US20140312265A1 - Titanium-Nitride Removal - Google Patents
Titanium-Nitride Removal Download PDFInfo
- Publication number
- US20140312265A1 US20140312265A1 US14/323,023 US201414323023A US2014312265A1 US 20140312265 A1 US20140312265 A1 US 20140312265A1 US 201414323023 A US201414323023 A US 201414323023A US 2014312265 A1 US2014312265 A1 US 2014312265A1
- Authority
- US
- United States
- Prior art keywords
- chemical composition
- present
- amount
- hard mask
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 title description 11
- 239000000126 substance Substances 0.000 claims abstract description 82
- 229910052751 metal Inorganic materials 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 58
- 230000002411 adverse Effects 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 86
- 239000010949 copper Substances 0.000 claims description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 44
- 229910052802 copper Inorganic materials 0.000 claims description 44
- 238000004377 microelectronic Methods 0.000 claims description 41
- 239000007800 oxidant agent Substances 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 20
- 239000003352 sequestering agent Substances 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 10
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 10
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 9
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical group [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 6
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 150000002978 peroxides Chemical class 0.000 claims description 5
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 4
- 239000003112 inhibitor Substances 0.000 claims description 3
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 2
- 239000012964 benzotriazole Substances 0.000 claims description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 abstract description 14
- 238000001465 metallisation Methods 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 238000005272 metallurgy Methods 0.000 abstract description 4
- 238000009867 copper metallurgy Methods 0.000 abstract description 3
- 239000007769 metal material Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 48
- 238000000034 method Methods 0.000 description 43
- 230000008569 process Effects 0.000 description 33
- 230000036961 partial effect Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 10
- 238000001020 plasma etching Methods 0.000 description 10
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- -1 hybrid organic Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000003851 azoles Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 231100000569 acute exposure Toxicity 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K13/00—Etching, surface-brightening or pickling compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
- H01L21/02063—Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76804—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
Definitions
- the present invention relates to removal of metal hard mask materials for microelectronic devices. More particularly, the present invention relates to a chemical solution for removing metal hard mask selective to device wiring and dielectric materials.
- Interconnect circuitry in semiconductor circuits consists of conductive metallic circuitry surrounded by insulating dielectric material.
- Silicate glass vapor deposited from tetraethylorthosilicate (TEOS) was widely used as the dielectric material, while alloys of aluminum were used for metallic interconnects.
- TEOS and fluorinated silicate glass have been replaced by the so called low-k dielectrics, including low-polarity materials such as organic polymers, hybrid organic, inorganic materials, organosilicate glass (OSG), and carbon-doped oxide (CDO) glass.
- low-polarity materials such as organic polymers, hybrid organic, inorganic materials, organosilicate glass (OSG), and carbon-doped oxide (CDO) glass.
- Photolithography is used to image a pattern on a device wafer.
- Photolithography techniques comprise the steps of coating, exposure and development.
- a wafer is coated with a positive or negative photoresist substance and subsequently covered with a mask that defines patterns to be retained or removed in subsequent processes.
- the mask has directed there through a beam of monochromatic radiation, such as ultraviolet (UV) light or deep UV (DUV) light ( ⁇ 250 nm or 193 nm), to make the exposed photoresist material more or less soluble in a selected rinsing solution.
- UV ultraviolet
- DUV deep UV
- the soluble photoresist material is then removed, or “developed,” thereby leaving behind a pattern identical to the mask.
- gas-phase plasma etching is used to transfer the patterns of the developed photoresist coating to the underlying layers, which may include hard mask, inter-level dielectric (ILD), and/or etch stop layers.
- Post-plasma etch residues are typically deposited on back-end-of-the-line (BEOL) structures and if not removed, may interfere with subsequent silicidation, proper metallization or contact formation.
- Post-plasma etch residues typically include chemical elements present on the substrate and in the plasma gases. For example, if a TiN hard mask is employed, e.g. as a metal hard mask over a dielectric hard mask or as a layer over ILD, the post-plasma etch residues include titanium-containing species, which are difficult to remove using conventional wet cleaning chemistries.
- Typical trench first metal hard mask integration removes the metal hard mask during the chemical mechanical polish process that removes excess device metallurgy. As integration tolerances tighten, the limited ability to correctly fill the defined metal receiving structures has been clearly demonstrated.
- a metal hard mask can be designed such that the lithographic transfer into the metal hard mask will define the desired future trench structure and yet be resistant to undesired damage during reactive ion etch transfer operations into the ILD structures such that a metal fill definition structure may be constructed without significant trapezoidal character.
- An unfortunate byproduct of this aforementioned process is an increase in aspect ratio, which may further impede proper metallization.
- the present invention is a chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials.
- the present invention decreases aspect ratio by removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric.
- a chemical composition for removing a metal hard mask and etching residues from a microelectronic device includes: an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or adversely attack copper; a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali; and an aqueous solution.
- a method of removing a metal hard mask and etching residues from a microelectronic device includes steps of: etching a trench in an interconnect structure selective to a dielectric capping layer by a reactive ion etching process (RIE); applying a wet chemical composition for removing at least a portion of layers on the interconnect structure selective to the dielectric capping layer, said chemical composition comprising an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or adversely attack copper, a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali and an aqueous solution, wherein the composition has a pH in the range of about 7 to about 14; and etching the interconnect structure to open the dielectric capping layer above a copper device layer for filling the trench.
- RIE reactive ion etching process
- a method of removing a metal hard mask and etching residues from a microelectronic device includes steps of: etching a trench in an interconnect structure selective to a copper device layer by a reactive ion etching process (RIE); and applying a wet chemical composition for removing at least a portion of layers on the interconnect structure selective to the copper device layer, said chemical composition comprising an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or attack copper, a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali and an aqueous solution, wherein the composition has a pH in the range of about 7 to about 14.
- RIE reactive ion etching process
- FIG. 1 illustrates a microelectronic device prior to imaging and etching.
- FIG. 2 illustrates the microelectronic device with an imaged lithographic stack.
- FIG. 3 illustrates the microelectronic device after removal of the lithographic stack and etched metal hard mask.
- FIG. 4A illustrates the microelectronic device post reactive ion etch selective to the dielectric cap (partial RIE) with etch residue according to the present invention.
- FIG. 4B illustrates the microelectronic device post reactive ion etch selective to the dielectric cap (partial RIE) without etch residue according to the present invention.
- FIG. 4C illustrates the partially etched microelectronic device after a full wet strip of the metal hard mask and etch residue according to the present invention.
- FIG. 4D illustrates the partially etched microelectronic device after a partial wet strip of the metal hard mask and etch residue according to the present invention.
- FIG. 4E illustrates the partially etched microelectronic device post final reactive ion etch chamfer and clean according to the present invention.
- FIG. 5A illustrates the microelectronic device post reactive ion etch selective to the copper line (full RIE) with etch residue.
- FIG. 5B illustrates the microelectronic device post reactive ion etch selective to the copper line (full RIE) without etch residue.
- FIG. 5C illustrates the fully etched microelectronic device after a full wet strip of the metal hard mask and etch residue according to the present invention.
- FIG. 5D illustrates the fully etched microelectronic device after a partial wet strip of the metal hard mask and etch residue according to the present invention.
- FIG. 5E illustrates the fully etched microelectronic device post final reactive ion etch chamfer and clean according to the present invention.
- the present invention is a chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials.
- the present invention decreases aspect ratio by selective removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric.
- an improved aspect ratio for metal fill without introducing any excessive trapezoidal cross-sectional character to the defined metal receiving structures of the device will result.
- compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described.
- specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.0001 weight percent, based on the total weight of the composition in which such components are employed.
- compositions of the invention may be formulated to substantially remove the titanium-containing residue, the polymeric sidewall reside and/or the copper-containing residue from the surface of the microelectronic device without substantially damaging the underlying inter level dielectric, metal interconnect materials and any dielectric hard mask, if present.
- the composition may be formulated to remove the metal hard mask layer from the surface of the microelectronic device without substantially damaging the underlying low-k dielectric and metal interconnect materials.
- the chemical composition of the present invention includes an oxidizing agent and a pH controlling agent in an aqueous solution.
- De-ionized water is the principle solvent in the aqueous solution. The solvent must be at least free of any detrimental ions or other materials that could interfere with the cleaning action of the chemical composition or degrade the cleanliness or future performance of the semiconductor circuit. While de-ionized water is the most preferred solvent for the chemical composition, it is understood that other solvent systems with similar salvation properties to de-ionized water may also act as a possible solvent for the present invention. Thus, an aqueous solution is most preferred. However, it is understood that other solvent systems similar to water may also act suitably for the present invention. For example, a 25% isopropanol, 75% de-ionized water solvent system may also produce satisfactory results.
- the oxidizing agent is preferably a peroxide, for example hydrogen peroxide and organic peroxides such as benzoyl peroxide.
- oxidizing agents may also include a non-metal with the ability to oxidize titanium nitride (TiN) to a soluble compound without leaving a metallic residue and oxidants that do not leave a residue or adversely attack copper (Cu). It is very important that the oxidant/oxidizing agent, when dissolved in the chemical process, does not attack copper (Cu).
- an oxidant may have an activity against copper when used without the modifying agents in the present chemical composition. However, when so mixed with the other agents of the present chemical composition, the activity of the oxidant is modified such that copper is not detrimentally attacked.
- the pH may be adjusted such that copper oxidation is minimized, and/or a surface adsorption action may occur due to agents in the present invention such that the copper is protected from oxidation.
- the tetraethylammonium (TEA) ion may act as a passavating adsorbent on a copper surface at the pH value of the present chemical composition as it is so designed.
- the pH stabilizer adjusts the pH level in the chemical composition to a range of about 7 to about 14. Preferably, the pH stabilizer adjusts the pH level to a range of about 9 to about 10. Quaternary ammonium salts and quaternary ammonium alkalis are preferred for use as a pH stabilizer in the present invention.
- Tetramethylammonium hydroxide (TMAH) is the quaternary ammonium that is primarily used in the industry. However, TMAH is toxic; it causes severe and typically unexpected health problems from exposure. Unlike typical strong bases where an unprotected acute exposure generally results in a caustic burn, TMAH may also introduce a complication of decreased respiratory function.
- Tetraethylammonium hydroxide is the most preferred pH stabilizer in the present invention.
- the TEA ion may also act as a passavating adsorbent on a copper surface at the pH value of the present chemical composition as it is also designed.
- TEAH the most preferred pH stabilizer for the present invention. It is understood that other quaternary ammonium salts may also act as pH stabilizing agents without the additional passavation action towards a copper surface as long as the resultant solution does not have detrimental activity towards a copper surface; such a resultant solution is within the purview of the present invention.
- the approximate bath life of the chemical composition is in the range of about 18 hrs to about 22 hrs. When the chemical bath drops below 10-15% fresh bath, the bath is no longer useful. It is understood that typical methods used to extend solution bath life such as replenishment of the consumed oxidizer in a recirculated solution may be used to extend usable bath life. Additionally, it is known that trace contamination such as minute amounts of some metal ions may also dramatically decrease bath life. As such, the chemical composition of the present invention may be of single use (i.e., dispensed on the wafer for cleaning and sent to drain) or multiple use (i.e., reclaimed after initial processing use and stored for additional use). It is recognized that reclamation may decrease the usable life of a reclaimed chemical bath.
- a sequestering agent oxidant stabilizer
- a sequestering agent may be added to an un-reclaimed chemical composition; this sequestering agent may extend the usable bath life of such a composition beyond that of a solution without the sequestering agent.
- the oxidizer concentration may be controlled such that excessive oxidant concentration addition to the chemical composition of the present invention is not necessary to compensate for oxidant consumption by undesired decomposition due to contamination, rather than by the normal consumption that occurs during the desired cleaning action of the present chemical composition.
- the sequestering agent optimizes the concentration to further minimize the chemical composition's attack on the copper device layer by enabling a minimization of required oxidizer concentration in the present chemical composition.
- Sequestering agents that can be used in the present invention are amines and amino acids.
- the preferred sequestering agents are 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CDTA), ethyenediaminetetraacetic acid (EDTA) and diethylenetriaaminopentaacetic acid (DTPA).
- CDTA 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid
- EDTA ethyenediaminetetraacetic acid
- DTPA diethylenetriaaminopentaacetic acid
- the preferential use of complex sequestering agents, such as CDTA, versus a simple sequestering agent, such as EDTA is based on the possibility of degradation of a simple sequestering agent over time and at extended exposure to certain temperatures. However, it is understood that for some methods of application a simple sequestering agent such as EDTA may be suitable. For example, a
- a copper protectant can be added to the chemical composition.
- the preferred copper protectants for the present invention are hetero-organic inhibitors such as azoles.
- at least one of benzotriazole, 1,2,3 triazole, 1,3,4 triazole, 1,2,4 triazole and imidazole are used in the chemical composition.
- hetero-organic inhibitors as opposed to simple organic compounds is based on the possibility of degradation of organic compounds over time and at extended exposure to certain temperatures.
- Azoles are organic compounds containing nitrogen atoms with free electron pairs that are potential sites for bonding with copper and that enable inhibiting action. Also, there is a possibility of introduction of other heteroatoms and groups in molecules of these compounds so there is a wide range of derivatives that exhibit good inhibition characteristics. For example, it is understood that thiols produce active protection on copper surfaces.
- Preferred formulations for the chemical composition are:
- the preferred formulation of the chemical composition is hydrogen peroxide and TEAH in an aqueous solution, wherein the composition has a pH in the range of about 9 to about 10.
- the chemical composition is designed to remove at least some titanium nitride (TiN).
- TiN titanium nitride
- the chemical composition is also intended to remove at least some etching residues.
- a full clean by a single solution may be too aggressive and a sequential clean using multiple chemical systems may be less aggressive with respect to copper or sensitive ILD structures. Performing a full clean with a single solution is not to be done at the expense of the copper device layer or sensitive ILD structures.
- the microelectronic device may include protective layers including a lithographic stack layer 160 , a metal hard mask layer 150 , such as titanium nitride, a dielectric hard mask layer 140 , such as tetraethyl orthosilicate (TEOS), an inter-level dielectric 130 , and a dielectric capping layer 120 , such as NBlock, above a copper device layer (copper line) 110 and another inter-level dielectric 115 .
- a metal hard mask layer 150 such as titanium nitride
- a dielectric hard mask layer 140 such as tetraethyl orthosilicate (TEOS)
- TEOS tetraethyl orthosilicate
- inter-level dielectric 130 such as tetraethyl orthosilicate
- a dielectric capping layer 120 such as NBlock
- the lithographic stack layer 160 is removed during etch of metal hard mask layer 150 .
- the metal hard mask layer 150 is etched in such a way as to create an opening thus exposing a portion of the dielectric hard mask layer 140 .
- Another etch is performed for forming a trench in the microelectronic device.
- the etching processes are most likely a reactive ion etching. The etching process often leaves a residue on the microelectronic device and the protective layers, as well as leaving a portion of the protection layers intact.
- the etching process forms the trench down to the dielectric capping layer 120 , as shown in FIGS. 4A-4D .
- This is called a partial etch.
- the dielectric capping layer 120 is left in this embodiment of the present invention as a barrier for the copper device layer to protect against the wet etching process, that is, application of the chemical composition of the present invention.
- FIG. 4A shows the microelectronic device after a partial etch with residual etch residue 170 .
- FIG. 4B shows the microelectronic device after a partial etch without the residual etch residue for clarity. Likewise, the residue is removed from FIGS. 4C-4E for clarity.
- FIG. 4C shows the microelectronic device after a full wet etch process, that is, after application of the chemical composition of the present invention removing the entire metal hard mask layer 150 .
- the chemical composition is applied to the microelectronic device at a temperature in the range of about 25° C. to about 80° C. Preferably, the chemical composition is applied at about 60° C. For total removal, the chemical composition is applied to the microelectronic device for about 1 minute to about 5 minutes.
- a partial wet etch process can be performed as opposed to a total wet etch process as shown in FIG. 4D .
- a partial wet etch would clean and taper at least a part of the microelectronic device for future metallization of the device, which would help the aspect ratio of the device and as such improve metallization.
- a portion of the metal hard mask layer 150 is removed after the partial wet etch process exposing a portion of dielectric hard mask 140 . This helps to mitigate any potential damage to the copper device layer 110 .
- the chemical composition is applied for about 1 minute to about 2 minutes at about 60° C.
- the wet etch is followed by an etching process to open the dielectric capping layer 120 and perform any additional tapering/hard mask chamfering necessary as shown in FIG. 4E .
- a cleaning process may also be performed after the etching process to remove any additional residues from the etching process.
- FIGS. 5A-5E show another embodiment of the present invention where the trench etching process forms the trench down to the copper device layer 110 .
- FIG. 5A shows the microelectronic device after a full etch with residual etch residue 170 .
- FIG. 5B shows the microelectronic device after a full etch without the residual etch residue for clarity. Likewise, the residue is removed from FIGS. 5C-5E for clarity.
- FIG. 5C shows the microelectronic device after a full wet etch process, that is, after application of the chemical composition of the present invention removing the entire metal hard mask 150 .
- the chemical composition is applied to the microelectronic device at a temperature in the range of about 25° C. to about 80° C. Preferably, the chemical composition is applied at about 60° C.
- the chemical composition is applied to the microelectronic device for about 1 minute to about 5 minutes. Total removal would remove the entire metal hard mask layer above the dielectric hard mask or inter-level dielectric layer if no dielectric hard mask layer is present.
- Total removal would remove all layers above the dielectric hard mask or inter-level dielectric layer if no dielectric hard mask layer is present. Partial removal would leave some metal hard mask structures, but modify the structures by a partial removal of the structures while preserving all layers below the dielectric hard mask such as the dielectric hard mask or inter-level dielectric layers if no dielectric hard mask layer is present.
- a partial wet etch process can be performed as opposed to a total wet etch process as shown in FIG. 5D .
- a partial wet etch would clean and taper the microelectronic device, which would help the aspect ratio of the device.
- a portion of the metal hard mask layer 150 is removed after the partial wet etch process exposing a portion of dielectric hard mask 140 . This helps to mitigate any potential damage to the copper device layer 110 .
- the chemical composition is applied for about 1 minute to about 2 minutes at about 60° C.
- the partial wet etch may be followed by an etching process to perform any additional tapering/hard mask chamfering necessary as shown in FIG. 5E .
- a cleaning process may also be performed after the etching process to remove any additional residues from the etching process.
- the chemical composition and its accompanying methods can be used for 64 nm pitch copper single and dual damascene interconnects using pitch split double patterning scheme to enable sub 80 nm pitch patterning, for example.
- the trenches are to be filled with metal.
- the metallization process has become a challenge for recent technology generations with narrow width trenches patterned in low-k dielectric material with hard masks on top of the dielectric film.
- the trenches often have a high aspect ratio with undercut under the hard mask.
- the metal hard mask can be removed using the chemical composition of the present invention using one of the methods described herein. This will significantly improve the metal fill process.
- Trapezoidal structures in FIGS. 4E and 5E are exaggerated to illustrate possible chamfering of a structure by selective design, not by the lack of degrees of freedom to time a desired sidewall angle.
- a sidewall angle approximating 90 degrees to the copper plane may be constructed using the present invention.
- the present invention enables the construction of a trapezoidal cross-section, if such a structure is desired.
- a main difference is that this construction of a trapezoidal cross-section is by conscious design, rather than by an uncontrolled process side effect.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 13/343,190, filed Jan. 4, 2012, the entire content and disclosure of which is incorporated herein by reference.
- The present invention relates to removal of metal hard mask materials for microelectronic devices. More particularly, the present invention relates to a chemical solution for removing metal hard mask selective to device wiring and dielectric materials.
- Interconnect circuitry in semiconductor circuits consists of conductive metallic circuitry surrounded by insulating dielectric material. Silicate glass vapor deposited from tetraethylorthosilicate (TEOS) was widely used as the dielectric material, while alloys of aluminum were used for metallic interconnects.
- Demand for higher processing speeds has led to smaller sizing of circuit elements, along with the replacement of TEOS and aluminum alloys by higher performance materials. Aluminum alloys have been replaced by copper or copper alloys due to the higher conductivity of copper. TEOS and fluorinated silicate glass (FSG) have been replaced by the so called low-k dielectrics, including low-polarity materials such as organic polymers, hybrid organic, inorganic materials, organosilicate glass (OSG), and carbon-doped oxide (CDO) glass. The incorporation of porosity, i.e. air-filled pores, in these materials further lowers the dielectric constant of the material.
- During dual-damascene processing of integrated circuits, photolithography is used to image a pattern on a device wafer. Photolithography techniques comprise the steps of coating, exposure and development. A wafer is coated with a positive or negative photoresist substance and subsequently covered with a mask that defines patterns to be retained or removed in subsequent processes. Following the proper positioning of the mask, the mask has directed there through a beam of monochromatic radiation, such as ultraviolet (UV) light or deep UV (DUV) light (˜250 nm or 193 nm), to make the exposed photoresist material more or less soluble in a selected rinsing solution. The soluble photoresist material is then removed, or “developed,” thereby leaving behind a pattern identical to the mask.
- Thereafter, gas-phase plasma etching is used to transfer the patterns of the developed photoresist coating to the underlying layers, which may include hard mask, inter-level dielectric (ILD), and/or etch stop layers. Post-plasma etch residues are typically deposited on back-end-of-the-line (BEOL) structures and if not removed, may interfere with subsequent silicidation, proper metallization or contact formation. Post-plasma etch residues typically include chemical elements present on the substrate and in the plasma gases. For example, if a TiN hard mask is employed, e.g. as a metal hard mask over a dielectric hard mask or as a layer over ILD, the post-plasma etch residues include titanium-containing species, which are difficult to remove using conventional wet cleaning chemistries.
- In addition to the need to remove post-plasma residues, it is often desirable to remove or partially etch back the metal hard mask such as a titanium-containing hard mask and/or titanium-containing post plasma etch residue, additional materials that are deposited during the post-plasma etch process such as polymeric residues on the sidewalls of the patterned device and copper-containing residues in the open via structures of the device are also preferably removed. No single wet cleaning composition has successfully removed all of residue and/or hard mask material while simultaneously being compatible with the ILD, other low-k dielectric materials, and metal interconnect materials. Compositions in the art claim to act in such a manner but are extremely less effective than the claims indicate.
- The integration of new materials, such as low-k dielectrics, into microelectronic devices places new demands on cleaning performance. At the same time, shrinking device dimensions reduces the tolerance for changes in critical dimensions and damage to device elements. Etching conditions can be modified in order to meet the demands of the new materials Likewise, post-plasma etch cleaning compositions must be modified. Importantly, the cleaner should not damage the underlying dielectric material or corrode metallic interconnect materials, e.g. sensitive ILD materials such as carbon-doped oxides and metal structures such as copper, tungsten, cobalt, aluminum, ruthenium and silicides thereof, on the device.
- Typical trench first metal hard mask integration removes the metal hard mask during the chemical mechanical polish process that removes excess device metallurgy. As integration tolerances tighten, the limited ability to correctly fill the defined metal receiving structures has been clearly demonstrated.
- Additional complications arise when a self-aligned via (SAV) process that requires enhanced metal hard mask stability is used to provide additional lithographic process window. While it may be beneficial for metal fill to add trapezoidal cross-sectional character to an integration structure, line to line integration space can suffer if an excessive trapezoidal cross-sectional design is used to enhance metal fill of very high aspect structures. A metal hard mask can be designed such that the lithographic transfer into the metal hard mask will define the desired future trench structure and yet be resistant to undesired damage during reactive ion etch transfer operations into the ILD structures such that a metal fill definition structure may be constructed without significant trapezoidal character. An unfortunate byproduct of this aforementioned process is an increase in aspect ratio, which may further impede proper metallization.
- What is needed to advance new technologies is a method to improve the aspect ratio for metal deposition while still maintaining the desired line to line integration spaces. U.S. Pat. No. 7,922,824 suggests the use of quaternary ammonium salts and quaternary ammonium alkali as part of a chemical composition for removing metal hard masks and post-plasma etch residues. However, it teaches away from the use of quaternary ammonium salts and quaternary ammonium alkali without the addition of an acid modifying agent, such as citric acid, and by this teaching as well as the direct omission of quaternary ammonium salts in the list of oxidizing agent stabilizers indicates that quaternary ammonium salts and quaternary ammonium alkali cannot be used alone.
- The present invention is a chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials. The present invention decreases aspect ratio by removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric.
- According to an embodiment of the present invention, a chemical composition for removing a metal hard mask and etching residues from a microelectronic device is provided. The chemical composition includes: an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or adversely attack copper; a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali; and an aqueous solution.
- According to a further embodiment of the present invention, a method of removing a metal hard mask and etching residues from a microelectronic device is provided. The method includes steps of: etching a trench in an interconnect structure selective to a dielectric capping layer by a reactive ion etching process (RIE); applying a wet chemical composition for removing at least a portion of layers on the interconnect structure selective to the dielectric capping layer, said chemical composition comprising an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or adversely attack copper, a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali and an aqueous solution, wherein the composition has a pH in the range of about 7 to about 14; and etching the interconnect structure to open the dielectric capping layer above a copper device layer for filling the trench.
- According to another embodiment of the present invention, a method of removing a metal hard mask and etching residues from a microelectronic device is provided. The method includes steps of: etching a trench in an interconnect structure selective to a copper device layer by a reactive ion etching process (RIE); and applying a wet chemical composition for removing at least a portion of layers on the interconnect structure selective to the copper device layer, said chemical composition comprising an oxidizing agent selected from a group comprised of peroxides and oxidants which do not leave a residue or attack copper, a pH controlling agent selected from a group comprised of quaternary ammonium salts and quaternary ammonium alkali and an aqueous solution, wherein the composition has a pH in the range of about 7 to about 14.
- The features and elements of the present invention are set forth with respect to the appended claims and illustrated in the drawings.
-
FIG. 1 illustrates a microelectronic device prior to imaging and etching. -
FIG. 2 illustrates the microelectronic device with an imaged lithographic stack. -
FIG. 3 illustrates the microelectronic device after removal of the lithographic stack and etched metal hard mask. -
FIG. 4A illustrates the microelectronic device post reactive ion etch selective to the dielectric cap (partial RIE) with etch residue according to the present invention. -
FIG. 4B illustrates the microelectronic device post reactive ion etch selective to the dielectric cap (partial RIE) without etch residue according to the present invention. -
FIG. 4C illustrates the partially etched microelectronic device after a full wet strip of the metal hard mask and etch residue according to the present invention. -
FIG. 4D illustrates the partially etched microelectronic device after a partial wet strip of the metal hard mask and etch residue according to the present invention. -
FIG. 4E illustrates the partially etched microelectronic device post final reactive ion etch chamfer and clean according to the present invention. -
FIG. 5A illustrates the microelectronic device post reactive ion etch selective to the copper line (full RIE) with etch residue. -
FIG. 5B illustrates the microelectronic device post reactive ion etch selective to the copper line (full RIE) without etch residue. -
FIG. 5C illustrates the fully etched microelectronic device after a full wet strip of the metal hard mask and etch residue according to the present invention. -
FIG. 5D illustrates the fully etched microelectronic device after a partial wet strip of the metal hard mask and etch residue according to the present invention. -
FIG. 5E illustrates the fully etched microelectronic device post final reactive ion etch chamfer and clean according to the present invention. - The following describes embodiments of the present invention with reference to the drawings. The embodiments are illustrations of the invention, which can be embodied in various forms. The present invention is not limited to the embodiments described below, rather representative for teaching one skilled in the art how to make and use it. Some aspects of the drawings repeat from one drawing to the next. The aspects retain their same numbering from their first appearance throughout each of the preceding drawings.
- The present invention is a chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials. The present invention decreases aspect ratio by selective removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric. Thus, an improved aspect ratio for metal fill without introducing any excessive trapezoidal cross-sectional character to the defined metal receiving structures of the device will result.
- Compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described. In all such compositions, wherein specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.0001 weight percent, based on the total weight of the composition in which such components are employed.
- The compositions of the invention may be formulated to substantially remove the titanium-containing residue, the polymeric sidewall reside and/or the copper-containing residue from the surface of the microelectronic device without substantially damaging the underlying inter level dielectric, metal interconnect materials and any dielectric hard mask, if present. The composition may be formulated to remove the metal hard mask layer from the surface of the microelectronic device without substantially damaging the underlying low-k dielectric and metal interconnect materials.
- The chemical composition of the present invention includes an oxidizing agent and a pH controlling agent in an aqueous solution. De-ionized water is the principle solvent in the aqueous solution. The solvent must be at least free of any detrimental ions or other materials that could interfere with the cleaning action of the chemical composition or degrade the cleanliness or future performance of the semiconductor circuit. While de-ionized water is the most preferred solvent for the chemical composition, it is understood that other solvent systems with similar salvation properties to de-ionized water may also act as a possible solvent for the present invention. Thus, an aqueous solution is most preferred. However, it is understood that other solvent systems similar to water may also act suitably for the present invention. For example, a 25% isopropanol, 75% de-ionized water solvent system may also produce satisfactory results.
- The oxidizing agent is preferably a peroxide, for example hydrogen peroxide and organic peroxides such as benzoyl peroxide. However, oxidizing agents may also include a non-metal with the ability to oxidize titanium nitride (TiN) to a soluble compound without leaving a metallic residue and oxidants that do not leave a residue or adversely attack copper (Cu). It is very important that the oxidant/oxidizing agent, when dissolved in the chemical process, does not attack copper (Cu). For example, an oxidant may have an activity against copper when used without the modifying agents in the present chemical composition. However, when so mixed with the other agents of the present chemical composition, the activity of the oxidant is modified such that copper is not detrimentally attacked. More specifically, the pH may be adjusted such that copper oxidation is minimized, and/or a surface adsorption action may occur due to agents in the present invention such that the copper is protected from oxidation. The tetraethylammonium (TEA) ion may act as a passavating adsorbent on a copper surface at the pH value of the present chemical composition as it is so designed.
- The pH stabilizer adjusts the pH level in the chemical composition to a range of about 7 to about 14. Preferably, the pH stabilizer adjusts the pH level to a range of about 9 to about 10. Quaternary ammonium salts and quaternary ammonium alkalis are preferred for use as a pH stabilizer in the present invention. Tetramethylammonium hydroxide (TMAH) is the quaternary ammonium that is primarily used in the industry. However, TMAH is toxic; it causes severe and typically unexpected health problems from exposure. Unlike typical strong bases where an unprotected acute exposure generally results in a caustic burn, TMAH may also introduce a complication of decreased respiratory function. Thus, a quaternary ammonium that does not cause unexpected health side effects is preferable. Tetraethylammonium hydroxide (TEAH) is the most preferred pH stabilizer in the present invention. In addition to the ability to adjust pH without the introduction of extraneous undesirable metal ions, such as alkaline earth or alkali metal ions, the TEA ion may also act as a passavating adsorbent on a copper surface at the pH value of the present chemical composition as it is also designed.
- Regardless of whether the passavation action by TEA ions occur, the ability to adjust pH without the introduction of extraneous undesirable metal ions and the decreased hazard of TEAH makes TEAH the most preferred pH stabilizer for the present invention. It is understood that other quaternary ammonium salts may also act as pH stabilizing agents without the additional passavation action towards a copper surface as long as the resultant solution does not have detrimental activity towards a copper surface; such a resultant solution is within the purview of the present invention.
- The approximate bath life of the chemical composition is in the range of about 18 hrs to about 22 hrs. When the chemical bath drops below 10-15% fresh bath, the bath is no longer useful. It is understood that typical methods used to extend solution bath life such as replenishment of the consumed oxidizer in a recirculated solution may be used to extend usable bath life. Additionally, it is known that trace contamination such as minute amounts of some metal ions may also dramatically decrease bath life. As such, the chemical composition of the present invention may be of single use (i.e., dispensed on the wafer for cleaning and sent to drain) or multiple use (i.e., reclaimed after initial processing use and stored for additional use). It is recognized that reclamation may decrease the usable life of a reclaimed chemical bath. The use of a sequestering agent (oxidant stabilizer) in the chemical bath can increase the life of the bath during reclamation process use. A sequestering agent may be added to an un-reclaimed chemical composition; this sequestering agent may extend the usable bath life of such a composition beyond that of a solution without the sequestering agent. Through the use of a sequestering agent, the oxidizer concentration may be controlled such that excessive oxidant concentration addition to the chemical composition of the present invention is not necessary to compensate for oxidant consumption by undesired decomposition due to contamination, rather than by the normal consumption that occurs during the desired cleaning action of the present chemical composition. Thereby, the sequestering agent optimizes the concentration to further minimize the chemical composition's attack on the copper device layer by enabling a minimization of required oxidizer concentration in the present chemical composition.
- Sequestering agents that can be used in the present invention are amines and amino acids. The preferred sequestering agents are 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CDTA), ethyenediaminetetraacetic acid (EDTA) and diethylenetriaaminopentaacetic acid (DTPA). The preferential use of complex sequestering agents, such as CDTA, versus a simple sequestering agent, such as EDTA, is based on the possibility of degradation of a simple sequestering agent over time and at extended exposure to certain temperatures. However, it is understood that for some methods of application a simple sequestering agent such as EDTA may be suitable. For example, a single use system where heating occurs just before the solution dispenses on a wafer for chemical cleaning.
- For further copper protection, a copper protectant can be added to the chemical composition. The preferred copper protectants for the present invention are hetero-organic inhibitors such as azoles. Preferably, at least one of benzotriazole, 1,2,3 triazole, 1,3,4 triazole, 1,2,4 triazole and imidazole are used in the chemical composition. The use of hetero-organic inhibitors as opposed to simple organic compounds is based on the possibility of degradation of organic compounds over time and at extended exposure to certain temperatures. Azoles are organic compounds containing nitrogen atoms with free electron pairs that are potential sites for bonding with copper and that enable inhibiting action. Also, there is a possibility of introduction of other heteroatoms and groups in molecules of these compounds so there is a wide range of derivatives that exhibit good inhibition characteristics. For example, it is understood that thiols produce active protection on copper surfaces.
- Preferred formulations for the chemical composition are:
- 1. 9% per wt oxidizing agent, 0.8% per wt pH stabilizer, 90.2% aqueous solution;
- 2. 9% per wt oxidizing agent, 0.8% per wt pH stabilizer, 10 ppm sequestering agent, remainder aqueous solution;
- 3. 9% per wt oxidizing agent, 0.8% per wt pH stabilizer, 10 ppm sequestering agent, 100 ppm copper protectant, remainder aqueous solution.
- The preferred formulation of the chemical composition is hydrogen peroxide and TEAH in an aqueous solution, wherein the composition has a pH in the range of about 9 to about 10. The chemical composition is designed to remove at least some titanium nitride (TiN). However, the chemical composition is also intended to remove at least some etching residues.
- Accordingly, it is intended to be a full clean. It is understood that in some cases a full clean by a single solution may be too aggressive and a sequential clean using multiple chemical systems may be less aggressive with respect to copper or sensitive ILD structures. Performing a full clean with a single solution is not to be done at the expense of the copper device layer or sensitive ILD structures.
- The chemical composition can be applied to a microelectronic device in multiple ways. Referring now to
FIG. 1 , the microelectronic device may include protective layers including alithographic stack layer 160, a metalhard mask layer 150, such as titanium nitride, a dielectrichard mask layer 140, such as tetraethyl orthosilicate (TEOS), aninter-level dielectric 130, and adielectric capping layer 120, such as NBlock, above a copper device layer (copper line) 110 and anotherinter-level dielectric 115. Prior to application of the chemical composition, thelithographic stack layer 160 is imaged, as shown inFIG. 2 , creating an opening in thelithographic stack layer 160 exposing a portion of the metalhard mask 150. InFIG. 3 , thelithographic stack layer 160 is removed during etch of metalhard mask layer 150. The metalhard mask layer 150 is etched in such a way as to create an opening thus exposing a portion of the dielectrichard mask layer 140. Another etch is performed for forming a trench in the microelectronic device. The etching processes are most likely a reactive ion etching. The etching process often leaves a residue on the microelectronic device and the protective layers, as well as leaving a portion of the protection layers intact. - In one embodiment of the present invention, the etching process forms the trench down to the
dielectric capping layer 120, as shown inFIGS. 4A-4D . This is called a partial etch. Thedielectric capping layer 120 is left in this embodiment of the present invention as a barrier for the copper device layer to protect against the wet etching process, that is, application of the chemical composition of the present invention.FIG. 4A shows the microelectronic device after a partial etch withresidual etch residue 170.FIG. 4B shows the microelectronic device after a partial etch without the residual etch residue for clarity. Likewise, the residue is removed fromFIGS. 4C-4E for clarity. -
FIG. 4C shows the microelectronic device after a full wet etch process, that is, after application of the chemical composition of the present invention removing the entire metalhard mask layer 150. The chemical composition is applied to the microelectronic device at a temperature in the range of about 25° C. to about 80° C. Preferably, the chemical composition is applied at about 60° C. For total removal, the chemical composition is applied to the microelectronic device for about 1 minute to about 5 minutes. - It has been observed that there is a pattern density relationship to the wet removal of metal hard masks such as titanium nitride (TiN). This is not surprising based both on the incoming variation induced by prior reactive ion etch operations as well as possible chemical kinetic relationships. It is noted that in dense areas of the microelectronic device, an application of the chemical composition of the present invention for about 2 minutes is sufficient to achieve total removal of a titanium nitride (TiN) metal hard mask with a deposited thickness of about 300 A to about 400 A. Whereas, in blanket areas of the microelectronic device, the chemical composition is applied for about 4 minutes to achieve total removal. Total removal would remove all layers above the dielectric hard mask or inter-level dielectric layer if no dielectric hard mask layer is present.
- A partial wet etch process can be performed as opposed to a total wet etch process as shown in
FIG. 4D . A partial wet etch would clean and taper at least a part of the microelectronic device for future metallization of the device, which would help the aspect ratio of the device and as such improve metallization. InFIG. 4D , a portion of the metalhard mask layer 150 is removed after the partial wet etch process exposing a portion of dielectrichard mask 140. This helps to mitigate any potential damage to thecopper device layer 110. In order to perform a partial etch, the chemical composition is applied for about 1 minute to about 2 minutes at about 60° C. The wet etch, whether total or partial, is followed by an etching process to open thedielectric capping layer 120 and perform any additional tapering/hard mask chamfering necessary as shown inFIG. 4E . A cleaning process may also be performed after the etching process to remove any additional residues from the etching process. -
FIGS. 5A-5E show another embodiment of the present invention where the trench etching process forms the trench down to thecopper device layer 110.FIG. 5A shows the microelectronic device after a full etch withresidual etch residue 170.FIG. 5B shows the microelectronic device after a full etch without the residual etch residue for clarity. Likewise, the residue is removed fromFIGS. 5C-5E for clarity. -
FIG. 5C shows the microelectronic device after a full wet etch process, that is, after application of the chemical composition of the present invention removing the entire metalhard mask 150. The chemical composition is applied to the microelectronic device at a temperature in the range of about 25° C. to about 80° C. Preferably, the chemical composition is applied at about 60° C. For total removal, the chemical composition is applied to the microelectronic device for about 1 minute to about 5 minutes. Total removal would remove the entire metal hard mask layer above the dielectric hard mask or inter-level dielectric layer if no dielectric hard mask layer is present. - It has been observed that there is a pattern density relationship to the wet removal of metal hard masks such as titanium nitride (TiN). This is not surprising based both on the incoming variation induced by prior reactive ion etch operations as well as possible chemical kinetic relationships. It is noted that in dense areas of the microelectronic device, an application of the chemical composition of the present invention for about 2 minutes is sufficient to achieve total removal of a titanium nitride (TiN) metal hard mask with a deposited thickness of about 300 A to about 400 A. Whereas, in blanket areas of the microelectronic device, the chemical composition is applied for about 4 minutes to achieve total removal. Total removal would remove all layers above the dielectric hard mask or inter-level dielectric layer if no dielectric hard mask layer is present. Partial removal would leave some metal hard mask structures, but modify the structures by a partial removal of the structures while preserving all layers below the dielectric hard mask such as the dielectric hard mask or inter-level dielectric layers if no dielectric hard mask layer is present.
- A partial wet etch process can be performed as opposed to a total wet etch process as shown in
FIG. 5D . A partial wet etch would clean and taper the microelectronic device, which would help the aspect ratio of the device. InFIG. 5D , a portion of the metalhard mask layer 150 is removed after the partial wet etch process exposing a portion of dielectrichard mask 140. This helps to mitigate any potential damage to thecopper device layer 110. In order to perform a partial etch the chemical composition is applied for about 1 minute to about 2 minutes at about 60° C. The partial wet etch may be followed by an etching process to perform any additional tapering/hard mask chamfering necessary as shown inFIG. 5E . A cleaning process may also be performed after the etching process to remove any additional residues from the etching process. - The chemical composition and its accompanying methods can be used for 64 nm pitch copper single and dual damascene interconnects using pitch split double patterning scheme to enable sub 80 nm pitch patterning, for example. After the trench pattern is formed, the trenches are to be filled with metal. The metallization process has become a challenge for recent technology generations with narrow width trenches patterned in low-k dielectric material with hard masks on top of the dielectric film. The trenches often have a high aspect ratio with undercut under the hard mask. To prevent metal fill defects, the metal hard mask can be removed using the chemical composition of the present invention using one of the methods described herein. This will significantly improve the metal fill process.
- Trapezoidal structures in
FIGS. 4E and 5E are exaggerated to illustrate possible chamfering of a structure by selective design, not by the lack of degrees of freedom to time a desired sidewall angle. A sidewall angle approximating 90 degrees to the copper plane may be constructed using the present invention. However, the present invention enables the construction of a trapezoidal cross-section, if such a structure is desired. A main difference is that this construction of a trapezoidal cross-section is by conscious design, rather than by an uncontrolled process side effect. - The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. It is well known that different deposition conditions may result in metal films such as titanium nitride (TiN) hard mask films with different properties. Accordingly, the chemical ratios and/or contact times may be adjusted to produce similar results with varying titanium nitride (TiN) or other metal hard mask films. Thus, the description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed.
- The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/323,023 US20140312265A1 (en) | 2012-01-04 | 2014-07-03 | Titanium-Nitride Removal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/343,190 US8835326B2 (en) | 2012-01-04 | 2012-01-04 | Titanium-nitride removal |
US14/323,023 US20140312265A1 (en) | 2012-01-04 | 2014-07-03 | Titanium-Nitride Removal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/343,190 Division US8835326B2 (en) | 2012-01-04 | 2012-01-04 | Titanium-nitride removal |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140312265A1 true US20140312265A1 (en) | 2014-10-23 |
Family
ID=48695143
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/343,190 Expired - Fee Related US8835326B2 (en) | 2012-01-04 | 2012-01-04 | Titanium-nitride removal |
US14/323,023 Abandoned US20140312265A1 (en) | 2012-01-04 | 2014-07-03 | Titanium-Nitride Removal |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/343,190 Expired - Fee Related US8835326B2 (en) | 2012-01-04 | 2012-01-04 | Titanium-nitride removal |
Country Status (1)
Country | Link |
---|---|
US (2) | US8835326B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200024750A1 (en) * | 2017-03-31 | 2020-01-23 | Kanto Kagaku Kabushiki Kaisha | Etchant composition for etching titanium layer or titanium-containing layer, and etching method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9330989B2 (en) * | 2012-09-28 | 2016-05-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for chemical-mechanical planarization of a metal layer |
US20150104952A1 (en) | 2013-10-11 | 2015-04-16 | Ekc Technology, Inc. | Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper |
US9293365B2 (en) | 2014-03-27 | 2016-03-22 | Globalfoundries Inc. | Hardmask removal for copper interconnects with tungsten contacts by chemical mechanical polishing |
US9390967B2 (en) | 2014-12-11 | 2016-07-12 | International Business Machines Corporation | Method for residue-free block pattern transfer onto metal interconnects for air gap formation |
US10431464B2 (en) | 2016-10-17 | 2019-10-01 | International Business Machines Corporation | Liner planarization-free process flow for fabricating metallic interconnect structures |
US10553720B2 (en) * | 2016-11-29 | 2020-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of removing an etch mask |
US10752496B2 (en) * | 2017-09-22 | 2020-08-25 | Applied Materials, Inc. | Pore formation in a substrate |
US10672653B2 (en) | 2017-12-18 | 2020-06-02 | International Business Machines Corporation | Metallic interconnect structures with wrap around capping layers |
US11164780B2 (en) | 2019-06-07 | 2021-11-02 | Applied Materials, Inc. | Process integration approach for selective metal via fill |
US11688604B2 (en) * | 2019-07-26 | 2023-06-27 | Tokyo Electron Limited | Method for using ultra thin ruthenium metal hard mask for etching profile control |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090082240A1 (en) * | 2007-09-20 | 2009-03-26 | Fujifilm Corporation | Stripping liquid for semiconductor device, and stripping method |
US20090215658A1 (en) * | 2005-10-05 | 2009-08-27 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US20120048295A1 (en) * | 2009-03-11 | 2012-03-01 | Fujifilm Electronic Materials U.S.A., Inc. | Cleaning formulation for removing residues on surfaces |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4804636A (en) | 1985-05-01 | 1989-02-14 | Texas Instruments Incorporated | Process for making integrated circuits having titanium nitride triple interconnect |
US6200910B1 (en) | 1996-06-25 | 2001-03-13 | Texas Instruments Incorporated | Selective titanium nitride strip |
US6379577B2 (en) | 1999-06-10 | 2002-04-30 | International Business Machines Corporation | Hydrogen peroxide and acid etchant for a wet etch process |
US6358788B1 (en) | 1999-08-30 | 2002-03-19 | Micron Technology, Inc. | Method of fabricating a wordline in a memory array of a semiconductor device |
US7513920B2 (en) | 2002-02-11 | 2009-04-07 | Dupont Air Products Nanomaterials Llc | Free radical-forming activator attached to solid and used to enhance CMP formulations |
US20060027924A1 (en) * | 2004-08-03 | 2006-02-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Metallization layers for crack prevention and reduced capacitance |
CN101248516A (en) | 2005-04-08 | 2008-08-20 | 塞克姆公司 | Selective wet etching of metal nitrides |
-
2012
- 2012-01-04 US US13/343,190 patent/US8835326B2/en not_active Expired - Fee Related
-
2014
- 2014-07-03 US US14/323,023 patent/US20140312265A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090215658A1 (en) * | 2005-10-05 | 2009-08-27 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US20090082240A1 (en) * | 2007-09-20 | 2009-03-26 | Fujifilm Corporation | Stripping liquid for semiconductor device, and stripping method |
US20120048295A1 (en) * | 2009-03-11 | 2012-03-01 | Fujifilm Electronic Materials U.S.A., Inc. | Cleaning formulation for removing residues on surfaces |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200024750A1 (en) * | 2017-03-31 | 2020-01-23 | Kanto Kagaku Kabushiki Kaisha | Etchant composition for etching titanium layer or titanium-containing layer, and etching method |
US10920326B2 (en) * | 2017-03-31 | 2021-02-16 | Kanto Kagaku Kabushiki Kaisha | Etchant composition for etching titanium layer or titanium-containing layer, and etching method |
Also Published As
Publication number | Publication date |
---|---|
US20130171829A1 (en) | 2013-07-04 |
US8835326B2 (en) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8835326B2 (en) | Titanium-nitride removal | |
US10711227B2 (en) | TiN hard mask and etch residue removal | |
US20130200040A1 (en) | Titanium nitride removal | |
EP1602714B1 (en) | Post-dry etching cleaning liquid composition and process for fabricating semiconductor device | |
TWI573867B (en) | Stripping compositions having high wn/w etching selectivity | |
EP2798669B1 (en) | Compositions and methods for selectively etching titanium nitride | |
US8080475B2 (en) | Removal chemistry for selectively etching metal hard mask | |
TWI399621B (en) | Composition for removing photoresist residue and polymer residue | |
TWI816635B (en) | Liquid composition for cleaning semiconductor components, cleaning method for semiconductor components, and manufacturing method for semiconductor components | |
US20050266683A1 (en) | Remover compositions for dual damascene system | |
EP2128707B1 (en) | Cleaning composition and process for producing a semiconductor device | |
JP2007019506A (en) | Cleansing liquid composition for semiconductor substrate, method of manufacturing the cleaning liquid composition, cleansing method of semiconductor substrate using the cleaning liquid composition, and method of manufacturing semiconductor device comprising the cleansing method | |
KR100946636B1 (en) | Photoresist residue remover composition | |
JPH11243085A (en) | Etching agent composition | |
WO2006112202A1 (en) | Semiconductor device and process for producing the same | |
TWI705132B (en) | Liquid composition for cleaning semiconductor element, cleaning method of semiconductor element, and manufacturing method of semiconductor element | |
KR20230075433A (en) | Composition and method for cleaning semiconductor substrates | |
JP5043498B2 (en) | Manufacturing method of semiconductor device | |
KR20090061354A (en) | Cleaning solution for removing impurity and method of cleaning substrate and method of manufacturing semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, SHYNG-TSONG;FITZSIMMONS, JOHN A.;RATH, DAVID L.;AND OTHERS;SIGNING DATES FROM 20140624 TO 20140627;REEL/FRAME:033237/0540 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |