US20140317860A1 - A washing machine and washing method thereof - Google Patents

A washing machine and washing method thereof Download PDF

Info

Publication number
US20140317860A1
US20140317860A1 US14/364,152 US201214364152A US2014317860A1 US 20140317860 A1 US20140317860 A1 US 20140317860A1 US 201214364152 A US201214364152 A US 201214364152A US 2014317860 A1 US2014317860 A1 US 2014317860A1
Authority
US
United States
Prior art keywords
inner tub
tub
particles
washing
washing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/364,152
Inventor
Zhengbao He
Chunfeng Lao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xeros Ltd
Original Assignee
QINGDAO HAIRI GAOKE MODEL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO HAIRI GAOKE MODEL Co Ltd filed Critical QINGDAO HAIRI GAOKE MODEL Co Ltd
Assigned to HAIER GROUP CORPORATION, HAIER GROUP TECHNIQUE R&D CENTER, QINGDAO HAIRI GAOKE MODEL CO., LTD reassignment HAIER GROUP CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HE, Zhengbao, LAO, Chunfeng
Publication of US20140317860A1 publication Critical patent/US20140317860A1/en
Assigned to XEROS LIMITED reassignment XEROS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAIER GROUP CORPORATION, HAIER GROUP TECHNIQUE R&D CENTER, QINGDAO HAIRI GAOKE MODEL CO., LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/006Methods for washing, rinsing or spin-drying for washing or rinsing only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/06Ribs, lifters, or rubbing means forming part of the receptacle
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/267Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • D06F39/026Devices for adding soap or other washing agents the powder or tablets being added directly, e.g. without the need of a flushing liquid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/088Liquid supply arrangements

Definitions

  • the present invention relates to a washing machine, in particular, to a washing machine utilizing particles in washing and a washing method thereof. It belongs to the technical field of washing machine.
  • water is taken as the washing medium; adding water and detergent into the washing machine, proceeding to wash, and draining the waste water in the washing machine by the dehydration function after washing, then re-adding clean water to continue washing or rinsing, and draining the water after the washing process is finished.
  • the consumption of water is very great by simply draining water and re-adding clean washing water.
  • the detergent contains a lot of chemical substances which are harmful to the environment. Besides, each washing process is time-consuming and consumes more power.
  • a washing method with solid particles specially made of polymer materials as washing medium is provided.
  • the dirt on clothes is absorbed by the fraction between solid particles and clothes, thus the function of washing is achieved.
  • This washing method is able to save over 80% of water.
  • these solid particles are recyclable, endurable, safe and environmentally friendly.
  • Washing machines of the washing method utilizing particles are usually arranged with a storage space for particles, and a feeding hole and a discharge hole on the outer tub. Before washing, putting particles into the outer tub through the feeding hole, and recycling all of them back to the storage space when the washing process is over. While recycling, the inner tub rotates at a high speed to throw the particles back to the storage space through centrifugal force. When dewatering the particles, putting them in and recycling them once again. Both the structure and washing procedures of the washing machines are quite complicated, and particles cannot be assured to be 100% recycled.
  • the object of the present invention is mainly to solve the aforesaid problems and overcome their shortcomings, and provides a washing machine which simplifies washing procedures, improves cleaning rate and is beneficial to recycling particles.
  • Another object of the present invention is to provide a washing method which simplifies washing procedures, improves cleaning rate and is beneficial to recycling particles.
  • a washing machine comprises an inner tub, an outer tub and particles for washing medium.
  • the inner tub is driven to rotate by a driving device.
  • a lifting rib protruding inward is arranged on the inner wall of the inner tub.
  • Inside the washing machine there is an air circulation channel on which a fan is arranged. Both ends of the air circulation channel communicate with the inner tub.
  • a discharge hole for recycling the particles and a feeding hole for putting in the particles are arranged on a front of the inner tub.
  • an air outlet of the air circulation channel is arranged on a rear wall of the outer tub, and an air inlet of the air circulation channel is arranged on a front wall of the outer tub, meanwhile, a plurality of openings for a washing water only flowing through are set on the front wall and bottom wall of the inner tub.
  • the air outlet of the air circulation channel is arranged on the rear wall of the outer tub, while the air inlet is arranged on a door of the washing machine.
  • An air channel for leading an air in the inner tub to the air circulation channel is set on the door of the washing machine.
  • a plurality of openings for allowing the washing water only to flow through is set on the bottom wall of the inner tub.
  • a storage tank for storing the particles is set on an outer wall of the outer tub, and the storage tank connects with the outer tub through a port or valve arranged on a wall of the outer tub.
  • At least one scraper protruding outward is arranged on the outer wall of the inner tub.
  • the storage tank connects with the feeding hold of the inner tub via a feeding channel, and the feeding hold of the inner tub is arranged above or on the door of the washing machine correspondingly.
  • a channel is set on the door for connecting the feeding hole with the feeding channel.
  • the discharge hole of the inner tub is arranged beneath the door of the washing machine, and is connected with the outer tub.
  • a discharge valve is set at the discharge hole.
  • the lifting ribs are arranged obliquely or spirally on the inner wall of the inner tub.
  • a length of a projection of the lifting ribs in the axial direction of the inner tub is identical with that of the side wall of the inner tub, or the lifting ribs are arranged spirally from the bottom to the top of the inner tub.
  • the number of the lifting ribs is 1-10, and the lifting ribs are evenly arranged along the wall of the inner tub.
  • an isolation tub with a net structure is arranged along the inner wall of the inner tub for separating clothes from particles, and the isolation tub is fixedly connected with the inner tub.
  • a plurality of lifting blocks protruding inward is arranged on the wall of the isolation tub.
  • Another technical scheme of the present invention is:
  • a washing method including the following steps:
  • Step I Putting the particles into the inner tub of the washing machine, mixing the particles with clothes and a washing water, and turning them over together to wash the clothes;
  • Step II After washing, draining the washing water and separating the clothes from the particles and the washing water;
  • Step III Blowing air towards the inner tub with a fan and through the air circulation channel to separate the particles from clothes, and then the particles entering in the outer tub through the discharge hole on the front of the inner tub.
  • the particles are thrown in the storage tank through the ports on the wall of the outer tub under the centrifugal force induced by the high-speed rotation of the inner tub. The recycling of the particles is completed.
  • the inner tub is driven to rotate clockwise and counter-clockwise in turns, and the particles are overturned in the inner tub by the lifting ribs spirally or obliquely arranged on the inner wall of the inner tub.
  • the inner tub is driven to rotate continuously, and the particles are driven to move towards the discharge hole of the inner tub by the lifting ribs.
  • the washing machine and washing method thereof described in the present invention is to realize 100% recycle of particles through blowing air towards the inner tub to separate them out, meanwhile, a plurality of lifting ribs are set on the wall of the inner tub of the washing machine to overturn clothes and particles inside in all directions together with the alternate clockwise and counter-clockwise rotations of the inner tub, blending particles and clothes to be washed more fully, thus improving the cleaning rate.
  • clothes and particles can be dewatered and dehydrated simultaneously, simplifying the washing procedures.
  • FIG. 1 is a schematic view of Embodiment I of the present invention.
  • FIG. 2 is an A-auxiliary view of FIG. 1 ;
  • FIG. 3 is a process schematic view of recycling particles in the present invention.
  • FIG. 4 is another process schematic view of recycling particles in the present invention.
  • FIG. 5 is a structural schematic view of Embodiment II of the present invention.
  • FIG. 6 is a structural schematic view of Embodiment III of the present invention.
  • an outer tub 1 As shown in FIG. 1-5 , an outer tub 1 , an inner tub 2 , particles 3 , a driving device 4 , clothes 5 , a isolation tub 6 , lifting blocks 7 , lifting ribs 8 , a discharge hole 9 , an air circulation channel 10 , a fan 11 , an air outlet 12 , an air inlet 13 , a feeding hole 14 , a storage tank 15 , a port 16 , a scraper 17 , a feeding channel 18 , a door of the washing machine 19 , a discharge valve 20 , an air channel 21 , and a channel 22 .
  • a washing machine taking a roller washing machine as an example for detailed description in the embodiment, comprises a shell (not shown in the figure), an outer tub 1 , an inner tub 2 arranged in the shell, and solid particles 3 as washing medium.
  • the outer tub 1 is fixed, mainly for holding water
  • the inner tub 2 is arranged at the inner of the outer tub 1 for washing and is driven to rotate by a driving device 4 .
  • a water inlet (not shown in the figure) is arranged on the upper of the outer tub 1 for water inflow during washing and rinsing, and a water outlet (not shown in the figure) is arranged on the lower of the outer tub 1 for water draining after dewatering.
  • a circle of isolation tub 6 is arranged along the inner side of the inner tub 2 optionally.
  • the clothes 5 are placed in the isolation tub 6 .
  • the bottom and top of the isolation tub 6 are fixedly connected with the bottom and top of the inner tub 2 respectively by fastenings, and rotate with the inner tub 2 synchronously.
  • the isolation tub 6 is a net structure, so as to let the particles 3 and washing water flow in and out easier.
  • the clothes 5 are isolated in the isolation tub 6 , while the particles 3 are isolated between the isolation tub 6 and the inner tub 2 .
  • the particles 3 pass through the isolation tub 6 to fully mix with the clothes 5 .
  • the particles 3 are made of polymer material with porous surface. With the preferable adsorption capacity of the particles 3 , the dirt in the clothes 5 and washing water is adsorbed, thus reaches a preferable washing effect.
  • a lifting block 7 protruding inward is arranged in the inner wall of the isolation tub 6 .
  • the number of the lifting block 7 may be 1-3. In the embodiment, it's preferred to adopt 3 lifting blocks 7 , which are arranged evenly along the circumference of the isolation tub 6 .
  • the lifting ribs 8 protruding inward are arranged in parallel.
  • the lifting ribs 8 are arranged on the inner wall of the inner tub 2 obliquely and bend along the arc of the wall of the inner tub 2 .
  • the line between the two end points of the lifting ribs 8 forms an included angle relative to the axis of the inner tub 2 .
  • the included angle may be an acute angle or an obtuse angle, i.e. the lifting ribs 8 incline upward or downward along the wall of the inner tub 2 .
  • the lifting ribs 8 rotate with the inner tub 2 , and drive the particles 3 as washing medium to move obliquely upward or downward along the lifting ribs 8 . When the movement reaches a certain height, the particles 3 fall from the lifting ribs 8 to the inner tub 2 , and to achieve overturn.
  • the cross section of the lifting ribs 8 is preferably streamline shape which roughly circular arc in shape.
  • the diameter of the particles 3 is in the range of around 2-3 mm.
  • the height of the lifting ribs 8 is preferably at least 5 mm, slightly less than or equal to the distance between the inner wall of the inner tub 2 and the outer wall of the isolation tub 6 .
  • the number of the lifting ribs 8 is 1-10, 5-8 preferably, which are arranged evenly along the wall of the inner tub 2 . With more and higher lifting ribs 8 , more particles 3 can be driven.
  • the inner tub 2 rotates clockwise and counterclockwise in turn. Under the action of centrifugal force, the particles 3 move obliquely upward or downward along the lifting ribs 8 , move forward and backward and turn over along the axis of the inner tub 2 continually in the inner tub 2 to blend with the clothes 5 more fully, thereby improving cleaning rate. At this moment, the rotating speed of the inner tub 2 is no need to be very high. Washing speed is enough. Generally, it optionally rotates at a speed of 50-150 r/min.
  • the particles 3 when recycling the particles 3 , driving the inner tub 2 to run continuously in the direction opposite to the inclined direction of the lifting ribs 8 , thus the particles 3 is driven to move toward the front end of the inner tub 2 by the lifting ribs 8 . Finally the particles 3 flow out of the inner tub 2 via a discharge port 9 located on the front end of the inner tub 2 , and flow into the outer tub 1 .
  • the inner tub 2 is chosen to rotate at a speed of 50-150 r/m.
  • a air circulation channel 10 is arranged in the shell of the washing machine, and both ends of the air circulation channel 10 communicate with the inner tub 2 .
  • a fan 11 is arranged in the air circulation channel 10 for blowing toward the inner tub 2 , so as to separate the clothes 5 from the particles 3 .
  • An air outlet 12 of the air circulation channel 10 is arranged on the rear wall of the outer tub 1 while an air inlet 13 of the air circulation channel 10 is arranged on the front wall of the outer tub 1 .
  • a number of openings for the washing water flowing through are arranged evenly on the side wall, bottom wall and front wall of the inner tub 2 .
  • the diameter of the openings is less than that of the solid particles 3 .
  • the shape of the openings may be round, rectangle or polygon and so on.
  • the air from the air outlet 12 on the rear wall of the outer tub 1 flows into the inner tub 2 via the openings on the bottom wall of the inner tub 2 , then flows out of the openings on the front wall of the inner tub 2 , and finally flows into the air circulation channel 10 through the air inlet 13 on the front wall of the outer tub 1 , thus forms a air circulation path with entering air from the rear side of the inner tub 2 while blowing air out from the front side.
  • a storage tank 15 is arranged on the outer wall of the outer tub 1 for storing the particles 3 , and the storage tank 15 is fixed on the top or one side of the outer tub 1 .
  • the storage tank 15 connects with the inner space of the outer tub 1 via a port 16 arranged on the wall of the outer tub 1 .
  • a valve is arranged at the port 16 for controlling the opening/closing of the port 16 .
  • At least one scraper 17 protruding outward is arranged on the outer wall of the inner tub 2 , and the scraper 17 is used for pushing the particles 3 to enter into the outer tub 1 from the inner tub 2 .
  • the number of the scraper 17 may be 1-3.
  • it's preferred to adopt 3 scrapers 17 which are distributed evenly along the circumference of the inner tub 2 .
  • the radial height of the scraper 17 is slightly lower than the distance between the outer wall of the inner tub 2 and the inner wall of the outer tub 1 , which may avoid the scraper 17 touching the inner wall of the outer tub 1 during the rotation of the inner tub 2 .
  • the axial length of the scraper 17 is roughly equal to that of the inner tub 2 .
  • the inner tub 2 rotates at a high speed, which results in producing a large centrifugal force.
  • the particles 3 of the outer tub 1 flow at a high speed along the inner wall of the outer tub 1 , and is thrown into the storage tank 15 through the port on the wall of the outer tub.
  • the scraper 17 continually pushes the particles 3 to flow, which is more beneficial for the recycling of particles 3 .
  • the storage tank 15 is connected with a feeding hole 14 of the inner tub 2 via a feeding channel 18 , and the feeding hole 14 is arranged above the door 19 of the washing machine.
  • a feeding valve is arranged on the feeding hole 14 or the feeding channel 18 .
  • a delivery pump (not shown in the figure) also is arranged on the feeding channel 18 .
  • the discharge hole 9 of the inner tub 2 is arranged at the window pad below the door 19 of the washing machine, and connected with the inner space of the outer tub 1 .
  • a discharge valve 20 is arranged at the discharge hole 9 .
  • the washing method comprises the following steps:
  • Step I Putting the clothes 5 to be washed into the isolation tub 6 of the washing machine, and opening the water inlet above the outer tub 1 for adding washing water; the washing water mixed with detergent flows into the outer tub 1 ; through the openings on the inner tub 2 and the isolation tub 6 , the water flows into the isolation tub 6 and mixes with the clothes 5 to be washed fully. In the process, it's only needed to add in moderate water and detergent to ensure the clothes 5 to be soaked in the water.
  • Step II Starting the delivery pump for the particles 3 , and opening the feeding valve, thus the particles 3 in the storage tank 15 are driven to be put into the inner tub 2 via the feeding channel 18 by the delivery pump.
  • the inner tub 2 rotates at a low speed of 50-150 r/min, which is beneficial to the full contact between the particles 3 in the inner tub 2 and the clothes 5 .
  • Step III After all the particles 3 are put into the inner tub 2 , the putting in the particles ends, and the feeding valve is close. This process may be controlled by restricting the putting time.
  • the inner tub 2 is driven to rotate clockwise for a period of time, stop, and then rotate counterclockwise for a period of time by the driving device 4 .
  • the lifting ribs 8 rotate clockwise and counterclockwise alternately too, thus, the particles 3 move forward or backward continually in the inner tub 2 .
  • the particles 3 move obliquely upward along the lifting ribs 8 , and when reaching a certain height, the particles 3 flip down and fall into the inner tub 2 . It is achieved to overturn in forward and backward directions.
  • the clothes 5 turn up and down.
  • the particles 3 , clothes 5 and washing water are fully blended, lift and decline continually under the impact of the lifting blocks 7 and the lifting ribs 8 , thereby finishing the washing of the clothes 5 .
  • Step IV After the washing, the water is drained, and the clothes 5 is separated from the particles 3 and washing water preliminarily.
  • Step V The inner tub 2 rotates at a high speed, and clothes 5 and particles 3 in the inner tub 2 simultaneously dewater. The recycling of the particles 3 is achieved. The washing water is collected in the outer tub 1 and discharged via the water outlet of the bottom of the outer tub 1 .
  • the inner tub rotates 2 at a speed of 100-1000 r/min, generally higher than the speed during washing.
  • Step VI After dewatering, the fan 11 is started.
  • the air along the air circulation channel 10 blows into the inner tub 2 from the air outlet 12 on the rear wall of the outer tub 1 via the openings on the bottom wall of the inner tub 2 ; and the air blows toward the clothes 5 and particles 3 in the inner tub 2 .
  • the clothes 5 are separated from the particles 3 preliminarily under the action of the air.
  • the air flows out from the openings of the front wall of the inner tub 2 , and finally flows into the air circulation channel 10 from the air inlet 13 of the front wall of the outer tub 1 , thus forms air circulation.
  • the inner tub 2 rotates at a speed of 50-150 r/min.
  • Step VII the inner tub 2 rotates at a high speed again. Under the centrifugal force, the particles 3 in the outer tub 1 flow at a high speed along the inner wall of the outer tub 1 , and are thrown into the storage tank 15 from the port 16 on the wall of the outer tub 1 , finishing the recycling of the particles 3 .
  • Step VIII Rinsing step, adding clean water into the outer tub 1 again, and the inner tub 2 is driven to rotate.
  • the clothes 5 is rinsed, and draining the water after rinsing.
  • the inner tub 2 rotates at a high speed to dewater the clothes 5 .
  • the difference from Embodiment 1 is that the air outlet 12 of the air circulation channel 10 is arranged on the rear wall of the outer tub 1 while its air inlet 13 is arranged on the door 19 of washing machine.
  • An air channel 21 for leading the air from the inner tub 2 to the air circulation channel 10 is arranged on the door 19 of the washing machine.
  • One end of the air channel connects with the inner tub 2 while the other end connects with the air circulation channel 10 .
  • the air along the air circulation channel 10 blows into the inner tub 2 from the air outlet 12 on the rear wall of the outer tub 1 via the openings on the bottom wall of the inner tub 2 .
  • the air blows toward the clothes 5 and particles 3 in the inner tub 2 .
  • the clothes 5 are driven to be separated from the particles 3 preliminarily by the air.
  • the air flows out of the air channel 21 on the door 19 of the washing machine ahead the inner tub 2 , and flows into the air circulation channel 10 , forming air circulation.
  • a channel 22 is set on the door 19 of the washing machine.
  • One end of the channel 22 is communicated with the inner tub 2 via the feeding hole 14 while the other end connected with the feeding channel 18 .
  • the channel 22 is slightly tilted upward, avoiding the particles 3 entering the channel 22 during washing.
  • the delivery pump and the feeding valve are started simultaneously.
  • the particles 3 in the storage tank 15 are put into the inner tub 2 via the feeding channel 18 and the channel 22 on the door 19 of the washing machine by the delivery pump.
  • the number of the lifting rib 8 is one, which is spirally arranged along the inner wall of the inner tub 2 from the bottom to the top of the inner tub 2 .
  • the difference from the aforesaid embodiment is that the storage tank 15 is fixed above the outer tub 1 , and the discharge hole of the storage tank 15 is connected with the feeding hole 14 of the inner tub 2 of the washing machine via the valve.
  • the valve When the valve is open, the particles 3 enter in the inner tub 2 from the storage tank 15 depending mainly on the gravity.

Abstract

A washing machine and washing method thereof, comprising an inner tub, an outer tub and solid particles as washing medium. The inner tub, whose inner wall is arranged with lifting ribs protruding inward, rotates under the driving power of a driving device. Inside the washing machine, there is an air circulation channel, wherein, a fan is arranged. Both ends of the air circulation channel communicate to the inner tub. A discharge hole for recycling the particles and a feeding hole for putting in the particles are arranged at the front end of the inner tub. When the washing process comes to an end, both the clothes and particles can be dewatered and dehydrated simultaneously, so the washing procedures get simplified. Besides, blowing air towards the inner tub to separate and recycle the particles is conducive to 100% recycling of the particles.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a washing machine, in particular, to a washing machine utilizing particles in washing and a washing method thereof. It belongs to the technical field of washing machine.
  • BACKGROUND OF THE INVENTION
  • For washing method of traditional washing machines, water is taken as the washing medium; adding water and detergent into the washing machine, proceeding to wash, and draining the waste water in the washing machine by the dehydration function after washing, then re-adding clean water to continue washing or rinsing, and draining the water after the washing process is finished. In the method, the consumption of water is very great by simply draining water and re-adding clean washing water. Meanwhile, the detergent contains a lot of chemical substances which are harmful to the environment. Besides, each washing process is time-consuming and consumes more power.
  • To overcome the shortcomings of the traditional washing machines, in the prior art, a washing method with solid particles specially made of polymer materials as washing medium is provided. The dirt on clothes is absorbed by the fraction between solid particles and clothes, thus the function of washing is achieved. This washing method is able to save over 80% of water. Besides, these solid particles are recyclable, endurable, safe and environmentally friendly.
  • Washing machines of the washing method utilizing particles are usually arranged with a storage space for particles, and a feeding hole and a discharge hole on the outer tub. Before washing, putting particles into the outer tub through the feeding hole, and recycling all of them back to the storage space when the washing process is over. While recycling, the inner tub rotates at a high speed to throw the particles back to the storage space through centrifugal force. When dewatering the particles, putting them in and recycling them once again. Both the structure and washing procedures of the washing machines are quite complicated, and particles cannot be assured to be 100% recycled.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is mainly to solve the aforesaid problems and overcome their shortcomings, and provides a washing machine which simplifies washing procedures, improves cleaning rate and is beneficial to recycling particles.
  • Another object of the present invention is to provide a washing method which simplifies washing procedures, improves cleaning rate and is beneficial to recycling particles.
  • To realize the aforesaid purposes, technical scheme of the present invention is:
  • A washing machine comprises an inner tub, an outer tub and particles for washing medium. The inner tub is driven to rotate by a driving device. A lifting rib protruding inward is arranged on the inner wall of the inner tub. Inside the washing machine, there is an air circulation channel on which a fan is arranged. Both ends of the air circulation channel communicate with the inner tub. A discharge hole for recycling the particles and a feeding hole for putting in the particles are arranged on a front of the inner tub.
  • Furthermore, an air outlet of the air circulation channel is arranged on a rear wall of the outer tub, and an air inlet of the air circulation channel is arranged on a front wall of the outer tub, meanwhile, a plurality of openings for a washing water only flowing through are set on the front wall and bottom wall of the inner tub.
  • Furthermore, the air outlet of the air circulation channel is arranged on the rear wall of the outer tub, while the air inlet is arranged on a door of the washing machine. An air channel for leading an air in the inner tub to the air circulation channel is set on the door of the washing machine. Besides, a plurality of openings for allowing the washing water only to flow through is set on the bottom wall of the inner tub.
  • Furthermore, a storage tank for storing the particles is set on an outer wall of the outer tub, and the storage tank connects with the outer tub through a port or valve arranged on a wall of the outer tub.
  • Furthermore, at least one scraper protruding outward is arranged on the outer wall of the inner tub.
  • Furthermore, the storage tank connects with the feeding hold of the inner tub via a feeding channel, and the feeding hold of the inner tub is arranged above or on the door of the washing machine correspondingly. A channel is set on the door for connecting the feeding hole with the feeding channel.
  • Furthermore, the discharge hole of the inner tub is arranged beneath the door of the washing machine, and is connected with the outer tub.
  • Furthermore, a discharge valve is set at the discharge hole.
  • Furthermore, the lifting ribs are arranged obliquely or spirally on the inner wall of the inner tub.
  • Furthermore, a length of a projection of the lifting ribs in the axial direction of the inner tub is identical with that of the side wall of the inner tub, or the lifting ribs are arranged spirally from the bottom to the top of the inner tub.
  • Furthermore, the number of the lifting ribs is 1-10, and the lifting ribs are evenly arranged along the wall of the inner tub.
  • Furthermore, an isolation tub with a net structure is arranged along the inner wall of the inner tub for separating clothes from particles, and the isolation tub is fixedly connected with the inner tub.
  • Furthermore, a plurality of lifting blocks protruding inward is arranged on the wall of the isolation tub.
  • Another technical scheme of the present invention is:
  • A washing method, including the following steps:
  • Step I: Putting the particles into the inner tub of the washing machine, mixing the particles with clothes and a washing water, and turning them over together to wash the clothes;
  • Step II: After washing, draining the washing water and separating the clothes from the particles and the washing water; and
  • Step III: Blowing air towards the inner tub with a fan and through the air circulation channel to separate the particles from clothes, and then the particles entering in the outer tub through the discharge hole on the front of the inner tub.
  • Furthermore, after entering the outer tub, the particles are thrown in the storage tank through the ports on the wall of the outer tub under the centrifugal force induced by the high-speed rotation of the inner tub. The recycling of the particles is completed.
  • Furthermore, in the Step I, the inner tub is driven to rotate clockwise and counter-clockwise in turns, and the particles are overturned in the inner tub by the lifting ribs spirally or obliquely arranged on the inner wall of the inner tub.
  • Furthermore, in the Step III, the inner tub is driven to rotate continuously, and the particles are driven to move towards the discharge hole of the inner tub by the lifting ribs.
  • In summary, the washing machine and washing method thereof described in the present invention is to realize 100% recycle of particles through blowing air towards the inner tub to separate them out, meanwhile, a plurality of lifting ribs are set on the wall of the inner tub of the washing machine to overturn clothes and particles inside in all directions together with the alternate clockwise and counter-clockwise rotations of the inner tub, blending particles and clothes to be washed more fully, thus improving the cleaning rate. In addition, when the washing process comes to an end, clothes and particles can be dewatered and dehydrated simultaneously, simplifying the washing procedures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of Embodiment I of the present invention;
  • FIG. 2 is an A-auxiliary view of FIG. 1;
  • FIG. 3 is a process schematic view of recycling particles in the present invention;
  • FIG. 4 is another process schematic view of recycling particles in the present invention;
  • FIG. 5 is a structural schematic view of Embodiment II of the present invention; and
  • FIG. 6 is a structural schematic view of Embodiment III of the present invention.
  • As shown in FIG. 1-5, an outer tub 1, an inner tub 2, particles 3, a driving device 4, clothes 5, a isolation tub 6, lifting blocks 7, lifting ribs 8, a discharge hole 9, an air circulation channel 10, a fan 11, an air outlet 12, an air inlet 13, a feeding hole 14, a storage tank 15, a port 16, a scraper 17, a feeding channel 18, a door of the washing machine 19, a discharge valve 20, an air channel 21, and a channel 22.
  • EMBODIMENTS
  • Combining with the drawings and detailed embodiments, the present invention is further elaborated:
  • Embodiment 1
  • As shown in FIG. 1 and FIG. 2, a washing machine, taking a roller washing machine as an example for detailed description in the embodiment, comprises a shell (not shown in the figure), an outer tub 1, an inner tub 2 arranged in the shell, and solid particles 3 as washing medium. Wherein, the outer tub 1 is fixed, mainly for holding water, and the inner tub 2 is arranged at the inner of the outer tub 1 for washing and is driven to rotate by a driving device 4. A water inlet (not shown in the figure) is arranged on the upper of the outer tub 1 for water inflow during washing and rinsing, and a water outlet (not shown in the figure) is arranged on the lower of the outer tub 1 for water draining after dewatering.
  • To be convenient for separating clothes 5 from particles 3, a circle of isolation tub 6 is arranged along the inner side of the inner tub 2 optionally. The clothes 5 are placed in the isolation tub 6. The bottom and top of the isolation tub 6 are fixedly connected with the bottom and top of the inner tub 2 respectively by fastenings, and rotate with the inner tub 2 synchronously. The isolation tub 6 is a net structure, so as to let the particles 3 and washing water flow in and out easier. The clothes 5 are isolated in the isolation tub 6, while the particles 3 are isolated between the isolation tub 6 and the inner tub 2. During washing, the particles 3 pass through the isolation tub 6 to fully mix with the clothes 5. Preferably, the particles 3 are made of polymer material with porous surface. With the preferable adsorption capacity of the particles 3, the dirt in the clothes 5 and washing water is adsorbed, thus reaches a preferable washing effect.
  • As with the ordinary roller washing machine, at least a lifting block 7 protruding inward is arranged in the inner wall of the isolation tub 6. During the washing, under the action of the lifting block 7, the clothes 5 turn up and down continually in the inner tub 2, lifting and then falling down, to achieve the washing effect in cycles. The number of the lifting block 7 may be 1-3. In the embodiment, it's preferred to adopt 3 lifting blocks 7, which are arranged evenly along the circumference of the isolation tub 6.
  • On the inner wall of the inner tub 2, multiple lifting ribs 8 protruding inward are arranged in parallel. The lifting ribs 8 are arranged on the inner wall of the inner tub 2 obliquely and bend along the arc of the wall of the inner tub 2. The line between the two end points of the lifting ribs 8 forms an included angle relative to the axis of the inner tub 2. The included angle may be an acute angle or an obtuse angle, i.e. the lifting ribs 8 incline upward or downward along the wall of the inner tub 2. The lifting ribs 8 rotate with the inner tub 2, and drive the particles 3 as washing medium to move obliquely upward or downward along the lifting ribs 8. When the movement reaches a certain height, the particles 3 fall from the lifting ribs 8 to the inner tub 2, and to achieve overturn.
  • To avoid damaging the particles 3, in the embodiment, the cross section of the lifting ribs 8 is preferably streamline shape which roughly circular arc in shape. The diameter of the particles 3 is in the range of around 2-3 mm. The height of the lifting ribs 8 is preferably at least 5 mm, slightly less than or equal to the distance between the inner wall of the inner tub 2 and the outer wall of the isolation tub 6. The number of the lifting ribs 8 is 1-10, 5-8 preferably, which are arranged evenly along the wall of the inner tub 2. With more and higher lifting ribs 8, more particles 3 can be driven.
  • When washing the clothes 5, the inner tub 2 rotates clockwise and counterclockwise in turn. Under the action of centrifugal force, the particles 3 move obliquely upward or downward along the lifting ribs 8, move forward and backward and turn over along the axis of the inner tub 2 continually in the inner tub 2 to blend with the clothes 5 more fully, thereby improving cleaning rate. At this moment, the rotating speed of the inner tub 2 is no need to be very high. Washing speed is enough. Generally, it optionally rotates at a speed of 50-150 r/min. In the meantime, when recycling the particles 3, driving the inner tub 2 to run continuously in the direction opposite to the inclined direction of the lifting ribs 8, thus the particles 3 is driven to move toward the front end of the inner tub 2 by the lifting ribs 8. Finally the particles 3 flow out of the inner tub 2 via a discharge port 9 located on the front end of the inner tub 2, and flow into the outer tub 1. In the process, the inner tub 2 is chosen to rotate at a speed of 50-150 r/m.
  • A air circulation channel 10 is arranged in the shell of the washing machine, and both ends of the air circulation channel 10 communicate with the inner tub 2. A fan 11 is arranged in the air circulation channel 10 for blowing toward the inner tub 2, so as to separate the clothes 5 from the particles 3.
  • An air outlet 12 of the air circulation channel 10 is arranged on the rear wall of the outer tub 1 while an air inlet 13 of the air circulation channel 10 is arranged on the front wall of the outer tub 1. A number of openings for the washing water flowing through are arranged evenly on the side wall, bottom wall and front wall of the inner tub 2. the diameter of the openings is less than that of the solid particles 3. The shape of the openings may be round, rectangle or polygon and so on. The air from the air outlet 12 on the rear wall of the outer tub 1 flows into the inner tub 2 via the openings on the bottom wall of the inner tub 2, then flows out of the openings on the front wall of the inner tub 2, and finally flows into the air circulation channel 10 through the air inlet 13 on the front wall of the outer tub 1, thus forms a air circulation path with entering air from the rear side of the inner tub 2 while blowing air out from the front side.
  • A storage tank 15 is arranged on the outer wall of the outer tub 1 for storing the particles 3, and the storage tank 15 is fixed on the top or one side of the outer tub 1. The storage tank 15 connects with the inner space of the outer tub 1 via a port 16 arranged on the wall of the outer tub 1. Or a valve is arranged at the port 16 for controlling the opening/closing of the port 16.
  • For the benefit of recycling the particles 3, in the embodiment, at least one scraper 17 protruding outward is arranged on the outer wall of the inner tub 2, and the scraper 17 is used for pushing the particles 3 to enter into the outer tub 1 from the inner tub 2. The number of the scraper 17 may be 1-3. In the embodiment, it's preferred to adopt 3 scrapers 17, which are distributed evenly along the circumference of the inner tub 2. The radial height of the scraper 17 is slightly lower than the distance between the outer wall of the inner tub 2 and the inner wall of the outer tub 1, which may avoid the scraper 17 touching the inner wall of the outer tub 1 during the rotation of the inner tub 2. The axial length of the scraper 17 is roughly equal to that of the inner tub 2. When recycling the particles 3, the inner tub 2 rotates at a high speed, which results in producing a large centrifugal force. Under the centrifugal force, the particles 3 of the outer tub 1 flow at a high speed along the inner wall of the outer tub 1, and is thrown into the storage tank 15 through the port on the wall of the outer tub. The scraper 17 continually pushes the particles 3 to flow, which is more beneficial for the recycling of particles 3.
  • The storage tank 15 is connected with a feeding hole 14 of the inner tub 2 via a feeding channel 18, and the feeding hole 14 is arranged above the door 19 of the washing machine. A feeding valve is arranged on the feeding hole 14 or the feeding channel 18. For the benefit of putting in the particles 3, a delivery pump (not shown in the figure) also is arranged on the feeding channel 18. The discharge hole 9 of the inner tub 2 is arranged at the window pad below the door 19 of the washing machine, and connected with the inner space of the outer tub 1. A discharge valve 20 is arranged at the discharge hole 9.
  • Combining FIGS. 1-4, the washing method of the aforesaid roller washing machine is further described.
  • The washing method comprises the following steps:
  • Step I: Putting the clothes 5 to be washed into the isolation tub 6 of the washing machine, and opening the water inlet above the outer tub 1 for adding washing water; the washing water mixed with detergent flows into the outer tub 1; through the openings on the inner tub 2 and the isolation tub 6, the water flows into the isolation tub 6 and mixes with the clothes 5 to be washed fully. In the process, it's only needed to add in moderate water and detergent to ensure the clothes 5 to be soaked in the water.
  • When injecting washing water to soak the clothes 5 to be washed, the clothes 5 are soaked for a certain time. Thus the clothes 5 is fully infiltrating with water so as to further improve the washing effect.
  • Step II: Starting the delivery pump for the particles 3, and opening the feeding valve, thus the particles 3 in the storage tank 15 are driven to be put into the inner tub 2 via the feeding channel 18 by the delivery pump.
  • In the step, the inner tub 2 rotates at a low speed of 50-150 r/min, which is beneficial to the full contact between the particles 3 in the inner tub 2 and the clothes 5.
  • Step III: After all the particles 3 are put into the inner tub 2, the putting in the particles ends, and the feeding valve is close. This process may be controlled by restricting the putting time.
  • The inner tub 2 is driven to rotate clockwise for a period of time, stop, and then rotate counterclockwise for a period of time by the driving device 4. Likewise, the lifting ribs 8 rotate clockwise and counterclockwise alternately too, thus, the particles 3 move forward or backward continually in the inner tub 2. The particles 3 move obliquely upward along the lifting ribs 8, and when reaching a certain height, the particles 3 flip down and fall into the inner tub 2. It is achieved to overturn in forward and backward directions. During the washing, under the impact of the lifting block 7, the clothes 5 turn up and down.
  • During the washing, the particles 3, clothes 5 and washing water are fully blended, lift and decline continually under the impact of the lifting blocks 7 and the lifting ribs 8, thereby finishing the washing of the clothes 5.
  • In this step, when the rotating speed of the inner tub 2 is between 100-200 r/min, it can obtain the best effect.
  • Step IV: After the washing, the water is drained, and the clothes 5 is separated from the particles 3 and washing water preliminarily.
  • Step V: The inner tub 2 rotates at a high speed, and clothes 5 and particles 3 in the inner tub 2 simultaneously dewater. The recycling of the particles 3 is achieved. The washing water is collected in the outer tub 1 and discharged via the water outlet of the bottom of the outer tub 1.
  • In this step, the inner tub rotates 2 at a speed of 100-1000 r/min, generally higher than the speed during washing.
  • Step VI: After dewatering, the fan 11 is started. The air along the air circulation channel 10 blows into the inner tub 2 from the air outlet 12 on the rear wall of the outer tub 1 via the openings on the bottom wall of the inner tub 2; and the air blows toward the clothes 5 and particles 3 in the inner tub 2. The clothes 5 are separated from the particles 3 preliminarily under the action of the air.
  • The air flows out from the openings of the front wall of the inner tub 2, and finally flows into the air circulation channel 10 from the air inlet 13 of the front wall of the outer tub 1, thus forms air circulation.
  • Meanwhile, opening the feeding valve 20, and the inner tub 2 is driven to run continuously in the direction opposite to the inclined direction of the lifting ribs 8. Thus, the particles 3 are driven to move toward the discharge hole 9 of the front of the inner tub 2 by the lifting ribs 8, and flow into the space between the outer tub 1 and the inner tub 2 through the discharge hole 9.
  • In the process, the inner tub 2 rotates at a speed of 50-150 r/min.
  • Step VII: the inner tub 2 rotates at a high speed again. Under the centrifugal force, the particles 3 in the outer tub 1 flow at a high speed along the inner wall of the outer tub 1, and are thrown into the storage tank 15 from the port 16 on the wall of the outer tub 1, finishing the recycling of the particles 3.
  • Step VIII: Rinsing step, adding clean water into the outer tub 1 again, and the inner tub 2 is driven to rotate. The clothes 5 is rinsed, and draining the water after rinsing. Then the inner tub 2 rotates at a high speed to dewater the clothes 5.
  • Other structures and working process are the same as Embodiment 1, thereby no additional detailed description here.
  • Embodiment 2
  • As shown in FIG. 5, the difference from Embodiment 1 is that the air outlet 12 of the air circulation channel 10 is arranged on the rear wall of the outer tub 1 while its air inlet 13 is arranged on the door 19 of washing machine. An air channel 21 for leading the air from the inner tub 2 to the air circulation channel 10 is arranged on the door 19 of the washing machine. One end of the air channel connects with the inner tub 2 while the other end connects with the air circulation channel 10. Thus, no need to arrange the port on the front wall of the inner tub 2, and arranging several ports on the bottom wall of the inner tub 2 is enough.
  • The air along the air circulation channel 10 blows into the inner tub 2 from the air outlet 12 on the rear wall of the outer tub 1 via the openings on the bottom wall of the inner tub 2. The air blows toward the clothes 5 and particles 3 in the inner tub 2. And, the clothes 5 are driven to be separated from the particles 3 preliminarily by the air.
  • Then the air flows out of the air channel 21 on the door 19 of the washing machine ahead the inner tub 2, and flows into the air circulation channel 10, forming air circulation.
  • Embodiment 3
  • As shown in FIG. 6, a channel 22 is set on the door 19 of the washing machine. One end of the channel 22 is communicated with the inner tub 2 via the feeding hole 14 while the other end connected with the feeding channel 18. The channel 22 is slightly tilted upward, avoiding the particles 3 entering the channel 22 during washing.
  • When putting in the particles 3, the delivery pump and the feeding valve are started simultaneously. Thus, the particles 3 in the storage tank 15 are put into the inner tub 2 via the feeding channel 18 and the channel 22 on the door 19 of the washing machine by the delivery pump.
  • Embodiment 4
  • The difference from the aforesaid embodiment is that the number of the lifting rib 8 is one, which is spirally arranged along the inner wall of the inner tub 2 from the bottom to the top of the inner tub 2.
  • Embodiment 5
  • The difference from the aforesaid embodiment is that the storage tank 15 is fixed above the outer tub 1, and the discharge hole of the storage tank 15 is connected with the feeding hole 14 of the inner tub 2 of the washing machine via the valve. When the valve is open, the particles 3 enter in the inner tub 2 from the storage tank 15 depending mainly on the gravity.
  • As aforesaid, combining the scheme provided by the drawings, similar technical scheme may be derived. However, without departing from the technical scheme of the present invention, any tiny modification, equivalent change or alteration on the aforesaid embodiments based on the technical essence of the present invention, still belongs to the scope of the present invention.

Claims (17)

1. A washing machine comprising: an inner tub, an outer tub and particles for washing medium, the inner tub being driven to rotate by a driving device, wherein:
a lifting rib protruding inward is arranged on an inner wall of the inner tub,
an air circulation channel is arranged inside the washing machine,
a fan is arranged on the air circulation channel,
both ends of the air circulation channel communicate with the inner tub, and
a discharge hole for recycling the particles and a feeding hole for putting in the particles are arranged on a front of the inner tub.
2. The washing machine according to claim 1, wherein,
an air outlet of the air circulation channel is arranged on a rear wall of the outer tub,
an air inlet of the air circulation channel is arranged on a front wall of the outer tub, and
a plurality of openings for allowing a washing water only to flow through are set on a front wall and bottom wall of the inner tub.
3. The washing machine according to claim 1, wherein,
the air outlet of the air circulation channel is arranged on the rear wall of the outer tub,
the air inlet is arranged on a door of the washing machine,
an air channel for leading an air in the inner tub to the air circulation channel is set on the door of the washing machine, and
a plurality of openings for the washing water only flowing through are set on the bottom wall of the inner tub.
4. The washing machine according to claim 1, wherein,
a storage tank for storing the particles is set on an outer wall of the outer tub, and
the storage tank connects with the outer tub through a port or valve arranged on a wall of the outer tub.
5. The washing machine according to claim 4, wherein, at least one scraper protruding outward is arranged on the outer wall of the inner tub.
6. The washing machine according to claim 4, wherein,
the storage tank connects with the feeding hold of the inner tub via a feeding channel,
the feeding hold of the inner tub is arranged above or on the door of the washing machine correspondingly, and
a channel is set on the door for connecting the feeding hole with the feeding channel.
7. The washing machine, according to claim 6, wherein, the discharge hole of the inner tub is arranged beneath the door of the washing machine, and is connected with the outer tub.
8. The washing machine, according to claim 7, wherein, a discharge valve is set at the discharge hole.
9. The washing machine, according to claim 1, wherein, the lifting ribs are arranged obliquely or spirally on the inner wall of the inner tub.
10. The washing machine, according to claim 9, wherein,
a length of a projection of the lifting ribs in the axial direction of the inner tub is identical with that of the side wall of the inner tub, or
the lifting ribs are arranged spirally from the bottom to the top of the inner tub.
11. The washing machine, according to claim 1, wherein, the number of the lifting ribs is 1-10, and the lifting ribs are evenly arranged along the wall of the inner tub.
12. The washing machine, according to claim 1, wherein,
an isolation tub with a net structure is arranged along the inner wall of the inner tub for separating clothes from particles, and
the isolation tub is fixedly connected with the inner tub.
13. The washing machine, according to claim 12, wherein, a plurality of lifting blocks protruding inward is arranged on a wall of the isolation tub.
14. A washing method, comprising the following steps:
Step I: putting the particles into the inner tub of the washing machine, mixing the particles with clothes and a washing water, and turning them over together to wash the clothes;
Step II: after washing, draining the washing water and separating the clothes from the particles and the washing water; and
Step III: blowing air towards the inner tub with a fan and through the air circulation channel to separate the particles from clothes, and then the particles entering in the outer tub through the discharge hole on the front of the inner tub.
15. The washing method according to claim 14, wherein,
after entering the outer tub, the particles are thrown in the storage tank through the ports on the wall of the outer tub under the centrifugal force induced by the high-speed rotation of the inner tub, and
the recycling of the particles is completed.
16. The washing method according to claim 14, wherein,
in the Step I, the inner tub is driven to rotate clockwise and counter-clockwise in turns, and
the particles are overturned in the inner tub by the lifting ribs spirally or obliquely arranged on the inner wall of the inner tub.
17. The washing method according to claim 16, wherein,
in the Step III, the inner tub is driven to rotate continuously, and
the particles are driven to move towards the discharge hole of the inner tub by the lifting ribs.
US14/364,152 2011-12-23 2012-05-04 A washing machine and washing method thereof Abandoned US20140317860A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110436653.0 2011-12-23
CN201110436653.0A CN103173961B (en) 2011-12-23 2011-12-23 A kind of washing machine and washing methods
PCT/CN2012/075091 WO2013091338A1 (en) 2011-12-23 2012-05-04 Washing machine and washing method

Publications (1)

Publication Number Publication Date
US20140317860A1 true US20140317860A1 (en) 2014-10-30

Family

ID=48634122

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/364,152 Abandoned US20140317860A1 (en) 2011-12-23 2012-05-04 A washing machine and washing method thereof

Country Status (3)

Country Link
US (1) US20140317860A1 (en)
CN (1) CN103173961B (en)
WO (1) WO2013091338A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150096128A1 (en) * 2013-10-03 2015-04-09 Xeros Limited Cleaning apparatus and method
US9523169B2 (en) 2013-11-25 2016-12-20 Xeros Limited Cleaning apparatus and method
US9631314B2 (en) 2011-01-11 2017-04-25 Xeros Limited Drum type laundry machine
US9803307B2 (en) 2011-01-14 2017-10-31 Xeros Limited Cleaning method
US9845516B2 (en) 2013-04-11 2017-12-19 Xeros Limited Method for treating a substrate made of animal fibers with solid particles and a chemical formulation comprising a colourant
US9850619B2 (en) 2013-03-20 2017-12-26 Xeros Limited Cleaning apparatus and method
US9932700B2 (en) 2013-03-20 2018-04-03 Xeros Limited Cleaning apparatus and method
US10017895B2 (en) 2013-03-20 2018-07-10 Xeros Limited Drying apparatus and method
US10081900B2 (en) 2013-11-08 2018-09-25 Xeros Limited Cleaning method including use of solid particles
US10287642B2 (en) 2014-10-10 2019-05-14 Xeros Limited Animal skin substrate treatment apparatus and method
US10301691B2 (en) 2014-10-03 2019-05-28 Xeros Limited Method for treating an animal substrate
US10316448B2 (en) 2011-06-15 2019-06-11 Xeros Limited Washing method with polymer solid particles
US10494590B2 (en) 2012-07-06 2019-12-03 Xeros Limited Cleaning material
US10590499B2 (en) 2016-04-13 2020-03-17 Xeros Limited Animal skin substrate treatment method and apparatus
US10773976B2 (en) 2016-04-13 2020-09-15 Xeros Limited Method of treatment using a solid particulate material and apparatus therefor
US10781404B2 (en) 2014-12-01 2020-09-22 Xeros Limited Cleaning method, apparatus and use
US10808289B2 (en) 2014-10-10 2020-10-20 Xeros Limited Animal skin substrate treatment apparatus and method
CN112111922A (en) * 2019-06-19 2020-12-22 青岛海尔洗衣机有限公司 Clothes treatment equipment
JP2022503489A (en) * 2018-07-30 2022-01-12 青島海爾滾筒洗衣机有限公司 Washing machine and control method
US11299839B2 (en) 2018-07-13 2022-04-12 Xeros Limited Apparatus and method for treating a substrate with solid particles
US11414633B2 (en) 2015-07-29 2022-08-16 Xeros Limited Cleaning method, apparatus and use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449509B1 (en) * 2016-01-05 2022-09-29 엘지전자 주식회사 Lifter for laundary treating apparatus
CN113308840B (en) * 2021-05-28 2022-11-11 合肥荣事达电子电器集团有限公司 Roller assembly for washing machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006445A (en) * 1998-09-03 1999-12-28 Large; Ronald D. Washer/dryer combination
CN201424587Y (en) * 2009-06-10 2010-03-17 南京乐金熊猫电器有限公司 Novel drum washing machine capable of improving washing efficiency
US20110296628A1 (en) * 2009-02-17 2011-12-08 Xeros Limited Cleaning Apparatus
US20120284931A1 (en) * 2009-11-24 2012-11-15 Xeros Limited Improved Cleaning Apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835882A (en) * 1987-10-30 1989-06-06 Challenge Cook Bros., Inc. Dryer flow separator
CN2073434U (en) * 1990-06-09 1991-03-20 中山洗衣机厂 Rotary-drum washer with screw type flanged ring
US7454927B2 (en) * 2003-10-31 2008-11-25 Whirlpool Corporation Method and apparatus adapted for recovery and reuse of select rinse fluid in a non-aqueous wash apparatus
CN101886321A (en) * 2009-05-11 2010-11-17 海尔集团公司 Washing method
CN102061588B (en) * 2009-11-16 2014-02-05 海尔集团公司 Washing machine, washing method and washing barrel
CN102061589B (en) * 2009-11-16 2012-03-28 海尔集团公司 Washing machine
CN102234902B (en) * 2010-04-30 2014-12-10 海尔集团公司 Method for cleaning space between inner and outer tubs of washing machine with flexible particles and washing machine capable of implementing same
CN202401272U (en) * 2011-12-23 2012-08-29 青岛海日高科模型有限公司 Washing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006445A (en) * 1998-09-03 1999-12-28 Large; Ronald D. Washer/dryer combination
US20110296628A1 (en) * 2009-02-17 2011-12-08 Xeros Limited Cleaning Apparatus
CN201424587Y (en) * 2009-06-10 2010-03-17 南京乐金熊猫电器有限公司 Novel drum washing machine capable of improving washing efficiency
US20120284931A1 (en) * 2009-11-24 2012-11-15 Xeros Limited Improved Cleaning Apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631314B2 (en) 2011-01-11 2017-04-25 Xeros Limited Drum type laundry machine
US9803307B2 (en) 2011-01-14 2017-10-31 Xeros Limited Cleaning method
US10316448B2 (en) 2011-06-15 2019-06-11 Xeros Limited Washing method with polymer solid particles
US10494590B2 (en) 2012-07-06 2019-12-03 Xeros Limited Cleaning material
US9932700B2 (en) 2013-03-20 2018-04-03 Xeros Limited Cleaning apparatus and method
US9850619B2 (en) 2013-03-20 2017-12-26 Xeros Limited Cleaning apparatus and method
US10017895B2 (en) 2013-03-20 2018-07-10 Xeros Limited Drying apparatus and method
US10597814B2 (en) 2013-03-20 2020-03-24 Xeros Limited Drying apparatus and method
US9845516B2 (en) 2013-04-11 2017-12-19 Xeros Limited Method for treating a substrate made of animal fibers with solid particles and a chemical formulation comprising a colourant
US10745769B2 (en) 2013-04-11 2020-08-18 Xeros Limited Method for treating a substrate made of animal fibers with solid particles and a chemical formulation
US20150096128A1 (en) * 2013-10-03 2015-04-09 Xeros Limited Cleaning apparatus and method
US10081900B2 (en) 2013-11-08 2018-09-25 Xeros Limited Cleaning method including use of solid particles
US9523169B2 (en) 2013-11-25 2016-12-20 Xeros Limited Cleaning apparatus and method
US10301691B2 (en) 2014-10-03 2019-05-28 Xeros Limited Method for treating an animal substrate
US10287642B2 (en) 2014-10-10 2019-05-14 Xeros Limited Animal skin substrate treatment apparatus and method
US10808289B2 (en) 2014-10-10 2020-10-20 Xeros Limited Animal skin substrate treatment apparatus and method
US10781404B2 (en) 2014-12-01 2020-09-22 Xeros Limited Cleaning method, apparatus and use
US11414633B2 (en) 2015-07-29 2022-08-16 Xeros Limited Cleaning method, apparatus and use
US10773976B2 (en) 2016-04-13 2020-09-15 Xeros Limited Method of treatment using a solid particulate material and apparatus therefor
US10590499B2 (en) 2016-04-13 2020-03-17 Xeros Limited Animal skin substrate treatment method and apparatus
US11299839B2 (en) 2018-07-13 2022-04-12 Xeros Limited Apparatus and method for treating a substrate with solid particles
JP2022503489A (en) * 2018-07-30 2022-01-12 青島海爾滾筒洗衣机有限公司 Washing machine and control method
JP7241267B2 (en) 2018-07-30 2023-03-17 重慶海爾滾筒洗衣机有限公司 Washing machine and control method
CN112111922A (en) * 2019-06-19 2020-12-22 青岛海尔洗衣机有限公司 Clothes treatment equipment

Also Published As

Publication number Publication date
CN103173961B (en) 2016-04-06
WO2013091338A1 (en) 2013-06-27
CN103173961A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US20140317860A1 (en) A washing machine and washing method thereof
US9487898B2 (en) Washing machine and washing machine thereof
CN103103720B (en) A kind of washing machine and washing methods
US9404210B2 (en) Washing machine and washing method
CN102899848B (en) Roller washing machine and washing methods
CN103061084B (en) A kind of washing machine and washing methods
US9410278B2 (en) Washing machine and washing method
CN102953249B (en) Roller washing machine and washing methods
CN103225192B (en) A kind of washing machine lifting rib and use the washing machine of this lifting rib
CN103061085B (en) A kind of washing machine and washing methods
CN202543635U (en) Lifting rib of washing machine and washing machine
CN202401272U (en) Washing machine
CN202500017U (en) Window device of washing machine and washing machine using the same
CN102953250A (en) Washing machine and washing method
CN103061086A (en) Washing machine and washing method
CN202265713U (en) Front loading washing machine
CN202265712U (en) Drum washing machine
CN101985798A (en) Water-saving high-efficiency washing machine
CN201915252U (en) Inner drum body for washing machines

Legal Events

Date Code Title Description
AS Assignment

Owner name: QINGDAO HAIRI GAOKE MODEL CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HE, ZHENGBAO;LAO, CHUNFENG;REEL/FRAME:033065/0749

Effective date: 20140526

Owner name: HAIER GROUP TECHNIQUE R&D CENTER, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HE, ZHENGBAO;LAO, CHUNFENG;REEL/FRAME:033065/0749

Effective date: 20140526

Owner name: HAIER GROUP CORPORATION, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HE, ZHENGBAO;LAO, CHUNFENG;REEL/FRAME:033065/0749

Effective date: 20140526

AS Assignment

Owner name: XEROS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAIER GROUP CORPORATION;HAIER GROUP TECHNIQUE R&D CENTER;QINGDAO HAIRI GAOKE MODEL CO., LTD.;REEL/FRAME:040043/0001

Effective date: 20160708

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION