it can accurately count and fill the tablets W into the container V at a high speed. Further, when the container V is replaced, even if the transport operation in the transport mechanism 4 is stopped, the tablet W is in a state of being disposed and supported in the support space region Ts, and thus the tablet W hardly moves due to inertia in the transport direction, even if the rotation of the spiral groove rod 5 is stopped. Therefore, the counting and filling apparatus 1 performs counting of the tablets W in almost perfect condition.
- the counting and filling apparatus 1 can prevent the fragment from falling from the transport route Sr during transport to be filled into the container V, as well as can eliminate the fragment via the path switching flap 16 by the image capturing unit 22 .
- the rotational speed of the spiral groove rod 5 of the transport mechanism 4 is constant, for example, 1000 rotation/min, and thus the count timing of the tablets W sent from each transport route Sr is constant, however, the counting and filling apparatus 1 may be, for example, configured to fill the tablets W into one container V from a plurality of spiral groove rods 5 . As an example, the counting and filling apparatus 1 may vary a rotational speed of a spiral groove rod 5 from those of other four spiral groove rods 5 . The counting and filling apparatus 1 may, in this case, count the tablets W and fill them into one container V through all five spiral groove rods 5 .
- the counting and filling apparatus 1 operates all five spiral groove rods 5 until the quantity of the tablets W reaches 990 tablets, and stops four spiral groove rods 5 which have been rotating at a high speed by a signal from the control unit 20 when the 990 tablets are counted by the counting unit 14 . Then, by performing the filling of 10 tablets remaining until 1000 tablets by a spiral groove rod 5 which is operating at low rotational speed, it is possible to reliably count the tablets W and fill them into the container V without miscounting the quantity. As described above, by varying the rotational speed of the spiral groove rod 5 , the counting and filling apparatus 1 has an advantage capable of performing the operation in accordance with the quantity to be filled into the container V. Note that, as other examples of different configurations, the counting and filling apparatus 1 may be configured to rotate all five spiral groove rods 5 at a high speed and vary all the five to a low speed when the quantity reaches the reference quantity, or may be configured in different ways.
- the counting and filling apparatus 1 adjusts the interval between the spiral groove rod 5 and the guide rods 6 , 6 , and the interval between the spiral groove rod 5 and the lateral guide block 12 a , 12 a .
- the counting and filling apparatus 1 adjusts the intervals by the holder moving mechanism 40 via the control unit 20 by the input of the touch panel 21 .
- the holder moving mechanism 40 drives the holder driving source 41 , and thus rotates the coupling portion 42 , the transmission direction changing portion 43 , and the rotating shaft 44 , and rotates the driven gear 46 by the rotation of the transmission gear 45 .
- the tip end support holder 32 A and the base end support holder 32 B move along the rotating shaft guides 48 , 49 and the holder guide plate 102 (refer to arrows in FIG. 3A ).
- the shield-rotating plates 112 , 112 also move, however, they can move in the range of the space between them and the frame-front side wall 19 (see FIG. 5A ). Further, the shield-rotating plates 112 , 112 can, by changing the diameter thereof, deal with a large movement of the second support holders 32 , 32 .
- the guide rods 6 , 6 supported by the second support holder 32 via the lateral guide blocks 12 a , 12 a can be adjusted the intervals between the spiral groove rod 5 and themselves by a rotation number transmitted from the holder driving source 41 of the holder moving mechanism 40 .
- the intervals between the spiral groove rod 5 and the guide rods 6 , 6 , or the lateral guide blocks 12 a , 12 a are preferably set in advance.
- the sizes and shapes of the tablets W are listed in a display screen of the touch panel 21 , and by touching a position of an objective in the list, an output rotation number of the holder driving source 41 of the holder moving mechanism 40 is set and outputted, and thus the intervals are adjusted.
- the interval adjustment may be performed by a manual means.
- the counting and filling apparatus 1 delivers the tablet W through the delivery mechanism 30 to the transport mechanism 4 formed of the spiral groove guide 5 and the guide rods 6 , 6 , and transports the tablet W, the counting and filling apparatus 1 can count a number of tablets W at a high speed, and can accurately fill only non-defective tablets into the container. Further, since the counting and filling apparatus 1 uses the spiral groove rod 5 which is different from a transport by a conventional vibration mechanism, powders of the tablet W hardly occur, and a portion contacting the tablet W in the transport route is small, and thus cleaning or the like is facilitated.
- the counting and filling apparatus 1 since the counting and filling apparatus 1 has the delivery mechanism 30 as compared to a conventional apparatus including a spiral groove rod, the counting and filling apparatus 1 can smoothly deliver the tablets W to the transport mechanism 4 , and thus can perform the steps from the input step until the filling step at higher speed. Furthermore, even if the tablets W has an elongated capsule shape or a rugby ball shape, since the rotating rollers 3 a , 3 a are provided with the shield-rotating plates 112 , 112 , the counting and filling apparatus 1 can change the posture of the tablet W and smoothly deliver them to the transport mechanism 4 .
- the counting and filling apparatus 1 may form the transport route Sr by using only one side guide rod 6 in the transport mechanism 4 . Further, the counting and filling apparatus 1 has a capability equivalent to the conventional apparatus by setting the rotational speed of the spiral groove rod 5 to 300 rotation/min, and the capability difference from the conventional apparatus is increased each time adding a transport route Sr. Further, since the counting and filling apparatus 1 can set the rotational speed of the spiral groove rod 5 to 500 to 1500 rotation/min and transport the tablets, it has the filling speed more than or equal to several times of the conventional apparatus.
- the counting and filling apparatus 1 has been described as an example that the spiral groove rod 5 is rotated at a speed slower than the predetermined rotation speed when the quantity reaches the reference quantity, and the rotation of the spiral groove rod 5 is stopped when the quantity reaches the filling quantity, however, the counting and filling apparatus 1 may be operated by setting only the filling quantity without setting the reference quantity as a matter of course.
- the guide rods 6 , 6 have been described in a fixed state, they may be configured to rotate. Note that, since the guide rods 6 , 6 serve for guiding the tablet W, and they can only guide the tablet W in a state of slipping against the tablet W, the rotation direction does not matter if they rotate.
- the materials of the spiral groove rod 5 and the guide rods 6 , 6 may be metal, resin, or the like, and not particularly limited thereto.
- the guide rods 6 , 6 which are extended to the positions of the lateral guide blocks 12 a , 12 a may be provided, and the lateral guide portion 12 may be replaced with the configuration in which guide pieces (guide portions) 120 are provided at predetermined positions of the guide rods 6 , 6 .
- the guide pieces 120 are mounted between the posture changing units 3 and the guide rods 6 , 6 disposed in parallel with the spiral groove rod 5 .
- the guide pieces 120 are provided by being attached to the peripheral surfaces of the guide rods 6 , 6 which are connected to and supported by the base end support holders 32 B, 32 B of the second support holders 32 , 32 .
- the guide pieces 120 are provided such that spaces between themselves and the rotating rollers 3 a , 3 a are smaller than the thickness Wd of the tablet W.
- the shield-rotating plates 112 , 112 are provided rotatably by groove portions 60 f formed in the peripheral surfaces of the guide rods 6 , 6 , and the notch portions 19 a , 19 a of the frame-front side wall 19 (see FIGS. 5A , 5 B).
- the groove portion 60 f is formed in a concave groove shape on the circumferential surface of the guide rod 6 at a position which is a tip end of the guide piece 120 .
- the spiral groove rod 5 is rotated clockwise, and if the spiral groove 5 a is formed inclined in an upper left direction to the transport direction, the spiral groove rod 5 is rotated anticlockwise. That is, if the spiral groove rod 5 is rotated in a direction such that the tablet W can be transported toward the transport end from the base end side, it may be rotated in either direction in relationship with the spiral groove 5 a.
- the delivery mechanism 30 may be a delivery mechanism 30 B. That is, as shown in FIG. 10 , a central rotating roller 111 may be configured to be disposed in place of the central guide block 11 a (see FIG. 5A ). The central rotating roller 111 is alternately rotated clockwise and anticlockwise (or continuously rotated in either direction), and thus the posture of the tablet W can be changed. Further, between the central rotating roller 111 and the spiral groove rod 5 , a spacer SP is provided so that the tablet W does not enter therebetween. With such a configuration, the delivery mechanism 30 B has many positions to change the posture of the tablets W, thereby preventing the tablets W from being bridged to each other.
- the delivery mechanism 30 , 30 B may be configured to include protrusions or concave portions on the circumferential surface of the rotating roller 3 a , 3 a .
- the vertical positional relationship between the rotating roller 3 a and the lateral guide portion 12 has been described that they are provided to have central axes aligned in the vertical direction, however, their diameter may be changed or their placements may be changed such that the central axes thereof aligned in the vertical direction are shifted to the left or right, as long as the guide route GR can be formed.
- the shape of the central guide block 11 a of the regulating unit 13 is not limited thereto, as long as it can distribute the tablets W to the left and right, and it may be configured to lead the tablets W either to the left or right.
- the rotating rollers 3 a , 3 a , the central guide block 11 a , and the lateral guide blocks 12 a , 12 a have been described as the same length, however, they need not to be the same length, as long as their portions opposed to each other are just below the partition frame portion 9 and the supply port 2 d.
- the shield-rotating plates 112 , 112 may be configured to be rotatable by being disposed inside a frame-front side wall 190 (in the frame) of the partition frame portion 9 .
- the shield-rotating plates 112 , 112 can be provided rotatably by forming the notch portions 190 a , 190 a in the frame-left and right side walls, and providing groove portion 6 f ( 60 f ) in the guide rod 6 .
- the positional relationship between the shield-rotating plates 112 , 112 and the other members are as described above. Even with such a configuration shown in FIGS. 11A , 11 B, it is possible to achieve the same operation and effect as the shield-rotating plates 112 , 112 configured as shown in FIGS. 5A , 5 B.
- the type of the material to be counted such as the tablet W which can be handled by the counting and filling apparatus 1 is, for example, an annular tablet W 1 , a disk-shaped tablet W 2 , or a tablet W 3 of triangular rice ball shape, they can be transported while being rotated as shown by arrows in FIGS. 12A to 12C . If the tablet W has a disk shape, it is transported by the rotation of the spiral groove rod 5 while being rotated in a posture such that the diameter direction thereof is the upper and lower, and the front and rear directions in the transport route Sr.
- the materials to be counted are not particularly limited thereto, as long as they are those need to be counted such as confectionery, supplements, mechanical parts, and semiconductor components in addition to the tablets.
- the size of the spiral groove 5 a may be smaller than, equal to, or larger than that of the tablet W, and the spiral groove 5 a may be configured such that a curved portion of the material to be counted comes into contact with an arc shape of the spiral groove 5 a , and the tablet W does not come into contact with an adjacent tablet W supported in the spiral groove 5 a.
- the counting and filling apparatus 1 may be configured to transport the tablet W while sucking, by a dust collecting suction mechanism Bk, an inside of a region partition portion 200 which partitions a space below the lateral guide blocks 12 a , 12 a , guide rods 6 , 6 , and the spiral groove rod 5 .
- the region partition portion 200 is provided so as to surround almost all of a region below the guide route GR and the transport route Sr.
- the region partition portion 200 partitions a region to be sucked having an upper opening, and is configured by a suction partition housing 201 which is formed with a suction connection opening 202 at the bottom surface thereof and has the upper opening.
- the suction partition housing 201 is for housing abrasion powders, damaged pieces, or the like of the tablet W to be transported, and sending them to the suction connection opening 202 .
- the suction partition housing 201 includes route-parallel wall surfaces 203 , 204 which are in contact with or close to the guide rods 6 , 6 and the lateral guide blocks 12 a , 12 a , route-cross wall surfaces 205 , 206 which are formed continuously in a direction perpendicular to both end portions of the route-parallel wall surfaces 203 , 204 , and a route-bottom surface 207 which is a housing bottom surface formed with the suction connection opening 202 .
- the route-parallel wall surfaces 203 , 204 are disposed in parallel to each other below the guide rods 6 , 6 and the lateral guide blocks 12 a , 12 a , and the upper end thereof is provided so as to be close to the guide rod 6 and the lateral guide block 12 a .
- the route-parallel wall surfaces 203 , 204 are formed in a predetermined thickness in this case, and each of them is formed so as to face each other just below the guide rod 6 and the lateral guide block 12 a .
- the route-cross wall surface 205 is disposed below the spiral groove rod 5 or below the spiral groove rod 5 and the guide rods 6 , 6 , and the upper end surface thereof is provided so as to be close to the spiral groove rod 5 or the spiral groove rod 5 and the guide rods 6 , 6 .
- the route-cross wall surface 205 is formed so as to be in a predetermined constant thickness in this case, and is formed integrally and continuously to one end portions of the route-parallel wall surfaces 203 , 204 .
- the route-cross wall surface 206 is disposed below the spiral groove rod 5 or below the spiral groove rod 5 and the lateral guide blocks 12 a , 12 a , and the upper end surface thereof is provided so as to be close to the spiral groove rod 5 or the spiral groove rod 5 and the lateral guide blocks 12 a , 12 a .
- the inner peripheral side of the route-cross wall surface 206 is formed along an arc shape of the suction connection opening 202 in this case, and the route-cross wall surface 206 is formed integrally and continuously to the other end portions of the route-parallel wall surfaces 203 , 204 .
- the route-bottom surface 207 is for sending the abrasion powders, damaged pieces, or the like of the tablet W to be transported, to the suction connection opening 202 .
- the route-bottom surface 207 is formed so as to be inclined toward the suction connection opening 202 in this case. Further, on the route-cross wall surface 206 side of the route-bottom surface 207 , the suction connection opening 202 is formed therethrough in a circular shape.
- the dust collecting suction mechanism Bk is for sucking, collecting, and removing the abrasion powders or the like generated from the tablet W.
- the dust collecting suction mechanism Bk is not limited thereto, as long as it includes a dust collecting mechanism and a suction pump used when the tablet W is transported.
- the dust collecting suction mechanism Bk is allowed to face the suction connection opening 202 of the suction partition housing 201 by connecting a tip end of a suction hose Bp to a connecting portion formed in the base 100 .
- the atmosphere in the region partition portion 200 is sucked, and if the abrasion powders are generated from the tablet W in accordance with the transport, the abrasion powders are received by the route-bottom surface 207 of the suction partition housing 201 of the region partition portion 200 , and moved by suction along the route-bottom surface 207 , and then collected from the suction connection opening 202 via the suction hose Bp by the dust collecting suction mechanism Bk (or collected directly from the suction connection opening 202 via the suction hose Bp) (suction step).
- the tablet W being transported is always urged downward (to the suction direction). Therefore, in the counting and filling apparatus 1 , the tablet W is sent in a state of close contact with the spiral groove 5 a of the spiral groove rod 5 in the transport route Sr or the guide route GR, and thus the transport posture of the tablet W is stabilized. Since the transport posture of the tablet W is stabilized, if the visual inspection is performed in the transport route, the counting and filling apparatus 1 can improve the accuracy of the inspection.
- the counting and filling apparatus 1 described above is not limited to the configuration described above, as long as the regulating unit 13 and the posture changing unit 3 of the delivery mechanism 30 can align the materials to be counted (tablets W) by changing the posture thereof, and deliver them to the transport mechanism 4 .
- the configuration of the guide route GR formed by the regulating unit 13 is not limited thereto, as long as the guide route GR can align the materials to be counted and lead or guide them to the spiral groove 5 a .
- the falling of the tablets W means that the materials to be counted fall, or proceed, or move by their own weight toward the delivery mechanism 30 from the supply port 2 d , and when the materials to be counted fall, they may be either in a single state or an overlapped state.
- the second holder 32 may be configured without providing the guide groove 102 a and the engaging portion 32 c shown in FIG. 6 .
- the upper surface side of the partition frame portion 9 has been described as a configuration of being formed with opening in this case, it is more preferably configured to be provided with a transparent lid body (not shown).
- the base end rotation support holder 31 B of the first support holder 31 has been described to be configured to support the spiral groove rod 5 and also support the central guide block 11 a in this case, however, separate holder portions may be provided to support them.
- the base end support holder 32 B of the second support holder 32 has been described to be configured to support the lateral guide block 12 a and also support the rotating roller 3 a , however, separate holder portions may be provided to support them.
- the guide route GR has been described to be configured to have a constant interval between a lateral plane of the central guide block 11 a and a lateral plane formed by the rotating roller 3 a and the space guide protrusion 12 c , however, the lateral plane of the central guide block 11 a may be configured to be inclined toward the outer peripheral surface of the spiral groove rod 5 (refer to the spacer SP in FIG. 10 ).
- the region partition portion 200 has been described to be formed by the suction partition housing 201 as an example, however, the route-bottom surface 207 may be the surface of the base 100 , and the route-parallel wall surfaces 203 , 204 and the route-cross wall surfaces 205 , 206 may be integral with an engaging portion (not shown) formed in the surface of the base 100 or may be detachably engaged with the engaging portion as separate bodies. Further, as shown in FIG. 13 , the structure formed with the counting path 15 may be integrally formed with the frame housing 150 , and one lateral wall surface of the frame housing 150 may be in place of the route-cross wall surface 205 .
- the region partition portion 200 is sucked by the dust collecting suction mechanism Bk, and thus the tablet W is urged to the direction of being supported in the spiral groove 5 a , even if the region partition portion 200 is provided so as to surround a position corresponding to a part of, or a half of, or all of the transport route Sr continued from the guide route GR, it is possible to obtain the same effect as described above compared with a state without suction.
- the counting and filling apparatus 1 has been described to be configured to form the shield-rotating plates 112 , 112 as the adjusting unit Sm along the frame-front side wall 19 , however, it may be configured as shown in FIG. 15 . That is, as shown in FIG. 15 , the partition frame portion 9 A forms a rectangular space which is partitioned by the front side wall 2 c of the supply port 2 d and the other three side walls. A frame-front side wall 9 a of the partition frame portion 9 A is configured to be formed with a notch 9 b on the side wall thereof, and to cover the notch 9 b with a silicone resin plate 9 c by a fixing unit (fixing bolt).
- fixing unit fixing bolt
- the partition frame portion 9 A is configured to be provided with the silicone resin plate 9 c on the frame-front side wall 9 a , in place of the shield-rotating plates 112 , 112 .
- the silicone resin plate 9 c is provided at a position where the tablet W cannot pass through the silicone resin plate 9 c , if the tablet W is not supported in the spiral groove 5 a .
- the tablet W which is prevented from passing through by the silicone resin plate 9 c , is temporarily held in the partition frame portion 9 .
- the silicone resin plate 9 c also serves not to damage the tablets W by momentum of the tablets W, which are conveyed in the state of overlapping too much on the spiral groove rod 5 and come into contact with the silicone resin plate 9 c .
- the silicone resin plate 9 c is set to be capable of adjusting the installation position thereof by the fixing bolt in accordance with the type of the tablet W.
- the partition frame portion 9 A including such a silicone resin plate 9 c may be the adjusting unit Sm.
- the frame-front side wall 9 a may be configured to be formed integrally with the frame-left and right side walls by using the same material with the frame-left and right side walls. In other words, as long as the frame-front side wall 9 a can allow the tablet W supported in the spiral groove 5 a to pass therethrough, and prevent the tablet W excessively overlapped from passing therethrough, the configuration such as a size, a shape, and a material of the frame-front side wall 9 a is not limited thereto.
- the counting and filling apparatus 1 may be configured to be provided with an inclined plate 300 shown in FIGS. 16A to 16C , in the partition frame portions 9 , 9 A shown in FIGS. 4 , 11 B, 15 .
- an inclined plate 300 shown in FIGS. 16A to 16C , in the partition frame portions 9 , 9 A shown in FIGS. 4 , 11 B, 15 .
- FIGS. 16A to 16C the partition frame portions 9 , 9 A shown in FIGS. 4 , 11 B, 15 .
- the configuration of the inclined plate 300 and the moving state of the tablets W in FIGS. 11B , 15 are the same as in FIG. 4 .
- the same components as those already described are denoted by the same reference numerals, and the descriptions thereof will be omitted. As shown in FIGS.
- the inclined plate 300 is provided in the partition frame portion 9 by being supported by the central guide block 11 a (or the inner wall surface of the partition frame 9 ).
- the inclined plate 300 is for forcibly moving the tablets W toward the supply port 2 d side.
- the inclined plate 300 includes a rising surface 301 which is provided at a position opposed to the frame-front side wall 9 a , an inclined surface 302 which is inclined toward the supply port 2 d from the rising surface 301 , and an engaging mounting portion 303 which is formed at a position opposed to the central guide block 11 a .
- the inclined plate 300 is configured as a block-shaped member as an example, and is formed so that side surfaces of the inclined plate 300 come into contact with the frame-left and right side walls of the partition frame portion 9 , as shown in FIG. 16B .
- the rising surface 301 is disposed at a position spaced apart from the frame-front side wall 9 a by a distance which is a predetermined interval FS.
- the rising surface 301 is disposed at a position spaced apart from the frame-front side wall 9 a by more than two tablets W in the longitudinal direction (or diameter direction) thereof.
- the rising surface 301 is formed at a height where the tablets W, which are between the rising surface 301 and the frame-front side wall 9 a , can move by their own weight via the inclined surface 302 .
- the rising surface 301 is preferably formed in a range between 30 degrees and 90 degrees (orthogonal) with respect to the horizontal line at the top of the central guide block 11 a in this case.
- the inclined surface 302 is formed at an inclined angle where the tablets W, which get over the rising surface 301 , are allowed to move by their own weight to the supply port 2 d side of the hopper 2 .
- the inclined surface 302 has one end which is formed continuously from the rising surface 301 , and has the other end which is formed in a range between a position of the sliding side wall 2 e or the front side wall 2 c of the hopper 2 and a position spaced apart from the sliding side wall 2 e or the front side wall 2 c by a predetermined distance LS.
- the inclined surface 302 is, for example, preferably formed at an inclined angle between 15 degrees and 60 degrees.
- the inclined surface 302 is suitable for the tablet W having a curved surface shape such as a disk shape, a spherical shape, a rugby ball shape as a part or all of a contour thereof. Further, if the inclined angle is in a range beyond 30 degrees up to 60 degrees, the inclined surface 302 is suitable for the tablet W of a triangular shape having curved corners or of a shape having flat side surfaces.
- the inclined surface 302 has a slope length in which the tablet W can be moved by a distance corresponding to at least three times of the tablet W in the longitudinal direction or the diameter direction thereof, and the inclined surface 302 preferably has the slope length corresponding to 4 to 10 tablets W in this case.
- the engaging mounting portion 303 is for mounting the inclined plate 300 detachably in the partition frame portion 9 .
- the engaging mounting portion 303 is formed such that the bottom surface of the inclined plate 300 is spaced apart from the rotating rollers 3 a , 3 a , and mounted in engagement with the central guide block 11 a .
- the engaging mounting portion 303 is formed with an engaging concave portion engaged with a circular portion of the central guide block 11 a , and is formed such that facing portions 304 , 304 facing the rotating rollers 3 a , 3 a are spaced apart from the rotating rollers 3 a , 3 a .
- the inclined plate 300 is formed in a size such that the side surfaces thereof come into contact with the frame-left and right side walls of the partition frame portion 9 , the inclined plate 300 can be stably placed by mounting the engaging mounting portion 303 so as to be engaged with the central guide block 11 a.
- the above-described inclined plate 300 has the following functions. That is, when the tablets W are allowed to wait in the partition frame portion 9 by the frame-front side wall 19 or the shield-rotating plates 112 , 112 , the inclined plate 300 accumulates the tablets W between the rising plate 301 and the frame-front side wall 19 by the rising plate 301 . When the accumulated tablets W ride on the inclined surface 302 beyond the height of the rising plate 301 , the tablets W move by their own weight on the inclined surface 302 , and thus the inclined plate 300 move the tablets W to the supply port 2 d side. By moving the tablet W to a position close to the supply port 2 d by the inclined plate 300 , the tablet W can be easily housed in a vacant spiral groove 5 a of the guide route GR.
- the inclined plate 300 can sequentially move the tablets W, which wait at the side of the frame-front side wall 19 of the partition frame portion 9 , toward the supply port 2 d side by use of the inclined surface 302 , by providing the inclined plate 300 in the partition frame portion 9 as an intra-frame moving mechanism of the tablet W, the possibility of reducing the waiting time of the tablet W waiting in the partition frame portion 9 is increased.
- the inclined plate 300 can be secured to the central guide block 11 a by engaging the engaging mounting portion 303 located in the center of the lower surface thereof with the central guide block 11 a , and thus the inclined plate 300 can be also placed in a state of non-contact with the frame-left and right side walls. Further, when the inclined plate 300 is in the state of non-contact with the frame-left and right side walls, the inclined plate 300 may be in a state where the tablet W cannot enter the space therebetween.
- the inclined plates 300 can move the tablet W in the partition frame portion 9 in accordance with the outer shape of the tablet W.
- the inclined plate 300 has been described to be configured such that the tablets W move by their own weight, however, an unillustrated belt conveyor may be provided as the intra-frame moving mechanism in the partition frame portion 9 in the same positional relationship as the inclined plate 300 , and a drive motor for the belt conveyor may be configured to be provided through either of the frame-left and right side walls of the partition frame portion 9 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Basic Packing Technique (AREA)
- Supply Of Fluid Materials To The Packaging Location (AREA)
Abstract
The object of the present invention is to provide a method and apparatus for counting and filling, which allows materials to be counted to be supplied smoothly from a hopper to a transport mechanism, and is hardly influenced by the shape of the materials to be counted, and further has a simple configuration. The counting and filling apparatus aligns the materials to be counted through a guide route of a delivery mechanism, delivers the materials to a transport route of a transport mechanism, transports, counts, and fills the materials, and is configured to include the spiral groove rod disposed from the guide route to the transport route, and an adjusting unit which allows the materials supported in spiral grooves of the spiral groove rod to pass from the guide route to the transport route, and prevents passing of the materials overlapped on the spiral groove rod.
Description
- This application claims the foreign priority benefit under Title 35, United States Code, 119 (a)-(d) of Japanese Patent Application No. 2013-095838 filed on Apr. 30, 2013, and Japanese Patent Application No. 2014-032965 filed on Feb. 24, 2014 in the Japan Patent Office, each disclosure of which is herein incorporated by reference in its entirety.
- The present invention relates to a method and apparatus for counting and filling, in which materials to be counted such as tablets, capsules, tablet type materials, and capsule type materials, are transported, counted, and filled into a container.
- As a counting and filling apparatus for counting and filling tablets, the tablet being one of typical materials to be counted, there has been well known a counting and filling apparatus for transporting and counting tablets by using a vibration transport mechanism or a transport mechanism with a spiral groove rod and a vibration transport mechanism (see
Patent Document 1 and Non-patent Document 1). However, since the vibration transport mechanism is used in any apparatus, the tablets rub against one another due to vibrations and easily generate powders, and there is a limit to the transport speed because the vibration transport mechanism is used. - Therefore, there has been conventionally proposed a counting and filling apparatus for transporting the tablets by using a transport mechanism with a spiral groove rod (see Patent Document 2). The transport mechanism of this tablet counting and filling apparatus receives the tablets supplied from a hopper, at a spiral groove position between the spiral groove rod which is rotated by a motor and guide rods which are positioned at the left and right of the spiral groove rod, and transports the tablets in the transport direction by the rotating spiral groove rod. The tablet counting and filling apparatus described above is also proposed to be configured to transport the tablets from the hopper to a filling position by the rotation of the spiral groove rods by including the spiral groove rods of two stages.
-
-
Patent Document 1 - Japanese Patent Application Publication No. S53-096176
-
Patent Document 2 - Japanese Patent Application Publication No. 2010-208676
-
- {Non-patent Document 1}
- http://www.ishida.co.jp/products/280.php (Ishida Co., Ltd.: Chewable tablet-enabled type tablet counter JZ33-15K type [Feb. 25, 2013])
- However, the conventional counting and filling apparatus leaves room for improvement as described below. Since the counting and filling apparatus receives the tablets directly from the hopper between the spiral groove rod and the guide rod, the tablets overlap near the outlet of the hopper depending on the shape of the tablet, and cannot be supplied smoothly from the hopper in some cases. Further, when the counting and filling apparatus uses the first stage and second stage transport mechanisms, and a plurality of first stage transport mechanisms with the spiral groove rods and the guide rods are arranged in parallel, the configuration becomes complicated and large, because a plurality of spiral groove rods are rotated via a gear box by one servomotor.
- The present invention has been made to solve the problems described above, and an object of the present invention is to provide a method and apparatus for counting and filling, each of which allows the materials to be counted to be supplied more smoothly from the hopper, and is hardly influenced by the shape of the materials to be counted, and further has a simple configuration.
- In order to solve the above problems, a counting and filling apparatus according to the present invention aligns materials to be counted in a guide route while changing postures of the materials to be counted by a delivery mechanism provided below a supply port of a hopper, and delivers the materials to a transport route of a transport mechanism which has a guide rod and a spiral groove rod continuing to the guide route, and then transports, counts, and fills the materials into a container, wherein the transport mechanism includes the spiral groove rod which is disposed from the guide route to the transport route, and a lateral guide portion which is provided facing to a base end side of the spiral groove rod and along the axis of the guide rod, and forms the guide route, and wherein the counting and filling apparatus includes, between the supply port and the transport route, an adjusting unit which is provided so as to pass the materials supported via the lateral guide portion in the spiral grooves from the guide route to the transport route, and so as to prevent the materials excessively overlapped on the spiral groove rod or on the other materials from passing to the transport route and allow the materials to wait along the guide route.
- With this configuration, the counting and filling apparatus aligns the materials to be counted through the guide route while changing the postures of the materials falling from the supply port of the hopper by the delivery mechanism, delivers the materials via the lateral guide portion to the spiral grooves which are positioned in the guide route side of the spiral groove rod provided in the transport route and the guide route, and sends the materials to the transport route by the rotation of the spiral groove rod. By the adjusting unit provided between the supply port and the transport route, the counting and filling apparatus passes the materials supported in the spiral grooves, and prevents passing of the other materials overlapped on the spiral groove rod and allows the materials to wait temporarily, and then sends out the materials supported properly in the spiral grooves to the transport route. The counting and filling apparatus is in a state capable of delivering the material to be counted, which are allowed to wait by the adjusting unit, if there is a vacant spiral groove of the rotating spiral groove rod. Note that, the counting and filling apparatus changes the postures of the materials to be counted, which fall by their own weight and have inappropriate postures, by a posture changing unit of the delivery mechanism, and aligns the materials to be counted, which have appropriate postures, in the guide route by a regulating unit of the delivery mechanism while keeping their postures.
- The counting and filling apparatus may be configured such that the adjusting unit constitutes side walls of a partition frame portion, which is disposed so as to surround the guide route at a position adjacent to the supply port and above the delivery mechanism, by a frame-front side wall which is provided between the guide route and the transport route, a shield-rotating plate which is provided along the frame-front side wall, and frame-left and right side walls which are provided to support the frame-front side wall and are continuous from the supply port of the hopper, wherein the delivery mechanism includes, below the supply port and the partition frame portion, a regulating unit which regulates a guide route width for guiding the materials to be counted to the spiral grooves which are on the base end side of the spiral groove rod, and a posture changing unit which is disposed along the guide route, wherein the regulating unit includes, below the supply port and the partition frame portion, a central guide portion which is disposed just above the spiral groove rod, and the lateral guide portion which is provided to be opposed to a lateral side of the spiral groove rod, and guides the materials to be counted to the spiral groove rod, wherein the posture changing unit includes, above the lateral guide portion, a rotating roller which is provided to be opposed to the central guide portion across the guide route on a lateral side of the central guide portion, and a rotation drive unit which rotates the rotating roller in a direction different from a falling direction of the materials to be counted, wherein a notch portion for rotating the shield-rotating plate is formed on at least one of the frame-front side wall and the frame-left and right side walls, and wherein the shield-rotating plate is provided on a tip end side in the longitudinal direction of the rotating roller, and allows passing of the materials to be counted which are sent while being supported in the spiral grooves, while preventing passing of the materials to be counted which are excessively overlapped on the spiral groove rod or on the other materials to be counted.
- With this configuration, in the counting and filling apparatus, the materials to be counted, which fall by their own weight from the supply port of the hopper, are overlapped in the delivery mechanism and after entering the guide route. The counting and filling apparatus changes the postures of the materials to be counted, which cannot pass through the guide route, while applying a frictional force in a direction different from the falling direction of the materials to be counted by the rotating roller as the posture changing unit provided along the guide route. Note that, if the materials to be counted take postures capable of passing through the guide route, the materials are aligned by falling by their own weight along the guide route without being changed the postures thereof by the rotating roller. In the counting and filling apparatus, the materials to be counted are aligned and supported in the spiral grooves of the spiral groove rod via the lateral guide portion. Further, some of the materials to be counted are sent toward the side of the frame-front side wall of the partition frame portion without being supported in the spiral grooves, however, by coming into contact with the shield-rotating plate, the materials are lifted temporarily in the rotation direction so that the postures thereof are changed, and are allowed to wait temporarily in the guide route surrounded by the partition frame portion. Then, the materials to be counted, which wait in the guide route in a range surrounded by the partition frame portion while being changed the postures thereof by the rotation of the rotating roller, enter to be supported in the spiral grooves when there is a vacant spiral groove, and are sent toward a transport end without being blocked by the shield-rotating plate and the front wall surface.
- A method for counting and filling for solving the above problems is a method for counting and filling by use of the counting and filling apparatus, wherein materials to be counted inputted into a hopper are aligned in a guide route while the postures of the materials to be counted are changed by a delivery mechanism, delivered to a transport route of a transport mechanism, supported, transported, and sent out by a guide rod and spiral grooves of a spiral groove rod which are the transport mechanism, and the materials to be counted are counted by a counting unit, and filled into a container, wherein the method for counting and filling comprises following steps: an input step of inputting the materials to be counted into the hopper; a delivery step of allowing the inputted materials to be counted to fall by their own weight from the supply port of the hopper, and to be aligned in a guide route formed by use of a regulating unit of the delivery mechanism while changing the postures of the materials to be counted by rotating a rotating roller which is a posture changing unit of the delivery mechanism so as to apply a frictional force in a direction different from the falling direction of the materials to be counted, and delivering the materials to be counted to the spiral grooves of the spiral groove rod via the lateral guide portion of the regulating unit; a transport step of sending the materials to be counted, which are delivered to the spiral grooves of the spiral groove rod by the delivery mechanism, to the transport route of the spiral groove rod from the guide route by the rotation of the spiral groove rod, and transporting the materials to be counted to a transport end in a state of being supported in a support space region between the spiral groove rod and the guide rod; and a filling step of sending out the materials to be counted which are transported to the transport end, counting the materials by the counting unit, and filling the counted materials into the container. In the delivery step, by the adjusting unit provided between the supply port and the transport route, a pre-delivery step is performed together, the pre-delivery step including passing the materials to be counted, which are supported via the lateral guide portion opposed to the spiral grooves, to the transport route from the guide route, preventing passing of the materials to be counted, which are excessively overlapped on the spiral groove rod or on the other materials to be counted, allowing the materials to wait along the guide route, and delivering the material to a vacant spiral groove when there exists the vacant spiral groove of the rotating spiral groove rod.
- By the above procedures, in the method for counting and filling, when the materials to be counted are inputted into the hopper, the materials fall by their own weight from the supply port of the hopper, and become in a state of being overlapped between the supply port and the delivery mechanism and after entering the guide route. Further, in the method for counting and filling, by applying the frictional force for the materials to be counted in the direction different from the falling direction of the materials to be counted by the rotating roller which is the posture changing unit of the delivery mechanism, the postures of the materials to be counted, which cause a bridge against the guide route, are changed, and become in a state of being aligned by the regulating unit. If the materials to be counted take postures capable of passing through the guide route, the materials are aligned by falling by their own weight along the guide route without being changed the postures thereof by the posture changing unit. Further, in the method for counting and filling, when the materials to be counted, which are supported in the spiral grooves by the rotation of the spiral groove rod, are transported from between the spiral groove rod and the lateral guide portion of the regulating unit to between the spiral groove rod and the guide rod, the materials supported in the spiral grooves are passed, and the materials not supported in the spiral grooves are prevented from passing to the transport route by the adjusting unit and allowed to wait temporarily along the guide route. When a vacant spiral groove of the rotating spiral groove rod comes to a position in the guide route where the materials to be counted wait, the materials to be counted are supported sequentially in the spiral grooves. In the method for counting and filling, the materials to be counted which have passed through the adjusting unit are supported by the support space region between the spiral grooves of the spiral groove rod and the guide rod and transported to the transport end. Further, in the method for counting and filling, the materials to be counted are sent out from the transport end by the rotation of the spiral groove rod, and the falling materials to be counted are counted by the counting unit and filled into the container.
- A method and apparatus for counting and filling according to the present invention exhibit excellent effects described below. Since the adjusting unit is provided between the supply port and the transport route, the counting and filling apparatus is hardly influenced by the shape of the materials to be counted and can perform quickly and accurately the delivery of the materials to be counted from the guide route to the transport route. In the counting and filling apparatus, since the materials to be counted, which are not supported in the spiral grooves in the guide route, come into contact with the shield-rotating plate on the side of the frame-front side wall of the partition frame portion, the postures of the materials can be changed. Therefore, the materials to be counted, which are excessively overlapped on the spiral groove rod or the like, can be allowed to smoothly wait temporarily in the guide route in the range of the partition frame portion, and then delivered to the spiral grooves when there is a vacant spiral groove, even if the shape of the materials to be counted is an elongated shape such as a rugby ball shape and a capsule shape.
- Further, by providing the shield-rotating plate at the tip end side of the rotating roller, the counting and filling apparatus allows the materials to be counted to wait in the guide route in the range of the partition frame portion while changing the postures of the materials to be counted which have not delivered to the spiral grooves by a delivery mechanism together with the rotating roller. Therefore, the counting and filling apparatus can realize that the materials to be counted are smoothly delivered from the delivery mechanism to the transport mechanism by a simple apparatus configuration compared with a conventional apparatus with a two-stage transport mechanism. Further, the counting and filling apparatus may be configured to have the guide rod in parallel with the spiral groove rod and on one side thereof, or to have a plurality of transport mechanisms disposed in parallel to one another, wherein the guide rods are disposed in parallel to each other on the left and right of the spiral groove rod, and thereby it is possible to accurately fill a number of materials to be counted at a high speed.
- Further, by enclosing the lower side of the guide rod and the spiral groove rod by a region dividing portion and sucking the air in the region dividing portion by a suction mechanism, the counting and filling apparatus can collect dust such as friction particles generated from the materials to be counted, and by urging downward the materials to be counted which are sent by the transport route, the counting and filling apparatus can allow the postures of the materials to be stabilized. Therefore, the counting and filling apparatus can prevent falling of the materials to be counted during transport and perform accurate visual inspection by shooting the materials to be counted in the transport route.
- The method for counting and filling aligns the materials to be counted by the guide route of the regulating unit while changing the postures of the materials to be counted which cannot pass thorough the guide route, by applying the frictional force for the materials which are inputted into the hopper by the posture changing unit, in the direction different from the falling direction of the materials which fall by their own weight from the supply port of the hopper. Further, the method for counting and filling supports the materials to be counted in the spiral grooves of the spiral groove rod in the guide route while allowing the material to wait temporarily in the guide route in the adjusting unit (in the range of the partition frame portion by the shield-rotating plate provided on the tip end side of the rotating roller). Therefore, since the method for counting and filling is hardly influenced by the shape of the materials to be counted and can smoothly deliver the materials to be counted from the delivery mechanism to the support space region between the spiral grooves of the spiral groove rod and the guide rod, thereby quickly transporting, counting, and filling a large amount of materials to be counted.
-
FIG. 1A is a schematic diagram schematically showing a whole of a counting and filling apparatus according to the present invention; -
FIG. 1B is an enlarged perspective view of a part of a spiral groove rod surrounded by a thick dashed circle inFIG. 1A ; -
FIG. 1C is an enlarged view of a part of a spiral groove rod surrounded by a thick dashed circle inFIG. 1B ; -
FIG. 2 is a perspective view showing a whole of the counting and filling apparatus according to the present invention by omitting a part thereof; -
FIG. 3A is a plan view showing a whole of the counting and filling apparatus according to the present invention by omitting a part thereof; -
FIG. 3B is an enlarged view of a part surrounded by a thick dashed circle inFIG. 3A , and shows a connecting portion between a guide block and a lateral guide block; -
FIG. 3C is an enlarged view of a part surrounded by a thick dashed ellipse inFIG. 3A , and shows a part of the guide block and the spiral groove rod; -
FIG. 4 is an exploded perspective view showing a configuration of a delivery mechanism by omitting a part of the counting and filling apparatus according to the present invention; -
FIG. 5A is a cross-sectional view schematically showing a configuration of a shield-rotating plate in the delivery mechanism which is a part of the counting and filling apparatus according to the present invention; -
FIG. 5B is a perspective view showing the configuration of the shield-rotating plate in the delivery mechanism by omitting a part of the counting and filling apparatus according to the present invention; -
FIG. 6 is a cross-sectional view from a line A-A direction inFIG. 4 of the counting and filling apparatus according to the present invention, and is a cross-sectional view schematically showing an interval adjusting mechanism for adjusting an interval between second support holders for supporting guide rods; -
FIG. 7 is a block diagram schematically showing a control mechanism of the counting and filling apparatus according to the present invention; -
FIGS. 8A to 8D are schematic diagrams schematically showing states in which materials to be counted are aligned by a regulating unit and a posture changing unit of the delivery mechanism and delivered to a spiral groove rod, and states in which postures of tablets are changed by the shield-rotating plate, in the counting and filling apparatus according to the present invention; -
FIG. 9A is a schematic diagram schematically showing another configuration of lateral guide portions of the counting and filling apparatus according to the present invention; -
FIG. 9B is a perspective view schematically showing another configuration of the lateral guide portions of the counting and filling apparatus according to the present invention; -
FIG. 10 is a schematic diagram schematically showing another configuration of the delivery mechanism of the counting and filling apparatus according to the present invention; -
FIG. 11A is a schematic diagram schematically showing another configuration of a partition frame portion of the counting and filling apparatus according to the present invention; -
FIG. 11B is a perspective view schematically showing another configuration of the partition frame portion of the counting and filling apparatus according to the present invention; -
FIGS. 12A to 12C are schematic diagrams showing another configurations of the materials to be counted which are counted and filled by the counting and filling apparatus according to the present invention; -
FIG. 13 is a cross-sectional view schematically showing a state in which a dust collecting suction mechanism is provided in the counting and filling apparatus according to the present invention by omitting a part thereof; -
FIGS. 14A to 14C are perspective views showing states in which the dust collecting suction mechanism is provided in the counting and filling apparatus according to the present invention by omitting a part thereof; -
FIG. 15 is an exploded perspective view showing another configuration of an adjusting unit of the counting and filling apparatus according to the present invention; -
FIG. 16A is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a perspective view showing an inside of the partition frame portion by cutting a part thereof; -
FIG. 16B is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a cross-sectional diagram showing the inclined plate from a front side by cutting a part thereof; and -
FIG. 16C is a view showing a state in which an inclined plate is provided in the partition frame portion of the counting and filling apparatus according to the present invention, and is a schematic diagram showing the inclined plate from a lateral side by cutting a part thereof. - Hereinafter, a method and apparatus for counting and filling will be described with reference to drawings. Note that, in each drawing, a configuration in which capsule-type tablets as an example of materials to be counted are counted by a counting and filling apparatus will be described. As an example, the counting and filling apparatus will be described as a configuration in which five transport mechanisms including guide rods provided in parallel to each other on the left and right of a central spiral groove rod are disposed in parallel to one another. Further, a relationship between a size of the tablet to be used and that of each component of the counting and filling apparatus, or positions of the tablets with respect to each component of the counting and filling apparatus are appropriately deformed or schematically shown in the drawings in some cases.
- As shown in
FIGS. 1A to 3C , a counting and fillingapparatus 1 is for counting a predetermined amount of tablets W and filling them into a container V while transporting the tablets W. The counting and fillingapparatus 1 mainly includes adelivery mechanism 30 for delivering the tablets W to atransport mechanism 4 from ahopper 2 in which the tablets W are inputted, thetransport mechanism 4 for receiving and transporting the tablets W from thedelivery mechanism 30, an adjusting unit Sm provided between asupply port 2 d of thehopper 2 and a transport route Sr of thetransport mechanism 4, acounting unit 14 for counting the transported tablets W, and acontrol unit 20 for controlling each mechanism and the like. Note that, the counting and fillingapparatus 1 is, in this case, provided with animage capturing unit 22 such as a CCD camera above a predetermined transport route Sr of thetransport mechanism 4, and is configured to be able to determine defects such as notch of the tablets W, by data of images taken by theimage capturing unit 22 being sent to thecontrol unit 20, and to select the chipped tablets W. - The counting and filling
apparatus 1, in this case, uses atransport conveyor 50 for continuously transporting the containers V in which the tablets W transported by thetransport mechanism 4 and counted by thecounting unit 14 are filled. Further, the counting and fillingapparatus 1 includes afirst support holder 31 and asecond support holder 32 for holding aspiral groove rod 5, guiderods transport mechanism 4, abase 100 for supporting thefirst support holder 31 and thesecond support holder 32, and aholder moving mechanism 40 for moving thesecond support holder 32 close to or away from thefirst support holder 31 in order to adjust intervals of theguide rods spiral groove rod 5. Note that, in the counting and fillingapparatus 1, a guide route GR (seeFIG. 1A ) is from a space between acentral guide block 11 a and opposingrotating rollers FIGS. 3A , 3B), to a space between thespiral groove rod 5 and opposing lateral guide blocks 12 a, and the transport route Sr (seeFIG. 1A ) is a space between thespiral groove rod 5 and the opposingguide rods guide rod 6 andspiral grooves 5 a of thespiral groove rod 5. - A capsule is a specific example of the material to be counted as the tablet W which is an object to be counted by the counting and filling
apparatus 1, however, the tablets to be counted such as a tablet of rugby ball shape, a round tablet, and a tablet of triangular rice ball shape, which have a curved portion in the external shape, are the objects. The material to be counted as the tablet W is, as areas commonly used, not specifically limited to areas such as medicine, supplement, and confectionary. If the tablet W has a curved portion in the external shape, in particular, a disc shape, a lens shape, a rugby ball shape, an annular shape like a troche, or a capsule shape, the tablet W can be rotated when transported, and can be stably transported at a high speed. Further, the tablet W, which is coated on the surface as a sugar-coated tablet or is not coated as a plain tablet, can be handled. The tablet W of capsule is transported in a state of rotating about a long axis as the long axis is in a horizontal direction. - As shown in
FIGS. 1A to 3C , thebase 100 of the counting and fillingapparatus 1 supports thefirst support holder 31 and thesecond support holder 32. Thebase 100 is formed with throughholes hole 100 a which is a countingpath 15 for the tablet W at a position of a transport end of the transport mechanism 4 (seeFIGS. 2 , 3A). Mountingframes holes FIGS. 2 , 3A). The mountingframe 101 is formed in annular and rectangular, and aholder guide plate 102 is provided on the mounting frame 101 (seeFIG. 2 ). Theholder guide plate 102 supports thefirst support holder 31 and thesecond support holder 32. Theholder guide plates 102 are respectively formed with openingholes 102 b, through which transmission gears 45 of theholder moving mechanism 40 are connected, in the centers facing a tip endrotation support holder 31A and a base endrotation support holder 31B of the first support holder 31 (seeFIG. 6 : thetransport mechanism 4 composed of thespiral groove rod 5 and theguide rods FIG. 4 , however, two units of thetransport mechanism 4 are shown inFIG. 6 ). - As shown in
FIGS. 2 to 4 , theholder moving mechanism 40 of the counting and fillingapparatus 1 is for adjusting the intervals between thespiral groove rod 5 and theguide rods second support holders first support holder 31. Theholder moving mechanism 40 includes a tip endholder moving mechanism 40A for moving tipend support holders rotation support holder 31A, and a base endholder moving mechanism 40B for moving baseend support holders rotation support holder 31B. Since the tip endholder moving mechanism 40A and the base endholder moving mechanism 40B have the same configuration, one will be described. - As shown in
FIG. 6 , the base endholder moving mechanism 40B includes aholder driving source 41 such as a drive motor, a driving force transmission unit 141 (42, 43, 44, 45) for transmitting a driving force from theholder driving source 41, and a linear moving unit 142 (46, 47, 48, 49 (seeFIG. 4 )) for linearly moving the baseend support holders force transmission unit 141. The drivingforce transmission unit 141 has acoupling portion 42 which transmits the driving force from theholder driving source 41 by being connected to a rotating shaft, a transmissiondirection changing portion 43 such as bevel gears which changes the transmission direction of the driving force transmitted by thecoupling portion 42 and transmits the driving force, a rotatingshaft 44 rotated by the driving force which is changed the transmission direction by the transmissiondirection changing portion 43, and the transmission gears 45 which are attached to therotating shaft 44 with predetermined intervals intermittently at positions just below the base endrotation support holder 31B and rotate together with the rotatingshaft 44. - The driving
force transmission unit 141 transmits the driving force to the linear movingunit 142 by theholder driving source 41 being operated, a rotation speed of the driving force being reduced by the transmissiondirection changing portion 43, the direction of the driving force being changed to the horizontal direction from the vertical direction by the transmissiondirection changing portion 43, and therotating shaft 44 and the plural transmission gears 45 being rotated. The linear movingunit 142 has a drivengear 46 meshing with thetransmission gear 45, a rotatingshaft 47 to which the drivengear 46 is secured and which is provided in the baseend support holder 32B rotatably via a bearing,nut portions portions rotating shaft 47, and rotating shaft guides 48, 49 (seeFIG. 4 ) which are provided slidably in the baseend support holder 32B in parallel with the rotatingshaft 47. - The linear moving
unit 142 can move the baseend support holders holder guide plate 102 and the rotating shaft guides 48, 49, because therotating shaft 47 is rotated together with the drivengear 46 driven by the rotation of thetransmission gear 45, and the threadedportions rotating shaft 47 are formed to have threads opposite to each other. Note that, the tip endholder moving mechanism 40A and the base endholder moving mechanism 40B can be operated synchronously or operated separately. The tip endholder moving mechanism 40A and the base endholder moving mechanism 40B can be operated separately in a range of tolerance of a supporting component part. - As shown in
FIGS. 1A , 2, and 4, thehopper 2 is for inputting and storing the tablets W therein, and for supplying the tablets W via the delivery mechanism 30 (seeFIG. 4 ) to a base end side of thetransport mechanism 4. Thehopper 2 has a hoppermain body 2 b which is formed narrower in the downward direction from aninput port 2 a (seeFIG. 4 ) which is open wide in the upward direction, and thesupply port 2 d formed at the bottom is disposed to face just below the base end side of thedelivery mechanism 30. Thehoppers 2 may be configured to be provided for each transport mechanism 4 (seeFIG. 2 ), or a plurality ofsupply ports 2 d (not shown) may be configured to be provided in one housing for all of thetransport mechanisms 4 provided side by side. - As shown in
FIG. 4 , an opening is formed by a notch at a position on afront side wall 2 c of thesupply port 2 d, and a slidingside wall 2 e as a partition plate is provided on the opening so as to be stopped at a predetermined position in the vertical direction by a fixing unit (fixing bolt) 2 f. The slidingside wall 2 e is for changing the size of the opening in accordance with the size and shape of the tablets W to be inputted. Here, the slidingside wall 2 e is, for an example, set to have an opening height (seeFIGS. 5A , 5B) such that the tablets W supplied from thesupply port 2 d are overlapped in about five steps including a tablet taken (supported) in thespiral groove 5 a. As shown inFIG. 5B , thesupply port 2 d is provided so as not to pass the tablets W between the lower end of thesupply port 2 d and the upper end of thedelivery mechanism 30, by allowing a position of the lower end excluding thefront side wall 2 c to be close to thedelivery mechanism 30 so that an interval therebetween is smaller than a thickness of the tablet W. Here, the frame-left and right side walls of apartition frame portion 9 and the left and right wall surfaces of thesupply port 2 d of thehopper 2 are formed integrally. Thesupply port 2 d is formed of the slidingside wall 2 e, the frame-left and right side walls to the slidingside wall 2 e, and a rear side wall which is a surface opposed to the slidingside wall 2 e. - As shown in
FIGS. 1A , 2, and 4, thepartition frame portion 9 is provided in thesupply port 2 d, thepartition frame portion 9 being provided with shield-rotatingplates front side wall 19 as the adjusting unit Sm in adjacent manner. As shown inFIG. 4 , thepartition frame portion 9 temporarily allows the tablets W to wait or stores the tablets W, which are supplied and not delivered to thespiral grooves 5 a of thespiral groove rod 5 by thedelivery mechanism 30 just below thesupply port 2 d, and is for providing a space for delivering via thedelivery mechanism 30 the tablets W to thevacant spiral grooves 5 a just below thesupply port 2 d. Thepartition frame portion 9 forms a rectangular space which is partitioned by thefront side wall 2 c of thehopper 2 and other three side walls. Here, thepartition frame portion 9 is formed with a range between thefront side wall 2 c (or the slidingside wall 2 e) and the tip end side of thedelivery mechanism 30, and a range including the guide route GR (seeFIG. 5A ) which is formed of acentral guide portion 11 and aposture changing unit 3 of thedelivery mechanism 30. - Further, the frame-
front side wall 19 of thepartition frame portion 9 is formed with arc-shapednotch portions notch portions plates plates spiral groove rod 5 and come into contact with the shield-rotatingplates spiral grooves 5 a, for example, in a state where the tablets W overlap at positions on the spiral groove rod 5 (not in thespiral grooves 5 a), the tablets W cannot pass through the shield-rotatingplates partition frame portion 9. Note that, a state in which the tablets W, which could not be delivered to thespiral grooves 5 a of thespiral groove rod 5 via thedelivery mechanism 30 from thesupply port 2 d, exist in at least one of the guide route GR on the lower side of the range of thepartition frame portion 9 and a range surrounded by the frame-left and right side walls and the frame-front side wall 19 in thepartition frame portion 9, is in some cases referred to as a storage, a hold, a reserve, or a wait, however, any word is used as a same meaning. Further, the range of thepartition frame portion 9 means both or at least one of the guide route GR on the lower side of the range surrounded by thepartition frame portion 9 and the range surrounded by the frame-left and right side walls and the frame-front side wall 19 in thepartition frame portion 9. - As shown in
FIGS. 2 to 4 , thedelivery mechanism 30 is for aligning the tablets W supplied by falling by their own weight from thehopper 2, and delivering them to the base end side of thetransport mechanism 4. Thedelivery mechanism 30 is provided just above a position of the base end side of thespiral groove rod 5 and at a position opposed to thepartition frame portion 9 and thesupply port 2 d. Thedelivery mechanism 30 includes theposture changing unit 3 and a regulatingunit 13, and forms the guide route GR (seeFIG. 5A ) with the regulatingunit 13, and is configured to deliver the tablets W which are aligned in the guide route GR to thespiral grooves 5 a of thespiral groove rod 5. Here, thedelivery mechanism 30 also plays a role of forming the guide route GR of the regulatingunit 13 with theposture changing unit 3. Thedelivery mechanism 30 is set to be able to deliver the tablets W to thetransport mechanism 4 side, by introducing the tablets W to the guide route GR of the regulatingunit 13 and aligning them while changing their postures by the posture changing unit 3 (rotatingrollers partition frame portion 9 and thesupply port 2 d. - As shown in
FIGS. 4 , 5A, and 5B, theposture changing unit 3 is for changing the postures of the tablets W and guiding the tablets W to the guide route GR, by applying a frictional force in a direction different from a falling direction of the tablets W which fall from thesupply port 2 d. Theposture changing unit 3 includes therotating roller 3 a which is a posture changing roller, a connectingportion 3 b which connects therotating roller 3 a to the baseend support holder 32B of thesecond support holder 32, aroller drive motor 3 c which rotates therotating roller 3 a via the connectingportion 3 b connected to the baseend support holder 32B, and a shield-rotatingplate 112 which is provided on the tip end side of therotating roller 3 a. Note that, “applying a frictional force” means that therotating rollers - As shown in
FIG. 4 , therotating roller 3 a is a column or a cylindrical body which has substantially the same diameter as theguide rod 6, and includes a connection structure for being connected with the connectingportion 3 b on the base end side. Therotating rollers central guide block 11 a of thecentral guide portion 11, and disposed facing each other just above the lateral guide blocks 12 a, 12 a oflateral guide portions 12. Here, as shown inFIG. 5A , therotating rollers partition frame portion 9 and thesupply port 2 d so that lower ends of both side walls of thesupply port 2 d of thehopper 2 are in a range of width of therotating rollers FIGS. 5A , 5B, lower ends of thepartition frame portion 9 and thesupply port 2 d are provided in a state close to upper portions of the shield-rotatingplates rotating rollers rotating roller 3 a may be a structure such as a general keyway which can be removably attached and connect a rotation driving force from theroller drive motor 3 c, and is not limited thereto. Further, theroller drive motor 3 c is not limited thereto, as long as it is a drive unit such as a common DC motor to rotate a rotating shaft. - As shown in
FIG. 4 , thesecond support holder 32 rotatably supports therotating rollers second support holder 32 includes the tipend support holder 32A (seeFIG. 2 ) and the baseend support holder 32B. Further, each of the baseend support holders 32B rotatably supports therotating rollers end support holders 32B (on both sides of the base endrotation support holder 31 B of the first support holder 31) includes a bearing or the like (not shown) which transmits via the connectingportion 3 b the rotation driving force from theroller drive motor 3 c. Further, each of the baseend support holders 32B is configured to be able to move in a direction of being close to or away from the base endrotation support holder 31 B (thespiral groove rod 5 side) as a center. As shown inFIG. 6 , each of the baseend support holders nut portions portions unit 142 are screwed. Note that the threadedportions rotating shaft 47, the baseend support holders rotation support holder 31B, respectively. - As shown in
FIG. 5A , therotating rollers 3 a rotate so as to apply the frictional force to the tablets W in the direction opposite to or different from the falling direction of the tablets W on both sides of the guide route GR (inFIG. 5A , therotating roller 3 a on the right side rotates clockwise, and therotating roller 3 a on the left side rotates anti-clockwise). Therefore, even if a tablet W is in a posture where a large area surface thereof faces the guide route GR, the posture of the tablet W is changed by the rotation of therotating roller 3 a, to be in a posture capable of passing through (entering) the guide route GR. Note that therotating roller 3 a prevents the tablets W from being bridged to each other by applying the frictional force in the direction opposite to the falling direction of the tablets W. A tablet W originally in a posture capable of passing through the guide route GR falls without touching therotating roller 3 a, or the interval to a side surface of thecentral guide block 11 a is small even if the tablet W touches therotating roller 3 a, and thus the tablet W falls along the guide route GR without changing the posture capable of entering the guide route GR by being guided by thecentral guide block 11 a. A rotational speed of therotating roller 3 a is set to be slower than a rotational speed of thespiral groove rod 5. Since the rotational speed of therotating roller 3 a is slower than the rotational speed of thespiral groove rod 5, theposture changing unit 3 can deliver the tablets W more smoothly in a manner where a ratio of the tablets W received in thespiral grooves 5 a of thespiral groove rod 5 to the tablets W falling by their own weight is appropriate. - As shown in
FIGS. 4 , 5A, and 5B, the shield-rotatingplate 112 is formed in a disc shape and disposed on a tip end surface (tip end side) of therotating roller 3 a, and is configured to be rotatable together with the rotation of therotating roller 3 a. The diameter of the shield-rotatingplate 112 is formed larger than the diameter of therotating roller 3 a, and the shield-rotatingplate 112 includes, on the outside of therotating roller 3 a, a surface thereof capable of coming into contact with the tablets W which are transported by the rotation of thespiral groove rod 5 in a state of not being supported in thespiral grooves 5 a. Here, the shield-rotatingplate 112 is formed of an elastic member such as a silicone rubber and a resin (polyacetal, ultrahigh molecular weight polyethylene) which are softer than metal. When the tablet W sent by the rotation of thespiral groove rod 5 comes into contact with the shield-rotatingplate 112, the shield-rotatingplate 112 can also change the posture of the tablet W by temporarily moving the tablet W in the rotation direction of the shield-rotatingplate 112. The tablet W which has been changed the posture thereof is temporarily reserved in the range of thepartition frame portion 9. Further, the tablet W which has been changed the posture thereof by the shield-rotatingplate 112 waits in a state (posture) to be easily delivered to avacant spiral groove 5 a. Note that, the shield-rotatingplates rotating roller 3 a, bygroove portions 6 f of theguide rods notch portions front side wall 19 of thepartition frame portion 9. As shown inFIG. 5A , a space between the shield-rotatingplates notch portions front side wall 19 is set so that the shield-rotatingplates spiral grooves 5 a cannot be passed. - Therefore, only the tablets W which are supported in the
spiral grooves 5 a are delivered by the rotation of thespiral groove rod 5 through the outside of the shield-rotatingplate spiral groove rod 5 and the lateral guide blocks 12 a, 12 a are opposed to each other, to the transport route Sr at the position where thespiral groove rod 5 and theguide rods plates plates spiral grooves 5 a can be eliminated. Then, the tablet W is temporarily stored in the range of thepartition frame portion 9 while the posture thereof is being changed by therotating rollers plates vacant spiral groove 5 a. The tablet W waiting in the range of thepartition frame portion 9 is changed the posture thereof by the rotation of therotating rollers plates vacant spiral groove 5 a. - As shown in
FIGS. 4 , 5A, and 5B, the regulatingunit 13 is for regulating a route width from thesupply port 2 d, forming the guide route GR, aligning the tablets W which fall by their own weight from thesupply port 2 d of thehopper 2, and guiding the tablets W to thespiral grooves 5 a of thespiral groove rod 5. The regulatingunit 13 includes thecentral guide portion 11 which is disposed below thepartition frame portion 9 and thesupply port 2 d and is disposed just above the base end side of thespiral groove rod 5, and thelateral guide portions 12 which are disposed in parallel with and on the left and right of thespiral groove rod 5. Note that therotating rollers central guide block 11 a, and thus also play a role of the regulatingunit 13. Thecentral guide portion 11 is for distributing the tablets falling by their own weight to the left and the right. Thecentral guide portion 11 includes thecentral guide block 11 a and a centralblock support portion 11 b which supports thecentral guide block 11 a. Thecentral guide block 11 a is, for example, an elongated block body which has an upper portion thereof formed in a convex curved surface, a lower portion thereof formed in a concave curved surface, and side surfaces formed flat between the upper portion and the lower portion. - The
central guide block 11 a is provided so that the lower portion of a concave curved surface is opposed to thespiral groove rod 5, and the flat side surfaces are opposed to therotating rollers central guide block 11 a is disposed to be in a state of being closer to thespiral groove rod 5 than the thickness of the tablet W. Thecentral guide block 11 a is provided such that the base end side in the longitudinal direction thereof is supported by the centralblock support portion 11 b. The centralblock support portion 11 b supporting thecentral guide block 11 a is attached to the outside of the base endrotation support holder 31B. Since thecentral guide block 11 a is close to thespiral guide rod 5, thecentral guide portion 11 does not allow the tablets W to enter between thecentral guide block 11 a and thespiral guide rod 5 in the guide route GR, and prevents the tablets W from being bridged to each other. - As shown in
FIGS. 4 , 5A, and 5B, thelateral guide portions 12 are for guiding and delivering the tablets W, which are aligned by the guide route GR between thecentral guide block 11 a and therotating rollers 3 a, to thespiral grooves 5 a of thespiral groove rod 5. Thelateral guide portions 12 includes the lateral guide blocks 12 a, 12 a, which are disposed below thepartition frame portion 9 and thesupply port 2 d and are disposed in parallel with and on the left and right of thespiral groove rod 5, and lateralguide support portions - The
lateral guide block 12 a is disposed at a position of being opposed just below the rotating roller (posture changing unit) 3 a and being opposed to the base end side of thespiral groove rod 5. As shown inFIGS. 5A , 5B, thelateral guide block 12 a is a block body including ablock side surface 12 b which has a flat side opposed to thespiral groove rod 5, and aspace guide protrusion 12 c which is extended to therotating roller 3 a side from the upper end of theblock side surface 12 b. Thelateral guide block 12 a is supported by the lateralguide support portion 12 d (seeFIG. 4 ), and is provided such that theblock side surface 12 b is at a position of equivalent to an outermost periphery (outer diameter) of the guide rod 6 (seeFIGS. 5A , 5B). Note that thespace guide protrusion 12 c is formed to be in a same plane with theblock side surface 12 b. Thelateral guide block 12 a is disposed such that an inside surface of thespace guide protrusion 12 c is opposed to a rotating surface of therotating roller 3 a. - As shown in
FIGS. 5A , 5B, thespace guide protrusion 12 c has a flat surface for forming the guide route GR, the flat surface being set at the same position as an outermost periphery of therotating roller 3 a or inside of the outermost periphery (the side away from thespiral guide rod 5 or thecentral guide block 11 a). As shown inFIG. 4 , tip end surfaces in the longitudinal direction (transport end sides) of the lateral guide blocks 12 a, 12 a include a connection structure (not shown) detachably connected to base end sides of theguide rods FIG. 5A , thelateral guide block 12 a is disposed to form the guide route GR at a position where thespace guide protrusion 12 c and thecentral guide block 11 a are opposed to each other, and to form a guide space (guide route) GS at a position where theblock side surface 12 b and thespiral groove rod 5 are opposed to each other. Thelateral guide block 12 a is supported by the lateralguide support portion 12 d attached to the holder base 32B1. - As shown in
FIG. 5A , the guide route GR (including the guide space GS) aligns the tablets W and delivers them to thespiral grooves 5 a. Here, the guide route GR is formed by a space between thecentral guide block 11 a and the opposingrotating rollers central guide block 11 a and the opposingspace guide protrusions spiral groove rod 5 and the opposing block side surfaces 12 b, 12 b. Further, the guide route GR is configured to continue to the guide space GS from the space between thecentral guide block 11 a and therotating rollers block side surface 12 b and thespiral groove 5 a of thespiral groove rod 5 on the lower side thereof. - Further, the guide space GS is set to be narrower than the interval of the guide route GR. At the position of the guide space GS, the tablets W are aligned in a row along the spiral groove rod between the
spiral groove rod 5 and theblock side surface 12 b. Further, on the tablets W aligned in a row in the guide space GS, other tablets W are overlapped in a state of being aligned along the guide route GR. Then, since thespiral groove rod 5 rotates, the tablets W are sent to the transport route Sr in which thespiral groove rod 5 and theguide rod 6 are opposed to each other, from the position of the guide space GS in which thespiral groove rod 5 and theblock side surface 12 b are opposed to each other. At this time, the tablets W overlapping between thespiral grooves spiral groove rod 5 are sent by the rotation of thespiral groove rod 5 and enter thevacant spiral grooves 5 a to be supported therein, or are sent as they are, to come into contact with the frame-front side wall 19 or the shield-rotatingplates partition frame portion 9. On the other hand, the tablets W sent to the transport route Sr are sent to the transport end while being supported in a support space region Ts (seeFIG. 3C ) formed of theguide rods spiral groove rod 5 as thetransport mechanism 5. - As shown in
FIGS. 1A to 3C , thetransport mechanism 4 is for receiving the tablets W via thedelivery mechanism 30 from thehopper 2, and transporting the tablets W to thecounting unit 14. Thetransport mechanism 4 mainly includes thespiral groove rod 5, theguide rods spiral groove rod 5, atransport drive unit 5G for rotating thespiral groove rod 5, thefirst support holder 31 for rotatably supporting thespiral groove rod 5, and thesecond support holders guide rods - As shown in
FIGS. 1A to 3C , thespiral groove rod 5 is for transporting the tablets W in cooperation with theguide rod 6. Thespiral groove rod 5 is rotatably supported by the tip endrotation support holder 31A and the base endrotation support holder 31B as thefirst support holders 31 which are provided on one end side (tip end side) and the other end side (base end side) on thebase 100. Thespiral groove rod 5 includes agroove rod portion 5A formed with thespiral grooves 5 a at an interval of aligning the tablets W on a circumferential surface thereof, athin shaft portion 5 b formed continuously to one end side of thegroove rod portion 5A, and a connectingportion 5 c formed continuously to the other end side as the base end side of thegroove rod portion 5A. Both ends of thethin shaft portion 5 b and the connectingportion 5 c of thespiral groove rod 5 are configured so as to be respectively rotatably connected via connection-rotatingportions rotation support holder 31A and the base endrotation support holder 31B. By connecting the connectingportion 5 c as the base end side to the connection-rotatingportion 5 d, thespiral groove rod 5 is configured such that a rotational force of atransport drive motor 5 f is transmitted via ashaft connecting portion 5 e connected to the connection-rotatingportion 5 d. - As shown in
FIGS. 1A to 3A , thethin shaft portion 5 b is formed to have a small diameter such that the tablets W transported on the transport route Sr can fall through between thethin shaft portion 5 b and a guide-thin shaft portion 6 b of theguide rod 6 to be described later at a position beyond an end of thespiral groove rod 5. The connectingportion 5 c includes a protrusion (not shown) which can be detachably connected to the connection-rotatingportion 5 d formed with a keyway or the like (not shown). The connectingportion 5 c and the connection-rotatingportion 5 d are not limited thereto, as long as they can be detachably connected to each other and integrally rotated. The connection-rotatingportion rotation support holder 31A and the base endrotation support holder 31B. - Note that, at least one of the connecting
portion 5 c and the connection-rotatingportion 5 d, or at least one of a tip end of thethin shaft portion 5 b and the connection-rotatingportion 5 d, is configured to be detachable by a connection structure such as a keyway, and urged to one side or in the center by an elastic member such as a helical spring. Therefore, by disconnecting the connection structure of the keyway or the like and pressing thespiral groove rod 5 against an urging force of the elastic member, thespiral groove rod 5 can be removed from the connection-rotatingportion 5 d. - The
transport drive unit 5G for rotating thespiral groove rod 5 includes thetransport drive motor 5 f such as a servomotor, and theshaft connecting portion 5 e connected to a rotating shaft of thetransport drive motor 5 f, and is supported by the base endrotation support holder 31B of thefirst support holder 31 via a rotating shaft connected to theshaft connecting portion 5 e. Further, the rotating shaft connected to theshaft connecting portion 5 e is connected to the connection-rotatingportion 5 d to transmit a driving force from thetransport drive motor 5 f, and rotates thespiral groove rod 5 at a predetermined speed by thetransport drive motor 5 f. Thetransport drive motor 5 f is not limited thereto, as long as it can rotate thespiral groove rod 5 via theshaft connecting portion 5 e and the connection-rotatingportion 5 d. - As shown in
FIGS. 1A to 1C , thespiral grooves 5 a are formed with a same groove pitch on a rod peripheral surface of thegroove rod portion 5A, and are formed in a shape, a size, and a depth, of a groove so as to correspond to a shape and a size of the tablet W. Note that a groove forming angle with respect to the axial direction of thespiral groove 5 a is formed at an angle corresponding to the type of the tablet W. As an example, thespiral groove 5 a is formed such that a groove width thereof is equal to or larger than the diameter (length) of the tablet W, and formed to have an interval in which the tablet W does not contact with a tablet W located adjacent to each other. Further, thespiral groove 5 a is formed to be in a curved shape (an arc, an ellipse, a parabolic curved surface, or the like) so that it can arrange the tablet W in a position in the groove. Here, note that thespiral groove 5 a is formed to be in an arc shape. By forming thespiral groove 5 a in the arc shape, the tablet W to be transported is proactively rotated and facilitated to be transported, and thereby the transport speed can be increased. Note that, when the tablet W has an elongated shape like a capsule, the tablet W is supported by the support space region Ts (seeFIG. 3C ) which is a region between thespiral groove 5 a and theguide rod 6, such that the axial direction of the tablet W is directed to the transport direction, and the tablet W is transported while rotating around the axis thereof. - Further, when the
spiral groove 5 a is changed in accordance with the type of the tablet W to be handled, the groove pitch, groove shape, and groove depth of thespiral groove 5 a are changed by changing thespiral groove rod 5. Then, the interval adjustment of a space between thespiral groove 5 a and the guide rod 6 (and thelateral guide block 12 a) is performed by theholder moving mechanism 40. Note that thespiral grooves 5 a are formed with the same groove pitch, but the groove pitch may be configured to be gradually enlarged. - As shown in
FIGS. 2 to 3C , theguide rod 6 is for guiding the tablet W when transporting the tablet W in cooperation with thespiral groove rod 5. Theguide rod 6 is formed at the position corresponding to a section of thegroove rod portion 5A of thespiral groove rod 5, and includes aguide portion 6 a which is formed in a columnar shape and guides the transport of the tablet W, the guide-thin shaft portion 6 b which is formed continuously to a tip end as a transport end side of theguide portion 6 a, and a guide-base end portion 6 c which is a base end side connected to thelateral guide block 12 a. Further, theguide rod 6 is in a state of being supported by thesecond support holder 32. Specifically, a tip end side of the guide-thin shaft portion 6 b of theguide rod 6 is supported by the tipend support holder 32A of thesecond support holder 32, and the guide-base end portion 6 c as the base end side of theguide rod 6 is supported by the baseend support holder 32B via thelateral guide block 12 a in a state of forming thegroove portion 6 f. Note that theguide rod 6 is supported in a state of not rotating. Further, as shown inFIGS. 3B and 5B , theguide rod 6 is configured such that the guide-base end portion 6 c is connected via thegroove portion 6 f when it is connected to thelateral guide block 12 a. Thegroove portion 6 f is formed with a groove depth and groove width in which the shield-rotatingplate 112 can rotate. - A surface of the
guide portion 6 a is preferably formed in a state of being polished such that the friction with the tablet W to be transported is small. Further, theguide portion 6 a may be formed such that the friction with the tablet W is small by covering the surface thereof with a coating film such as fluorine. Although a resin rod is used here as theguide rod 6, however, a metal rod may be used. The guide-thin shaft portion 6 b is formed at a position corresponding to thethin shaft portion 5 b of thespiral groove rod 5, and is formed to have a diameter so that the tablet W that has been transported can fall through between thethin shaft portion 5 b and the guide-thin shaft portion 6 b. - Here, the outer diameter of the
spiral groove rod 5 and the diameter of theguide rod 6 are formed in the same size, and the diameter of thethin shaft portion 5 b of thespiral groove rod 5 and the diameter of the guide-thin shaft portion 6 b of theguide rod 6 are also formed in the same size. Further, thespiral groove rod 5 and theguide rod 6 are arranged to be in the same position in the height direction, and the interval therebetween is set such that the tablet W located in thespiral groove 5 a of thespiral groove rod 5 does not fall through the interval. A space region between thespiral groove rod 5 and theguide rod 6 when the interval therebetween is set as described above is referred to as the support space region Ts. In other words, the support space region Ts is set to the interval in which the tablet W can be supported between thespiral groove 5 a of thespiral groove rod 5 and theguide portion 6 a of theguide rod 6. Further, the support space region Ts is set to the interval in which it guides the tablet W along therotating spiral groove 5 a of thespiral groove rod 5 and can transport the tablet W along the transport route Sr to the transport end while the tablet W itself is rotating. - As shown in
FIGS. 1A to 3A , thefirst support holder 31 is provided on thebase 100, and rotatably supports thespiral groove rod 5. Thefirst support holder 31 includes the tip endrotation support holder 31A for rotatably supporting an end portion of thethin shaft portion 5 b of thespiral groove rod 5, and the base endrotation support holder 31B for rotatably supporting the connection-rotatingportion 5 d connected to the connectingportion 5 c of thespiral groove rod 5. Further, thesecond support holder 32 is for rotatably supporting therotating roller 3 a of thedelivery mechanism 30, and for supporting theguide rod 6 via thelateral guide block 12 a. Thesecond support holder 32 includes the tipend support holder 32A for supporting an end portion of the guide-thin shaft portion 6 b of theguide rod 6, and the baseend support holder 32B for rotatably supporting therotating roller 3 a and supporting thelateral guide block 12 a. Note that, the baseend support holder 32B of thesecond support holder 32 are, as already described, configured to also support therotating roller 3 a. - Further, the
first support holder 31 is provided at a position adjacent to thesecond support holder 32. Then, at the positions adjacent to the left and right of the tip endrotation support holder 31A of thefirst support holder 31, the tipend support holders second support holder 32 are provided, and at the positions adjacent to the left and right of the base endrotation support holder 31B of thefirst support holder 31, the baseend support holders second support holder 32 are provided. Note that, on thebase 100, thefirst support holder 31 and thesecond support holder 32 are provided on theholder guide plate 102 mounted on the mountingframe 101. - As shown in
FIGS. 2 and 6 , the tip endrotation support holder 31A rotatably supports a shaft portion of therotating shaft 47 formed with the threadedportions FIG. 6 , the base endrotation support holder 31B rotatably supports the shaft portion of therotating shaft 47 formed with the threadedportions portions FIG. 4 ) which are the lower portion side of the holder. Then, the tip endrotation support holder 31A and the base endrotation support holder 31B respectively include a space in which the drivengear 46 attached to the shaft portion of therotating shaft 47 is provided. - Further, the rotating shaft guides 48, 49 (see
FIG. 2 ) in parallel with the rotatingshaft 47 are provided through the tip endrotation support holder 31A and the tipend support holders end support holders FIG. 4 ) in parallel with the rotatingshaft 47 are provided through the base endrotation support holder 31B and the baseend support holders end support holders FIG. 4 , the baseend support holders rotating rollers shaft 47 and the rotating shaft guides 48, 49 are provided through the holder base 32B1, and the holder base 32B1 is formed in a size allowing the lateralguide support portion 12 d to be attached to the outside thereof. - Here, the tip
end support holder 32A and the baseend support holder 32B of thesecond support holder 32 are, at the lower ends thereof, respectively provided with engagingportions 32 c so as to be movable along aguide groove 102 a provided in theholder guide plate 102. Therefore, the tipend support holder 32A and the baseend support holder 32B are guided by theguide groove 102 and the rotating shaft guides 48, 49, and slide (move) along theholder guide plate 102. Further, the base endrotation support holder 31B (seeFIG. 3A ) of thefirst support holder 31 is configured to support thespiral groove rod 5 and also support thecentral guide block 11 a. Furthermore, the baseend support holder 32B (seeFIG. 4 ) of thesecond support holder 32 is configured to support thelateral guide block 12 a and also support therotating roller 3 a. - Since the
transport mechanism 4 includes the configuration as described above, it is possible to input the tablets W from thehopper 2 into where thetransport mechanism 4 is ready for transport by rotating thespiral groove rod 5 by thetransport drive unit 5G, and deliver the tablet W via the delivery mechanism 30 (from the guide route GR) to the support space region Ts in the transport route Sr, and then transport the tablet W to the transport end. Then, as shown inFIGS. 3A to 5B , thetransport mechanism 4 alternately sends out the tablets W aligned on thespiral groove rod 5 and theguide rods counting path 15, and allows the tablets W to fall to thecounting path 15 so as to pass the counting unit 14 (seeFIG. 1A ). Note that, as shown inFIG. 3A , thetransport mechanism 4 is arranged such that a portion of thespiral groove rod 5 formed with thespiral groove 5 a is more protruded than a guide surface of theguide rod 6 at the transport end, and is thus set to reliably send out the tablets W to thecounting path 15. - As shown in
FIG. 7 , thecounting unit 14 is for counting the tablets W which are transported and sent out. Thecounting unit 14 is set for eachspiral groove rod 5, and uses an optical sensor capable of counting the tablets W by determining a state in which light is blocked by the tablet W falling. As the optical sensor, a common sensor used for counting the tablets W is used. Note that, in a case of using the optical sensor, in a light emitting unit and a light receiving unit, two or more air chambers are configured to be arranged such that the volume of the air chamber is gradually reduced from a position where the tablet W falls, to a position of the light emitting unit and light receiving unit (for more information, refer to Japanese Patent No. 3041343). Therefore, even in a state where tablet powders generated from the tablets W in accordance with falling of the tablets W are falling, the tablet powders hardly adhere to a light receiving surface or the like, and accuracy of counting is not reduced. - Further, when detecting the tablets W, the
counting unit 14 sets a first reference for counting the tablet W on the basis of an amount of light blocked in a light path, and counts the tablet W if the amount of light blocked reaches the reference. Here, thecounting unit 14 sets two or more comparison values of the amount of light blocked or time of light blocked, so that the comparison value can be reduced stepwise from the above-mentioned reference when the light receiving unit receives the light. - Therefore, if the amount of light blocked or time of light blocked reaches the first reference, the tablet W passing through the
counting unit 14 is counted as a tablet W, and if the amount of light blocked or time of light blocked reaches the second reference, the tablet W passing through thecounting unit 14 is not counted as a tablet W. Note that, as shown inFIG. 1A orFIG. 7 , the counting and fillingapparatus 1 can determine whether or not the tablet W has a defect by processing the image from theimage capturing unit 22 provided in the transport route. If the counting and fillingapparatus 1 determined that the tablet W has the defect by the image from theimage capturing unit 22, it controls the rotational speed of thetransport drive motor 5 f to be slow, and is set to reliably eliminate only the tablet W with the defect by use of apath switching flap 16. - As shown in
FIGS. 1A , 3A, and 7, the countingpath 15 is a path for storing the tablets W in the container V. The countingpath 15 is configured to be cylindrical so that the tablet W having passed through thecounting unit 14 can be stored in the container V which is disposed at the lower end. Further, the countingpath 15 is provided in a tapered shape so that the path is gradually narrower toward the lower from the upper in this case. Thepath switching flap 16 is for distributing the falling tablets W to anon-defective product path 17 or a defectiveproduct discharge path 18 of the countingpath 15. Thepath switching flap 16 is configured to switch the paths under the control of the control unit 20 (seeFIGS. 1A , 7). - The container V is disposed below the counting
path 15, and is for storing a predetermined number of tablets W. The shape, size, material, color, and the like of the container V are not particularly limited. Note that, a mounting base on which the container V is mounted may be configured such that an operator replaces the container V manually, or may be, as shown inFIG. 1A , configured such that thetransport conveyor 50 is provided, and moved when a predetermined quantity (a filling quantity: a quantity to be stored in the container) is filled into the container. Note that, thetransport conveyor 50 may be disposed such that the transport direction thereof is a direction perpendicular to the longitudinal direction (transport direction) of thetransport mechanism 4 so as to be across the countingpath 15 of eachtransport mechanism 4, or may be configured to be provided with the same number as the number of thetransport mechanism 4, and such that eachconveyor 50 is provided along the transport direction of thetransport mechanism 4. - As shown in
FIGS. 1A and 7 , thecontrol unit 20 is for mainly controlling the transportingmechanism 4, and is realized by a function of a computer with a CPU that performs calculation, comparison, determination, and the like on the basis of information (data) from an input means (atouch panel 21 as a display unit) or the like. Thecontrol unit 20 includes aninput unit 20 a, amemory unit 20 b, areset unit 20 c, animage processing unit 20 d, acomparison unit 20 e, and adrive control unit 20 f. - As shown in
FIG. 7 , theinput unit 20 a is an interface for inputting the data or instruction from thetouch panel 21 or the like. For example, theinput unit 20 a inputs, from thetouch panel 21, the filling quantity of the tablet W to be filled into the container V, a reference quantity, a reset signal, or an instruction for moving thesecond support holder 32. Here, the reference quantity is a value less than the filling quantity which is arbitrarily determined in advance by the operator, and is, for example, a quantity of 90 to 95 tablets when the filling quantity is 100 tablets, and it may be a value having a predetermined difference from the filling value so that thecounting unit 14 can reliably count the tablets W when the number of tablets W filled into the container V reaches the filling quantity. By the value of the reference quantity, the speed of the tablets W transported by thetransport mechanism 4 can be adjusted. - The filling quantity and reference quantity inputted from the
input unit 20 a are outputted to thememory unit 20 b. Note that, the reset signal to be described later, which is inputted to theinput unit 20 a, is outputted to thereset unit 20 c. Further, the instruction for moving thesecond support holder 32, which is inputted to theinput unit 20 a, is outputted to thedrive control unit 20 f. Thememory unit 20 b is a common memory unit such as a hard disk, an optical disk, a memory. Thememory unit 20 b stores the filling quantity, the reference quantity, and the like, which are inputted from theinput unit 20 a. - The
reset unit 20 c receives the reset signal from theinput unit 20 a or a container sensor Vs, and sends a reset control signal to thecomparison unit 20 e, then resets the quantity counted by thecounting unit 14 in thecomparison unit 20 e. When thereset unit 20 c receives the reset signal indicating that the container V is replaced from the container sensor Vs, or receives the reset signal which is inputted via theinput unit 20 a by the operator, thereset unit 20 c outputs the reset control signal for resetting thecomparison unit 20 e. In other words, when the reset control signal is outputted to thecomparison unit 20 e from thereset unit 20 c, thecomparison unit 20 e resets the quantity of the counted tablets from thecounting unit 14. - The
image processing unit 20 d is for processing the image inputted from theimage capturing unit 22, and for example, extracts sampling image data sampled from captured images, or calculates brightness value data from the image, and sends the extracted sampling image data or the calculated brightness value data to thecomparison unit 20 e. Theimage processing unit 20 d is not limited thereto, as long as it is configured to process the images by a well-known image processing means and compare the images with the reference data or reference values. - The
comparison unit 20 e receives the reset control signal from thereset unit 20 c, or data from thecounting unit 14, data from theimage processing unit 20 d, and compares the received data with each reference data stored in thememory unit 20 b, and then controls thedrive control unit 20 f and resets numeric values of thecounting unit 14. When thecomparison unit 20 e compares the predetermined filling quantity with the quantity of the tablets W currently counted by thecounting unit 14, and they are equal to each other, thecomparison unit 20 e outputs a first control signal to thedrive control unit 20 f. Further, when thecomparison unit 20 e compares the reference quantity stored in thememory unit 20 b with the quantity of the tablets W currently counted by thecounting unit 14, and they are equal to each other, thecomparison unit 20 e outputs a second control signal to thedrive control unit 20 f. Furthermore, thecomparison unit 20 e resets quantity values sent from thecounting unit 14 by the reset control signal from thereset unit 20 c, and outputs a third control signal to thedrive control unit 20 f. - Further, when the
comparison unit 20 e receives the data from theimage processing unit 20 d, and compares the data with a reference image or a reference value and determines that the tablet W has a defect, thecomparison unit 20 e outputs a fourth control signal indicating the defect to thedrive control unit 20 f. When thecomparison unit 20 e determines that the tablet W has the defect, thecomparison unit 20 e subtracts one from count data sent from thecounting unit 14, and then compares the subtracted data with the filling quantity or the reference quantity. By subtracting the number of the defective tablets W, thecomparison unit 20 e accurately calculates the number of the tablets W which are currently filled into the container V. - The
drive control unit 20 f controls thetransport drive motor 5 f of thetransport mechanism 4, theroller drive motor 3 c of therotating roller 3 a, thepath switching flap 16, and the holder driving source 41 (holder moving mechanism 40) by the input signal or each control signal sent from thecomparison unit 20 e. When thedrive control unit 20 f is inputted the second control signal from thecomparison unit 20 e, thedrive control unit 20 f sends the control signal to thetransport drive motor 5 f, and controls the rotational speed of thespiral groove rod 5 to be lower than the predetermined rotational speed. When the predetermined rotational speed is, for example, 1000 rotation/min, the rotational speed is controlled to be 100 to 500 rotation/min. - Further, when the
drive control unit 20 f is inputted the first control signal from thecomparison unit 20 e, thedrive control unit 20 f sends the control signal to thetransport drive motor 5 f, and temporarily stops the rotation of thespiral groove rod 5. At this time, since the tablets W reaches the predetermined quantity, the container V is replaced by a new container V. Further, when thedrive control unit 20 f receives the third control signal from thecomparison unit 20 e, it outputs the control signal for controlling thetransport drive motor 5 f so that the rotational speed of thespiral groove rod 5 which has been temporarily stopped becomes the predetermined rotational speed. When thedrive control unit 20 f receives the fourth control signal from thecomparison unit 20 e, it controls the rotational speed for the transport by thetransport drive motor 5 f to be smaller than the predetermined rotational speed, and outputs the control signal so as to send the defective tablet W to the defectiveproduct discharge path 18 by controlling thepath switching flap 16 to be switched when the identified tablet W falls. Note that, immediately after the defective tablet W is discharged, thedrive control unit 20 f switches thepath switching flap 16 to thenon-defective product path 17 of the countingpath 15, and outputs the control signal so that the rotational speed of thetransport drive motor 5 f becomes the predetermined rotational speed for the transport. Further, thedrive control unit 20 f controls theholder moving mechanism 40 by use of the signal inputted from thetouch panel 21 via theinput unit 20 a. - With the above configuration, the
control unit 20 effectively performs the filling operation of filling the tablets W into the container V by controlling thetransport mechanism 4. Here, as shown inFIGS. 1A and 7 , thetouch panel 21 can be used as a monitor for displaying the touch panel as the input unit and a state of the tablet W captured by theimage capturing unit 22, simultaneously or by switching. Further, theimage capturing unit 22 is, for example, a CCD camera, and captures the rotating tablet W in the image capturing range. Here, theimage capturing units 22 are arranged with the same number as the transport route Sr, and capture the tablets W which are transported on the transport route Sr formed by thespiral groove rod 5 and theguide rods - Next, the operation of the counting and filling
apparatus 1 will be described with reference toFIG. 8 mainly and the other drawings as appropriate. Note that, the drawings shown on the left side inFIGS. 8A to 8D schematically show only the structure on the right side of thespiral groove rod 5 by omitting the structure on the left side thereof. In other words, the drawings show only the structure corresponding to the right portion inFIG. 5A . First, as shown inFIG. 8A , the counting and fillingapparatus 1 is inputted the tablets W into thehopper 2 by an input device (not shown) or the operator (input step). The tablets W fall by their own weight from thesupply port 2 d of thehopper 2, and are guided to the guide route GR formed by thecentral guide block 11 a and therotating rollers rotating rollers - As shown in
FIG. 8B , the tablets W are aligned by the guide route GR (seeFIG. 8A ) of thedelivery mechanism 30 which is formed by therotating rollers central guide block 11 a, and the lateral guide blocks 12 a, 12 a opposed to thespiral groove rod 5. In particular, the tablets W are aligned in a row along thespiral groove rod 5 in the guide space GS (seeFIG. 5A ), and aligned in a state of overlapping along the guide route GR in the upward direction where the tablets W are aligned in the row. Then, the tablets W are delivered to thespiral groove 5 a by being aligned or by being guided directly, and are supported by thespiral groove 5 a (delivery step). Further, in a state of being supported in thespiral groove 5 a, the tablet W is sent out by the rotatingspiral groove rod 5 from the position where thespiral groove rod 5 and the lateral guide blocks 12 a, 12 a are opposed to each other, to the transport routes Sr, Sr (seeFIG. 1A ) where thespiral groove rod 5 and theguide rods - As shown in
FIGS. 8B to 8D , when the tablets W are sent remaining in the overlapped state at the position of the lateral guide blocks 12 a, 12 a by the rotation of thespiral groove rod 5, the tablets W which are not supported in thespiral groove 5 a come into contact with the shield-rotatingplates partition frame portion 9 or along the guide route GR in the range thereof. For example, a tablet shown by a tablet WC has a vertical posture in a state of being fitted into between thespiral groove rods 5 a when the tablet falls from thesupply port 2 d (seeFIG. 8A ). And, as shown inFIGS. 8B , 8C, the tablet WC is sent by the rotation of thespiral groove rod 5 and comes into contact with the shield-rotatingplates plates FIG. 9D , the tablet WC can have a proper posture to be supported in thespiral groove 5 a by being changed the posture thereof. - Therefore, when it is a proper posture that the longitudinal axis of the tablet W is horizontally supported in the
spiral groove 5 a, even if a tablet W has a posture where the longitudinal axis thereof is in the vertical direction and is fitted into between the tablets W supported in thespiral grooves 5 a, the tablet W comes into contact with the shield-rotatingplates plates plates spiral groove rod 5 without being supported in thespiral groove 5 a, and moves the tablet W in the rotation direction thereof to change the posture of the tablet W, and thus the shield-rotatingplates spiral groove 5 a in the range of the partition frame portion 9 (in the range to the upper end of thepartition frame portion 9 from above thespiral groove rod 5 below the partition frame portion 9). - When the
spiral groove 5 a is sent in a vacant state because of the rotation of thespiral groove rod 5, the tablet W waiting in the range of thepartition frame portion 9 is fitted and supported in the vacantspiral groove rod 5 a, and sent out to the transport route Sr through under the shield-rotatingplates 112, 112 (pre-delivery step). Incidentally, the tablet W stored in the range of thepartition frame portion 9 is waiting in the guide route GR at the position adjacent to thesupply port 2 d. In other words, the tablet W is waiting in an aligned state or while being changed the posture thereof, in a space between thecentral guide block 11 a and the shield-rotatingplates rotating rollers spiral groove 5 and the lateral guide blocks 12 a, 12 a opposed to thespiral groove 5. Therefore, if thespiral groove 5 a is in a vacant state, the tablet W smoothly enters thevacant spiral groove 5 a and is supported in thespiral groove 5 a in the range of thepartition frame portion 9. The tablet W sent out to the transport route Sr (seeFIG. 1A ) from the guide route GR is transported to the transport end in a state that the tablet W is supported by the support space region Ts which is a region between thespiral groove 5 a of thespiral groove rod 5 and theguide rods 6, 6 (transport step). In thetransport mechanism 4, if the tablet W is a material to be counted having a capsule shape, the longitudinal axis thereof becomes horizontal and the tablet W is transported in the transport direction while rotating around the longitudinal axis. - Here, as shown in
FIGS. 1A and 3A , the tablets W are sent out to thecounting path 15 alternately from the transport routes Sr, Sr on the left and the right of thespiral groove rod 5. In the counting and fillingapparatus 1, a tablet W in one transport route Sr is sent out toward the countingpath 15 by the rotation of the spiral groove rod, and when thespiral groove rod 5 is rotated 180 degrees from the state, another tablet W in the other transport route Sr is sent out toward the countingpath 15. Therefore, the tablets W sent out to thecounting path 15 by being transported by thetransport mechanism 4 can pass through a position of thecounting unit 14 in a state where the tablets W are hardly overlapped with each other and easily counted, when they are counted by thecounting unit 14 located in a path of the countingpath 15. - As shown in
FIG. 1A , the tablet W sent out to thecounting path 15 is counted by thecounting unit 14 and filled into the container V (filling step). A signal indicating that the tablet W has passed through thecounting unit 14 is sent to thecontrol unit 20 and counted up until the number of the passing tablets W reaches the filling quantity to be filled into the container V. Note that, in the counting and fillingapparatus 1, when the value counted by thecounting unit 14, that is subtracted by the value of the tablets W which are determined to be defective by theimage processing unit 20 d, reaches the reference quantity, the second control signal is issued by thecontrol unit 20, and the rotational speed of thespiral groove rod 5 is allowed to be slower than the set rotational speed. Therefore, it is easy for thecounting unit 14 to count the tablets W from the reference quantity to the filling quantity, and it can reliably count the tablets W. When the counted quantity reaches the filling quantity in consideration of the defective tablets W, the counted signal is sent to thecontrol unit 20. Consequently, in the counting and fillingapparatus 1, the signal (first control signal) for stopping the operation is sent from thecontrol unit 20 to thetransport drive motor 5 f of thetransport mechanism 4, and the transport operation of thetransport mechanism 4 is temporarily stopped. - Note that, when the transport operation of the
transport mechanism 4 is temporarily stopped, since almost all of the tablets W transported by thetransport mechanism 4 are positioned in thespiral grooves 5 a, the tablets W are not sent out due to inertia when the transport operation is stopped. When the container V is replaced with an empty one in the state where the transport of the tablet W is stopped, a signal is sent from the container sensor Vs, and a signal is sent again from thecontrol unit 20 to thetransport drive motor 5 f, and then the transport operation of the tablet W is restarted. - Since the counting and filling
apparatus 1 operates as described above, it can accurately count and fill the tablets W into the container V at a high speed. Further, when the container V is replaced, even if the transport operation in thetransport mechanism 4 is stopped, the tablet W is in a state of being disposed and supported in the support space region Ts, and thus the tablet W hardly moves due to inertia in the transport direction, even if the rotation of thespiral groove rod 5 is stopped. Therefore, the counting and fillingapparatus 1 performs counting of the tablets W in almost perfect condition. Further, even if there is a certain size fragment of the tablet W, since a space between thespiral groove rod 5 and theguide rods apparatus 1 can prevent the fragment from falling from the transport route Sr during transport to be filled into the container V, as well as can eliminate the fragment via thepath switching flap 16 by theimage capturing unit 22. - Further, in the counting and filling
apparatus 1, the rotational speed of thespiral groove rod 5 of thetransport mechanism 4 is constant, for example, 1000 rotation/min, and thus the count timing of the tablets W sent from each transport route Sr is constant, however, the counting and fillingapparatus 1 may be, for example, configured to fill the tablets W into one container V from a plurality ofspiral groove rods 5. As an example, the counting and fillingapparatus 1 may vary a rotational speed of aspiral groove rod 5 from those of other fourspiral groove rods 5. The counting and fillingapparatus 1 may, in this case, count the tablets W and fill them into one container V through all fivespiral groove rods 5. - Specifically, if the predetermined quantity is, for example, 1000 tablets, the counting and filling
apparatus 1 operates all fivespiral groove rods 5 until the quantity of the tablets W reaches 990 tablets, and stops fourspiral groove rods 5 which have been rotating at a high speed by a signal from thecontrol unit 20 when the 990 tablets are counted by thecounting unit 14. Then, by performing the filling of 10 tablets remaining until 1000 tablets by aspiral groove rod 5 which is operating at low rotational speed, it is possible to reliably count the tablets W and fill them into the container V without miscounting the quantity. As described above, by varying the rotational speed of thespiral groove rod 5, the counting and fillingapparatus 1 has an advantage capable of performing the operation in accordance with the quantity to be filled into the container V. Note that, as other examples of different configurations, the counting and fillingapparatus 1 may be configured to rotate all fivespiral groove rods 5 at a high speed and vary all the five to a low speed when the quantity reaches the reference quantity, or may be configured in different ways. - Further, when the type of the tablet W is changed, the counting and filling
apparatus 1 adjusts the interval between thespiral groove rod 5 and theguide rods spiral groove rod 5 and thelateral guide block apparatus 1 adjusts the intervals by theholder moving mechanism 40 via thecontrol unit 20 by the input of thetouch panel 21. Theholder moving mechanism 40 drives theholder driving source 41, and thus rotates thecoupling portion 42, the transmissiondirection changing portion 43, and therotating shaft 44, and rotates the drivengear 46 by the rotation of thetransmission gear 45. When therotating shaft 47 rotates by the rotation of the drivengear 46, in thesecond support holder 32, the tipend support holder 32A and the baseend support holder 32B move along the rotating shaft guides 48, 49 and the holder guide plate 102 (refer to arrows inFIG. 3A ). Note that, in accordance with the movement of thesecond support holders plates FIG. 5A ). Further, the shield-rotatingplates second support holders - The
guide rods second support holder 32 via the lateral guide blocks 12 a, 12 a can be adjusted the intervals between thespiral groove rod 5 and themselves by a rotation number transmitted from theholder driving source 41 of theholder moving mechanism 40. The intervals between thespiral groove rod 5 and theguide rods touch panel 21, and by touching a position of an objective in the list, an output rotation number of theholder driving source 41 of theholder moving mechanism 40 is set and outputted, and thus the intervals are adjusted. Note that, as shown by imaginary lines inFIG. 6 , the interval adjustment may be performed by a manual means. - As described above, since the counting and filling
apparatus 1 delivers the tablet W through thedelivery mechanism 30 to thetransport mechanism 4 formed of thespiral groove guide 5 and theguide rods apparatus 1 can count a number of tablets W at a high speed, and can accurately fill only non-defective tablets into the container. Further, since the counting and fillingapparatus 1 uses thespiral groove rod 5 which is different from a transport by a conventional vibration mechanism, powders of the tablet W hardly occur, and a portion contacting the tablet W in the transport route is small, and thus cleaning or the like is facilitated. Further, since the counting and fillingapparatus 1 has thedelivery mechanism 30 as compared to a conventional apparatus including a spiral groove rod, the counting and fillingapparatus 1 can smoothly deliver the tablets W to thetransport mechanism 4, and thus can perform the steps from the input step until the filling step at higher speed. Furthermore, even if the tablets W has an elongated capsule shape or a rugby ball shape, since therotating rollers plates apparatus 1 can change the posture of the tablet W and smoothly deliver them to thetransport mechanism 4. - Note that, the counting and filling
apparatus 1 may form the transport route Sr by using only oneside guide rod 6 in thetransport mechanism 4. Further, the counting and fillingapparatus 1 has a capability equivalent to the conventional apparatus by setting the rotational speed of thespiral groove rod 5 to 300 rotation/min, and the capability difference from the conventional apparatus is increased each time adding a transport route Sr. Further, since the counting and fillingapparatus 1 can set the rotational speed of thespiral groove rod 5 to 500 to 1500 rotation/min and transport the tablets, it has the filling speed more than or equal to several times of the conventional apparatus. - The counting and filling
apparatus 1 has been described as an example that thespiral groove rod 5 is rotated at a speed slower than the predetermined rotation speed when the quantity reaches the reference quantity, and the rotation of thespiral groove rod 5 is stopped when the quantity reaches the filling quantity, however, the counting and fillingapparatus 1 may be operated by setting only the filling quantity without setting the reference quantity as a matter of course. Further, although theguide rods guide rods spiral groove rod 5 and theguide rods - As shown in
FIGS. 9A , 9B, as the lateral guide portion 12 (seeFIG. 4 ), theguide rods lateral guide portion 12 may be replaced with the configuration in which guide pieces (guide portions) 120 are provided at predetermined positions of theguide rods guide pieces 120 are mounted between theposture changing units 3 and theguide rods spiral groove rod 5. Theguide pieces 120 are provided by being attached to the peripheral surfaces of theguide rods end support holders second support holders guide pieces 120 are provided such that spaces between themselves and therotating rollers plates groove portions 60 f formed in the peripheral surfaces of theguide rods notch portions FIGS. 5A , 5B). In this case, thegroove portion 60 f is formed in a concave groove shape on the circumferential surface of theguide rod 6 at a position which is a tip end of theguide piece 120. - Note that, if the
spiral groove 5 a is formed inclined in an upper right direction to the transport direction (seeFIGS. 1A to 3A ), thespiral groove rod 5 is rotated clockwise, and if thespiral groove 5 a is formed inclined in an upper left direction to the transport direction, thespiral groove rod 5 is rotated anticlockwise. That is, if thespiral groove rod 5 is rotated in a direction such that the tablet W can be transported toward the transport end from the base end side, it may be rotated in either direction in relationship with thespiral groove 5 a. - Further, as shown in
FIG. 10 , thedelivery mechanism 30 may be adelivery mechanism 30B. That is, as shown inFIG. 10 , a centralrotating roller 111 may be configured to be disposed in place of thecentral guide block 11 a (seeFIG. 5A ). The centralrotating roller 111 is alternately rotated clockwise and anticlockwise (or continuously rotated in either direction), and thus the posture of the tablet W can be changed. Further, between the centralrotating roller 111 and thespiral groove rod 5, a spacer SP is provided so that the tablet W does not enter therebetween. With such a configuration, thedelivery mechanism 30B has many positions to change the posture of the tablets W, thereby preventing the tablets W from being bridged to each other. - Further, if the
delivery mechanism hopper 2 and deliver them to the base end side of thetransport mechanism 4, thedelivery mechanism rotating roller rotating roller 3 a and thelateral guide portion 12 has been described that they are provided to have central axes aligned in the vertical direction, however, their diameter may be changed or their placements may be changed such that the central axes thereof aligned in the vertical direction are shifted to the left or right, as long as the guide route GR can be formed. Further, the shape of thecentral guide block 11 a of the regulatingunit 13 is not limited thereto, as long as it can distribute the tablets W to the left and right, and it may be configured to lead the tablets W either to the left or right. Furthermore, in the counting and fillingapparatus 1, therotating rollers central guide block 11 a, and the lateral guide blocks 12 a, 12 a (guidepieces 120, 120) have been described as the same length, however, they need not to be the same length, as long as their portions opposed to each other are just below thepartition frame portion 9 and thesupply port 2 d. - Further, as shown in
FIGS. 11A , 11B, the shield-rotatingplates partition frame portion 9. The shield-rotatingplates notch portions groove portion 6 f (60 f) in theguide rod 6. Note that, the positional relationship between the shield-rotatingplates FIGS. 11A , 11B, it is possible to achieve the same operation and effect as the shield-rotatingplates FIGS. 5A , 5B. - Note that, even if the type of the material to be counted such as the tablet W which can be handled by the counting and filling
apparatus 1 is, for example, an annular tablet W1, a disk-shaped tablet W2, or a tablet W3 of triangular rice ball shape, they can be transported while being rotated as shown by arrows inFIGS. 12A to 12C . If the tablet W has a disk shape, it is transported by the rotation of thespiral groove rod 5 while being rotated in a posture such that the diameter direction thereof is the upper and lower, and the front and rear directions in the transport route Sr. Still further, the materials to be counted are not particularly limited thereto, as long as they are those need to be counted such as confectionery, supplements, mechanical parts, and semiconductor components in addition to the tablets. Further, the size of thespiral groove 5 a may be smaller than, equal to, or larger than that of the tablet W, and thespiral groove 5 a may be configured such that a curved portion of the material to be counted comes into contact with an arc shape of thespiral groove 5 a, and the tablet W does not come into contact with an adjacent tablet W supported in thespiral groove 5 a. - Further, as shown in
FIGS. 13 to 14C , the counting and fillingapparatus 1 may be configured to transport the tablet W while sucking, by a dust collecting suction mechanism Bk, an inside of aregion partition portion 200 which partitions a space below the lateral guide blocks 12 a, 12 a,guide rods spiral groove rod 5. Note that, theregion partition portion 200 is provided so as to surround almost all of a region below the guide route GR and the transport route Sr. As shown inFIGS. 13 and 14 , theregion partition portion 200 partitions a region to be sucked having an upper opening, and is configured by asuction partition housing 201 which is formed with a suction connection opening 202 at the bottom surface thereof and has the upper opening. Thesuction partition housing 201 is for housing abrasion powders, damaged pieces, or the like of the tablet W to be transported, and sending them to thesuction connection opening 202. Thesuction partition housing 201 includes route-parallel wall surfaces 203, 204 which are in contact with or close to theguide rods bottom surface 207 which is a housing bottom surface formed with thesuction connection opening 202. - The route-parallel wall surfaces 203, 204 are disposed in parallel to each other below the
guide rods guide rod 6 and thelateral guide block 12 a. The route-parallel wall surfaces 203, 204 are formed in a predetermined thickness in this case, and each of them is formed so as to face each other just below theguide rod 6 and thelateral guide block 12 a. The route-cross wall surface 205 is disposed below thespiral groove rod 5 or below thespiral groove rod 5 and theguide rods spiral groove rod 5 or thespiral groove rod 5 and theguide rods cross wall surface 205 is formed so as to be in a predetermined constant thickness in this case, and is formed integrally and continuously to one end portions of the route-parallel wall surfaces 203, 204. - The route-
cross wall surface 206 is disposed below thespiral groove rod 5 or below thespiral groove rod 5 and the lateral guide blocks 12 a, 12 a, and the upper end surface thereof is provided so as to be close to thespiral groove rod 5 or thespiral groove rod 5 and the lateral guide blocks 12 a, 12 a. The inner peripheral side of the route-cross wall surface 206 is formed along an arc shape of the suction connection opening 202 in this case, and the route-cross wall surface 206 is formed integrally and continuously to the other end portions of the route-parallel wall surfaces 203, 204. The route-bottom surface 207 is for sending the abrasion powders, damaged pieces, or the like of the tablet W to be transported, to thesuction connection opening 202. The route-bottom surface 207 is formed so as to be inclined toward the suction connection opening 202 in this case. Further, on the route-cross wall surface 206 side of the route-bottom surface 207, thesuction connection opening 202 is formed therethrough in a circular shape. - The dust collecting suction mechanism Bk is for sucking, collecting, and removing the abrasion powders or the like generated from the tablet W. The dust collecting suction mechanism Bk is not limited thereto, as long as it includes a dust collecting mechanism and a suction pump used when the tablet W is transported. The dust collecting suction mechanism Bk is allowed to face the suction connection opening 202 of the
suction partition housing 201 by connecting a tip end of a suction hose Bp to a connecting portion formed in thebase 100. - When performing suction operation via the
region partition portion 200 by the dust collecting suction mechanism Bk, the atmosphere in theregion partition portion 200 is sucked, and if the abrasion powders are generated from the tablet W in accordance with the transport, the abrasion powders are received by the route-bottom surface 207 of thesuction partition housing 201 of theregion partition portion 200, and moved by suction along the route-bottom surface 207, and then collected from the suction connection opening 202 via the suction hose Bp by the dust collecting suction mechanism Bk (or collected directly from the suction connection opening 202 via the suction hose Bp) (suction step). Further, when the dust collecting suction mechanism Bk performs the suction operation, the tablet W being transported is always urged downward (to the suction direction). Therefore, in the counting and fillingapparatus 1, the tablet W is sent in a state of close contact with thespiral groove 5 a of thespiral groove rod 5 in the transport route Sr or the guide route GR, and thus the transport posture of the tablet W is stabilized. Since the transport posture of the tablet W is stabilized, if the visual inspection is performed in the transport route, the counting and fillingapparatus 1 can improve the accuracy of the inspection. - The counting and filling
apparatus 1 described above is not limited to the configuration described above, as long as the regulatingunit 13 and theposture changing unit 3 of thedelivery mechanism 30 can align the materials to be counted (tablets W) by changing the posture thereof, and deliver them to thetransport mechanism 4. Further, the configuration of the guide route GR formed by the regulatingunit 13 is not limited thereto, as long as the guide route GR can align the materials to be counted and lead or guide them to thespiral groove 5 a. Furthermore, the falling of the tablets W means that the materials to be counted fall, or proceed, or move by their own weight toward thedelivery mechanism 30 from thesupply port 2 d, and when the materials to be counted fall, they may be either in a single state or an overlapped state. Further, thesecond holder 32 may be configured without providing theguide groove 102 a and the engagingportion 32 c shown inFIG. 6 . Further, the upper surface side of thepartition frame portion 9 has been described as a configuration of being formed with opening in this case, it is more preferably configured to be provided with a transparent lid body (not shown). Furthermore, the base endrotation support holder 31B of thefirst support holder 31 has been described to be configured to support thespiral groove rod 5 and also support thecentral guide block 11 a in this case, however, separate holder portions may be provided to support them. Further, the baseend support holder 32B of thesecond support holder 32 has been described to be configured to support thelateral guide block 12 a and also support therotating roller 3 a, however, separate holder portions may be provided to support them. - The guide route GR has been described to be configured to have a constant interval between a lateral plane of the
central guide block 11 a and a lateral plane formed by therotating roller 3 a and thespace guide protrusion 12 c, however, the lateral plane of thecentral guide block 11 a may be configured to be inclined toward the outer peripheral surface of the spiral groove rod 5 (refer to the spacer SP inFIG. 10 ). Further, theregion partition portion 200 has been described to be formed by thesuction partition housing 201 as an example, however, the route-bottom surface 207 may be the surface of thebase 100, and the route-parallel wall surfaces 203, 204 and the route-cross wall surfaces 205, 206 may be integral with an engaging portion (not shown) formed in the surface of the base 100 or may be detachably engaged with the engaging portion as separate bodies. Further, as shown inFIG. 13 , the structure formed with the countingpath 15 may be integrally formed with theframe housing 150, and one lateral wall surface of theframe housing 150 may be in place of the route-cross wall surface 205. Further, since theregion partition portion 200 is sucked by the dust collecting suction mechanism Bk, and thus the tablet W is urged to the direction of being supported in thespiral groove 5 a, even if theregion partition portion 200 is provided so as to surround a position corresponding to a part of, or a half of, or all of the transport route Sr continued from the guide route GR, it is possible to obtain the same effect as described above compared with a state without suction. - Further, the counting and filling
apparatus 1 has been described to be configured to form the shield-rotatingplates front side wall 19, however, it may be configured as shown inFIG. 15 . That is, as shown inFIG. 15 , thepartition frame portion 9A forms a rectangular space which is partitioned by thefront side wall 2 c of thesupply port 2 d and the other three side walls. A frame-front side wall 9 a of thepartition frame portion 9A is configured to be formed with anotch 9 b on the side wall thereof, and to cover thenotch 9 b with a silicone resin plate 9 c by a fixing unit (fixing bolt). In other words, thepartition frame portion 9A is configured to be provided with the silicone resin plate 9 c on the frame-front side wall 9 a, in place of the shield-rotatingplates spiral groove 5 a. The tablet W, which is prevented from passing through by the silicone resin plate 9 c, is temporarily held in thepartition frame portion 9. Further, the silicone resin plate 9 c also serves not to damage the tablets W by momentum of the tablets W, which are conveyed in the state of overlapping too much on thespiral groove rod 5 and come into contact with the silicone resin plate 9 c. Further, the silicone resin plate 9 c is set to be capable of adjusting the installation position thereof by the fixing bolt in accordance with the type of the tablet W. Thepartition frame portion 9A including such a silicone resin plate 9 c may be the adjusting unit Sm. Note that, the frame-front side wall 9 a may be configured to be formed integrally with the frame-left and right side walls by using the same material with the frame-left and right side walls. In other words, as long as the frame-front side wall 9 a can allow the tablet W supported in thespiral groove 5 a to pass therethrough, and prevent the tablet W excessively overlapped from passing therethrough, the configuration such as a size, a shape, and a material of the frame-front side wall 9 a is not limited thereto. - Further, the counting and filling
apparatus 1 may be configured to be provided with aninclined plate 300 shown inFIGS. 16A to 16C , in thepartition frame portions FIGS. 4 , 11B, 15. Here, as an example, a configuration in which theinclined plate 300 is provided in thepartition frame portions 9 in above-describedFIG. 4 will be described, however, the configuration of theinclined plate 300 and the moving state of the tablets W inFIGS. 11B , 15 are the same as inFIG. 4 . Further, the same components as those already described are denoted by the same reference numerals, and the descriptions thereof will be omitted. As shown inFIGS. 16A , 16B, 16C, theinclined plate 300 is provided in thepartition frame portion 9 by being supported by thecentral guide block 11 a (or the inner wall surface of the partition frame 9). Theinclined plate 300 is for forcibly moving the tablets W toward thesupply port 2 d side. Theinclined plate 300 includes a risingsurface 301 which is provided at a position opposed to the frame-front side wall 9 a, aninclined surface 302 which is inclined toward thesupply port 2 d from the risingsurface 301, and an engaging mountingportion 303 which is formed at a position opposed to thecentral guide block 11 a. Theinclined plate 300 is configured as a block-shaped member as an example, and is formed so that side surfaces of theinclined plate 300 come into contact with the frame-left and right side walls of thepartition frame portion 9, as shown inFIG. 16B . - As shown in
FIG. 16C , the risingsurface 301 is disposed at a position spaced apart from the frame-front side wall 9 a by a distance which is a predetermined interval FS. Here, the risingsurface 301 is disposed at a position spaced apart from the frame-front side wall 9 a by more than two tablets W in the longitudinal direction (or diameter direction) thereof. The risingsurface 301 is formed at a height where the tablets W, which are between the risingsurface 301 and the frame-front side wall 9 a, can move by their own weight via theinclined surface 302. Further, the risingsurface 301 is preferably formed in a range between 30 degrees and 90 degrees (orthogonal) with respect to the horizontal line at the top of thecentral guide block 11 a in this case. - As shown in
FIGS. 16A , 16C, theinclined surface 302 is formed at an inclined angle where the tablets W, which get over the risingsurface 301, are allowed to move by their own weight to thesupply port 2 d side of thehopper 2. Theinclined surface 302 has one end which is formed continuously from the risingsurface 301, and has the other end which is formed in a range between a position of the slidingside wall 2 e or thefront side wall 2 c of thehopper 2 and a position spaced apart from the slidingside wall 2 e or thefront side wall 2 c by a predetermined distance LS. Theinclined surface 302 is, for example, preferably formed at an inclined angle between 15 degrees and 60 degrees. If the inclined angle is in a range of between 15 degrees and 30 degrees, theinclined surface 302 is suitable for the tablet W having a curved surface shape such as a disk shape, a spherical shape, a rugby ball shape as a part or all of a contour thereof. Further, if the inclined angle is in a range beyond 30 degrees up to 60 degrees, theinclined surface 302 is suitable for the tablet W of a triangular shape having curved corners or of a shape having flat side surfaces. As a position of the other end of theinclined surface 302 is closer to the slidingside wall 2 e or thefront side wall 2 c of thehopper 2, a moving distance of the tablet W to be returned is increased, and thus the possibility that the tablet W is housed in thespiral groove 5 a is increased. Theinclined surface 302 has a slope length in which the tablet W can be moved by a distance corresponding to at least three times of the tablet W in the longitudinal direction or the diameter direction thereof, and theinclined surface 302 preferably has the slope length corresponding to 4 to 10 tablets W in this case. - The engaging mounting
portion 303 is for mounting theinclined plate 300 detachably in thepartition frame portion 9. Here, the engaging mountingportion 303 is formed such that the bottom surface of theinclined plate 300 is spaced apart from therotating rollers central guide block 11 a. As an example, the engaging mountingportion 303 is formed with an engaging concave portion engaged with a circular portion of thecentral guide block 11 a, and is formed such that facingportions rotating rollers rotating rollers inclined plate 300 is formed in a size such that the side surfaces thereof come into contact with the frame-left and right side walls of thepartition frame portion 9, theinclined plate 300 can be stably placed by mounting the engaging mountingportion 303 so as to be engaged with thecentral guide block 11 a. - The above-described
inclined plate 300 has the following functions. That is, when the tablets W are allowed to wait in thepartition frame portion 9 by the frame-front side wall 19 or the shield-rotatingplates inclined plate 300 accumulates the tablets W between the risingplate 301 and the frame-front side wall 19 by the risingplate 301. When the accumulated tablets W ride on theinclined surface 302 beyond the height of the risingplate 301, the tablets W move by their own weight on theinclined surface 302, and thus theinclined plate 300 move the tablets W to thesupply port 2 d side. By moving the tablet W to a position close to thesupply port 2 d by theinclined plate 300, the tablet W can be easily housed in avacant spiral groove 5 a of the guide route GR. - As described above, since the
inclined plate 300 can sequentially move the tablets W, which wait at the side of the frame-front side wall 19 of thepartition frame portion 9, toward thesupply port 2 d side by use of theinclined surface 302, by providing theinclined plate 300 in thepartition frame portion 9 as an intra-frame moving mechanism of the tablet W, the possibility of reducing the waiting time of the tablet W waiting in thepartition frame portion 9 is increased. Note that, theinclined plate 300 can be secured to thecentral guide block 11 a by engaging the engaging mountingportion 303 located in the center of the lower surface thereof with thecentral guide block 11 a, and thus theinclined plate 300 can be also placed in a state of non-contact with the frame-left and right side walls. Further, when theinclined plate 300 is in the state of non-contact with the frame-left and right side walls, theinclined plate 300 may be in a state where the tablet W cannot enter the space therebetween. - Further, by preparing the
inclined plates 300 having different angles in advance and using them switchably in accordance with the shape, size, or the like of the tablet W, theinclined plates 300 can move the tablet W in thepartition frame portion 9 in accordance with the outer shape of the tablet W. Further, theinclined plate 300 has been described to be configured such that the tablets W move by their own weight, however, an unillustrated belt conveyor may be provided as the intra-frame moving mechanism in thepartition frame portion 9 in the same positional relationship as theinclined plate 300, and a drive motor for the belt conveyor may be configured to be provided through either of the frame-left and right side walls of thepartition frame portion 9. -
- 1: counting and filling apparatus
- 2: hopper
- 2 a: input port
- 2 b: hopper main body
- 2 c: front side wall
- 2 d: supply port
- 2 e: sliding side wall
- 3: posture changing unit
- 3 a: rotating roller
- 3 b: connecting portion
- 3 c: roller drive motor (drive motor)
- 4: transport mechanism
- 5: spiral groove rod
- 5A: groove rod portion
- 5G: transport drive unit
- 5 a: spiral groove
- 5 b: thin shaft portion
- 5 c: connecting portion
- 5 d: connection-rotating portion
- 5 e: shaft connecting portion
- 5 f: transport drive motor
- 6: guide rod
- 6 a: guide portion
- 6 b: guide-thin shaft portion
- 6 c: guide-base end portion
- 9: partition frame portion
- 9 a: frame-front side wall
- 9 b: notch
- 9 c: silicone resin plate
- 11: central guide portion
- 11 a: central guide block
- 11 b: central block support portion
- 12: lateral guide portion
- 12 a: lateral guide block
- 12 b: block side surface
- 12 c: space guide protrusion
- 12 d: lateral guide support portion
- 13: regulating unit
- 14: counting unit
- 15: counting path
- 16: path switching flap
- 17: non-defective product path
- 18: defective product discharge path
- 19: frame-front side wall
- 19 a: notch portion
- 20: control unit
- 20 a: input unit
- 20 b: memory unit
- 20 c: reset unit
- 20 d: image processing unit
- 20 e: comparison unit
- 20 f: drive control unit
- 21: touch panel
- 22: image capturing unit
- 30: delivery mechanism
- 31: first support holder
- 31A: tip end rotation support holder
- 31B: base end rotation support holder
- 32: second support holder
- 32A: tip end support holder
- 32B: base end support holder
- 32 c: engaging portion
- 40: holder moving mechanism
- 40A: tip end holder moving mechanism
- 40B: base end holder moving mechanism
- 41: holder driving source
- 42: coupling portion
- 43: transmission direction changing portion
- 44: rotating shaft
- 45: transmission gear
- 46: driven gear
- 47: rotating shaft
- 47 a: threaded portion
- 47 c: nut portion
- 48: rotating shaft guide
- 50: transport conveyor
- 100: base
- 100 b: through hole
- 101: mounting frame
- 102: holder guide plate
- 102 a: guide groove
- 112: shield-rotating plate
- 120: guide piece (guide portion)
- 141: driving force transmission unit
- 142: linear moving unit
- 300: inclined plate
- Sm: adjusting unit
- GR: guide route
- GS: guide space
- Sr: transport route
- Ts: support space region
- V: container
- Vs: container sensor
- W: tablet
- W1: tablet
- W2: tablet
- W3: tablet
Claims (13)
1. A counting and filling apparatus, which aligns materials to be counted in a guide route while changing postures of the materials to be counted by a delivery mechanism provided below a supply port of a hopper, and delivers the materials to a transport route of a transport mechanism which has a guide rod and a spiral groove rod continuing to the guide route, and then transports, counts, and fills the materials into a container,
wherein the transport mechanism includes the spiral groove rod which is disposed from the guide route to the transport route, and a lateral guide portion which is provided facing to a base end side of the spiral groove rod and along the axis of the guide rod, and forms the guide route, and
wherein the counting and filling apparatus includes, between the supply port and the transport route, an adjusting unit which is provided so as to pass the materials supported via the lateral guide portion in the spiral grooves from the guide route to the transport route, and so as to prevent the materials excessively overlapped on the spiral groove rod or on the other materials from passing to the transport route and allow the materials to wait along the guide route.
2. The counting and filling apparatus according to claim 1 ,
wherein the delivery mechanism includes a rotating roller, which is provided above the lateral guide portion, the rotation axis of the rotating roller being in parallel to the longitudinal direction of the lateral guide portion, and is capable of changing the postures of the materials to be counted, and a central guide portion which is provided above the base end side of the spiral groove rod, and faces the rotating rotor so as to make a space which is the guide route to align the materials to be counted, and
wherein the rotating rotor is provided to rotate via a drive motor in a direction opposite to a falling direction of the materials to be counted which fall by their own weight along the guide route.
3. The counting and filling apparatus according to claim 1 ,
wherein the adjusting unit includes a frame-front side wall which is provided on a tip end side of the rotating roller, and frame-left and right side walls which support the left and the right of the frame-front side wall and are continuous from the supply port,
wherein the frame-front side wall and the frame-left and right side walls constitute a partition frame portion which is disposed so as to surround the guide route which is a space between the rotating roller and a central guide portion,
wherein the materials to be counted, which are not delivered to the spiral grooves from the supply port of the hopper via the delivery mechanism, are allowed to wait in a region including the guide route in a range surrounded by the partition frame portion, and
wherein the frame-front side wall is disposed at a position that allows passing of the materials to be counted which are sent while being supported in the spiral grooves, and prevents passing of the materials which are excessively overlapped on the spiral groove rod or on the other materials to be counted.
4. The counting and filling apparatus according to claim 1 ,
wherein the adjusting unit includes a shield-rotating plate which is provided to be larger than the diameter of the rotating roller at the tip end of the rotating roller, a frame-front side wall which is provided along the shield-rotating plate, and frame-left and right side walls which support the left and the right of the frame-front side wall and are continuous from the supply port,
wherein the frame-front side wall, the shield-rotating plate, and the frame-left and right side walls constitute a partition frame portion which is disposed so as to surround the guide route which is a space between the rotating roller and a central guide portion,
wherein the materials to be counted, which are not delivered to the spiral grooves from the supply port of the hopper via the delivery mechanism, are allowed to wait in a region including the guide route in a range surrounded by the partition frame portion, and
wherein the shield-rotating plate is disposed at a position that allows passing of the materials to be counted which are sent while being supported in the spiral grooves, and prevents passing of the materials which are excessively overlapped on the spiral groove rod or on the other materials to be counted.
5. The counting and filling apparatus according to claim 1 ,
wherein the adjusting unit constitutes side walls of a partition frame portion, which is disposed so as to surround the guide route at a position adjacent to the supply port and above the delivery mechanism, by a frame-front side wall which is provided between the guide route and the transport route, a shield-rotating plate which is provided along the frame-front side wall, and frame-left and right side walls which are provided to support the frame-front side wall and are continuous from the supply port of the hopper,
wherein the delivery mechanism includes, below the supply port and the partition frame portion, a regulating unit which regulates a guide route width for guiding the materials to be counted to the spiral grooves which are on the base end side of the spiral groove rod, and a posture changing unit which is disposed along the guide route,
wherein the regulating unit includes, below the supply port and the partition frame portion, a central guide portion which is disposed just above the spiral groove rod, and the lateral guide portion which is provided to be opposed to a lateral side of the spiral groove rod, and guides the materials to be counted to the spiral groove rod,
wherein the posture changing unit includes, above the lateral guide portion, a rotating roller which is provided to be opposed to the central guide portion across the guide route on a lateral side of the central guide portion, and a rotation drive unit which rotates the rotating roller in a direction different from a falling direction of the materials to be counted,
wherein a notch portion for rotating the shield-rotating plate is formed on at least one of the frame-front side wall and the frame-left and right side walls, and
wherein the shield-rotating plate is provided on a tip end side in the longitudinal direction of the rotating roller, and allows passing of the materials to be counted which are sent while being supported in the spiral grooves, while preventing passing of the materials to be counted which are excessively overlapped on the spiral groove rod or on the other materials to be counted.
6. The counting and filling apparatus according to claim 1 ,
wherein the lateral guide portion is a lateral guide block, which is disposed to face the rotating roller, and is disposed to face the base end side of the spiral groove rod, for guiding the materials to be counted to the spiral grooves of the spiral groove rod, and
wherein the guide rod forms a groove portion which does not come into contact with an outer peripheral edge of the shield-rotating plate at an end portion in the longitudinal direction of the lateral guide block, and is connected to the end portion of the lateral guide block.
7. The counting and filling apparatus according to claim 1 ,
wherein the lateral guide portion is a guide portion which is provided on a circumferential surface of the guide rod, and a surface thereof facing the spiral groove rod is formed in a plane, and
wherein the guide rod forms a groove portion which does not come into contact with an outer peripheral edge of the shield-rotating plate at a position corresponding to a tip end portion in the longitudinal direction of the guide portion.
8. The counting and filling apparatus according to claim 6 , comprising:
a first support holder which includes, on a base, a first tip end support holder for rotatably and detachably supporting a tip end of the spiral groove rod, and a first base end support holder for rotatably and detachably supporting a base end of the spiral groove rod; and
a second support holder which includes, at a position adjacent to the first support holder on the base, a second tip end support holder for detachably supporting the tip end of the guide rod, and a second base end support holder for rotatably supporting a base end in the longitudinal direction of the rotating roller as well as detachably supporting a base end of the lateral guide block connected to a base end of the guide rod,
wherein the second support holder is connected to a holder moving mechanism which moves the second support holder close to or away from the first support holder along a surface of the base, and
wherein the holder moving mechanism includes a linear moving unit for linearly moving the second support holder with respect to the first support holder along the base, a driving force transmission unit for transmitting a driving force to the linear moving unit, and a holder driving source for driving the driving force transmission unit.
9. The counting and filling apparatus according to claim 7 , comprising:
a first support holder which is provided on a base so as to rotatably and detachably support both ends of the spiral groove rod; and
a second support holder which rotatably supports a base end in the longitudinal direction of the rotating roller as well as detachably supports both ends of the guide rod, and is provided on the base at a position adjacent to the first support holder,
wherein the second support holder is connected to a holder moving mechanism which moves the second support holder close to or away from the first support holder along a surface of the base, and
wherein the holder moving mechanism includes a linear moving unit for linearly moving the second support holder with respect to the first support holder along the base, a driving force transmission unit for transmitting a driving force to the linear moving unit, and a holder driving source for driving the driving force transmission unit.
10. The counting and filling apparatus according to claim 1 ,
wherein an inclined plate is provided to be spaced apart from the rotating roller, above the rotating roller and the central guide portion, and to be spaced apart from the frame-front side wall at a predetermined interval,
wherein the inclined plate includes a rising surface which is formed at a position opposed to the frame-front side wall, and an inclined surface which is inclined continuously from the rising surface, and
wherein the inclined surface is formed in an inclination angle that allows the materials to be counted to move by their own weight toward the supply port side of the hopper.
11. The counting and filling apparatus according to claim 1 , comprising:
a region dividing portion which encloses a region opposed to all or at least a part of the transport route continuing from the guide route, below the spiral groove rod, the guide rod, and the lateral guide portion; and
a dust collecting suction mechanism which collects dust by sucking air in a range enclosed by the region dividing portion,
wherein the region dividing portion includes route-cross wall surfaces on both end portions which are formed so as to cross a space between the spiral groove rod and the guide rod and a space between the spiral groove rod and the lateral guide portion, route-parallel wall surfaces on the left and the right which are formed along the longitudinal direction of the guide rod, and a route-bottom wall surface which is provided at a position on a bottom surface side opposed to the guide route and the transport route,
wherein upper ends of the route-cross wall surfaces are respectively provided to a position in proximity to the guide rod and the spiral groove rod, and to a position in proximity to the spiral groove rod and the lateral guide portion,
wherein upper ends of the route-parallel wall surfaces are provided to positions in proximity to or contact with the guide rods, and
wherein a suction opening of the dust collecting suction mechanism is provided on the route-bottom wall surface side.
12. A method for counting and filling by use of the counting and filling apparatus according to claim 1 , wherein materials to be counted inputted into a hopper are aligned in a guide route while the postures of the materials to be counted are changed by a delivery mechanism, delivered to a transport route of a transport mechanism, supported, transported, and sent out by a guide rod and spiral grooves of a spiral groove rod which are the transport mechanism, and the materials to be counted are counted by a counting unit, and filled into a container,
wherein the method for counting and filling comprises following steps:
an input step of inputting the materials to be counted into the hopper;
a delivery step of allowing the inputted materials to be counted to fall by their own weight from the supply port of the hopper, and to be aligned in a guide route formed by use of a regulating unit of the delivery mechanism while changing the postures of the materials to be counted by rotating a rotating roller which is a posture changing unit of the delivery mechanism so as to apply a frictional force in a direction different from the falling direction of the materials to be counted, and delivering the materials to be counted to the spiral grooves of the spiral groove rod via the lateral guide portion of the regulating unit;
a transport step of sending the materials to be counted, which are delivered to the spiral grooves of the spiral groove rod by the delivery mechanism, to the transport route of the spiral groove rod from the guide route by the rotation of the spiral groove rod, and transporting the materials to be counted to a transport end in a state of being supported in a support space region between the spiral groove rod and the guide rod; and
a filling step of sending out the materials to be counted which are transported to the transport end, counting the materials by the counting unit, and filling the counted materials into the container, and
wherein in the delivery step, by the adjusting unit provided between the supply port and the transport route, a pre-delivery step is performed together, the pre-delivery step including passing the materials to be counted, which are supported via the lateral guide portion opposed to the spiral grooves, to the transport route from the guide route, preventing passing of the materials to be counted, which are excessively overlapped on the spiral groove rod or on the other materials to be counted, allowing the materials to wait along the guide route, and delivering the material to a vacant spiral groove when there exists the vacant spiral groove of the rotating spiral groove rod.
13. The method for counting and filling according to claim 12 ,
wherein in the delivery step and the transport step, a suction step of performing a suction operation by a dust collecting suction mechanism from a suction opening provided below the guide route and the transport route, is performed together.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095838 | 2013-04-30 | ||
JP2013-095838 | 2013-04-30 | ||
JP2014-032965 | 2014-02-24 | ||
JP2014032965A JP6438659B2 (en) | 2013-04-30 | 2014-02-24 | Count filling apparatus and count filling method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140318086A1 true US20140318086A1 (en) | 2014-10-30 |
Family
ID=51788055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/265,956 Abandoned US20140318086A1 (en) | 2013-04-30 | 2014-04-30 | Apparatus and method for counting and filling |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140318086A1 (en) |
JP (1) | JP6438659B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018166894A1 (en) * | 2017-03-17 | 2018-09-20 | Dickfeld Nils | Automated conveying device |
US20180265232A1 (en) * | 2017-03-16 | 2018-09-20 | Jvm Co., Ltd. | Blister packing device and blister pack packing method |
CN108860672A (en) * | 2018-07-18 | 2018-11-23 | 芜湖康奇制药有限公司 | A kind of pill counting bottle filling device |
CN108888520A (en) * | 2018-10-10 | 2018-11-27 | 南京正宽医药科技有限公司 | A kind of soft capsule bottle placer |
CN113928659A (en) * | 2021-10-12 | 2022-01-14 | 安徽采林间食品科技有限公司 | A several grain machine that is used for nut packagine machine to have a screening function |
US11273103B1 (en) | 2021-06-22 | 2022-03-15 | Vmi Holland B.V. | Method, computer program product and dispensing device for dispensing discrete medicaments |
US11498761B1 (en) | 2021-06-22 | 2022-11-15 | Vmi Holland B.V. | Method for dispensing discrete medicaments, a test station for testing a feeder unit, and a method for determining a fill level of a feeder unit |
US11673700B2 (en) | 2021-06-22 | 2023-06-13 | Vmi Holland B.V. | Device and methods for packaging medicaments with fault detection |
EP3808530B1 (en) | 2019-10-15 | 2023-08-02 | INTRAVIS Gesellschaft für Lieferungen und Leistungen von bildgebenden und bildverarbeitenden Anlagen und Verfahren mbH | Method and assembly for filling plastic parts |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5396176A (en) * | 1977-01-31 | 1978-08-23 | Hayashi Yakuhin Kikai Kk | Apparatus for separating and carrying tablets |
JPS60183726U (en) * | 1984-05-16 | 1985-12-05 | のむら産業株式会社 | Granule feeding device |
JP2008179466A (en) * | 2007-01-26 | 2008-08-07 | Ss Pharmaceut Co Ltd | Tablet carrying device |
JP5175233B2 (en) * | 2009-03-11 | 2013-04-03 | 株式会社ユニテック | Tablet counting and filling device |
-
2014
- 2014-02-24 JP JP2014032965A patent/JP6438659B2/en active Active
- 2014-04-30 US US14/265,956 patent/US20140318086A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180265232A1 (en) * | 2017-03-16 | 2018-09-20 | Jvm Co., Ltd. | Blister packing device and blister pack packing method |
US10926901B2 (en) * | 2017-03-16 | 2021-02-23 | Jvm Co., Ltd. | Blister packing device and blister pack packing method |
WO2018166894A1 (en) * | 2017-03-17 | 2018-09-20 | Dickfeld Nils | Automated conveying device |
CN108860672A (en) * | 2018-07-18 | 2018-11-23 | 芜湖康奇制药有限公司 | A kind of pill counting bottle filling device |
CN108888520A (en) * | 2018-10-10 | 2018-11-27 | 南京正宽医药科技有限公司 | A kind of soft capsule bottle placer |
EP3808530B1 (en) | 2019-10-15 | 2023-08-02 | INTRAVIS Gesellschaft für Lieferungen und Leistungen von bildgebenden und bildverarbeitenden Anlagen und Verfahren mbH | Method and assembly for filling plastic parts |
US11273103B1 (en) | 2021-06-22 | 2022-03-15 | Vmi Holland B.V. | Method, computer program product and dispensing device for dispensing discrete medicaments |
US11498761B1 (en) | 2021-06-22 | 2022-11-15 | Vmi Holland B.V. | Method for dispensing discrete medicaments, a test station for testing a feeder unit, and a method for determining a fill level of a feeder unit |
US11673700B2 (en) | 2021-06-22 | 2023-06-13 | Vmi Holland B.V. | Device and methods for packaging medicaments with fault detection |
US11925604B2 (en) | 2021-06-22 | 2024-03-12 | Vmi Holland B.V. | Method, computer program product and dispensing device for dispensing discrete medicaments |
US11931317B2 (en) | 2021-06-22 | 2024-03-19 | Vmi Holland B.V. | Method, computer program product and dispensing device for dispensing discrete medicaments |
CN113928659A (en) * | 2021-10-12 | 2022-01-14 | 安徽采林间食品科技有限公司 | A several grain machine that is used for nut packagine machine to have a screening function |
Also Published As
Publication number | Publication date |
---|---|
JP2014231393A (en) | 2014-12-11 |
JP6438659B2 (en) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140318086A1 (en) | Apparatus and method for counting and filling | |
RU2491047C2 (en) | Device for manipulation with capsules and equipment for manipulation with capsules, which contains such device | |
US10577186B2 (en) | Container filling machine | |
US10486889B2 (en) | Drug feeder | |
US10828238B2 (en) | Drug feeder | |
US20200130947A1 (en) | Automated conveying device | |
US7134460B2 (en) | Method and apparatus for placing tablets into pockets of thermoformed bottom foil | |
JP6641239B2 (en) | Counting filling device and counting filling method | |
KR20170034383A (en) | Medicine cassette | |
KR20140124501A (en) | Apparatus for packaging pills at high speed | |
US20210284373A1 (en) | Continuous motion filling system and filling machine and methods | |
US12054296B2 (en) | Systems and methods of performing high-speed container filling with reduced cross-contamination | |
CA2749623C (en) | A container filling machine | |
JP2014181058A (en) | Counting-charging apparatus and counting-charging method | |
KR102365598B1 (en) | Capsule inspection device | |
JP5175233B2 (en) | Tablet counting and filling device | |
JP2015040051A (en) | Counting/filling apparatus and counting/filling method | |
KR101726809B1 (en) | Drugs supply unit and apparatus for inspecting appearance of drugs having the same | |
JP2013028407A (en) | Tablet counting and filling apparatus and method | |
KR101490978B1 (en) | Transfer Device Of Pill | |
JP2022171274A (en) | Counting and filling device and counting and filling method | |
JP5175405B2 (en) | Tablet counting and filling device | |
KR20170117768A (en) | Tablet dispenser of drug packing apparatus | |
CN219092800U (en) | Screw CCD detects wobble plate system | |
KR101467489B1 (en) | A tablet inspection apparatus with adjustable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: YUNITEC INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISHIZUKA, AKIRA;REEL/FRAME:032796/0191 Effective date: 20140310 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |