US20140312505A1 - Semiconductor devices and fabrication methods thereof - Google Patents

Semiconductor devices and fabrication methods thereof Download PDF

Info

Publication number
US20140312505A1
US20140312505A1 US14/319,688 US201414319688A US2014312505A1 US 20140312505 A1 US20140312505 A1 US 20140312505A1 US 201414319688 A US201414319688 A US 201414319688A US 2014312505 A1 US2014312505 A1 US 2014312505A1
Authority
US
United States
Prior art keywords
semiconductor chip
connection
semiconductor
connection structure
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/319,688
Inventor
SeYoung JEONG
Sunpil Youn
Hogeon SONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US14/319,688 priority Critical patent/US20140312505A1/en
Publication of US20140312505A1 publication Critical patent/US20140312505A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • H01L27/108
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component

Definitions

  • the present disclosure herein relates to a semiconductor device and a fabrication method thereof.
  • a multi-chip package may include a plurality of stacked chips mounted in one semiconductor package.
  • a System-in Package SiP may include stacked different chips operating as one system. When a plurality of semiconductor chips are stacked sequentially, a method for stably connecting the stacked semiconductor chips is needed.
  • a semiconductor device includes a first semiconductor chip comprising an internal circuit, a plurality of first connection structures disposed on a first side of the first semiconductor chip comprising at least one connection element electrically connected to the internal circuit of the first semiconductor chip and at least one auxiliary element electrically insulated from the internal circuit of first semiconductor chip, a second semiconductor chip disposed on a second side of the first semiconductor chip, and a plurality of second connection structures disposed between the first and second semiconductor chips and comprising at least one connection element electrically connected to the internal circuits of the first and second semiconductor chips, wherein a number of the second connection structures is less than a number of the first connection structures.
  • the second connection structures further include at least one auxiliary element electrically insulated from the internal circuit of second semiconductor chip and a number of the auxiliary elements in the second connection structures may be less than a number of the auxiliary elements in the first connection structures.
  • a number of the connection elements in the first connection structures may be the same as a number of the connection elements in the second connection structures.
  • the number of the second connection structures may be 50% to 90% of the number of the first connection structures.
  • the number of the auxiliary elements of the second connection structures may be 50% to 90% of the number of the auxiliary elements of the first connection structures.
  • a semiconductor device includes a lower structure, and a plurality of semiconductor chip floors sequentially stacked on the lower structure, wherein each of the semiconductor chip floors includes a semiconductor chip and a connection structure disposed at a lower surface of the semiconductor chip, and wherein an area of the connection structure of each of the plurality of semiconductor chip floors is less than that of any one of the semiconductor chip floors disposed nearer the lower structure.
  • a method includes connecting a first semiconductor chip to a second semiconductor chip by a plurality of first connection structures to form a stack and connecting the stack to a substrate by a plurality of second connection structures, wherein one of a number of the first connection structures is different than a number of the second connection structures, or a contact area of the first connection structures with the first and second semiconductor chips is different than a contact area of the second connection structures with the stack and the substrate.
  • FIG. 1A is a schematic view exemplarily illustrating a semiconductor device according to embodiments of the present disclosure
  • FIG. 1B is a view illustrating a method of forming connection structures according to a first mode of the present disclosure
  • FIG. 1C is a view illustrating a method of forming connection structures according to a second mode of the present disclosure
  • FIGS. 2A to 2D are sectional views illustrating semiconductor devices according to some embodiments of the present disclosure.
  • FIGS. 3A and 3B are sectional views illustrating semiconductor devices according to other embodiments of the present disclosure.
  • FIG. 4 is a sectional view illustrating a semiconductor device according to another embodiment of the present disclosure.
  • FIG. 5A is a perspective view exemplarily illustrating one side surface of a semiconductor device according to an embodiment of the present disclosure
  • FIG. 5B is a sectional view of the semiconductor device shown along dot line I-I of FIG. 5A ;
  • FIGS. 6A and 6B are plan views of the semiconductor device shown along dot lines II-II′ of FIG. 5B
  • FIGS. 7A and 7B are plan views of the semiconductor device shown along dot lines III-III′ of FIG. 5B ;
  • FIG. 8 is a sectional view illustrating a semiconductor device according to still another embodiment of the present disclosure.
  • FIGS. 9A , 9 B, 10 and 11 are plan views exemplarily illustrating connection structures shown along dot lines of FIG. 8 ;
  • FIGS. 12A to 12C are sectional views illustrating a method of fabricating a semiconductor device, according to an embodiment of the present disclosure
  • FIGS. 13A and 13B are sectional views illustrating a method of fabricating a semiconductor device, according to another embodiment of the present disclosure.
  • FIGS. 14A to 14C are sectional views illustrating a method of fabricating a semiconductor device, according to still another embodiment of the present disclosure.
  • FIG. 15 is a sectional view illustrating a method of fabricating a semiconductor device according to a modified embodiment of the present disclosure
  • FIGS. 16A to 16C are views exemplarily illustrating fabrication methods according to some embodiments of the present disclosure forming a chip stack
  • FIG. 17 is a plan view exemplarily illustrating a package module according to some embodiments of the present disclosure.
  • FIG. 18 is a schematic view exemplarily illustrating a memory card according to some embodiments of the present disclosure.
  • FIG. 19 is a block diagram exemplarily illustrating an electronic system according to some embodiments of the present disclosure.
  • first and a second may be used to describe various elements, and the elements should not be limited by the terms. The terms may be used only as object for distinguishing an element from another element. For example, without departing from the spirit and scope of the present disclosure, a first element may be referred to as a second element, and similarly, the second element may be referred to as the first element.
  • Embodiments in the detailed description will be described with sectional views as ideal exemplary views of the present invention.
  • the dimensions of layers and regions are exaggerated for clarity of illustration. Accordingly, shapes of the exemplary views may be modified according to manufacturing techniques and/or allowable errors.
  • Embodiments of the present invention are not limited to the specific shape illustrated in the exemplary views, and may include other shapes that may be created according to manufacturing processes. For example, an etching region illustrated as a right angle may have a shape that is rounded or a certain curvature.
  • Areas exemplified in the drawings have general properties, and are used to illustrate a specific shape of a semiconductor package region. Thus, this should not be construed as limited to the scope of the present invention.
  • FIG. 1A is a schematic view exemplarily illustrating a semiconductor device according to embodiments of the present disclosure.
  • a semiconductor device 100 may include a chip stack 20 mounted on a lower structure 10 .
  • the chip stack 20 may include a plurality of semiconductor chips 22 and 24 , and a plurality of connection structures 21 and 23 .
  • a chip stack may include a first connection structure 140 a , a first semiconductor chip 110 a , a second connection structure 140 b , and a second semiconductor chip 110 b that are sequentially stacked on an upper surface of a lower structure 1100 c.
  • a lower structure 10 may be a semiconductor chip, a chip stack, or a Printed Circuit Board (PCB).
  • PCB Printed Circuit Board
  • the spirit and scope of the present disclosure are not limited to disclosed embodiments of the lower structure 10 . That is, the chip stack 20 may be mounted on an arbitrary element, all elements for mounting the chip stack 20 may be used as the lower structure 10 for implementing the spirit and scope of the present disclosure.
  • Each of the semiconductor chips 22 and 24 may be a chip including an internal circuit IC (such as an integrated circuit) and/or a microelectronic element integrated on a semiconductor substrate.
  • the internal circuit may include at least one of a Random Access Memory (RAM), a nonvolatile memory, a memory control circuit, an application processor circuit, a power supplier circuit, a modem, and a Radio Frequency (RF) circuit.
  • RAM Random Access Memory
  • RF Radio Frequency
  • the semiconductor chips 22 and 24 of the chip stack 20 may be the same kind of semiconductor chip, manufactured to have the same structure and perform the same function.
  • the same kind of stacked nonvolatile memory chips may be implemented in the chip stack 20 .
  • the semiconductor chips 22 and 24 implemented in the chip stack 20 may be different semiconductor chips that are manufactured to have different structures and perform different functions.
  • at least one semiconductor memory chip and at least one logic chip may be implemented in the chip stack 20 .
  • the chip stack 20 may include different kinds of elements that are selected from among semiconductor chips such as a memory chip, a logic chip and an interposer.
  • connection structures 21 and 23 may include connection elements CE connected to the internal circuits of the semiconductor chips 22 and 24 .
  • the connection elements CE may be used as an electric connection path between the semiconductor chips 22 and 24 or an electric connection path between the semiconductor chip 22 and the lower structure 10 .
  • at least one of the connection structures 21 and 23 may further include auxiliary elements AE that are attached to the semiconductor chips 22 and 24 and are not electrically connected to the internal circuit IC of the semiconductor chips 22 and 24 .
  • auxiliary elements AE that are attached to the semiconductor chips 22 and 24 and are not electrically connected to the internal circuit IC of the semiconductor chips 22 and 24 .
  • connection elements CE and the auxiliary element AE included in one connection structure 21 or 23 may be formed by the same process.
  • the connection element CE and the auxiliary element AE included in the connection structure 21 or 23 may be formed of a substantially equivalent material.
  • the connection elements CE and the auxiliary elements AE in the connection structure 21 or 23 may be independently formed by different fabrication processes.
  • a process of forming the connection structures 21 and 23 may include an operation that applies heat and/or pressure to the connection elements CE. For example, a thermo-compression operation or a reflow operation may be performed. In this case, the process of forming the connection structures 21 and 23 may be performed to satisfy a condition (hereinafter referred to as a forming condition) that may be expressed as shown in Equation (1).
  • a forming condition a condition that may be expressed as shown in Equation (1).
  • T is a temperature applied to the connection element CE in the operation of forming the corresponding connection structure
  • P1 is a minimum pressure needed for forming the connection element CE
  • T1 is the minimum temperature needed for forming the connection element CE.
  • connection structures 21 and 23 undergo at least one thermal stress or physical stress.
  • the thermal or physical stress may cause a structural modification or change (such as the generation of an Inter-Metallic Compound (IMC)) of a completed connection element.
  • IMC Inter-Metallic Compound
  • a pre-formed connection structures hereinafter referred to as a previous connection structure
  • a subsequently formed connection structure hereinafter referred to as a following connection structure
  • a process of forming the following connection structure may be performed to satisfy a condition (hereinafter referred to as a prevention condition) that may be expressed as shown in Equation (2).
  • P2 is a minimum pressure where a modification or change of a connection element included in a previous connection structure occurs in an operation of forming the following connection structure
  • T2 is a minimum temperature where a modification or change of the connection element included in the previous connection structure occurs in the operation of forming the following connection structure.
  • Equation (1) Since the forming condition in Equation (1) may need to be satisfied in an operation of forming the following connection structure, the operation of forming the following connection structure may be performed to satisfy a condition that may be expressed as shown in Equation (3).
  • connection element CE may use the modification or change thereof.
  • the solder when a solder is used as the connection element CE, the solder may be formed in a melting operation that may be understood as a modification or change operation. That is, respective differences between threshold values (i.e., P1 and T1) of a forming condition and threshold values (i.e., P2 and T2) of a prevention condition may be small.
  • a process margin may be secured in the case of a small difference between the threshold values (i.e., P1 and T1) of a forming condition and threshold values (i.e., P2 and T2) of a prevention condition.
  • threshold values P1, P2, T1 and T2 may not be independent but correlated physical quantities. It would be apparent to those skilled in the art that the threshold values P1, P2, T1 and T2 may be dependent on a structure of a corresponding product and/or a material used for the corresponding product. By this reason, it should be understood that various embodiments described below are exemplarily. That is, embodiments of the present disclosure may be variously modified in consideration of elements (for example, a material and a structure) dependent on the above-described corresponding product. Furthermore, since those skilled in the art would understanding how to implement modifications on the basis of contents described in this application, the modifications may not be described.
  • FIG. 1B is a view illustrating a method of forming connection structures according to an exemplary embodiment of the present disclosure.
  • a previous connection structure PCS may be formed on the lower structure 10 , and a following connection structure FCS may be formed on a result R1.
  • a sum (n2) of the number of the connection elements (n2(CE)) and the number of the auxiliary elements (n2(AE)) included in the following connection structure FCS may be less than a sum (n1) of the number of the connection elements (n1(CE)) and the number of the auxiliary elements (n1(AE)) included in the previous connection structure PCS. That is, n2 ⁇ n1 or n2(CE)+n2(AE) ⁇ n1(CE)+n1(AE).
  • connection elements CE configuring the previous connection structure PCS when a condition “n2 ⁇ n1” is satisfied, the prevention condition (i.e., P>P2) for the connection elements CE configuring the previous connection structure PCS is satisfied, and external pressure (i.e., n2 ⁇ P) that may be applied in an operation of forming the following connection structure FCS may increase.
  • n1>n2 may be realized in various modes.
  • the numbers of connection elements CE of the respective connection structures 21 and 23 connecting the chips may be the same. Accordingly, the mode 1 a in Table 1 may be applied to a chip stack configured with the same kind of chips.
  • a chip stack is a semiconductor device configured with the same kind of chips, when the previous connection structure may correspond to the connection structure 21 for connecting the lower structure 10 and the semiconductor chip 22 adjacent to the lower structure 10 , all the modes in Table 1 can be applicable.
  • the number of the auxiliary elements n1(AE) or n2(AE) may be zero.
  • connection elements CE and the auxiliary elements AE are the same.
  • the size of the connection element CE differ from the size of the auxiliary element AE, as described below with reference to FIG. 1C , embodiments of the present disclosure may be realized in other modes.
  • FIG. 1C is a view illustrating a method of forming connection structures according to an exemplary embodiment of the present disclosure.
  • the previous connection structure PCS may be formed on the lower structure 10
  • the following connection structure FCS may be formed on the result R1.
  • the following relationship (4) may be built between the previous connection structure PCS and the following connection structure FCS.
  • A1(CE) is total area of the connection elements CE included in the previous connection structure PCS
  • A1(AE) is total area of the auxiliary elements AE included in the previous connection structure PCS
  • A2(CE) is total area of the connection elements CE included in the following connection structure FCS
  • A2(AE) is total area of the auxiliary elements AE included in the following connection structure FCS.
  • A1 is “A1(CE)+A1(AE)”
  • A2 is “A2(CE)+A2(AE)”.
  • the total area A1(CE) or A2(CE) of the connection elements CE is a sum of areas of sectional surfaces of connection elements CE that intersect a flat plane parallel to the upper surface of the lower structure 10 .
  • the total area A1(AE) or A2(AE) of the auxiliary elements AE may be defined in the same scheme.
  • Pressure is as an external force/area.
  • pressure applied to each of connection elements CE may be inversely proportional to total area of elements CE and AE configuring the connection structure.
  • connection elements CE configuring the previous connection structure PCS when a condition “A2 ⁇ A1” is satisfied, the above-described prevention condition (i.e., P>P2) for the connection elements CE configuring the previous connection structure PCS is satisfied, and external pressure (i.e., A2 ⁇ P) that may be applied in an operation of forming the following connection structure FCS may increase.
  • a condition “A1>A2” may be realized in various modes.
  • the previous connection structure PCS and the following connection structure FCS may be formed of materials different from each other, respectively.
  • the previous connection structure PCS may be formed of a material having a melting point higher than that of the following connection structure FCS.
  • the mode 1 or the mode 2 may be modified in consideration of the prevention condition of Equation (2). Such modification can be implemented by those skilled in the art, based on exemplary embodiments of the present disclosure described herein.
  • FIGS. 2A and 2B are sectional views illustrating a semiconductor device according to some embodiments of the present disclosure.
  • FIGS. 2C and 2D are enlarged views of a portion A in FIG. 2A .
  • a semiconductor device 100 a may include a chip stack mounted on a lower structure 110 c .
  • the chip stack may include a first connection structure 140 a , a first semiconductor chip 110 a , a second connection structure 140 b , and a second semiconductor chip 110 b that are sequentially stacked on an upper surface of a lower structure 110 c.
  • the first semiconductor chip 110 a may include a semiconductor substrate 114 a , an internal circuit 116 a integrated on one surface of the semiconductor substrate 114 a , an internal wiring 117 a connected to the internal circuit 116 a , and a chip pad 120 a (see FIG. 2A , wherein the chip pad 120 may include first and second pads 121 a and 122 a shown in FIG. 2C ) connected to the internal wiring 117 a .
  • the internal circuit 116 a may be electrically connected to an external electronic device through the internal wiring 117 a and the chip pad 120 a.
  • the semiconductor substrate 114 a may include a lower surface (or an active surface) in which the internal circuit 116 a is integrated, and an upper surface (or a back side) opposite to the lower surface.
  • the upper surface and/or the lower surface of the semiconductor substrate 114 a may have a non-uniform height.
  • non-uniformity in the lower surface of the semiconductor substrate 114 a may be intended.
  • a trench for isolation may be an example of intended non-uniformity.
  • Non-uniformity in the upper surface of the semiconductor substrate 114 a may be a result of a back-side grinding process, as an unintended technical feature.
  • the lower surface of the semiconductor substrate 114 a may have an intended non-uniformity of an impurity concentration, resulting from a process of forming the internal circuit 116 a . Based on such differences, the upper surface and lower surface of the semiconductor substrate 114 a may be distinguished. As shown in FIGS. 2A and 2C , the first semiconductor chip 110 a has first and second surfaces 111 a and 112 a . The first and second surfaces 111 a and 112 a may be adjacent to the lower surface and upper surface of the semiconductor substrate 114 a , respectively.
  • the semiconductor chip 110 a may further include a passivation layer 119 a and/or an interlayer dielectric 118 a .
  • the passivation layer 119 a may expose a chip pad 121 a and be disposed on a lower surface of the semiconductor substrate 110 a .
  • the interlayer dielectric 118 a may be disposed between the passivation layer 119 a and the semiconductor substrate 114 a , and include a plurality of insulation layers that structurally support and electrically insulate the internal wirings 117 a . According to some embodiments of the present disclosure, as illustrated in FIG.
  • the first semiconductor chip 110 a may further include a back-side insulation layer 129 covering an upper surface of the semiconductor substrate 110 a .
  • the first semiconductor chip 110 a may be formed to expose the upper surface of the semiconductor substrate 110 a without the back-side insulation layer 129 .
  • the first semiconductor chip 110 a may further include a via pad 126 a disposed on the second surface 112 a of the first semiconductor chip 110 a and for connecting to another semiconductor chip (for example, the second semiconductor chip 110 b ). Furthermore, the first semiconductor chip 110 a may further include a first through via 124 a electrically connected to the chip pad 120 a and the via pad 126 a (see FIG. 2A ).
  • the first through via 124 a may be formed to have a long axis substantially vertical to the second surface 112 a and pass through at least one portion of the first semiconductor chip 110 a .
  • the first through via 124 a may be formed to have a via middle structure passing through the semiconductor substrate 114 a and a portion of the interlayer dielectric 118 a , between the internal wiring 117 a and the via pad 126 a .
  • the first through via 124 a may have a through silicon via structure passing through the semiconductor substrate 114 a .
  • the first through via 124 a may be used as an electric path connecting the chip pad 120 a and the via pad 126 a through the first semiconductor chip 110 a .
  • the structure of the first through via 124 a is not limited to the exemplified structures, and may be variously modified.
  • the first through via 124 a may have a via first structure that does not pass through the interlayer dielectric 118 a or a via last structure that directly contacts the chip pad 120 a through the interlayer dielectric 118 a.
  • the first connection structure 140 a may be disposed on a first surface 111 a and connected to the chip pad 120 a .
  • the second connection structure 140 b may be disposed on a second surface 112 a and connected to the via pad 126 a .
  • the second semiconductor chip 110 b may be electrically connected to the internal circuit 116 a of the first semiconductor chip 110 a through the first through via 124 a and the second connection structure 140 b .
  • the first semiconductor chip 110 a may be electrically connected to the lower structure 110 c through the first connection structure 140 a .
  • the first connection structure 140 a , the chip pad 120 a , the first through via 124 a , the via pad 126 a and the second connection structure 140 b may be aligned to be disposed in a line that perpendicularly passes through the first surface 111 a .
  • the embodiments of the present disclosure are not limited thereto.
  • the first and second connection structures 140 a and 140 b may differ in area ratio.
  • the area ratio may be a ratio occupied by the contact area of a connection structure and a lower structure or a semiconductor chip, with respect to an area of one surface of a semiconductor chip or a lower structure contacting a connection structure.
  • the second connection structure 140 b when the second connection structure 140 b is formed later in time than the first connection structure 140 a , the second connection structure 140 b may have an area ratio less than that of the first connection structure 140 a.
  • a bonding force needed for bonding of the second connection structure 140 b may be less than a bonding force needed for bonding of the first connection structure 140 a .
  • a bonding process for the connection structure may be performed in a thermo-compression process or a reflow process.
  • a bonding force may be applied to the connection structure as heat or pressure.
  • the first connection structure 140 a may receive heat or pressure twice in an operation of stacking the first and second semiconductor chips 110 a and 110 b .
  • the first connection structure 140 a is modified or additional Inter-Metallic Compound (IMC) is generated, and thus a contact failure between the first semiconductor chip 110 a and the lower structure 110 c may occur.
  • IMC Inter-Metallic Compound
  • Area ratios of the first and second connection structures 140 a and 140 b may be different from each other by various schemes. For example, when the first and second connection structures 140 a and 140 b are formed in an equal or similar size, the area ratios may be made different by making the numbers of first and second connection structures 140 a and 140 b different from each other. As another example, the area ratios may be made different by making sizes of the first and second connection structures 140 a and 140 b different.
  • FIG. 2A illustrates an example where the number of first connection structures 140 a differs from the number of second connection structures 140 b .
  • the number of second connection structures 140 b may be less than the number of first connection structures 140 a . Accordingly, a bonding force for bonding of the second connection structure 140 b may be determined in a range that does not cause the modification of the first connection structure 140 a.
  • the number of second connection structures 140 b may be determined in a range where a bonding process may be performed by bonding force that does not cause the modification of the first connection structure 140 a . As the number of second connection structures 140 b decreases, a bonding force for bonding of the second connection structure 140 b may be reduced, and thus the modification of the first connection structure 140 a may be abated. For example, the number of second connection structures 140 b may be about 50% to 90% of the number of first connection structures 140 a.
  • the first connection structure 140 a may include a connection element 141 and an auxiliary element 142 .
  • the connection element 141 and the auxiliary element 142 may be substantially similar in structure, and differ in electric connection.
  • the connection element 141 and the auxiliary element 142 may be disposed with first and second pads 121 a and 122 a , respectively.
  • the first and second pads 121 a and 122 a may be formed having a substantially similar structure, and differ in connection relationship with the internal circuit 116 a (see FIG. 2C ).
  • the first chip pad 121 a may be connected to the internal circuit 116 a or the first through via 124 a
  • the second chip pad 122 a may be electrically insulated from the internal circuit 116 a or the first through via 124 a
  • the connection element 141 may be electrically connected to the first semiconductor chip 110 a
  • the auxiliary element 142 may be electrically insulated from the first semiconductor chip 110 a
  • the auxiliary element 142 may be a dummy connection structure.
  • the connection element 141 may deliver a signal
  • the auxiliary element 142 may deliver a power source voltage.
  • the second chip pad 122 a may be electrically connected to the internal circuit 116 a through the internal wiring 117 a .
  • the connection element 141 may be aligned and disposed in a vertical direction with the second connection structure 140 b , and the number of connection elements 141 may be the same as the number of second connection structures 140 b .
  • the second connection structure 140 b may include a connection element and an auxiliary element.
  • the connection element and auxiliary element of the second connection structure 140 b may be substantially similar to the connection element 141 and auxiliary element 142 of the first connection structure 140 a , respectively.
  • FIG. 2B illustrates an example where the size of each of the first connection structures 140 a differs from that of the second connection structures 140 b .
  • the size of a connection structure represents an area where the connection structure contacts a semiconductor chip, or the sectional area of the connection structure.
  • the size of each of the second connection structures 140 b may be less than that of the first connection structures 140 a .
  • the number of first connection structures 140 a may the same as the number of second connection structures 140 b
  • the first connection structure 140 a may not include the auxiliary element 142 .
  • Each of the first and second connection structures 140 a and 140 b may include a conductive bump, a conductive spacer, a solder ball, a micro solder bump, etc.
  • the second connection structure 140 b may include a first conductive means 151 and a second conductive means 152 .
  • the first conductive means 151 including portions 151 a and 151 b , may be attached to the chip pad 120 b and the via pad 126 a
  • the second conductive means 152 may be disposed between the portions 151 a and 151 b of the first conductive means 151 .
  • the first through via 124 a may protrude from a second surface 112 a of the first semiconductor chip 110 a , and the via pad 126 a may not be formed.
  • the first conductive means 151 attached to the via pad 126 a may not be formed, and the first conductive means 151 may be attached to the first through via 124 a.
  • the second conductive means 152 may include a metal material having a melting point lower than that of the first conductive means 151 .
  • the first conductive means 151 may be an Under Barrier Metal (UBM) including copper (Cu)
  • the second conductive means 152 may be a solder of stannum or Tin (Sn), SnAg, SnPb, SnBc, SnAgCu and the like.
  • a shape of the second conductive means 152 may be variously modified in an operation of bonding the second connection structure 140 b .
  • the first connection structure 140 a may be formed in a structure substantially similar to that of the second connection structure 140 b.
  • a second through via 125 a passing through at least one portion of the first semiconductor chip 110 a may be formed.
  • the second through via 125 a may be electrically insulated from the first through via 124 a , and deliver a power source voltage or a ground voltage.
  • the auxiliary element 142 may be electrically connected to the second through via 125 a , and deliver the power source voltage or the ground voltage.
  • FIG. 3A is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • a semiconductor device 200 of FIG. 3A includes a lower structure 210 c , first and second semiconductor chips 210 a and 210 b stacked on the lower structure 210 c , a first connection structure 240 a disposed between the lower structure 210 c and the first semiconductor chip 210 a , and a second connection structure 240 b disposed between the first and second semiconductor chips 210 a and 210 b .
  • the lower structure 210 c , the first and second semiconductor chips 210 a and 210 b , the first connection structure 240 a , and the second connection structure 240 b may correspond to the lower structure 110 c , first and second semiconductor chips 110 a and 110 b , first connection structure 140 a , and second connection structure 140 b of the semiconductor device 100 a in FIG. 2A , respectively.
  • first and second semiconductor chips 110 a and 110 b may correspond to the lower structure 110 c , first and second semiconductor chips 110 a and 110 b , first connection structure 140 a , and second connection structure 140 b of the semiconductor device 100 a in FIG. 2A , respectively.
  • FIG. 2A for conciseness, technical features that are not repetitive of FIG. 2A will be described.
  • the first semiconductor chip 210 a or the second semiconductor chip 210 b may include a rewiring 260 .
  • the first connection structure 240 a and the second connection structure 240 b may not be vertically aligned.
  • the rewiring 260 may be connected to a through via 224 a at one surface of the first semiconductor chip 210 a facing the second semiconductor chip 210 b , and the second connection structure 240 b and the first semiconductor chip 210 a may be connected through the rewiring 260 .
  • connection element 241 and the second connection structure 240 b may not be vertically aligned.
  • the rewiring 260 may be formed at one surface of the second semiconductor chip 210 b facing the first semiconductor chip 210 a , and the second connection structure 240 b may be connected to the second semiconductor chip 210 b through the rewiring 260 .
  • the connection element 241 and the second connection structure 240 b may not be vertically aligned.
  • FIG. 3B is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • a semiconductor device includes a lower structure, and a plurality of semiconductor chip floors stacked on the lower structure.
  • Each of the semiconductor chip floors may include a semiconductor chip, and a connection structure disposed at one surface of the semiconductor chip.
  • an exemplary embodiment including three layers of semiconductor chip floors is described. The present disclosure is not limited thereto and the number of semiconductor chip floors may include two or more layers.
  • a semiconductor device 300 may include first to third semiconductor chip floors 300 a to 300 c stacked on the lower structure 310 d .
  • the stacked order of the first to third semiconductor chip floors 300 a to 300 c is not limited to the order described herein.
  • the third semiconductor chip floor 300 c may be the uppermost semiconductor chip floor among a plurality of stacked semiconductor chip floors, and may be disposed farthest from the lower structure 310 d .
  • a lower semiconductor chip floor is closer to the lower structure 310 d than an upper semiconductor chip floor.
  • the first semiconductor chip floor 300 a may include a first connection structure 340 a and a first semiconductor chip 310 a disposed at one side of the first connection structure 340 a .
  • the first semiconductor chip 310 a may be disposed where a first surface 311 a thereof faces the lower structure 310 d , and is connected to the lower structure 110 c through a first connection structure 340 a disposed between the lower structure 310 d and the first semiconductor chip 310 a .
  • the first connection structure 340 a may include a first connection element 341 a and a first auxiliary element(s) 342 a .
  • the first connection element 341 a may be electrically connected to the first semiconductor chip 310 a
  • the first auxiliary element 342 a may be electrically insulated from the first semiconductor chip 310 a
  • the first auxiliary element(s) 342 a may be a dummy connection structure that is not electrically connected to a through via or an internal circuit of the first semiconductor chip 310 a.
  • the second semiconductor chip floor 300 b may be disposed on the first semiconductor chip floor 300 a .
  • the second semiconductor chip floor 300 b may include a second semiconductor chip 310 b and a second connection structure 340 b disposed at one side of the second semiconductor chip 310 b .
  • the second connection structure 340 b may be disposed between the first semiconductor chip 310 a and the second semiconductor chip 310 b , and the second semiconductor chip 310 b may be connected to the first semiconductor chip 310 a through the second connection structure 340 b .
  • the second connection structure 340 b may include a second connection element 341 b electrically connected to the second connection structure 340 b , and a second auxiliary element 342 b electrically insulated from the second semiconductor chip 310 b .
  • the second auxiliary element 342 b may be a dummy connection structure that is not electrically connected to a through via or an internal circuit of the second semiconductor chip 310 b .
  • the second connection element 341 b and the second auxiliary element 342 b may have a structure substantially similar to that of the first connection element 341 a and that of the second auxiliary element 342 a , respectively.
  • FIG. 3B an example where the second connection element 342 a is vertically aligned with the first connection element 341 a is illustrated. Embodiments of the present disclosure are not limited thereto.
  • the second connection element 342 a may be connected through a rewiring.
  • a third semiconductor chip floor 300 c may be disposed on the second semiconductor chip floor 300 b .
  • the third semiconductor chip floor 300 c may include a third semiconductor chip 310 c and a third connection structure 340 c disposed at one side of the third semiconductor chip 310 c .
  • the third connection structure 340 c may be disposed between the second and third semiconductor chips 310 b and 310 c , and connect the second and third semiconductor chips 310 b and 310 c .
  • the third connection structure 340 c may not include an auxiliary element. In this case, as illustrated in FIG.
  • the third connection structure 340 c may be disposed to be vertically aligned with the second connection element 341 b and the first connection element 341 a .
  • the third connection structure 340 c may include an auxiliary element, which may be a dummy connection structure.
  • An area ratio may increase or decrease progressively closer to a lower semiconductor chip floor.
  • the size or number of a connection structure may increase or decrease progressively closer to a lower semiconductor chip floor.
  • the number of connection structures may decrease. As illustrated in FIG. 3B , the number of first connection structures 340 a may be greater than the number of second connection structures 340 b , and the number of second connection structures 340 b may be greater than the number of third connection structures 340 c.
  • the number of auxiliary elements may increase progressively closer to a lower semiconductor chip floor.
  • the number of first connection elements 341 a may be equal to the number of second connection elements 341 b
  • the number of first auxiliary elements 342 a may be greater than the number of second auxiliary elements 342 b .
  • the third connection structure 340 a includes an auxiliary element
  • the number of auxiliary elements in the third connection structure 340 c may be less than the number of second auxiliary elements 342 b.
  • the number of connection structures decreases progressively closer to an upper semiconductor chip floor, and thus a bonding force may be reduced in an operation of bonding the connection structure of the upper semiconductor chip floor.
  • a probability of contact error due to the modification of a connection structure of a lower semiconductor chip floor may be reduced.
  • a structure according to FIGS. 3A-B may be applied to some semiconductor chip floors. That is, the semiconductor device may include a semiconductor chip floor where an area ratio of a connection structure is substantially similar. Alternatively, an area ratio of a connection structure may increase and then decrease, or decrease and then increase progressively closer to an upper or lower semiconductor chip floor.
  • FIG. 4 is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • a semiconductor device 400 may include a plurality of stacked semiconductor chips and a connection structure disposed between the semiconductor chips.
  • the semiconductor device 400 may include stacked sequentially first to fourth semiconductor chips 410 a to 410 d , a first connection structure 440 a disposed between the first and second semiconductor chips 410 a and 410 b , a second connection structure 440 b disposed between the second and third semiconductor chips 410 b and 410 c , and a third connection structure 440 c disposed between the third and fourth semiconductor chips 410 c and 410 d.
  • the area ratio of the second connection structure 440 b may be less than that of the first or third connection structure 440 a or 440 c .
  • the number of second connection structures 440 b may be less than the number of first or third connection structures 440 a or 440 c .
  • the first connection structure 440 a may include a first connection element 441 a and a first auxiliary element 442 a
  • the third connection structure 440 c may include a third connection element 441 c and a third auxiliary element 442 c .
  • the first and third connection elements 441 a and 441 c may be electrically connected to a semiconductor chip, and each of the first and third auxiliary elements 442 a and 442 c may be dummy connection structures electrically insulated from the semiconductor chip.
  • the second connection structure 440 b may not include a dummy connection structure. In this case, the number of second connection structures 440 b may be the same as the number of first or third connection elements 441 a or 441 c .
  • the second connection structure 440 b may include a dummy connection structure. In this case, the number of dummy connection structures of the second connection structure 440 b may be less than the number of first or third auxiliary elements 442 a or 442 c.
  • FIG. 5A is a perspective view exemplarily illustrating one side surface of a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 5B is a sectional view of the semiconductor device shown along dot line I-I of FIG. 5A .
  • FIGS. 6A and 6B are plan views of the semiconductor device shown along dot line II-II′ of FIG. 5B .
  • FIGS. 7A and 7B are plan views of the semiconductor device shown along dot line III-III′ of FIG. 5B .
  • a semiconductor device includes a lower structure 510 d , first to third semiconductor chips 510 a to 510 c disposed on the lower structure 510 d , and first to third connection structures 540 a to 540 c disposed on the lower structure 510 d .
  • the lower structure 510 d , the disposition of the first to third semiconductor chips 510 a to 510 c and the structures of the first to third connection structures 540 a to 540 c may be substantially similar to the lower structure 310 d , the disposition of the first to third semiconductor chips 310 a to 310 c and the structures of the first to third connection structures 340 a to 340 c in the semiconductor device described above with reference to FIG. 3B , respectively.
  • FIG. 3B for conciseness, technical features that are not repetitive of FIG. 3B will be described.
  • the first connection structure 540 a may include a first connection element 541 a and a first auxiliary element 542 a .
  • the first connection element 541 a may be disposed at a center portion of the first semiconductor chip 510 a
  • the first auxiliary element 542 a may be disposed at an edge portion of the first semiconductor chip 510 a .
  • the first semiconductor chip 510 a may be a Dynamic RAM (DRAM) having a center pad disposition, and the center pad may be disposed at the center portion of the first semiconductor chip 510 a.
  • DRAM Dynamic RAM
  • the center pad may include a first chip pad 521 a electrically connected to a through via or an internal circuit of the first semiconductor chip 510 a .
  • the second connection structure 540 b may include a second connection element 541 b and a second auxiliary element 542 b .
  • the third connection structure 540 c may include a third connection element 541 c and a third auxiliary element 542 c .
  • the second connection element 541 b may be disposed at the center portion of the second semiconductor chip 510 b
  • the third connection element 541 c may be disposed at the center portion of the third semiconductor chip 510 c .
  • the second auxiliary element 542 b may be disposed at an edge portion of the second semiconductor chip 510 b
  • the third auxiliary element 542 c may be disposed at an edge portion of the third semiconductor chip 510 c .
  • the second or third connection element 541 b or 541 c may be disposed to be vertically aligned with the first connection element 541 a
  • the number of second or third connection elements 541 b or 541 may be the same as the number of first connection elements 541 a
  • the numbers of second and third auxiliary elements 542 b and 542 c may be less than the number of first auxiliary elements 542 a .
  • the number of second auxiliary elements 542 b may be less than the number of first auxiliary elements 542 a
  • the number of third auxiliary elements 542 c may be less than the number of second auxiliary elements 542 b
  • the second and third connection elements 541 b and 541 c may be electrically connected to the second and third semiconductor devices 510 b and 510 c , respectively.
  • the second and third auxiliary elements 542 b and 542 c may be electrically insulated from the second and third semiconductor devices 510 b and 510 c , respectively.
  • the disposition of the first to third connection structures 540 a to 540 c may be variously modified in a range where a pre-formed connection structure is not modified by a bonding force given in a subsequent bonding operation of a connection structure.
  • the first auxiliary element 542 a may be disposed having a similar arrangement as that of the first connection element 541 a , or as illustrated in FIG. 6B , the first auxiliary element 542 a may be disposed along an edge portion of the first semiconductor chip 510 a .
  • the second auxiliary element 542 b may be disposed to vertically overlap with at least one portion of a first connection element 541 a.
  • FIG. 8 is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • FIGS. 9A and 9B are plan views exemplarily illustrating various structures of a connection structure shown along dot line IV-IV′ of FIG. 8 .
  • FIGS. 10 and 11 are plan views exemplarily illustrating the connection structure shown along dot lines V-V′ and V-V′ of FIG. 8 , respectively.
  • a semiconductor device 600 of FIG. 8 may include a lower structure 610 d , first, second and third semiconductor chips 610 a , 610 b and 610 c , and first, second and third connection structures 640 a , 640 b and 640 c disposed on the lower structure 610 d .
  • the lower structure 610 d , the disposition of the first to third semiconductor chips 610 a to 610 c and the structures of the first to third connection structures 640 a to 640 c may be substantially similar to the lower structure 310 d , the disposition of the first to third semiconductor chips 310 a to 310 c and the first to third connection structures 340 a to 340 c in the semiconductor device 300 of FIG. 3B , respectively.
  • FIG. 3B for conciseness, technical features that are not repetitive of FIG. 3B will be described.
  • the first connection structure 640 a may include a first connection element 641 a and a first auxiliary element 642 a .
  • the first connection element 641 a may be disposed at a first edge portion of the first semiconductor chip 610 a
  • the first auxiliary element 642 a may be disposed in a region other than the first edge portion of the first semiconductor chip 610 a .
  • the first semiconductor chip 610 a may be a flash memory chip having an edge pad disposition
  • the first edge portion may be a region where the edge pad is disposed.
  • the second connection structure 640 b may include a second connection element 641 b and a second auxiliary element 642 b .
  • the second connection element 641 b may be disposed at a first edge portion of the second semiconductor chip 610 b
  • the second auxiliary element 642 b may be disposed in a region other than the first edge portion of the second semiconductor chip 610 b
  • the second auxiliary element 642 b may be vertically aligned with a portion of the first auxiliary element 642 a.
  • the third connection structure 640 c may include a third connection element 641 c and a third auxiliary element 642 c .
  • the third connection element 641 c may be disposed at a first edge portion of the third semiconductor chip 610 c
  • the third auxiliary element 642 c may be disposed in a region other than the first edge of the third semiconductor chip 610 c .
  • the third auxiliary element 642 c may be vertically aligned with a portion of the first or second auxiliary element 642 a or 642 b.
  • first to third connection structures 640 a to 640 c is not limited to the above-described embodiments and may be variously modified.
  • FIGS. 12A to 12C are sectional views illustrating a method of fabricating a semiconductor device, according to an embodiment of the present disclosure.
  • an exemplary method of forming a semiconductor device will be described in terms of the semiconductor device 100 a of FIG. 2A .
  • a method of fabricating a semiconductor device may include providing the lower structure 110 c , bonding the first semiconductor chip 110 a to the lower structure 110 c by a first bonding force F1, and bonding the second semiconductor chip 110 b to the first semiconductor chip 110 a by a second bonding force F2.
  • the second bonding force F2 may be less than the first bonding force F1.
  • the first force F1 may be a first pressure
  • the second force F2 may be a second pressure.
  • the first semiconductor chip 110 a may be mounted on one surface of the lower structure 110 c .
  • the lower structure 110 c may be another semiconductor substrate, a film, a substrate having a circuit pattern, etc.
  • a case where the lower structure 110 c is the substrate will be described as an example.
  • the lower structure 110 c and the first semiconductor chip 110 a may be connected by the first connection structure 140 a .
  • the first connection structure 140 a may be disposed between the lower structure 110 c and the first semiconductor chip 110 a , and by applying the first bonding force F1, the lower structure 110 c and the first semiconductor chip 110 a may be connected.
  • FIG. 12A it is illustrated that the first connection structure 140 a is attached to the first semiconductor chip 110 a for bonding to the lower structure 110 c ; the present disclosure is not limited thereto.
  • the first connection structure 140 a may be attached to the lower structure 110 c and provided for bonding to the first semiconductor chip 110 a .
  • the lower structure 110 c and the first semiconductor chip 110 a may be attached to the first conductive means 151 a and 151 b (see FIG. 2C ), respectively, and the second conductive means 152 may be attached to at least one of the first conductive means 151 a and 151 b and provided for bonding to the remaining conductive means 151 a or 151 b.
  • the first bonding force F1 may also increase. That is, when connection structures have an equal or similar size, as the number of first connection structures 140 a increases, the first bonding force F1 may be increased. For example, when a bonding process is performed at the same temperature, a pressure of nF may be applied for bonding an number of connection structures n on the assumption of that a threshold pressure needed for bonding one connection structure is F. As illustrated in FIG. 12A , when the number of first connection structures 140 a is thirteen, a force of 13F may be applied for bonding the first semiconductor chip 110 a to the lower structure 110 c with the first connection structure 140 a.
  • the second semiconductor chip 110 b may be stacked on the first semiconductor chip 110 a .
  • the second connection structure 140 b may be disposed between the first and second semiconductor chips 110 a and 110 b , and by applying the second bonding force F2, the first and second semiconductor chips 110 a and 110 b may be connected.
  • FIG. 12B it is illustrated that the second connection structure 140 b is attached to the second semiconductor chip 110 b and provided for bonding to the first semiconductor chip 110 a ; the present disclosure is not limited thereto.
  • the second connection structure 140 b may be provided in various types, as described with reference to the first connection structure 140 a.
  • the second bonding force F2 may be less than the first bonding force F1.
  • the number of second connection structures 140 b may be less than the number of first connection structures 140 a .
  • a force of 7F may be applied for connecting the first and second semiconductor chips 110 a and 110 b by the second connection structure 140 b .
  • the force of 7F is less than 13F applied for bonding of the first connection structure 140 a , and is not sufficient to substantially modify the first connection structure 140 a .
  • the first connection structure 140 a may not be modified in an operation of bonding the second connection structure 140 b .
  • a difference between the first force F1 and the second force F2 is not limited to the above-described embodiment, and may be determined in a range where the first connection structure 140 a is not modified.
  • a molding part 170 covering at least one portion of the lower structure 110 c , first semiconductor chip 110 a or second semiconductor chip 110 b may be formed.
  • the molding part 170 protects the first and second connection structures 140 a and 140 b against an external condition, thereby preventing the first and second connection structures 140 a and 140 b from being modified.
  • the molding part 170 may include an Epoxy Molding Compound (EMC).
  • FIGS. 13A and 13B are sectional views illustrating a method of fabricating a semiconductor device, according to an exemplary embodiment of the present disclosure.
  • an exemplary method of forming the semiconductor device will be described in terms of the semiconductor device 100 b of FIG. 2B , and technical features that are not repetitive of FIGS. 12A and 12B will be described.
  • the first connection structure 140 a may be greater than the second connection structure 140 b in sectional area or volume.
  • the sectional area may be the sectional area of the first or second connection structure 140 a or 140 b that intersects a flat plane parallel to the upper surface of the lower structure 110 c.
  • each of the second connection structures 140 b may have an area ratio or sectional area less than each of the first connection structures 140 a .
  • the area ratio of the second connection structure 140 b may be half of the area ratio of the first connection structure 140 a .
  • a bonding process of the second connection structure 140 b may be performed by second bonding force F2 less than the first bonding force F1.
  • FIGS. 14A to 14C are views illustrating a method of fabricating a semiconductor device, according to an exemplary embodiment of the present disclosure.
  • a method of fabricating a semiconductor device includes forming a chip stack including a plurality of semiconductor chips, forming a first molding part covering at least one portion of the chip stack, mounting the chip stack on a substrate, and forming a second molding part covering at least one portion of the chip stack and the substrate.
  • a method of fabricating the semiconductor device of FIG. 5A will be described as an example.
  • a chip stack may be formed by stacking a plurality of semiconductor chips.
  • the semiconductor chips may be connected to each other through a bonding process of a connection structure disposed therebetween.
  • the chip stack may include first to fourth semiconductor chips 510 a to 510 d , a first connection structure 540 a disposed between the fourth semiconductor chip 510 d and the first semiconductor chip 510 a , a second connection structure 540 b disposed between the first semiconductor chip 510 a and the second semiconductor chip 510 b , and a third connection structure 540 c disposed between the second semiconductor chip 510 b and the third semiconductor chip 510 c .
  • a bonding force applied to a connection structure for connecting a semiconductor chip may be reduced progressively over each subsequent process. That is, the second bonding force F2 for connecting the second semiconductor chip 510 b to the first semiconductor chip 510 a may be less than the first bonding force F1 for connecting the first semiconductor chip 510 a to the fourth semiconductor chip 51 d . Moreover, the third bonding force F3 for connecting the third semiconductor chip 510 c to the second semiconductor chip 510 b may be less than the second bonding force F2. Accordingly, due to a bonding force applied in a subsequent bonding process, the modification of a pre-formed connection structure can be decreased or prevented.
  • a molding part 570 a covering at least one portion of a chip stack may be formed, and the chip stack may be mounted on a substrate 580 .
  • the first molding part 570 a may be disposed between respective semiconductor chips to cover a connection structure, or cover a region other than a region of the substrate 580 for mounting.
  • the first molding part 570 a may include an underfill material or an EMC.
  • a fourth bonding force F4 may be determined irrespective of the first to third bonding forces F1 to F3.
  • the fourth bonding force F4 may be equal to or greater than any one of the first to third bonding forces F1 to F3. That is, when respective connection structures have the same size, the number of fourth connection structures 540 d may be equal to or greater than that of any one of the first to third connection structures 540 a to 540 c .
  • the fourth bonding force F4 is greater than the first, second or third bonding force F1, F2 or F3, the first to third connection structures 540 a to 540 c are protected by the first molding part 570 a and thus may not be modified in an operation of mounting the chip stack on the substrate 580 .
  • a second molding part 570 b covering at least one portion of the chip stack and the substrate 580 may be formed.
  • the second molding part 570 b may be disposed between the chip stack and the substrate 580 and protect the fourth connection structure 540 d .
  • the second molding part 570 b may be formed to cover the first molding part 570 a and the substrate 580 .
  • FIG. 15 is a view illustrating a method of fabricating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • first and second chip stacks including a plurality of chips may be formed, and thereafter, a semiconductor device may be formed by connecting the first and second chip stacks.
  • a fabrication method may be implemented as described with reference to the exemplary method of fabricating the semiconductor device of FIG. 4 .
  • a first chip stack may be formed, and, by connecting third and fourth semiconductor chips 410 c and 410 d with a third connection structure 440 c , a second chip stack may be formed. Subsequently, the first and second chip stacks may be connected with the second connection structure 440 b .
  • a bonding force F1 for bonding of the second connection structure 440 b may be less than a bonding force applied in the bonding processes of the first or third connection structures 440 a and 440 c .
  • the bonding force F1 applied in a bonding process of the second connection structure 440 b is not sufficient to substantially modify the first or third connection structure 440 a or 440 c.
  • FIGS. 16A to 16C are views exemplarily illustrating fabrication methods according to exemplary embodiments of the present disclosure forming a chip stack.
  • a chip stack may be formed by stacking semiconductor wafers having two or more layers.
  • the number of stacked semiconductor wafers may be the same as the number of semiconductor chips included in one chip stack.
  • first and second semiconductor wafers 700 a and 700 b may be provided where semiconductor chips including an integrated circuit and an internal wiring are formed.
  • semiconductor chips formed in the first and second semiconductor wafers 700 a and 700 b may correspond to the first and second semiconductor chips 110 a and 110 b of FIG. 2A .
  • the first and second semiconductor wafers 700 a and 700 b may be connected with a connection structure (not shown) disposed therebetween.
  • one chip stack may be completed.
  • the first or second chip stack of FIG. 15 may be prepared by the exemplary method of FIG. 16A .
  • Cutting may be performed with a cutter 702 or a laser.
  • a chip stack may be formed on the first semiconductor wafer 700 a .
  • such method may be used for implementing embodiments described herein with reference to FIGS. 14A and 14B .
  • the first semiconductor wafer 700 a may include a plurality of uncut fourth semiconductor chips 510 d .
  • the first to third semiconductor chips 510 a to 510 c may be prepared by cutting another semiconductor wafer and sequentially stacking the first to third semiconductor chips 510 a to 510 c on the first semiconductor wafer 700 a .
  • the first semiconductor wafer 700 a and the first semiconductor chip 510 a may be connected through the first connection structure 540 a disposed therebetween.
  • the second and third semiconductor chips 510 b and 510 c may be sequentially stacked on the first semiconductor chip 510 a using the second and third connection structures 540 b and 540 c.
  • a chip stack on which the first to third semiconductor chips 510 a to 510 c are stacked may be stacked on the first semiconductor wafer 700 a.
  • a chip stack may be formed.
  • the first and second semiconductor chips 410 a and 410 b may be connected with the connection structure 440 a .
  • the first and second semiconductor chips 710 a and 710 b may be attached to first and second support substrates 720 a and 720 b and conveyed, respectively.
  • the first and second semiconductor chips 710 a and 710 b conveyed respectively by the first and second support substrates 720 a and 720 b may be connected by connection structures 740 a .
  • Each of the first and second support substrates 720 a and 720 b may be a tape or a glass, and formed to convey a plurality of semiconductor chips.
  • FIG. 17 is a plan view exemplarily illustrating a package module according to exemplary embodiments of the present disclosure.
  • a package module 1200 may include a module substrate 1204 .
  • the module substrate 120 may include an external connection terminal 1202 , at least one semiconductor chip 1206 mounted on the module substrate 1204 , and a Quad-Flat-Packaged (QFP) semiconductor package 1208 .
  • the semiconductor chip 1206 or the semiconductor package 1208 may include a semiconductor device according an exemplary embodiment of the present disclosure.
  • the semiconductor package 1208 may be a Multi-Chip Package (MCP) including the semiconductor device of FIG. 4 .
  • MCP Multi-Chip Package
  • the package module 1200 may be connected to an external electronic device through the external connection terminal 1202 .
  • FIG. 18 is an exemplary schematic view illustrating a memory card according to some embodiments of the present disclosure.
  • a memory card 8000 may include a controller 8100 and a memory 8200 .
  • the controller 8100 and the memory 8200 may exchange an electric signal.
  • the memory 8200 and the controller 8100 may exchange data “Data” according to a command “Command” of the controller 8100 .
  • the memory card 8000 may store data in the memory 8200 , or output data from the memory 8200 to the outside.
  • the controller 8100 and/or the memory 8200 may be included in a semiconductor device according an exemplary embodiment of the present disclosure.
  • the controller 8100 and the memory 8200 may be included in one package and provided as a System-in Package (SiP). More specifically, a logic chip including the controller 8100 and a memory chip including the memory 8200 may be implemented as an SiP, which may include the semiconductor device that has been described above with reference to FIG. 3A .
  • the lower structure 210 c , first semiconductor chip 210 a and second semiconductor chip 210 b of FIG. 3A may be a package substrate, a logic chip and a memory chip, respectively.
  • the memory card 8000 may be provided in an MCP type where a plurality of memory chips are stacked. In this case, the memory card 8000 may have an increased memory capacity.
  • Such a multi-chip package may include the semiconductor device that has been exemplarily described with reference to FIG. 8 .
  • the memory card 8000 may be used as a data storage medium in various portable devices.
  • the memory card 8000 according to an embodiment of the present disclosure may include a multimedia card (MMC) or a secure digital (SD) card.
  • MMC multimedia card
  • SD secure digital
  • FIG. 19 is a block diagram exemplarily illustrating an electronic system according to some embodiments of the present disclosure.
  • the electronic system may include at least one semiconductor device according to exemplary embodiments of the present disclosure.
  • an electronic system 1400 may include at least one of a memory system 1402 , a processor 1404 , a RAM 1406 and a user interface 1408 , which may perform data communication through a bus 1410 .
  • the processor 1404 may execute a program and control the electronic system 1400 .
  • the RAM 1406 may be used as a working memory of the processor 1404 .
  • the user interface 1408 may be used to input/output data to/from the electronic system 1400 .
  • the memory system 1402 may store computer readable instructions for operation of the processor 1404 , data processed by the processor 1404 , or data inputted from the outside. Furthermore, the memory system 1402 may separately include a controller and a memory. According to exemplary embodiments of the present disclosure, the memory system 1402 may be configured substantially identically or similarly to one of the memory cards 800 that have been described above with reference to FIG. 18 .
  • the processor 1404 and the RAM 1406 may be provided in an SiP type device where a plurality of chips are included in one package.
  • the processor 1404 and the RAM 1406 may configure an SiP that includes a logic chip provided for the processor 1404 and a memory chip provided for the RAM 1406 .
  • the SiP may include the semiconductor device that has been described above with reference to FIG. 3A .
  • the lower structure 210 c , first semiconductor chip and second semiconductor chip 210 a and 210 b of FIG. 3A may be a package substrate, logic chip and memory chip of the SiP, respectively.
  • the electronic system 1400 may be applied to various industrial products including electronic equipment.
  • the electronic system 1400 according to an embodiment of the present disclosure may be used as a portion of mobile phones, portable game machines, portable notebook computers, MP3 players, navigation, Solid State Disks (SSDs), vehicles or household appliances.
  • SSDs Solid State Disks
  • an area ratio of the connection structure connecting the semiconductor chips of the semiconductor device may vary for each layer.
  • the area ratio of the connection structure may be reduced in a subsequently stacked semiconductor chip as compared to a previously stacked semiconductor chip.
  • the modification of a pre-formed connection structure and a contact error due to the modification can be suppressed or prevented. Accordingly, the plurality of semiconductor chips can be stably connected, and the operation reliability of the semiconductor device can be enhanced.
  • a bonding force is reduced in a subsequent bonding process as compared to a previous bonding process.
  • a subsequent bonding force is determined in a range where a contact error does not occur due to the modification of a pre-formed connection structure, and thus the operation reliabilities of the stacked semiconductor chips can be improved.

Abstract

A semiconductor device includes a first semiconductor chip, a first connection structure disposed on a first side of the first semiconductor chip, a second semiconductor chip disposed on a second side of the first semiconductor chip, and a second connection structure disposed between the first and second semiconductor chips, wherein a number of the second connection structures is less than a number of the first connection structures.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of co-pending U.S. application Ser. No. 13/239,885 filed Sep. 22, 2011, which claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2010-0110534, filed Nov. 8, 2010, the disclosure of which is incorporated by reference herein in its entirety.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure herein relates to a semiconductor device and a fabrication method thereof.
  • 2. Discussion of Related Art
  • Advances in semiconductor device technology for use in high-performance electronic systems are typically directed to increasing capacity and/or speed. Various attempts are being made for integrating circuits having various functions in smaller semiconductor devices and operating the semiconductor devices at a higher speed.
  • In one proposed system for integrating circuits, semiconductor chips are stacked for the high integration and high-performance operations of semiconductor devices. For example, a multi-chip package may include a plurality of stacked chips mounted in one semiconductor package. In another example, a System-in Package (SiP) may include stacked different chips operating as one system. When a plurality of semiconductor chips are stacked sequentially, a method for stably connecting the stacked semiconductor chips is needed.
  • SUMMARY
  • According to an exemplary embodiment of the present disclosure, a semiconductor device includes a first semiconductor chip comprising an internal circuit, a plurality of first connection structures disposed on a first side of the first semiconductor chip comprising at least one connection element electrically connected to the internal circuit of the first semiconductor chip and at least one auxiliary element electrically insulated from the internal circuit of first semiconductor chip, a second semiconductor chip disposed on a second side of the first semiconductor chip, and a plurality of second connection structures disposed between the first and second semiconductor chips and comprising at least one connection element electrically connected to the internal circuits of the first and second semiconductor chips, wherein a number of the second connection structures is less than a number of the first connection structures.
  • In an exemplary embodiment, the second connection structures further include at least one auxiliary element electrically insulated from the internal circuit of second semiconductor chip and a number of the auxiliary elements in the second connection structures may be less than a number of the auxiliary elements in the first connection structures.
  • In an exemplary embodiment, a number of the connection elements in the first connection structures may be the same as a number of the connection elements in the second connection structures.
  • In an exemplary embodiment, the number of the second connection structures may be 50% to 90% of the number of the first connection structures.
  • In an exemplary embodiment, the number of the auxiliary elements of the second connection structures may be 50% to 90% of the number of the auxiliary elements of the first connection structures.
  • According to an exemplary embodiment of the present disclosure, a semiconductor device includes a lower structure, and a plurality of semiconductor chip floors sequentially stacked on the lower structure, wherein each of the semiconductor chip floors includes a semiconductor chip and a connection structure disposed at a lower surface of the semiconductor chip, and wherein an area of the connection structure of each of the plurality of semiconductor chip floors is less than that of any one of the semiconductor chip floors disposed nearer the lower structure.
  • According to an exemplary embodiment of the present disclosure, a method includes connecting a first semiconductor chip to a second semiconductor chip by a plurality of first connection structures to form a stack and connecting the stack to a substrate by a plurality of second connection structures, wherein one of a number of the first connection structures is different than a number of the second connection structures, or a contact area of the first connection structures with the first and second semiconductor chips is different than a contact area of the second connection structures with the stack and the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of exemplary embodiments of the present disclosure. In the drawings:
  • FIG. 1A is a schematic view exemplarily illustrating a semiconductor device according to embodiments of the present disclosure;
  • FIG. 1B is a view illustrating a method of forming connection structures according to a first mode of the present disclosure;
  • FIG. 1C is a view illustrating a method of forming connection structures according to a second mode of the present disclosure;
  • FIGS. 2A to 2D are sectional views illustrating semiconductor devices according to some embodiments of the present disclosure;
  • FIGS. 3A and 3B are sectional views illustrating semiconductor devices according to other embodiments of the present disclosure;
  • FIG. 4 is a sectional view illustrating a semiconductor device according to another embodiment of the present disclosure;
  • FIG. 5A is a perspective view exemplarily illustrating one side surface of a semiconductor device according to an embodiment of the present disclosure;
  • FIG. 5B is a sectional view of the semiconductor device shown along dot line I-I of FIG. 5A;
  • FIGS. 6A and 6B are plan views of the semiconductor device shown along dot lines II-II′ of FIG. 5B
  • FIGS. 7A and 7B are plan views of the semiconductor device shown along dot lines III-III′ of FIG. 5B;
  • FIG. 8 is a sectional view illustrating a semiconductor device according to still another embodiment of the present disclosure;
  • FIGS. 9A, 9B, 10 and 11 are plan views exemplarily illustrating connection structures shown along dot lines of FIG. 8;
  • FIGS. 12A to 12C are sectional views illustrating a method of fabricating a semiconductor device, according to an embodiment of the present disclosure;
  • FIGS. 13A and 13B are sectional views illustrating a method of fabricating a semiconductor device, according to another embodiment of the present disclosure;
  • FIGS. 14A to 14C are sectional views illustrating a method of fabricating a semiconductor device, according to still another embodiment of the present disclosure;
  • FIG. 15 is a sectional view illustrating a method of fabricating a semiconductor device according to a modified embodiment of the present disclosure;
  • FIGS. 16A to 16C are views exemplarily illustrating fabrication methods according to some embodiments of the present disclosure forming a chip stack;
  • FIG. 17 is a plan view exemplarily illustrating a package module according to some embodiments of the present disclosure;
  • FIG. 18 is a schematic view exemplarily illustrating a memory card according to some embodiments of the present disclosure; and
  • FIG. 19 is a block diagram exemplarily illustrating an electronic system according to some embodiments of the present disclosure.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Exemplary embodiments of the present disclosure will be described below in more detail with reference to the accompanying drawings. The present disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art. It should be noted that elements shown in the accompanying drawings may be scaled up or down for convenience in description. The dimensions of respective elements may be exaggerated or reduced.
  • It will also be understood that when an element is referred to as being ‘on’ another element, it can be directly on the other element, or intervening elements may also be present. Further, it will be understood that when an element is referred to as being ‘under’ another element, it can be directly under, and one or more intervening elements may also be present. In addition, it will also be understood that when an element is referred to as being ‘between’ two elements, it can be the only element between the two elements, or one or more intervening elements may also be present. Other terms for describing a relationship between elements, for example, “between” and “directly between” may be understood likewise.
  • Terms like a first and a second may be used to describe various elements, and the elements should not be limited by the terms. The terms may be used only as object for distinguishing an element from another element. For example, without departing from the spirit and scope of the present disclosure, a first element may be referred to as a second element, and similarly, the second element may be referred to as the first element.
  • In the following description, the technical terms are used only for explain a specific exemplary embodiment while not limiting the present disclosure. The terms of a singular form may include plural forms unless referred to the contrary. The meaning of “include,” “comprise,” “including,” or “comprising,” specifies a property, a region, a fixed number, a step, a process, an element and/or a component and does not exclude other properties, regions, fixed numbers, steps, processes, elements and/or components.
  • As used herein, the term “or” includes any and all combinations of one or more of the associated listed items. For example, “A or B” denotes “A, B, A and B”.
  • Embodiments in the detailed description will be described with sectional views as ideal exemplary views of the present invention. In the figures, the dimensions of layers and regions are exaggerated for clarity of illustration. Accordingly, shapes of the exemplary views may be modified according to manufacturing techniques and/or allowable errors. Embodiments of the present invention are not limited to the specific shape illustrated in the exemplary views, and may include other shapes that may be created according to manufacturing processes. For example, an etching region illustrated as a right angle may have a shape that is rounded or a certain curvature. Areas exemplified in the drawings have general properties, and are used to illustrate a specific shape of a semiconductor package region. Thus, this should not be construed as limited to the scope of the present invention.
  • Unless terms used in embodiments of the present disclosure are defined differently, the terms may be construed as meaning known to those skilled in the art.
  • Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. Like reference numerals refer to like elements throughout, and an element described in the same term may have an identical or similar structure.
  • FIG. 1A is a schematic view exemplarily illustrating a semiconductor device according to embodiments of the present disclosure.
  • Referring to FIG. 1A, a semiconductor device 100 according to embodiments of the present disclosure may include a chip stack 20 mounted on a lower structure 10. The chip stack 20 may include a plurality of semiconductor chips 22 and 24, and a plurality of connection structures 21 and 23. For example, as illustrated in FIG. 2A, a chip stack may include a first connection structure 140 a, a first semiconductor chip 110 a, a second connection structure 140 b, and a second semiconductor chip 110 b that are sequentially stacked on an upper surface of a lower structure 1100 c.
  • Referring to FIG. 1A, a lower structure 10 may be a semiconductor chip, a chip stack, or a Printed Circuit Board (PCB). However, the spirit and scope of the present disclosure are not limited to disclosed embodiments of the lower structure 10. That is, the chip stack 20 may be mounted on an arbitrary element, all elements for mounting the chip stack 20 may be used as the lower structure 10 for implementing the spirit and scope of the present disclosure.
  • Each of the semiconductor chips 22 and 24 may be a chip including an internal circuit IC (such as an integrated circuit) and/or a microelectronic element integrated on a semiconductor substrate. For example, the internal circuit may include at least one of a Random Access Memory (RAM), a nonvolatile memory, a memory control circuit, an application processor circuit, a power supplier circuit, a modem, and a Radio Frequency (RF) circuit.
  • According to some embodiments of the present disclosure, the semiconductor chips 22 and 24 of the chip stack 20 may be the same kind of semiconductor chip, manufactured to have the same structure and perform the same function. For example, as in a Solid State Disk (SSD), the same kind of stacked nonvolatile memory chips may be implemented in the chip stack 20. According to other embodiments of the present disclosure, the semiconductor chips 22 and 24 implemented in the chip stack 20 may be different semiconductor chips that are manufactured to have different structures and perform different functions. For example, at least one semiconductor memory chip and at least one logic chip may be implemented in the chip stack 20. However, the spirit and scope of the present disclosure are not limited to exemplified combinations. For example, the chip stack 20 may include different kinds of elements that are selected from among semiconductor chips such as a memory chip, a logic chip and an interposer.
  • Each of the connection structures 21 and 23 may include connection elements CE connected to the internal circuits of the semiconductor chips 22 and 24. The connection elements CE may be used as an electric connection path between the semiconductor chips 22 and 24 or an electric connection path between the semiconductor chip 22 and the lower structure 10. Furthermore, at least one of the connection structures 21 and 23 may further include auxiliary elements AE that are attached to the semiconductor chips 22 and 24 and are not electrically connected to the internal circuit IC of the semiconductor chips 22 and 24. Technical features associated with the structure and disposition of the connection element CE and auxiliary element AE will be described below in more detail with reference to FIGS. 2A to 2D.
  • According to some embodiments of the present disclosure, the connection elements CE and the auxiliary element AE included in one connection structure 21 or 23 may be formed by the same process. In this case, the connection element CE and the auxiliary element AE included in the connection structure 21 or 23 may be formed of a substantially equivalent material. According to other embodiments of the present disclosure, the connection elements CE and the auxiliary elements AE in the connection structure 21 or 23 may be independently formed by different fabrication processes.
  • In a fabrication process, as described below with reference to FIGS. 12 to 16, a process of forming the connection structures 21 and 23 may include an operation that applies heat and/or pressure to the connection elements CE. For example, a thermo-compression operation or a reflow operation may be performed. In this case, the process of forming the connection structures 21 and 23 may be performed to satisfy a condition (hereinafter referred to as a forming condition) that may be expressed as shown in Equation (1).

  • P1<P and T1<T  (1)
  • where P is a pressure applied to a connection element CE in an operation of forming a corresponding connection structure, T is a temperature applied to the connection element CE in the operation of forming the corresponding connection structure, P1 is a minimum pressure needed for forming the connection element CE, and T1 is the minimum temperature needed for forming the connection element CE.
  • Due to the application of heat and/or pressure, the connection structures 21 and 23 undergo at least one thermal stress or physical stress. The thermal or physical stress may cause a structural modification or change (such as the generation of an Inter-Metallic Compound (IMC)) of a completed connection element. More specifically, a pre-formed connection structures (hereinafter referred to as a previous connection structure) may undergo more thermal or physical stress than a subsequently formed connection structure (hereinafter referred to as a following connection structure), and thus, a possibility of failure in the previous connection structure may be comparatively increased.
  • According to an embodiment of the present disclosure, to substantially prevent such a problem in the previous connection structure, a process of forming the following connection structure may be performed to satisfy a condition (hereinafter referred to as a prevention condition) that may be expressed as shown in Equation (2).

  • P<P2 and T<T2  (2)
  • where P2 is a minimum pressure where a modification or change of a connection element included in a previous connection structure occurs in an operation of forming the following connection structure, and T2 is a minimum temperature where a modification or change of the connection element included in the previous connection structure occurs in the operation of forming the following connection structure.
  • Since the forming condition in Equation (1) may need to be satisfied in an operation of forming the following connection structure, the operation of forming the following connection structure may be performed to satisfy a condition that may be expressed as shown in Equation (3).

  • P1<P<P2 and T1<T<T2  (3)
  • Formation of the connection element CE may use the modification or change thereof. For example, when a solder is used as the connection element CE, the solder may be formed in a melting operation that may be understood as a modification or change operation. That is, respective differences between threshold values (i.e., P1 and T1) of a forming condition and threshold values (i.e., P2 and T2) of a prevention condition may be small. According to embodiments of the present disclosure, a process margin may be secured in the case of a small difference between the threshold values (i.e., P1 and T1) of a forming condition and threshold values (i.e., P2 and T2) of a prevention condition.
  • The above-described threshold values P1, P2, T1 and T2 may not be independent but correlated physical quantities. It would be apparent to those skilled in the art that the threshold values P1, P2, T1 and T2 may be dependent on a structure of a corresponding product and/or a material used for the corresponding product. By this reason, it should be understood that various embodiments described below are exemplarily. That is, embodiments of the present disclosure may be variously modified in consideration of elements (for example, a material and a structure) dependent on the above-described corresponding product. Furthermore, since those skilled in the art would understanding how to implement modifications on the basis of contents described in this application, the modifications may not be described.
  • FIG. 1B is a view illustrating a method of forming connection structures according to an exemplary embodiment of the present disclosure.
  • Referring to FIG. 1B, a previous connection structure PCS may be formed on the lower structure 10, and a following connection structure FCS may be formed on a result R1. According to an exemplary embodiment, a sum (n2) of the number of the connection elements (n2(CE)) and the number of the auxiliary elements (n2(AE)) included in the following connection structure FCS may be less than a sum (n1) of the number of the connection elements (n1(CE)) and the number of the auxiliary elements (n1(AE)) included in the previous connection structure PCS. That is, n2<n1 or n2(CE)+n2(AE)<n1(CE)+n1(AE).
  • When a external force is applied to an upper surface of a connection structure, pressure applied to each of connection elements may be inversely proportional to the number of total elements constituting the corresponding connection structure. That is, due to the increase in the number of the connection elements CE and/or the auxiliary elements AE, the external pressure can be distributed. As described herein, when a condition “n2<n1” is satisfied, pressure applied to each of the connection elements CE of the previous connection structure PCS may be reduced as compared to a case of “n1=n2” during an operation of forming the following connection structure FCS. That is, when a condition “n2<n1” is satisfied, the prevention condition (i.e., P>P2) for the connection elements CE configuring the previous connection structure PCS is satisfied, and external pressure (i.e., n2×P) that may be applied in an operation of forming the following connection structure FCS may increase.
  • As exemplarily shown in Table 1 below, a condition “n1>n2” may be realized in various modes.
  • TABLE 1
    The same Different
    Applicable modes kind of chips chips
    Mode 1a n1(CE) = n2(CE) and Possible Possible
    n1(AE) > n2(AE)
    Mode 1b n1(CE) > n2(CE) and Possible (limited) Possible
    n1(AE) = n2(AE)
    Mode 1c n1(CE) > n2(CE) and Possible (limited) Possible
    n1(AE) > n2(AE)
    Mode 1d n1(CE) < n2(CE) and Possible (limited) Possible
    n1(AE) + [n2(CE) −
    n1(CE)] > n2(AE)
    Term description
    n1(CE) Number of connection elements CE of previous
    connection structure
    n1(AE) Number of auxiliary elements AE of previous
    connection structure
    n2(CE) Number of connection elements CE of following
    connection structure
    n2(AE) Number of auxiliary elements AE of following
    connection structure
  • As described above with reference to FIG. 1A, when the chip stack 20 is configured with the same kind of chips, the numbers of connection elements CE of the respective connection structures 21 and 23 connecting the chips may be the same. Accordingly, the mode 1 a in Table 1 may be applied to a chip stack configured with the same kind of chips. Although a chip stack is a semiconductor device configured with the same kind of chips, when the previous connection structure may correspond to the connection structure 21 for connecting the lower structure 10 and the semiconductor chip 22 adjacent to the lower structure 10, all the modes in Table 1 can be applicable. According to embodiments of the present disclosure, the number of the auxiliary elements (n1(AE) or n2(AE)) may be zero.
  • The modes that have been described above with reference to FIG. 1B and Table 1 may be applied when the sizes of the connection elements CE and the auxiliary elements AE are the same. When the size of the connection element CE differ from the size of the auxiliary element AE, as described below with reference to FIG. 1C, embodiments of the present disclosure may be realized in other modes.
  • FIG. 1C is a view illustrating a method of forming connection structures according to an exemplary embodiment of the present disclosure.
  • Referring to FIG. 1C, the previous connection structure PCS may be formed on the lower structure 10, and the following connection structure FCS may be formed on the result R1. According to an exemplary embodiment of the present disclosure, the following relationship (4) may be built between the previous connection structure PCS and the following connection structure FCS.

  • A2<A1 or A2(CE)+A2(AE)<A1(CE)+A1(AE).  (4)
  • where A1(CE) is total area of the connection elements CE included in the previous connection structure PCS, A1(AE) is total area of the auxiliary elements AE included in the previous connection structure PCS, A2(CE) is total area of the connection elements CE included in the following connection structure FCS, A2(AE) is total area of the auxiliary elements AE included in the following connection structure FCS. A1 is “A1(CE)+A1(AE)”, and A2 is “A2(CE)+A2(AE)”. Herein, the total area A1(CE) or A2(CE) of the connection elements CE is a sum of areas of sectional surfaces of connection elements CE that intersect a flat plane parallel to the upper surface of the lower structure 10. The total area A1(AE) or A2(AE) of the auxiliary elements AE may be defined in the same scheme.
  • Pressure is as an external force/area. When a certain external force is applied to an upper surface of the connection structure, pressure applied to each of connection elements CE may be inversely proportional to total area of elements CE and AE configuring the connection structure. As described herein, when a condition “A2<A1” is satisfied, pressure applied to each of the connection elements CE of the previous connection structure PCS may be reduced compared to a condition “A1=A2” during an operation of forming the following connection structure FCS. That is, when a condition “A2<A1” is satisfied, the above-described prevention condition (i.e., P>P2) for the connection elements CE configuring the previous connection structure PCS is satisfied, and external pressure (i.e., A2×P) that may be applied in an operation of forming the following connection structure FCS may increase.
  • As exemplarily shown in Table 2 below, a condition “A1>A2” may be realized in various modes.
  • TABLE 2
    The same Different
    Applicable modes kind of chips chips
    Mode
    1 A1(CE) = A2(CE) and Possible Possible
    A1(AE) > A2(AE)
    Mode 2 A1(CE) > A2(CE) and Possible (limited) Possible
    A1(AE) = A2(AE)
    Mode 3 A1(CE) > A2(CE) and Possible (limited) Possible
    A1(AE) > A2(AE)
    Mode 4 A1(CE) < A2(CE) and Possible (limited) Possible
    A1(AE) + [A2(CE) −
    A1(CE)] > A2(AE)
    Term description
    A1(CE) Total area of connection elements CE of previous
    connection structure
    A1(AE) Total area of auxiliary elements AE of previous
    connection structure
    A2(CE) Total area of connection elements CE of following
    connection structure
    A2(AE) Total area of auxiliary elements AE of following
    connection structure
  • According to modified embodiments of the present disclosure, the previous connection structure PCS and the following connection structure FCS may be formed of materials different from each other, respectively. For example, the previous connection structure PCS may be formed of a material having a melting point higher than that of the following connection structure FCS. In the modified embodiments of the present disclosure, the mode 1 or the mode 2 may be modified in consideration of the prevention condition of Equation (2). Such modification can be implemented by those skilled in the art, based on exemplary embodiments of the present disclosure described herein.
  • FIGS. 2A and 2B are sectional views illustrating a semiconductor device according to some embodiments of the present disclosure. FIGS. 2C and 2D are enlarged views of a portion A in FIG. 2A.
  • Referring to FIG. 2A, a semiconductor device 100 a may include a chip stack mounted on a lower structure 110 c. The chip stack may include a first connection structure 140 a, a first semiconductor chip 110 a, a second connection structure 140 b, and a second semiconductor chip 110 b that are sequentially stacked on an upper surface of a lower structure 110 c.
  • A portion of technical features associated with the semiconductor chips will be described below with reference to FIG. 2C. The first semiconductor chip 110 a is exemplarily described below. Those skilled in the art will recognize that the second semiconductor chip 110 b may include technical features substantially similar to the first semiconductor chip 110 a. Referring to FIG. 2C, the first semiconductor chip 110 a may include a semiconductor substrate 114 a, an internal circuit 116 a integrated on one surface of the semiconductor substrate 114 a, an internal wiring 117 a connected to the internal circuit 116 a, and a chip pad 120 a (see FIG. 2A, wherein the chip pad 120 may include first and second pads 121 a and 122 a shown in FIG. 2C) connected to the internal wiring 117 a. The internal circuit 116 a may be electrically connected to an external electronic device through the internal wiring 117 a and the chip pad 120 a.
  • The semiconductor substrate 114 a may include a lower surface (or an active surface) in which the internal circuit 116 a is integrated, and an upper surface (or a back side) opposite to the lower surface. The upper surface and/or the lower surface of the semiconductor substrate 114 a may have a non-uniform height. For example, where the internal circuit 116 a is integrated, non-uniformity in the lower surface of the semiconductor substrate 114 a may be intended. A trench for isolation may be an example of intended non-uniformity. Non-uniformity in the upper surface of the semiconductor substrate 114 a may be a result of a back-side grinding process, as an unintended technical feature. Furthermore, the lower surface of the semiconductor substrate 114 a may have an intended non-uniformity of an impurity concentration, resulting from a process of forming the internal circuit 116 a. Based on such differences, the upper surface and lower surface of the semiconductor substrate 114 a may be distinguished. As shown in FIGS. 2A and 2C, the first semiconductor chip 110 a has first and second surfaces 111 a and 112 a. The first and second surfaces 111 a and 112 a may be adjacent to the lower surface and upper surface of the semiconductor substrate 114 a, respectively.
  • The semiconductor chip 110 a may further include a passivation layer 119 a and/or an interlayer dielectric 118 a. The passivation layer 119 a, as illustrated in FIG. 2C, may expose a chip pad 121 a and be disposed on a lower surface of the semiconductor substrate 110 a. The interlayer dielectric 118 a may be disposed between the passivation layer 119 a and the semiconductor substrate 114 a, and include a plurality of insulation layers that structurally support and electrically insulate the internal wirings 117 a. According to some embodiments of the present disclosure, as illustrated in FIG. 2C, the first semiconductor chip 110 a may further include a back-side insulation layer 129 covering an upper surface of the semiconductor substrate 110 a. According to other embodiments of the present disclosure, the first semiconductor chip 110 a may be formed to expose the upper surface of the semiconductor substrate 110 a without the back-side insulation layer 129.
  • According to some embodiments of the present disclosure, the first semiconductor chip 110 a may further include a via pad 126 a disposed on the second surface 112 a of the first semiconductor chip 110 a and for connecting to another semiconductor chip (for example, the second semiconductor chip 110 b). Furthermore, the first semiconductor chip 110 a may further include a first through via 124 a electrically connected to the chip pad 120 a and the via pad 126 a (see FIG. 2A).
  • The first through via 124 a may be formed to have a long axis substantially vertical to the second surface 112 a and pass through at least one portion of the first semiconductor chip 110 a. For example, as illustrated in FIG. 2C, the first through via 124 a may be formed to have a via middle structure passing through the semiconductor substrate 114 a and a portion of the interlayer dielectric 118 a, between the internal wiring 117 a and the via pad 126 a. According to other embodiments of the present disclosure, the first through via 124 a may have a through silicon via structure passing through the semiconductor substrate 114 a. In this case, the first through via 124 a may be used as an electric path connecting the chip pad 120 a and the via pad 126 a through the first semiconductor chip 110 a. The structure of the first through via 124 a is not limited to the exemplified structures, and may be variously modified. For example, the first through via 124 a may have a via first structure that does not pass through the interlayer dielectric 118 a or a via last structure that directly contacts the chip pad 120 a through the interlayer dielectric 118 a.
  • Referring again to FIG. 2A, the first connection structure 140 a may be disposed on a first surface 111 a and connected to the chip pad 120 a. The second connection structure 140 b may be disposed on a second surface 112 a and connected to the via pad 126 a. The second semiconductor chip 110 b may be electrically connected to the internal circuit 116 a of the first semiconductor chip 110 a through the first through via 124 a and the second connection structure 140 b. The first semiconductor chip 110 a may be electrically connected to the lower structure 110 c through the first connection structure 140 a. According to some embodiments of the present disclosure, the first connection structure 140 a, the chip pad 120 a, the first through via 124 a, the via pad 126 a and the second connection structure 140 b may be aligned to be disposed in a line that perpendicularly passes through the first surface 111 a. However, the embodiments of the present disclosure are not limited thereto.
  • The first and second connection structures 140 a and 140 b may differ in area ratio. Herein, the area ratio may be a ratio occupied by the contact area of a connection structure and a lower structure or a semiconductor chip, with respect to an area of one surface of a semiconductor chip or a lower structure contacting a connection structure. For example, when the second connection structure 140 b is formed later in time than the first connection structure 140 a, the second connection structure 140 b may have an area ratio less than that of the first connection structure 140 a.
  • Since an area ratio of a connection structure is inversely proportional to a bonding force for bonding of the connection structure, a bonding force needed for bonding of the second connection structure 140 b may be less than a bonding force needed for bonding of the first connection structure 140 a. For example, a bonding process for the connection structure may be performed in a thermo-compression process or a reflow process. In this case, a bonding force may be applied to the connection structure as heat or pressure. The first connection structure 140 a may receive heat or pressure twice in an operation of stacking the first and second semiconductor chips 110 a and 110 b. Due to this, the first connection structure 140 a is modified or additional Inter-Metallic Compound (IMC) is generated, and thus a contact failure between the first semiconductor chip 110 a and the lower structure 110 c may occur. According to an exemplary embodiment, by making the bonding force of the second connection structure 140 b less than a threshold value of a force that causes the modification of the pre-formed first connection structure 140 a, a probability of a contact failure due to modification of the first connection structure 140 a can be reduced.
  • Area ratios of the first and second connection structures 140 a and 140 b may be different from each other by various schemes. For example, when the first and second connection structures 140 a and 140 b are formed in an equal or similar size, the area ratios may be made different by making the numbers of first and second connection structures 140 a and 140 b different from each other. As another example, the area ratios may be made different by making sizes of the first and second connection structures 140 a and 140 b different.
  • FIG. 2A illustrates an example where the number of first connection structures 140 a differs from the number of second connection structures 140 b. For example, when the first semiconductor chip 110 a and the lower structure 110 c are connected through the first connection structure 140 a and the second semiconductor chip 110 b and the first semiconductor chip 110 a are connected through the second connection structure 140 b, the number of second connection structures 140 b may be less than the number of first connection structures 140 a. Accordingly, a bonding force for bonding of the second connection structure 140 b may be determined in a range that does not cause the modification of the first connection structure 140 a.
  • The number of second connection structures 140 b may be determined in a range where a bonding process may be performed by bonding force that does not cause the modification of the first connection structure 140 a. As the number of second connection structures 140 b decreases, a bonding force for bonding of the second connection structure 140 b may be reduced, and thus the modification of the first connection structure 140 a may be abated. For example, the number of second connection structures 140 b may be about 50% to 90% of the number of first connection structures 140 a.
  • The first connection structure 140 a may include a connection element 141 and an auxiliary element 142. The connection element 141 and the auxiliary element 142 may be substantially similar in structure, and differ in electric connection. The connection element 141 and the auxiliary element 142 may be disposed with first and second pads 121 a and 122 a, respectively. The first and second pads 121 a and 122 a may be formed having a substantially similar structure, and differ in connection relationship with the internal circuit 116 a (see FIG. 2C). For example, the first chip pad 121 a may be connected to the internal circuit 116 a or the first through via 124 a, and the second chip pad 122 a may be electrically insulated from the internal circuit 116 a or the first through via 124 a. That is, the connection element 141 may be electrically connected to the first semiconductor chip 110 a, and the auxiliary element 142 may be electrically insulated from the first semiconductor chip 110 a. That is, the auxiliary element 142 may be a dummy connection structure. As another example, the connection element 141 may deliver a signal, and the auxiliary element 142 may deliver a power source voltage. In this case, although not shown, the second chip pad 122 a may be electrically connected to the internal circuit 116 a through the internal wiring 117 a. The connection element 141 may be aligned and disposed in a vertical direction with the second connection structure 140 b, and the number of connection elements 141 may be the same as the number of second connection structures 140 b. Although not shown, the second connection structure 140 b may include a connection element and an auxiliary element. The connection element and auxiliary element of the second connection structure 140 b may be substantially similar to the connection element 141 and auxiliary element 142 of the first connection structure 140 a, respectively.
  • FIG. 2B illustrates an example where the size of each of the first connection structures 140 a differs from that of the second connection structures 140 b. The size of a connection structure represents an area where the connection structure contacts a semiconductor chip, or the sectional area of the connection structure. For example, when the first semiconductor chip 110 a and the lower structure 110 c may be connected through the first connection structures 140 a and the second semiconductor chip 110 b and the first semiconductor chip 110 a are connected through the second connection structures 140 b, the size of each of the second connection structures 140 b may be less than that of the first connection structures 140 a. In this case, the number of first connection structures 140 a may the same as the number of second connection structures 140 b, and the first connection structure 140 a may not include the auxiliary element 142.
  • Each of the first and second connection structures 140 a and 140 b may include a conductive bump, a conductive spacer, a solder ball, a micro solder bump, etc. For example, as illustrated in FIG. 2C, the second connection structure 140 b may include a first conductive means 151 and a second conductive means 152. The first conductive means 151, including portions 151 a and 151 b, may be attached to the chip pad 120 b and the via pad 126 a, and the second conductive means 152 may be disposed between the portions 151 a and 151 b of the first conductive means 151. Although not shown, the first through via 124 a may protrude from a second surface 112 a of the first semiconductor chip 110 a, and the via pad 126 a may not be formed. In this case, the first conductive means 151 attached to the via pad 126 a may not be formed, and the first conductive means 151 may be attached to the first through via 124 a.
  • The second conductive means 152 may include a metal material having a melting point lower than that of the first conductive means 151. For example, the first conductive means 151 may be an Under Barrier Metal (UBM) including copper (Cu), and the second conductive means 152 may be a solder of stannum or Tin (Sn), SnAg, SnPb, SnBc, SnAgCu and the like. A shape of the second conductive means 152 may be variously modified in an operation of bonding the second connection structure 140 b. The first connection structure 140 a may be formed in a structure substantially similar to that of the second connection structure 140 b.
  • Referring to FIG. 2D, a second through via 125 a passing through at least one portion of the first semiconductor chip 110 a may be formed. The second through via 125 a may be electrically insulated from the first through via 124 a, and deliver a power source voltage or a ground voltage. The auxiliary element 142 may be electrically connected to the second through via 125 a, and deliver the power source voltage or the ground voltage.
  • FIG. 3A is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure. A semiconductor device 200 of FIG. 3A includes a lower structure 210 c, first and second semiconductor chips 210 a and 210 b stacked on the lower structure 210 c, a first connection structure 240 a disposed between the lower structure 210 c and the first semiconductor chip 210 a, and a second connection structure 240 b disposed between the first and second semiconductor chips 210 a and 210 b. The lower structure 210 c, the first and second semiconductor chips 210 a and 210 b, the first connection structure 240 a, and the second connection structure 240 b may correspond to the lower structure 110 c, first and second semiconductor chips 110 a and 110 b, first connection structure 140 a, and second connection structure 140 b of the semiconductor device 100 a in FIG. 2A, respectively. Hereinafter, for conciseness, technical features that are not repetitive of FIG. 2A will be described.
  • Referring to FIG. 3A, the first semiconductor chip 210 a or the second semiconductor chip 210 b may include a rewiring 260. For example, when the first and second semiconductor chips 210 a and 210 b are different first and second semiconductor chips, the first connection structure 240 a and the second connection structure 240 b may not be vertically aligned. For example, as illustrated in FIG. 3A, the rewiring 260 may be connected to a through via 224 a at one surface of the first semiconductor chip 210 a facing the second semiconductor chip 210 b, and the second connection structure 240 b and the first semiconductor chip 210 a may be connected through the rewiring 260. In this case, a connection element 241 and the second connection structure 240 b may not be vertically aligned. As another example, although not shown, the rewiring 260 may be formed at one surface of the second semiconductor chip 210 b facing the first semiconductor chip 210 a, and the second connection structure 240 b may be connected to the second semiconductor chip 210 b through the rewiring 260. In this case, the connection element 241 and the second connection structure 240 b may not be vertically aligned.
  • FIG. 3B is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure. Here, a semiconductor device includes a lower structure, and a plurality of semiconductor chip floors stacked on the lower structure. Each of the semiconductor chip floors may include a semiconductor chip, and a connection structure disposed at one surface of the semiconductor chip. Hereinafter, an exemplary embodiment including three layers of semiconductor chip floors is described. The present disclosure is not limited thereto and the number of semiconductor chip floors may include two or more layers.
  • Referring to FIG. 3B, a semiconductor device 300 may include first to third semiconductor chip floors 300 a to 300 c stacked on the lower structure 310 d. The stacked order of the first to third semiconductor chip floors 300 a to 300 c is not limited to the order described herein. Hereinafter, a case where the first to third semiconductor chip floors 300 a to 300 c are stacked in order is described as an example. The third semiconductor chip floor 300 c may be the uppermost semiconductor chip floor among a plurality of stacked semiconductor chip floors, and may be disposed farthest from the lower structure 310 d. A lower semiconductor chip floor is closer to the lower structure 310 d than an upper semiconductor chip floor.
  • The first semiconductor chip floor 300 a may include a first connection structure 340 a and a first semiconductor chip 310 a disposed at one side of the first connection structure 340 a. For example, the first semiconductor chip 310 a may be disposed where a first surface 311 a thereof faces the lower structure 310 d, and is connected to the lower structure 110 c through a first connection structure 340 a disposed between the lower structure 310 d and the first semiconductor chip 310 a. The first connection structure 340 a may include a first connection element 341 a and a first auxiliary element(s) 342 a. For example, the first connection element 341 a may be electrically connected to the first semiconductor chip 310 a, and the first auxiliary element 342 a may be electrically insulated from the first semiconductor chip 310 a. That is, the first auxiliary element(s) 342 a may be a dummy connection structure that is not electrically connected to a through via or an internal circuit of the first semiconductor chip 310 a.
  • The second semiconductor chip floor 300 b may be disposed on the first semiconductor chip floor 300 a. The second semiconductor chip floor 300 b may include a second semiconductor chip 310 b and a second connection structure 340 b disposed at one side of the second semiconductor chip 310 b. The second connection structure 340 b may be disposed between the first semiconductor chip 310 a and the second semiconductor chip 310 b, and the second semiconductor chip 310 b may be connected to the first semiconductor chip 310 a through the second connection structure 340 b. The second connection structure 340 b may include a second connection element 341 b electrically connected to the second connection structure 340 b, and a second auxiliary element 342 b electrically insulated from the second semiconductor chip 310 b. That is, the second auxiliary element 342 b may be a dummy connection structure that is not electrically connected to a through via or an internal circuit of the second semiconductor chip 310 b. For example, the second connection element 341 b and the second auxiliary element 342 b may have a structure substantially similar to that of the first connection element 341 a and that of the second auxiliary element 342 a, respectively. In FIG. 3B, an example where the second connection element 342 a is vertically aligned with the first connection element 341 a is illustrated. Embodiments of the present disclosure are not limited thereto. As illustrated in FIG. 3A, the second connection element 342 a may be connected through a rewiring.
  • A third semiconductor chip floor 300 c may be disposed on the second semiconductor chip floor 300 b. The third semiconductor chip floor 300 c may include a third semiconductor chip 310 c and a third connection structure 340 c disposed at one side of the third semiconductor chip 310 c. The third connection structure 340 c may be disposed between the second and third semiconductor chips 310 b and 310 c, and connect the second and third semiconductor chips 310 b and 310 c. When the third semiconductor chip floor 300 c is an uppermost semiconductor chip floor, the third connection structure 340 c may not include an auxiliary element. In this case, as illustrated in FIG. 3B, the third connection structure 340 c may be disposed to be vertically aligned with the second connection element 341 b and the first connection element 341 a. Alternatively, although not shown, the third connection structure 340 c may include an auxiliary element, which may be a dummy connection structure.
  • An area ratio may increase or decrease progressively closer to a lower semiconductor chip floor. For example, the size or number of a connection structure may increase or decrease progressively closer to a lower semiconductor chip floor. For example, when the first to third semiconductor chip floors 300 a to 300 c are sequentially stacked on the lower structure 310 d, as a semiconductor chip floor is disposed farther from the lower structure 310 d, the number of connection structures may decrease. As illustrated in FIG. 3B, the number of first connection structures 340 a may be greater than the number of second connection structures 340 b, and the number of second connection structures 340 b may be greater than the number of third connection structures 340 c.
  • The number of auxiliary elements may increase progressively closer to a lower semiconductor chip floor. For example, the number of first connection elements 341 a may be equal to the number of second connection elements 341 b, and the number of first auxiliary elements 342 a may be greater than the number of second auxiliary elements 342 b. When the third connection structure 340 a includes an auxiliary element, the number of auxiliary elements in the third connection structure 340 c may be less than the number of second auxiliary elements 342 b.
  • According to an exemplary embodiment, the number of connection structures decreases progressively closer to an upper semiconductor chip floor, and thus a bonding force may be reduced in an operation of bonding the connection structure of the upper semiconductor chip floor. A probability of contact error due to the modification of a connection structure of a lower semiconductor chip floor may be reduced.
  • When a semiconductor device includes four or more semiconductor chip floors, a structure according to FIGS. 3A-B may be applied to some semiconductor chip floors. That is, the semiconductor device may include a semiconductor chip floor where an area ratio of a connection structure is substantially similar. Alternatively, an area ratio of a connection structure may increase and then decrease, or decrease and then increase progressively closer to an upper or lower semiconductor chip floor.
  • FIG. 4 is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure.
  • Referring to FIG. 4, a semiconductor device 400 may include a plurality of stacked semiconductor chips and a connection structure disposed between the semiconductor chips. For example, the semiconductor device 400 may include stacked sequentially first to fourth semiconductor chips 410 a to 410 d, a first connection structure 440 a disposed between the first and second semiconductor chips 410 a and 410 b, a second connection structure 440 b disposed between the second and third semiconductor chips 410 b and 410 c, and a third connection structure 440 c disposed between the third and fourth semiconductor chips 410 c and 410 d.
  • The area ratio of the second connection structure 440 b may be less than that of the first or third connection structure 440 a or 440 c. For example, the number of second connection structures 440 b may be less than the number of first or third connection structures 440 a or 440 c. For example, the first connection structure 440 a may include a first connection element 441 a and a first auxiliary element 442 a, and the third connection structure 440 c may include a third connection element 441 c and a third auxiliary element 442 c. The first and third connection elements 441 a and 441 c may be electrically connected to a semiconductor chip, and each of the first and third auxiliary elements 442 a and 442 c may be dummy connection structures electrically insulated from the semiconductor chip. The second connection structure 440 b may not include a dummy connection structure. In this case, the number of second connection structures 440 b may be the same as the number of first or third connection elements 441 a or 441 c. Although not shown, the second connection structure 440 b may include a dummy connection structure. In this case, the number of dummy connection structures of the second connection structure 440 b may be less than the number of first or third auxiliary elements 442 a or 442 c.
  • FIG. 5A is a perspective view exemplarily illustrating one side surface of a semiconductor device according to an embodiment of the present disclosure. FIG. 5B is a sectional view of the semiconductor device shown along dot line I-I of FIG. 5A.
  • FIGS. 6A and 6B are plan views of the semiconductor device shown along dot line II-II′ of FIG. 5B. FIGS. 7A and 7B are plan views of the semiconductor device shown along dot line III-III′ of FIG. 5B.
  • A semiconductor device according to an exemplary embodiment includes a lower structure 510 d, first to third semiconductor chips 510 a to 510 c disposed on the lower structure 510 d, and first to third connection structures 540 a to 540 c disposed on the lower structure 510 d. The lower structure 510 d, the disposition of the first to third semiconductor chips 510 a to 510 c and the structures of the first to third connection structures 540 a to 540 c may be substantially similar to the lower structure 310 d, the disposition of the first to third semiconductor chips 310 a to 310 c and the structures of the first to third connection structures 340 a to 340 c in the semiconductor device described above with reference to FIG. 3B, respectively. Hereinafter, for conciseness, technical features that are not repetitive of FIG. 3B will be described.
  • Referring to FIGS. 5A to 7B, the first connection structure 540 a may include a first connection element 541 a and a first auxiliary element 542 a. The first connection element 541 a may be disposed at a center portion of the first semiconductor chip 510 a, and the first auxiliary element 542 a may be disposed at an edge portion of the first semiconductor chip 510 a. For example, the first semiconductor chip 510 a may be a Dynamic RAM (DRAM) having a center pad disposition, and the center pad may be disposed at the center portion of the first semiconductor chip 510 a.
  • As illustrated in FIG. 5B, the center pad may include a first chip pad 521 a electrically connected to a through via or an internal circuit of the first semiconductor chip 510 a. The second connection structure 540 b may include a second connection element 541 b and a second auxiliary element 542 b. The third connection structure 540 c may include a third connection element 541 c and a third auxiliary element 542 c. The second connection element 541 b may be disposed at the center portion of the second semiconductor chip 510 b, and the third connection element 541 c may be disposed at the center portion of the third semiconductor chip 510 c. The second auxiliary element 542 b may be disposed at an edge portion of the second semiconductor chip 510 b, and the third auxiliary element 542 c may be disposed at an edge portion of the third semiconductor chip 510 c. For example, the second or third connection element 541 b or 541 c may be disposed to be vertically aligned with the first connection element 541 a, and the number of second or third connection elements 541 b or 541 may be the same as the number of first connection elements 541 a. The numbers of second and third auxiliary elements 542 b and 542 c may be less than the number of first auxiliary elements 542 a. For example, the number of second auxiliary elements 542 b may be less than the number of first auxiliary elements 542 a, and the number of third auxiliary elements 542 c may be less than the number of second auxiliary elements 542 b. The second and third connection elements 541 b and 541 c may be electrically connected to the second and third semiconductor devices 510 b and 510 c, respectively. The second and third auxiliary elements 542 b and 542 c may be electrically insulated from the second and third semiconductor devices 510 b and 510 c, respectively.
  • The disposition of the first to third connection structures 540 a to 540 c may be variously modified in a range where a pre-formed connection structure is not modified by a bonding force given in a subsequent bonding operation of a connection structure.
  • For example, as illustrated in FIG. 6A, the first auxiliary element 542 a may be disposed having a similar arrangement as that of the first connection element 541 a, or as illustrated in FIG. 6B, the first auxiliary element 542 a may be disposed along an edge portion of the first semiconductor chip 510 a. Referring to FIGS. 7A and 7B, the second auxiliary element 542 b may be disposed to vertically overlap with at least one portion of a first connection element 541 a.
  • FIG. 8 is a sectional view illustrating a semiconductor device according to an exemplary embodiment of the present disclosure. FIGS. 9A and 9B are plan views exemplarily illustrating various structures of a connection structure shown along dot line IV-IV′ of FIG. 8. FIGS. 10 and 11 are plan views exemplarily illustrating the connection structure shown along dot lines V-V′ and V-V′ of FIG. 8, respectively.
  • A semiconductor device 600 of FIG. 8 may include a lower structure 610 d, first, second and third semiconductor chips 610 a, 610 b and 610 c, and first, second and third connection structures 640 a, 640 b and 640 c disposed on the lower structure 610 d. The lower structure 610 d, the disposition of the first to third semiconductor chips 610 a to 610 c and the structures of the first to third connection structures 640 a to 640 c may be substantially similar to the lower structure 310 d, the disposition of the first to third semiconductor chips 310 a to 310 c and the first to third connection structures 340 a to 340 c in the semiconductor device 300 of FIG. 3B, respectively. Hereinafter, for conciseness, technical features that are not repetitive of FIG. 3B will be described.
  • Referring to FIGS. 8 to 9B, the first connection structure 640 a may include a first connection element 641 a and a first auxiliary element 642 a. The first connection element 641 a may be disposed at a first edge portion of the first semiconductor chip 610 a, and the first auxiliary element 642 a may be disposed in a region other than the first edge portion of the first semiconductor chip 610 a. For example, the first semiconductor chip 610 a may be a flash memory chip having an edge pad disposition, and the first edge portion may be a region where the edge pad is disposed.
  • Referring to FIGS. 8 and 10, the second connection structure 640 b may include a second connection element 641 b and a second auxiliary element 642 b. The second connection element 641 b may be disposed at a first edge portion of the second semiconductor chip 610 b, and the second auxiliary element 642 b may be disposed in a region other than the first edge portion of the second semiconductor chip 610 b. The second auxiliary element 642 b may be vertically aligned with a portion of the first auxiliary element 642 a.
  • Referring to FIGS. 8 and 11, the third connection structure 640 c may include a third connection element 641 c and a third auxiliary element 642 c. The third connection element 641 c may be disposed at a first edge portion of the third semiconductor chip 610 c, and the third auxiliary element 642 c may be disposed in a region other than the first edge of the third semiconductor chip 610 c. The third auxiliary element 642 c may be vertically aligned with a portion of the first or second auxiliary element 642 a or 642 b.
  • The disposition of the first to third connection structures 640 a to 640 c is not limited to the above-described embodiments and may be variously modified.
  • FIGS. 12A to 12C are sectional views illustrating a method of fabricating a semiconductor device, according to an embodiment of the present disclosure. Hereinafter, for conciseness, an exemplary method of forming a semiconductor device will be described in terms of the semiconductor device 100 a of FIG. 2A.
  • A method of fabricating a semiconductor device according to an embodiment of the present disclosure may include providing the lower structure 110 c, bonding the first semiconductor chip 110 a to the lower structure 110 c by a first bonding force F1, and bonding the second semiconductor chip 110 b to the first semiconductor chip 110 a by a second bonding force F2. The second bonding force F2 may be less than the first bonding force F1. For example, when each bonding process is performed in thermo-compression, the first force F1 may be a first pressure, and the second force F2 may be a second pressure. Referring to FIG. 12A, the first semiconductor chip 110 a may be mounted on one surface of the lower structure 110 c. The lower structure 110 c may be another semiconductor substrate, a film, a substrate having a circuit pattern, etc. Hereinafter, however, a case where the lower structure 110 c is the substrate will be described as an example.
  • The lower structure 110 c and the first semiconductor chip 110 a may be connected by the first connection structure 140 a. The first connection structure 140 a may be disposed between the lower structure 110 c and the first semiconductor chip 110 a, and by applying the first bonding force F1, the lower structure 110 c and the first semiconductor chip 110 a may be connected. In FIG. 12A, it is illustrated that the first connection structure 140 a is attached to the first semiconductor chip 110 a for bonding to the lower structure 110 c; the present disclosure is not limited thereto. For example, the first connection structure 140 a may be attached to the lower structure 110 c and provided for bonding to the first semiconductor chip 110 a. Alternatively, the lower structure 110 c and the first semiconductor chip 110 a may be attached to the first conductive means 151 a and 151 b (see FIG. 2C), respectively, and the second conductive means 152 may be attached to at least one of the first conductive means 151 a and 151 b and provided for bonding to the remaining conductive means 151 a or 151 b.
  • As an area ratio occupied by the first connection structure 140 a increases, the first bonding force F1 may also increase. That is, when connection structures have an equal or similar size, as the number of first connection structures 140 a increases, the first bonding force F1 may be increased. For example, when a bonding process is performed at the same temperature, a pressure of nF may be applied for bonding an number of connection structures n on the assumption of that a threshold pressure needed for bonding one connection structure is F. As illustrated in FIG. 12A, when the number of first connection structures 140 a is thirteen, a force of 13F may be applied for bonding the first semiconductor chip 110 a to the lower structure 110 c with the first connection structure 140 a.
  • Referring to FIG. 12B, the second semiconductor chip 110 b may be stacked on the first semiconductor chip 110 a. The second connection structure 140 b may be disposed between the first and second semiconductor chips 110 a and 110 b, and by applying the second bonding force F2, the first and second semiconductor chips 110 a and 110 b may be connected. In FIG. 12B, it is illustrated that the second connection structure 140 b is attached to the second semiconductor chip 110 b and provided for bonding to the first semiconductor chip 110 a; the present disclosure is not limited thereto. The second connection structure 140 b may be provided in various types, as described with reference to the first connection structure 140 a.
  • The second bonding force F2 may be less than the first bonding force F1. For example, as illustrated in FIG. 12B, when the sizes of the first and second connection structures 140 a and 140 b are substantially similar, the number of second connection structures 140 b may be less than the number of first connection structures 140 a. When the number of second connection structures 140 b is seven, a force of 7F may be applied for connecting the first and second semiconductor chips 110 a and 110 b by the second connection structure 140 b. The force of 7F is less than 13F applied for bonding of the first connection structure 140 a, and is not sufficient to substantially modify the first connection structure 140 a. The first connection structure 140 a may not be modified in an operation of bonding the second connection structure 140 b. A difference between the first force F1 and the second force F2 is not limited to the above-described embodiment, and may be determined in a range where the first connection structure 140 a is not modified.
  • Referring to FIG. 12C, a molding part 170 covering at least one portion of the lower structure 110 c, first semiconductor chip 110 a or second semiconductor chip 110 b may be formed. The molding part 170 protects the first and second connection structures 140 a and 140 b against an external condition, thereby preventing the first and second connection structures 140 a and 140 b from being modified. For example, the molding part 170 may include an Epoxy Molding Compound (EMC).
  • FIGS. 13A and 13B are sectional views illustrating a method of fabricating a semiconductor device, according to an exemplary embodiment of the present disclosure. Hereinafter, for conciseness, an exemplary method of forming the semiconductor device will be described in terms of the semiconductor device 100 b of FIG. 2B, and technical features that are not repetitive of FIGS. 12A and 12B will be described.
  • Referring to FIGS. 13A and 13B, the first connection structure 140 a may be greater than the second connection structure 140 b in sectional area or volume. Herein, the sectional area may be the sectional area of the first or second connection structure 140 a or 140 b that intersects a flat plane parallel to the upper surface of the lower structure 110 c.
  • According to exemplary embodiments of the present disclosure, even when the number of first connection structures 140 a is the same as the number of second connection structures 140 b, each of the second connection structures 140 b may have an area ratio or sectional area less than each of the first connection structures 140 a. For example, when the first and second semiconductor chips 110 a and 110 b are of the same kind and the first connection structure 140 a has a sectional area greater by two times than the second connection structure 140 b, the area ratio of the second connection structure 140 b may be half of the area ratio of the first connection structure 140 a. A bonding process of the second connection structure 140 b may be performed by second bonding force F2 less than the first bonding force F1. As a result, the modification of the first connection structure 140 a can be substantially prevented.
  • FIGS. 14A to 14C are views illustrating a method of fabricating a semiconductor device, according to an exemplary embodiment of the present disclosure.
  • A method of fabricating a semiconductor device according to an exemplary embodiment of the present disclosure includes forming a chip stack including a plurality of semiconductor chips, forming a first molding part covering at least one portion of the chip stack, mounting the chip stack on a substrate, and forming a second molding part covering at least one portion of the chip stack and the substrate. Hereinafter, for convenience, a method of fabricating the semiconductor device of FIG. 5A will be described as an example.
  • Referring to FIG. 14A, a chip stack may be formed by stacking a plurality of semiconductor chips. The semiconductor chips may be connected to each other through a bonding process of a connection structure disposed therebetween. For example, when a lower structure 510 d is a fourth semiconductor chip 510 d, the chip stack may include first to fourth semiconductor chips 510 a to 510 d, a first connection structure 540 a disposed between the fourth semiconductor chip 510 d and the first semiconductor chip 510 a, a second connection structure 540 b disposed between the first semiconductor chip 510 a and the second semiconductor chip 510 b, and a third connection structure 540 c disposed between the second semiconductor chip 510 b and the third semiconductor chip 510 c. When the first to third semiconductor chips 510 a to 510 c are sequentially stacked on the fourth semiconductor chip 510 d, a bonding force applied to a connection structure for connecting a semiconductor chip may be reduced progressively over each subsequent process. That is, the second bonding force F2 for connecting the second semiconductor chip 510 b to the first semiconductor chip 510 a may be less than the first bonding force F1 for connecting the first semiconductor chip 510 a to the fourth semiconductor chip 51 d. Moreover, the third bonding force F3 for connecting the third semiconductor chip 510 c to the second semiconductor chip 510 b may be less than the second bonding force F2. Accordingly, due to a bonding force applied in a subsequent bonding process, the modification of a pre-formed connection structure can be decreased or prevented.
  • Referring to FIG. 14B, a molding part 570 a covering at least one portion of a chip stack may be formed, and the chip stack may be mounted on a substrate 580. The first molding part 570 a may be disposed between respective semiconductor chips to cover a connection structure, or cover a region other than a region of the substrate 580 for mounting. For example, the first molding part 570 a may include an underfill material or an EMC. When the first molding part 570 a is formed before being mounted on the substrate 580, heat or pressure applied in a substrate mounting operation is absorbed by the first molding part 570 a, and thus modification in the first to third connection structures 540 a to 540 c can be substantially prevented. To mount the chip stack on the substrate 580, a fourth bonding force F4 may be determined irrespective of the first to third bonding forces F1 to F3. For example, the fourth bonding force F4 may be equal to or greater than any one of the first to third bonding forces F1 to F3. That is, when respective connection structures have the same size, the number of fourth connection structures 540 d may be equal to or greater than that of any one of the first to third connection structures 540 a to 540 c. Even when the fourth bonding force F4 is greater than the first, second or third bonding force F1, F2 or F3, the first to third connection structures 540 a to 540 c are protected by the first molding part 570 a and thus may not be modified in an operation of mounting the chip stack on the substrate 580.
  • Referring to FIG. 14C, a second molding part 570 b covering at least one portion of the chip stack and the substrate 580 may be formed. The second molding part 570 b may be disposed between the chip stack and the substrate 580 and protect the fourth connection structure 540 d. Alternatively, as illustrated in FIG. 14C, the second molding part 570 b may be formed to cover the first molding part 570 a and the substrate 580.
  • FIG. 15 is a view illustrating a method of fabricating a semiconductor device according to an exemplary embodiment of the present disclosure. Here, first and second chip stacks including a plurality of chips may be formed, and thereafter, a semiconductor device may be formed by connecting the first and second chip stacks. A fabrication method may be implemented as described with reference to the exemplary method of fabricating the semiconductor device of FIG. 4.
  • Referring to FIG. 15, by connecting first and second semiconductor chips 410 a and 410 b with a first connection structure 440 a, a first chip stack may be formed, and, by connecting third and fourth semiconductor chips 410 c and 410 d with a third connection structure 440 c, a second chip stack may be formed. Subsequently, the first and second chip stacks may be connected with the second connection structure 440 b. In this case, a bonding force F1 for bonding of the second connection structure 440 b may be less than a bonding force applied in the bonding processes of the first or third connection structures 440 a and 440 c. The bonding force F1 applied in a bonding process of the second connection structure 440 b is not sufficient to substantially modify the first or third connection structure 440 a or 440 c.
  • FIGS. 16A to 16C are views exemplarily illustrating fabrication methods according to exemplary embodiments of the present disclosure forming a chip stack.
  • Referring to FIG. 16A, a chip stack may be formed by stacking semiconductor wafers having two or more layers. The number of stacked semiconductor wafers may be the same as the number of semiconductor chips included in one chip stack.
  • For example, first and second semiconductor wafers 700 a and 700 b may be provided where semiconductor chips including an integrated circuit and an internal wiring are formed. According to exemplary embodiments of the present disclosure, semiconductor chips formed in the first and second semiconductor wafers 700 a and 700 b may correspond to the first and second semiconductor chips 110 a and 110 b of FIG. 2A. The first and second semiconductor wafers 700 a and 700 b may be connected with a connection structure (not shown) disposed therebetween.
  • By cutting the first and second semiconductor wafers 700 a and 700 b that have been stacked, one chip stack may be completed. For example, the first or second chip stack of FIG. 15 may be prepared by the exemplary method of FIG. 16A. Cutting may be performed with a cutter 702 or a laser.
  • Referring to FIG. 16B, by sequentially stacking semiconductor chips 710 a to 710 c prepared from at least one other semiconductor wafer (not shown), a chip stack may be formed on the first semiconductor wafer 700 a. For example, such method may be used for implementing embodiments described herein with reference to FIGS. 14A and 14B.
  • Referring again to FIG. 14A, more specifically, the first semiconductor wafer 700 a may include a plurality of uncut fourth semiconductor chips 510 d. The first to third semiconductor chips 510 a to 510 c may be prepared by cutting another semiconductor wafer and sequentially stacking the first to third semiconductor chips 510 a to 510 c on the first semiconductor wafer 700 a. The first semiconductor wafer 700 a and the first semiconductor chip 510 a may be connected through the first connection structure 540 a disposed therebetween. The second and third semiconductor chips 510 b and 510 c may be sequentially stacked on the first semiconductor chip 510 a using the second and third connection structures 540 b and 540 c.
  • Alternatively, as described above with reference to FIG. 14A, a chip stack on which the first to third semiconductor chips 510 a to 510 c are stacked may be stacked on the first semiconductor wafer 700 a.
  • Referring to FIG. 16C, by sequentially stacking the semiconductor chips 710 a and 710 b prepared from at least one wafer, a chip stack may be formed. Referring to the first chip stack of FIG. 15 as an example, the first and second semiconductor chips 410 a and 410 b may be connected with the connection structure 440 a. As illustrated in FIG. 16C, the first and second semiconductor chips 710 a and 710 b may be attached to first and second support substrates 720 a and 720 b and conveyed, respectively. The first and second semiconductor chips 710 a and 710 b conveyed respectively by the first and second support substrates 720 a and 720 b may be connected by connection structures 740 a. Each of the first and second support substrates 720 a and 720 b may be a tape or a glass, and formed to convey a plurality of semiconductor chips.
  • FIG. 17 is a plan view exemplarily illustrating a package module according to exemplary embodiments of the present disclosure.
  • Referring to FIG. 17, a package module 1200 may include a module substrate 1204. The module substrate 120 may include an external connection terminal 1202, at least one semiconductor chip 1206 mounted on the module substrate 1204, and a Quad-Flat-Packaged (QFP) semiconductor package 1208. The semiconductor chip 1206 or the semiconductor package 1208 may include a semiconductor device according an exemplary embodiment of the present disclosure. For example, the semiconductor package 1208 may be a Multi-Chip Package (MCP) including the semiconductor device of FIG. 4. The package module 1200 may be connected to an external electronic device through the external connection terminal 1202.
  • FIG. 18 is an exemplary schematic view illustrating a memory card according to some embodiments of the present disclosure.
  • Referring to FIG. 18, a memory card 8000 may include a controller 8100 and a memory 8200. The controller 8100 and the memory 8200 may exchange an electric signal. For example, the memory 8200 and the controller 8100 may exchange data “Data” according to a command “Command” of the controller 8100. Furthermore, the memory card 8000 may store data in the memory 8200, or output data from the memory 8200 to the outside.
  • The controller 8100 and/or the memory 8200 may be included in a semiconductor device according an exemplary embodiment of the present disclosure. For example, the controller 8100 and the memory 8200 may be included in one package and provided as a System-in Package (SiP). More specifically, a logic chip including the controller 8100 and a memory chip including the memory 8200 may be implemented as an SiP, which may include the semiconductor device that has been described above with reference to FIG. 3A. In this case, the lower structure 210 c, first semiconductor chip 210 a and second semiconductor chip 210 b of FIG. 3A may be a package substrate, a logic chip and a memory chip, respectively. As another example, the memory card 8000 may be provided in an MCP type where a plurality of memory chips are stacked. In this case, the memory card 8000 may have an increased memory capacity. Such a multi-chip package may include the semiconductor device that has been exemplarily described with reference to FIG. 8.
  • The memory card 8000 according to an embodiment of the present disclosure may be used as a data storage medium in various portable devices. For example, the memory card 8000 according to an embodiment of the present disclosure may include a multimedia card (MMC) or a secure digital (SD) card.
  • FIG. 19 is a block diagram exemplarily illustrating an electronic system according to some embodiments of the present disclosure. The electronic system may include at least one semiconductor device according to exemplary embodiments of the present disclosure.
  • Referring to FIG. 19, an electronic system 1400 may include at least one of a memory system 1402, a processor 1404, a RAM 1406 and a user interface 1408, which may perform data communication through a bus 1410.
  • The processor 1404 may execute a program and control the electronic system 1400. The RAM 1406 may be used as a working memory of the processor 1404. The user interface 1408 may be used to input/output data to/from the electronic system 1400. The memory system 1402 may store computer readable instructions for operation of the processor 1404, data processed by the processor 1404, or data inputted from the outside. Furthermore, the memory system 1402 may separately include a controller and a memory. According to exemplary embodiments of the present disclosure, the memory system 1402 may be configured substantially identically or similarly to one of the memory cards 800 that have been described above with reference to FIG. 18.
  • According to exemplary embodiments of the present disclosure, the processor 1404 and the RAM 1406 may be provided in an SiP type device where a plurality of chips are included in one package. For example, the processor 1404 and the RAM 1406 may configure an SiP that includes a logic chip provided for the processor 1404 and a memory chip provided for the RAM 1406. The SiP may include the semiconductor device that has been described above with reference to FIG. 3A. In this case, the lower structure 210 c, first semiconductor chip and second semiconductor chip 210 a and 210 b of FIG. 3A may be a package substrate, logic chip and memory chip of the SiP, respectively.
  • The electronic system 1400 may be applied to various industrial products including electronic equipment. For example, the electronic system 1400 according to an embodiment of the present disclosure may be used as a portion of mobile phones, portable game machines, portable notebook computers, MP3 players, navigation, Solid State Disks (SSDs), vehicles or household appliances.
  • According to exemplary embodiments of the present disclosure, an area ratio of the connection structure connecting the semiconductor chips of the semiconductor device may vary for each layer. For example, the area ratio of the connection structure may be reduced in a subsequently stacked semiconductor chip as compared to a previously stacked semiconductor chip. In this case, since the subsequently stacked semiconductor chip is bonded by bonding force, the modification of a pre-formed connection structure and a contact error due to the modification can be suppressed or prevented. Accordingly, the plurality of semiconductor chips can be stably connected, and the operation reliability of the semiconductor device can be enhanced.
  • According to exemplary embodiments of the present disclosure, when the plurality of semiconductor chips are stacked, a bonding force is reduced in a subsequent bonding process as compared to a previous bonding process. In this case, a subsequent bonding force is determined in a range where a contact error does not occur due to the modification of a pre-formed connection structure, and thus the operation reliabilities of the stacked semiconductor chips can be improved.
  • The above-disclosed subject matter is to be considered illustrative and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims (16)

What is claimed is:
1. A semiconductor device comprising:
a substrate;
a first semiconductor chip disposed on the substrate having a first through via and a dummy through via; and
a second semiconductor chip disposed on the first semiconductor chip, wherein the second semiconductor chip comprises an internal circuit;
wherein the first through via is electrically connected to the internal circuit of the second semiconductor chip, wherein the dummy through via is electrically insulated from the internal circuit of second semiconductor chip.
2. The semiconductor package of claim 1, further comprising:
a first mold layer disposed on the first semiconductor chip covering the second semiconductor chip; and
a second mold layer on the substrate covering the first mold layer.
3. The semiconductor device of claim 2, wherein the first mold layer is further extended to fill gap region between the substrate and the first semiconductor chip.
4. The semiconductor package of claim 2, wherein the second mold layer is further provided to fill gap regions between the first and second semiconductor chips.
5. The semiconductor package of claim 1, further comprising a package substrate, wherein the substrate is mounted on the package substrate.
6. The semiconductor package of claim 1, further comprising a first connection element disposed between the substrate and the first semiconductor chip, wherein the first connection element is electrically connected to the first connection through via and electrically insulated from the dummy through via.
7. The semiconductor package of claim 6, further comprising a first auxiliary element disposed between the substrate and the first semiconductor chip, wherein the first auxiliary element electrically is electrically connected to the dummy through via and electrically insulated from the first connection through via.
8. The semiconductor package of claim 1, further comprising a second connection element disposed between the first and second semiconductor chips, wherein the second connection element electrically connects the first connection through via and the internal circuit of the second semiconductor chip, wherein the second connection element is electrically insulated from the dummy through via.
9. The semiconductor device of claim 1, wherein the second semiconductor chip has a second connection through via, wherein the second connection through via is electrically connected to the first connection through via and electrically insulated from the dummy through via.
10. A semiconductor device comprising:
a first semiconductor chip comprising an internal circuit, at least one connection element electrically connected to the internal circuit of the first semiconductor chip and at least one auxiliary element electrically insulated from the internal circuit of first semiconductor chip;
a plurality of first connection structures disposed on a first side of the first semiconductor chip;
a second semiconductor chip comprising an internal circuit and disposed on a second side of the first semiconductor chip; and
a plurality of second connection structures disposed between the first and second semiconductor chips and comprising at least one connection element electrically connected to the internal circuits of the first and second semiconductor chips,
wherein a number of the second connection structures is less than a number of the first connection structures,
wherein at least one of the first and second semiconductor chips is a Dynamic Random Access Memory (DRAM) chip, and the first connection element is disposed at a center portion thereof.
11. A semiconductor device comprising:
a first semiconductor chip comprising an internal circuit;
a plurality of first through vias disposed in the first semiconductor chip and electrically connected to the internal circuit of the first semiconductor chip;
a second semiconductor chip disposed on a second side of the first semiconductor chip; and
a plurality of second through vias disposed in the second semiconductor chip and electrically connected to the internal circuits of the first semiconductor chip and the second semiconductor chip,
wherein a number of the second through vias is different from a number of the first through vias.
12. The semiconductor device of claim 11, wherein the number of the second through via is less than the number of the first through via.
13. The semiconductor device of claim 11, further comprising a first dummy through via penenstrating the first semiconductor chip and electrically insulated from the first and second through vias.
14. The semiconductor package of claim 13, further comprising a plurality of connection elements disposed between the first and second semiconductor chips, wherein the connection elements are electrically connected to the first and second through vias and electrically insulated from the first dummy through via.
15. The semiconductor package of claim 11, further comprising:
a lower structure, wherein the first and second semiconductor chips are disposed on the lower structure;
a first mold layer disposed on the first semiconductor chip covering the second semiconductor chip; and
a second mold layer disposed on the lower structure covering the first mold layer.
16. The semiconductor package of claim 11, further comprising a package substrate, wherein the lower structure is mounted on the package substrate.
US14/319,688 2010-11-08 2014-06-30 Semiconductor devices and fabrication methods thereof Abandoned US20140312505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/319,688 US20140312505A1 (en) 2010-11-08 2014-06-30 Semiconductor devices and fabrication methods thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0110534 2010-11-08
KR1020100110534A KR101690487B1 (en) 2010-11-08 2010-11-08 Semiconductor device and fabrication method thereof
US13/239,885 US8766455B2 (en) 2010-11-08 2011-09-22 Stacked semiconductor devices and fabrication methods thereof
US14/319,688 US20140312505A1 (en) 2010-11-08 2014-06-30 Semiconductor devices and fabrication methods thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/239,885 Continuation US8766455B2 (en) 2010-11-08 2011-09-22 Stacked semiconductor devices and fabrication methods thereof

Publications (1)

Publication Number Publication Date
US20140312505A1 true US20140312505A1 (en) 2014-10-23

Family

ID=46018839

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/239,885 Active US8766455B2 (en) 2010-11-08 2011-09-22 Stacked semiconductor devices and fabrication methods thereof
US14/319,688 Abandoned US20140312505A1 (en) 2010-11-08 2014-06-30 Semiconductor devices and fabrication methods thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/239,885 Active US8766455B2 (en) 2010-11-08 2011-09-22 Stacked semiconductor devices and fabrication methods thereof

Country Status (6)

Country Link
US (2) US8766455B2 (en)
JP (1) JP6026734B2 (en)
KR (1) KR101690487B1 (en)
CN (1) CN102468281B (en)
DE (1) DE102011084602A1 (en)
TW (1) TWI566370B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690487B1 (en) * 2010-11-08 2016-12-28 삼성전자주식회사 Semiconductor device and fabrication method thereof
US9136213B2 (en) * 2012-08-02 2015-09-15 Infineon Technologies Ag Integrated system and method of making the integrated system
KR102032907B1 (en) * 2013-04-22 2019-10-16 삼성전자주식회사 Semiconductor device, semiconductor package and electronic system
US20150228635A1 (en) * 2014-02-10 2015-08-13 Globalfoundries Inc. Integrated circuit device having supports for use in a multi-dimensional die stack
KR102556327B1 (en) * 2016-04-20 2023-07-18 삼성전자주식회사 A Package module substrate and Semiconductor modules
JP6640780B2 (en) * 2017-03-22 2020-02-05 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor device
CN112164688B (en) * 2017-07-21 2023-06-13 联华电子股份有限公司 Chip stacking structure and manufacturing method of chip stacking structure
JP7353729B2 (en) 2018-02-09 2023-10-02 キヤノン株式会社 Semiconductor devices and semiconductor device manufacturing methods
EP3832709A4 (en) 2018-08-01 2021-08-11 Nissan Motor Co., Ltd. Semiconductor device, power module, and manufacturing method for semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012692A1 (en) * 2003-04-18 2005-01-20 Lg Electronics, Inc. Spacer discharging apparatus and method of field emission display
US20050023692A1 (en) * 2003-06-23 2005-02-03 Takashi Matsunaga Semiconductor apparatus including a radiator for diffusing the heat generated therein
US20080081457A1 (en) * 2006-09-29 2008-04-03 Megica Corporation Integrated circuit chips with fine-line metal and over-passivation metal
US20110026232A1 (en) * 2009-07-30 2011-02-03 Megica Corporation System-in packages
US20110084744A1 (en) * 2009-10-09 2011-04-14 Elpida Memory, Inc. Semiconductor device, adjustment method thereof and data processing system
US20120086125A1 (en) * 2010-10-06 2012-04-12 Kang Uk-Song Semiconductor Having Chip Stack, Semiconductor System, and Method of Fabricating the Semiconductor Apparatus
US20130127028A1 (en) * 2011-04-13 2013-05-23 Takashi Morimoto Three-dimensional integrated circuit having redundant relief structure for chip bonding section
US20130147038A1 (en) * 2011-12-07 2013-06-13 Elpida Memory, Inc. Semiconductor device including stacked semiconductor chips without occurring of crack
US20130228898A1 (en) * 2012-03-05 2013-09-05 Elpida Memory, Inc. Semiconductor device having penetrating electrodes each penetrating through substrate
US8766455B2 (en) * 2010-11-08 2014-07-01 Samsung Electronics Co., Ltd. Stacked semiconductor devices and fabrication methods thereof
US9252141B2 (en) * 2013-11-14 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor integrated circuit, method for fabricating the same, and semiconductor package

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600792B2 (en) * 2000-07-13 2010-12-15 エルピーダメモリ株式会社 Semiconductor device
US6804256B2 (en) * 2001-07-24 2004-10-12 Glory Telecommunications Co., Ltd. Automatic bandwidth adjustment in a passive optical network
JP4480417B2 (en) * 2004-02-24 2010-06-16 独立行政法人科学技術振興機構 Electrode bump, its manufacture, and its connection method
JP2004260206A (en) * 2004-04-28 2004-09-16 Toshiba Corp Multi-chip semiconductor device and memory card
JP2006286141A (en) * 2005-04-04 2006-10-19 Toshiba Corp Semiconductor storage device
JP4817701B2 (en) * 2005-04-06 2011-11-16 株式会社東芝 Semiconductor device
JP4507101B2 (en) * 2005-06-30 2010-07-21 エルピーダメモリ株式会社 Semiconductor memory device and manufacturing method thereof
JP2007036104A (en) * 2005-07-29 2007-02-08 Nec Electronics Corp Semiconductor device and its manufacturing method
US7786572B2 (en) 2005-09-13 2010-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. System in package (SIP) structure
KR20070040869A (en) 2005-10-13 2007-04-18 삼성전자주식회사 Stack package using metal tools with projection and groove
JP4753725B2 (en) * 2006-01-20 2011-08-24 エルピーダメモリ株式会社 Multilayer semiconductor device
US7863727B2 (en) * 2006-02-06 2011-01-04 Micron Technology, Inc. Microelectronic devices and methods for manufacturing microelectronic devices
JP4828251B2 (en) * 2006-02-22 2011-11-30 エルピーダメモリ株式会社 Stacked semiconductor memory device and control method thereof
JP2009239256A (en) 2008-03-03 2009-10-15 Panasonic Corp Semiconductor device and method of fabricating same
US8253230B2 (en) * 2008-05-15 2012-08-28 Micron Technology, Inc. Disabling electrical connections using pass-through 3D interconnects and associated systems and methods
JP2010021306A (en) * 2008-07-10 2010-01-28 Hitachi Ltd Semiconductor device
CN101626015B (en) * 2008-07-11 2011-11-30 南茂科技股份有限公司 Package structure and method for forming and manufacturing thereof, chip piling structure
US8384417B2 (en) 2008-09-10 2013-02-26 Qualcomm Incorporated Systems and methods utilizing redundancy in semiconductor chip interconnects
US8525294B2 (en) * 2008-09-18 2013-09-03 Renesas Electronics Corporation Semiconductor device
JP5298762B2 (en) * 2008-10-21 2013-09-25 株式会社ニコン Stacked semiconductor device, manufacturing method of stacked semiconductor device, and semiconductor substrate
JP5212118B2 (en) * 2009-01-05 2013-06-19 日立金属株式会社 Semiconductor device and manufacturing method thereof
US8487444B2 (en) * 2009-03-06 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional system-in-package architecture
US9171824B2 (en) * 2009-05-26 2015-10-27 Rambus Inc. Stacked semiconductor device assembly
JP2011082449A (en) * 2009-10-09 2011-04-21 Elpida Memory Inc Semiconductor device
JP2011082450A (en) * 2009-10-09 2011-04-21 Elpida Memory Inc Semiconductor device, and information processing system with the same
KR20110061404A (en) * 2009-12-01 2011-06-09 삼성전자주식회사 Semiconductor package stacked structures, a modules and an electronic systems including through-silicon vias and inter-package connectors and method of fabricating the same
JP2012064891A (en) * 2010-09-17 2012-03-29 Toshiba Corp Semiconductor device and method of manufacturing the same
KR101711048B1 (en) * 2010-10-07 2017-03-02 삼성전자 주식회사 Semiconductor device comprising a shielding layer and fabrication method thereof
KR101817156B1 (en) * 2010-12-28 2018-01-10 삼성전자 주식회사 Semiconductor device of stacked structure having through electrode, semiconductor memory device, semiconductor memory system and operating method thereof
US8709945B2 (en) * 2011-01-26 2014-04-29 Jeng-Jye Shau Area efficient through-hole connections
KR101817159B1 (en) * 2011-02-17 2018-02-22 삼성전자 주식회사 Semiconductor package having TSV interposer and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012692A1 (en) * 2003-04-18 2005-01-20 Lg Electronics, Inc. Spacer discharging apparatus and method of field emission display
US20050023692A1 (en) * 2003-06-23 2005-02-03 Takashi Matsunaga Semiconductor apparatus including a radiator for diffusing the heat generated therein
US20080081457A1 (en) * 2006-09-29 2008-04-03 Megica Corporation Integrated circuit chips with fine-line metal and over-passivation metal
US20110026232A1 (en) * 2009-07-30 2011-02-03 Megica Corporation System-in packages
US20110084744A1 (en) * 2009-10-09 2011-04-14 Elpida Memory, Inc. Semiconductor device, adjustment method thereof and data processing system
US20120086125A1 (en) * 2010-10-06 2012-04-12 Kang Uk-Song Semiconductor Having Chip Stack, Semiconductor System, and Method of Fabricating the Semiconductor Apparatus
US8766455B2 (en) * 2010-11-08 2014-07-01 Samsung Electronics Co., Ltd. Stacked semiconductor devices and fabrication methods thereof
US20130127028A1 (en) * 2011-04-13 2013-05-23 Takashi Morimoto Three-dimensional integrated circuit having redundant relief structure for chip bonding section
US20130147038A1 (en) * 2011-12-07 2013-06-13 Elpida Memory, Inc. Semiconductor device including stacked semiconductor chips without occurring of crack
US20130228898A1 (en) * 2012-03-05 2013-09-05 Elpida Memory, Inc. Semiconductor device having penetrating electrodes each penetrating through substrate
US9252141B2 (en) * 2013-11-14 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor integrated circuit, method for fabricating the same, and semiconductor package

Also Published As

Publication number Publication date
US20120112359A1 (en) 2012-05-10
JP2012104829A (en) 2012-05-31
JP6026734B2 (en) 2016-11-16
US8766455B2 (en) 2014-07-01
KR20120048998A (en) 2012-05-16
TW201227914A (en) 2012-07-01
TWI566370B (en) 2017-01-11
CN102468281A (en) 2012-05-23
DE102011084602A1 (en) 2012-06-28
CN102468281B (en) 2016-09-07
KR101690487B1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US8766455B2 (en) Stacked semiconductor devices and fabrication methods thereof
US8901727B2 (en) Semiconductor packages, methods of manufacturing semiconductor packages, and systems including semiconductor packages
KR101413220B1 (en) Semiconductor package having interposer and method for manufacturing semiconductor package
US8873245B2 (en) Embedded chip-on-chip package and package-on-package comprising same
US20100052111A1 (en) Stacked-chip device
US8198719B2 (en) Semiconductor chip and semiconductor package including the same
US20120199981A1 (en) Semiconductor device and method of fabricating the semiconductor device
CN107424975B (en) Module substrate and semiconductor module
US20130175681A1 (en) Chip package structure
EP2904639A1 (en) Stacked multi-chip integrated circuit package
CN110120388B (en) Semiconductor package
US8399994B2 (en) Semiconductor chip and semiconductor package having the same
US10141255B2 (en) Circuit boards and semiconductor packages including the same
US20100155919A1 (en) High-density multifunctional PoP-type multi-chip package structure
US20230099787A1 (en) Semiconductor package and method of fabricating the same
US20130292818A1 (en) Semiconductor chip, semiconductor package having the same, and stacked semiconductor package using the semiconductor package
US8736075B2 (en) Semiconductor chip module, semiconductor package having the same and package module
US9209161B2 (en) Stacked package and method for manufacturing the same
KR20160047841A (en) Semiconductor package
US11756935B2 (en) Chip-stacked semiconductor package with increased package reliability
TWI753898B (en) Semiconductor module and method of manufacturing the same
US20130249108A1 (en) Semiconductor packages, electronic systems employing the same and methods of manufacturing the same
US9318470B2 (en) Semiconductor device
US11348893B2 (en) Semiconductor package
US20230057342A1 (en) Semiconductor package and method of manufacturing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION