US20140305012A1 - Single boom system having dual arm linkage - Google Patents

Single boom system having dual arm linkage Download PDF

Info

Publication number
US20140305012A1
US20140305012A1 US13/860,260 US201313860260A US2014305012A1 US 20140305012 A1 US20140305012 A1 US 20140305012A1 US 201313860260 A US201313860260 A US 201313860260A US 2014305012 A1 US2014305012 A1 US 2014305012A1
Authority
US
United States
Prior art keywords
work tool
link
boom
actuators
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/860,260
Other languages
English (en)
Inventor
Timothy Michael O'Donnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US13/860,260 priority Critical patent/US20140305012A1/en
Assigned to CATERPILLAR INC. reassignment CATERPILLAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O'DONNELL, TIMOTHY MICHAEL
Priority to CN201420151716.7U priority patent/CN203768956U/zh
Publication of US20140305012A1 publication Critical patent/US20140305012A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/307Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom the boom and the dipper-arm being connected so as to permit relative movement in more than one plane
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/308Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working outwardly
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • E02F9/2012Setting the functions of the control levers, e.g. changing assigned functions among operations levers, setting functions dependent on the operator or seat orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller

Definitions

  • the present disclosure relates generally to a machine system and, more particularly, to a single boom system having dual arm linkage.
  • An excavator is a well-known construction machine having a mobile undercarriage and an upper swing body pivotally connected to the undercarriage.
  • Mechanical linkage is connected to the upper swing body and movable by hydraulic cylinders to raise, lower, and curl a work tool.
  • the mechanical linkage typically includes a boom pivotally connected at a first end to the upper swing body, a stick or arm pivotally connected to a second end of the boom, and the work tool connected at a distal end of the stick.
  • a pair of boom cylinders raises and lowers the boom, while a single stick cylinder pivots the stick relative to the boom.
  • An additional tool cylinder is functional to curl the tool relative to the stick.
  • Many different tools can be connected to the distal end of the stick and movable by the tool cylinder, depending on the application of the excavator.
  • These tools can include, among others, a bucket, a grapple, a shear, a hammer, a drill, a vibratory compactor, an auger, a saw, and a pulverizer.
  • the dual linkage arrangement of the '615 publication may improve efficiency somewhat, it may still be problematic.
  • the machine of the '615 publication may no longer be useful in applications that require the full power of the single linkage arrangement to perform a single lifting operation.
  • control of the two completely separate linkage arrangements may be complex and difficult for the operator to become proficient at.
  • the disclosed machine system is directed to overcoming one or more of the problems set forth above and/or other problems of the prior art.
  • the control system may include a first work tool connected at an end of a linkage arrangement, and a first interface device configured to receive input from an operator indicative of a desired movement of the first work tool and to generate a corresponding first work tool signal.
  • the control system may also include a plurality of actuators operatively connected to the first work tool via the linkage arrangement, a plurality of valves associated with the plurality of actuators, and a controller in communication with the first interface device and the plurality of valves.
  • the controller may be configured to determine a combination of the plurality of actuators that should be activated together to generate individual linkage movements that compound to produce the desired movement of the first work tool based on the first work tool signal, and to selectively command movement of a combination of the plurality of valves corresponding to the combination of the plurality of actuators.
  • a second aspect of the present disclosure is directed to a method of controlling a machine having at least one arm arrangement.
  • the method may include receiving a signal from an interface device indicative of a desired movement of a work tool connected to the at least one arm arrangement, and determining a combination of actuators that should be activated to achieve the desired movement of the work tool.
  • the method may also include selectively commanding movement of a combination of control valve elements corresponding to the combination of actuators.
  • a third aspect of the present disclosure is directed to a machine.
  • the machine may include an undercarriage, a frame pivotally connected to the undercarriage, and a swing motor configured to swing the frame relative to the undercarriage.
  • the machine may also include a boom connected to pivot about a horizontal axis of the frame, a first arm arrangement connected to an end of the boom, and a second arm arrangement connected to a second end of the boom.
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed machine
  • FIG. 2 is an exemplary disclosed control system that may be used with the machine of FIG. 1 .
  • FIG. 1 illustrates an exemplary machine 10 having multiple systems and components that cooperate to excavate, demolish, load, move, and/or otherwise process material (e.g., scrap metal, earthen material, landfill material, roadway debris, etc.).
  • machine 10 is a hydraulic excavator. It is contemplated, however, that machine 10 could alternatively embody another type of excavation or material handling machine, such as a backhoe, a front shovel, a dragline shovel, a crane, or another similar machine.
  • Machine 10 may include, among other things, an implement system 12 that is configured to move multiple work tools 14 between different locations and/or to actuate work tools 14 .
  • Machine 10 may also include an operator station 16 for manual control of implement system 12 .
  • Implement system 12 may include many different fluid actuators that interact with various linkage components to independently and/or cooperatively move work tools 14 .
  • implement system 12 may include a single common boom 18 having a pair of associated hydraulic cylinders 20 , and two different arm arrangements 22 , 24 that are operatively connected to boom 18 .
  • Arm arrangements 22 , 24 may be substantially identical to each other or have different configurations, as desired.
  • each of arm arrangements 22 includes a boom link 26 having an associated hydraulic cylinder 28 , a pivot link 30 having an associated hydraulic cylinder 32 (not shown in FIG. 1 for arm arrangement 24 ), and a tool link 34 having an associated hydraulic cylinder 36 .
  • Boom 18 may be pivotally connected at a base end to a frame 38 of machine 10 , while frame 38 may be pivotally connected to an undercarriage 40 .
  • Hydraulic cylinders 20 may cooperate to raise and lower boom 18 relative to frame 38
  • a swing motor 42 may function to swing frame 38 about a vertical axis 44 relative to undercarriage 40 .
  • a first end of each boom link 26 may be pivotally connected to a distal end of boom 18 and selectively pivoted about a horizontal axis 46 by hydraulic cylinder 28 .
  • Each pivot link 30 may be connected to a second end of each boom link 26 and selectively pivoted about a vertical axis 48 by hydraulic cylinder 32 .
  • Each tool link 34 may be connected at an opposing end of each pivot link 30 and selectively pivoted about a horizontal axis 50 by hydraulic cylinder 36 .
  • Work tool 14 may be connected to the remaining end of tool link 34 and selectively pivoted about a horizontal axis 52 by an additional hydraulic cylinder 54 . It is contemplated that a greater or lesser number of fluid actuators and/or linkage components may be included within implement system 12 , and/or connected in a manner other than described above, if desired.
  • Work tool 14 may include any device used to perform a particular task such as, for example, a bucket, a fork arrangement, a blade, a shovel, a crusher, a shear, a grapple, a magnet, a hammer, or any other task-performing device known in the art.
  • implement system 12 e.g., one work tool 14 to each of arm arrangements 22 , 24 , but each is connected in a different way.
  • work tool 14 associated with arm arrangement 22 is a bucket connected to function as a typical excavator bucket, wherein the associated digging motion is in a downward direction.
  • work tool 14 associated with arm arrangement 24 is also a bucket, the associated digging motion is in an upward direction as in a front shovel application.
  • work tool 14 may be connected to arm arrangement 22 in an opposite orientation relative to the connection of work tool 14 with arm arrangement 24 .
  • two completely different work tools 14 may be connected to arm arrangements 22 , 24 at any given time, as desired.
  • work tool(s) 14 may alternatively or additionally rotate, slide, extend, open/close, and/or move in another manner known in the art.
  • hydraulic cylinders 36 and 54 of arm arrangement 22 are located at a side of pivot and tool links 30 , 34 opposite the ground surface upon which machine 10 is located. This is because the digging direction of arm arrangement 22 may be primarily downward toward the ground surface and, by being located at the opposite side of pivot and tool links 30 , 34 , hydraulic cylinders 36 , 54 may be protected from collision with the excavated material and/or ground surface.
  • hydraulic cylinders 36 , 54 of arm arrangement 24 are located at a side of pivot and tool links 30 , 34 opposite a vertical wall being excavated by machine 10 . It is contemplated that the placement of hydraulic cylinders 36 , 54 within arm arrangements 22 , 24 could be identical, if desired.
  • Operator station 16 may be configured to receive input from a machine operator indicative of desired work tool movements.
  • operator station 16 may include at least one interface device 56 associated with each arm arrangement 22 , 24 .
  • Each interface device 56 may embody, for example, a multi-axis device located near an operator seat (not shown).
  • interface device 56 may be generally hemispherical, having an outer curved surface that is configured to fit into the operator's palm, although any other desired shape (e.g., a shape resembling the shape of work tool 14 ) may alternatively be utilized.
  • Interface devices 56 may be proportional-type controllers configured to position and/or orient work tools 14 by producing work tool position signals that are indicative of desired work tool speeds and/or forces in particular directions. The position signals may be used to simultaneously actuate any one or more of hydraulic cylinders 20 , 28 , 32 , 36 , 54 and/or swing motor 42 .
  • manipulation of interface devices 56 may be directly related to a desired motion of work tool 14 and not necessarily to motion of individual hydraulic actuators. For example, tilting a particular interface device 56 fore and aft about a base axis 58 may generate a first signal indicative of a desire to raise and lower work tool 14 , regardless of the motion of other linkage components. Similarly, pivoting the same interface device 56 fore and aft about a wrist axis 60 may generate a second signal indicative of a desire to curl work tool 14 in and out.
  • Tilting interface device 56 left and right about a base axis 62 may generate a third signal indicative of a desire to swing work tool 14
  • pivoting interface device 56 left and right about a wrist axis 64 may generate a fourth signal indicative of a desire to pivot work tool 14 left and right
  • Twisting interface device 56 about a vertical axis 66 may generate a fifth signal indicative of a desire to move work tool 14 inward toward our outward away from frame 38 .
  • interface device 56 may take a different form, if desired, and/or that interface device 56 may be moved in a different way to generate any one or more of the first-fifth signals, if desired. It is further contemplated that one or more of the first through fifth signals could alternatively be generated by movement of a different interface device 56 , for example by movement of a foot pedal or by manipulation of a button or switch that may or may not be associated with interface device 56 .
  • any one of the manually generated requests for work tool motion received via interface device 56 may be caused within work tool 14 by actuating a combination of different hydraulic actuators, and the first-fifth signals may not necessarily be directly related to use of any one particular hydraulic actuator.
  • hydraulic cylinders 20 may be retracted, hydraulic cylinder 28 may be extended, and/or hydraulic cylinder 36 may be extended.
  • hydraulic cylinders 20 may be extended, hydraulic cylinder 28 may be extended, and/or hydraulic cylinder 36 may be extended.
  • hydraulic cylinders 20 may be extended, hydraulic cylinder 28 may be extended, hydraulic cylinder 36 may be extended, and/or hydraulic cylinder 54 may be extended.
  • hydraulic cylinder 32 may be extended or retracted, and/or swing motor 42 may be activated. Accordingly, any combination of hydraulic cylinders 20 - 54 and swing motor 42 may be selectively actuated in response to the signals from interface device 56 to achieve a particular operator requested movement of work tool 14 , and there may be more than one way to activate hydraulic cylinders 20 - 54 and swing motor 42 to achieve the desired work tool movement.
  • machine 10 may include a control system 68 having a plurality of components that cooperate to move work tools 14 (referring to FIG. 1 ) in response to signals from interface devices 56 .
  • control system 68 may include a controller 70 in communication with interface devices 56 , and various control valves responsible for regulating the motion of hydraulic cylinders 20 - 54 and swing motor 42 .
  • the control valves may include, among others, a boom control valve 72 , two boom link control valves 74 , two pivot link control valves 76 , two tool link control valves 78 , two tool control valves 80 , and one swing control valve 82 .
  • Controller 70 may be configured to selectively cause control valves 72 - 82 to affect movement of their corresponding actuators based on the signals generated by interface devices 56 .
  • Each of control valves 72 - 82 may regulate the motion of their related fluid actuators in response to commands issued by controller 70 .
  • boom control valve 72 may have elements movable to control the motion of hydraulic cylinders 20 associated with boom 18 ;
  • boom link control valve 74 may have elements movable to control the motion of hydraulic cylinder 28 associated with boom link 26 ;
  • pivot link control valve 76 may have elements movable to control the motion of hydraulic cylinder 32 associated with pivot link 30 ;
  • tool link control valve 78 may have elements movable to control the motion of hydraulic cylinder 36 ;
  • tool control valve 80 may have elements movable to control the motion of hydraulic cylinder 54 .
  • swing control valve 82 may have elements movable to control the motion of swing motor 42 .
  • each of control valves 72 - 82 may selectively be caused to move and thereby allow pressurized fluid to flow to and drain from their respective actuators. This fluid flow into and out of the actuators may result in movement of the actuators at desired speeds and with desired forces in desired directions.
  • boom control valve 72 may include a first chamber supply element (not shown), a first chamber drain element (not shown), a second chamber supply element (not shown), and a second chamber drain element (not shown).
  • the first and second chamber supply elements may be connected in parallel with a fluid source (e.g., a pump—not shown), while the first and second chamber drain elements may be connected in parallel with a drain (e.g., a tank—not shown).
  • the first chamber supply element may be moved to allow the pressurized fluid from the source to fill the first chambers of hydraulic cylinders 20
  • the second chamber drain element may be moved to drain fluid from the second chambers of hydraulic cylinders 20
  • the second chamber supply element may be moved to fill the second chambers of hydraulic cylinders 20 with pressurized fluid
  • the first chamber drain element may be moved to drain fluid from the first chambers of hydraulic cylinders 20 . It is contemplated that both the supply and drain functions may alternatively be performed by a single element associated with the first chamber and a single element associated with the second chamber, or by a single element that controls all filling and draining functions.
  • the supply and drain elements may be solenoid movable in response to a command from controller 70 .
  • hydraulic cylinders 20 , 28 , 32 , 36 , 55 and swing motor 42 may move at velocities that correspond to the flow rates of fluid into and out of the first and second chambers, and with forces that correspond to pressure differentials across the respective actuators.
  • a command based on an assumed or measured pressure may be sent to a combination of solenoids (not shown) of the supply and drain elements that causes them to open an amount corresponding to the necessary flow rates and/or pressures.
  • the command may be in the form of a flow rate command or a valve element position command generated by controller 70 .
  • Controller 70 may embody a single microprocessor or multiple microprocessors that include a means for controlling an operation of control system 68 . Numerous commercially available microprocessors can be configured to perform the functions of controller 70 . It should be appreciated that controller 70 could readily be embodied in a general machine microprocessor capable of controlling numerous machine functions. Controller 70 may include a memory, a secondary storage device, a processor, and any other components for running an application. Various other circuits may be associated with controller 70 such as power supply circuitry, signal conditioning circuitry, solenoid driver circuitry, and other types of circuitry.
  • One or more maps relating the interface device position signals (i.e., the desired movement of work tool 14 ) to required actuator forces and/or velocities may be stored in the memory of controller 70 .
  • the same or other maps relating the required actuator forces and/or velocities to corresponding valve element positions for control valves 72 - 82 may also be stored in the memory of controller 70 .
  • Each of these maps may include a collection of data in the form of tables, graphs, and/or equations.
  • Controller 70 may be configured to receive input from the operator of machine 10 via interface devices 56 , and to command operation of control valves 72 - 82 in response to the input and the selected relationship maps described above. For example, controller 70 may receive an interface device position signal indicative of a desired force and/or velocity of work tool 14 in a desired direction, and reference the first relationship map from the maps stored in the memory of controller 70 to determine which combination of actuators (i.e., which one or more of hydraulic cylinders 20 , 28 , 32 , 36 , 54 and/or swing motor 42 ) should be activated together to produce individual linkage movements that compound to produce the requested movement. In some instances, there may be more than one combination of actuators that could be used to achieve the desired work tool movement.
  • actuators i.e., which one or more of hydraulic cylinders 20 , 28 , 32 , 36 , 54 and/or swing motor 42 .
  • controller 70 may evaluate the different possible combinations and pick the one combination that best achieves the desired movement according to one or more predefined goals (e.g., efficiency goals, actuator priority goals, time goals, etc.). Controller 70 may then reference the second relationship map to determine flow rate values and/or associated positions for each of the supply and drain elements within particular control valves 72 - 82 related to the selected combination of actuators. The flow rates or positions may then be commanded of the appropriate supply and drain elements to cause filling and/or draining of various pressure chambers at rates that result in the desired work tool force and/or velocity in the desired direction.
  • predefined goals e.g., efficiency goals, actuator priority goals, time goals, etc.
  • controller 70 may be configured to impose virtual limits on movements of some portions or all of first and/or second arm arrangements 22 , 24 so as to avoid these collisions. In other embodiments, it may not be physically possible for first arm arrangement 22 to collide with second arm arrangement 24 . For example, one or more mechanical stops (not shown) may be provided to limit the movements of first and/or second arm arrangements 22 , 24 .
  • the disclosed control system may be applicable to any tool-carrying excavation machine.
  • the disclosed system may provide tool use versatility, while still allowing for high-power lifting operations with a single boom.
  • the disclosed control system may provide for a simple way to control the different links and associated hydraulic actuators and achieve desired work tool movements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)
US13/860,260 2013-04-10 2013-04-10 Single boom system having dual arm linkage Abandoned US20140305012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/860,260 US20140305012A1 (en) 2013-04-10 2013-04-10 Single boom system having dual arm linkage
CN201420151716.7U CN203768956U (zh) 2013-04-10 2014-04-01 具有双臂装置的单动臂机器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/860,260 US20140305012A1 (en) 2013-04-10 2013-04-10 Single boom system having dual arm linkage

Publications (1)

Publication Number Publication Date
US20140305012A1 true US20140305012A1 (en) 2014-10-16

Family

ID=51286163

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/860,260 Abandoned US20140305012A1 (en) 2013-04-10 2013-04-10 Single boom system having dual arm linkage

Country Status (2)

Country Link
US (1) US20140305012A1 (zh)
CN (1) CN203768956U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202222A (ja) * 2013-04-01 2014-10-27 日立建機株式会社 作業機械の油圧制御装置
US10794036B2 (en) * 2016-07-01 2020-10-06 Ken Doyle Excavator quick hitch with multiple mounting position arrangements
EP3814576A4 (en) * 2018-06-28 2022-07-13 Tigercat Industries Inc. BOOM SYSTEM AND METHOD FOR HEAVY MACHINERY AND HYDRAULIC CIRCUIT THEREOF

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626082B (zh) * 2014-10-31 2018-08-14 徐州徐工铁路装备有限公司 一种地下隧道施工设备
CN108419532A (zh) * 2018-03-29 2018-08-21 邹永平 晒场粮食扫装车
TWI740759B (zh) * 2020-12-25 2021-09-21 余任竣 水陸挖掘機蝸輪式底盤

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825960A (en) * 1988-06-30 1989-05-02 Molex Incorporated Synchronized hydraulic hammer arrangement
US5274557A (en) * 1988-12-19 1993-12-28 Kabushiki Kaisha Komatsu Seisakusho Teaching and playback method for work machine
US6018895A (en) * 1996-03-28 2000-02-01 Clark Equipment Company Valve stack in a mini-excavator directing fluid under pressure from multiple pumps to actuable elements
US20050066655A1 (en) * 2003-09-26 2005-03-31 Aarestad Robert A. Cylinder with internal pushrod
US20080156761A1 (en) * 2006-10-17 2008-07-03 Klaus Schneider Control system for a boom crane
US7490421B1 (en) * 1999-08-21 2009-02-17 Herrn Georg Pletzer Method and construction machine for producing ground surfaces
US20100017074A1 (en) * 2008-07-17 2010-01-21 Verkuilen Michael Todd Machine with customized implement control
US7905088B2 (en) * 2006-11-14 2011-03-15 Incova Technologies, Inc. Energy recovery and reuse techniques for a hydraulic system
US7934329B2 (en) * 2008-02-29 2011-05-03 Caterpillar Inc. Semi-autonomous excavation control system
US20110150615A1 (en) * 2008-01-07 2011-06-23 Hitachi Construction Machinery Co., Ltd. Dual arm working machine
US20110264336A1 (en) * 2008-10-21 2011-10-27 Svab Hydraulik Ab Control system for controlling a tiltrotator, a method for calibrating a control system of a tiltrotator and a method for leveling a tool attached to a tiltrotator
US20110276235A1 (en) * 2010-05-06 2011-11-10 Hitachi Construction Machinery Co., Ltd. Prime mover revolution speed control system for hydraulic construction machine
US20120000192A1 (en) * 2006-03-27 2012-01-05 Ramun John R Universal Control Scheme For Mobile Hydraulic Equipment And Method For Achieving The Same
US20120177470A1 (en) * 2010-05-17 2012-07-12 Komatsu Ltd. Hydraulic excavator, and hydraulic excavator control method
US20120185141A1 (en) * 2010-05-20 2012-07-19 Komatsu Ltd. Work vehicle and work vehicle control method
US20120221212A1 (en) * 2011-02-28 2012-08-30 Peterson Grant S Hydraulic control system implementing pump torque limiting
US20120253610A1 (en) * 2011-04-01 2012-10-04 Anders Jonathan W System and method for controlling power in machine having hydraulic and electric power sources
US20120255293A1 (en) * 2011-04-05 2012-10-11 Reedy John T Hydraulic system having fixable multi-actuator relationship
US8380402B2 (en) * 2010-09-14 2013-02-19 Bucyrus Intl. Inc. Control systems and methods for heavy equipment
US20130045071A1 (en) * 2011-08-16 2013-02-21 Caterpillar, Inc. Machine Having Hydraulically Actuated Implement System With Down Force Control, And Method
US20130197766A1 (en) * 2010-10-22 2013-08-01 Hitachi Construction Machinery Co., Ltd. Electrically-operated construction machine
US20130268165A1 (en) * 2012-03-13 2013-10-10 Kanzaki Kokyukoki Mfg., Ltd. Work vehicle
US20140290102A1 (en) * 2013-03-29 2014-10-02 Caterpillar Inc. Control system for dual boom machine
US20140350800A1 (en) * 2012-01-25 2014-11-27 Hitachi Construction Machinery Co., Ltd. Construction machine
US20150082782A1 (en) * 2012-05-29 2015-03-26 Hyundai Heavy Industries Co., Ltd. Independent flow rate controlling hydraulic system for pressure control of excavator and independent hydraulic pressure controlling method using the same

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825960A (en) * 1988-06-30 1989-05-02 Molex Incorporated Synchronized hydraulic hammer arrangement
US5274557A (en) * 1988-12-19 1993-12-28 Kabushiki Kaisha Komatsu Seisakusho Teaching and playback method for work machine
US6018895A (en) * 1996-03-28 2000-02-01 Clark Equipment Company Valve stack in a mini-excavator directing fluid under pressure from multiple pumps to actuable elements
US7490421B1 (en) * 1999-08-21 2009-02-17 Herrn Georg Pletzer Method and construction machine for producing ground surfaces
US20050066655A1 (en) * 2003-09-26 2005-03-31 Aarestad Robert A. Cylinder with internal pushrod
US20120000192A1 (en) * 2006-03-27 2012-01-05 Ramun John R Universal Control Scheme For Mobile Hydraulic Equipment And Method For Achieving The Same
US20080156761A1 (en) * 2006-10-17 2008-07-03 Klaus Schneider Control system for a boom crane
US7905088B2 (en) * 2006-11-14 2011-03-15 Incova Technologies, Inc. Energy recovery and reuse techniques for a hydraulic system
US20110150615A1 (en) * 2008-01-07 2011-06-23 Hitachi Construction Machinery Co., Ltd. Dual arm working machine
US7934329B2 (en) * 2008-02-29 2011-05-03 Caterpillar Inc. Semi-autonomous excavation control system
US20100017074A1 (en) * 2008-07-17 2010-01-21 Verkuilen Michael Todd Machine with customized implement control
US20110264336A1 (en) * 2008-10-21 2011-10-27 Svab Hydraulik Ab Control system for controlling a tiltrotator, a method for calibrating a control system of a tiltrotator and a method for leveling a tool attached to a tiltrotator
US20110276235A1 (en) * 2010-05-06 2011-11-10 Hitachi Construction Machinery Co., Ltd. Prime mover revolution speed control system for hydraulic construction machine
US20120177470A1 (en) * 2010-05-17 2012-07-12 Komatsu Ltd. Hydraulic excavator, and hydraulic excavator control method
US20120185141A1 (en) * 2010-05-20 2012-07-19 Komatsu Ltd. Work vehicle and work vehicle control method
US8380402B2 (en) * 2010-09-14 2013-02-19 Bucyrus Intl. Inc. Control systems and methods for heavy equipment
US20130197766A1 (en) * 2010-10-22 2013-08-01 Hitachi Construction Machinery Co., Ltd. Electrically-operated construction machine
US20120221212A1 (en) * 2011-02-28 2012-08-30 Peterson Grant S Hydraulic control system implementing pump torque limiting
US20120253610A1 (en) * 2011-04-01 2012-10-04 Anders Jonathan W System and method for controlling power in machine having hydraulic and electric power sources
US20120255293A1 (en) * 2011-04-05 2012-10-11 Reedy John T Hydraulic system having fixable multi-actuator relationship
US20130045071A1 (en) * 2011-08-16 2013-02-21 Caterpillar, Inc. Machine Having Hydraulically Actuated Implement System With Down Force Control, And Method
US20140350800A1 (en) * 2012-01-25 2014-11-27 Hitachi Construction Machinery Co., Ltd. Construction machine
US20130268165A1 (en) * 2012-03-13 2013-10-10 Kanzaki Kokyukoki Mfg., Ltd. Work vehicle
US20150082782A1 (en) * 2012-05-29 2015-03-26 Hyundai Heavy Industries Co., Ltd. Independent flow rate controlling hydraulic system for pressure control of excavator and independent hydraulic pressure controlling method using the same
US20140290102A1 (en) * 2013-03-29 2014-10-02 Caterpillar Inc. Control system for dual boom machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202222A (ja) * 2013-04-01 2014-10-27 日立建機株式会社 作業機械の油圧制御装置
US10794036B2 (en) * 2016-07-01 2020-10-06 Ken Doyle Excavator quick hitch with multiple mounting position arrangements
EP3814576A4 (en) * 2018-06-28 2022-07-13 Tigercat Industries Inc. BOOM SYSTEM AND METHOD FOR HEAVY MACHINERY AND HYDRAULIC CIRCUIT THEREOF
US11555292B2 (en) 2018-06-28 2023-01-17 Tigercat Industries Inc. Heavy equipment boom system and method and hydraulic circuit therefor

Also Published As

Publication number Publication date
CN203768956U (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
US9376784B2 (en) Control system for dual boom machine
US8527158B2 (en) Control system for a machine
US20140305012A1 (en) Single boom system having dual arm linkage
US7934329B2 (en) Semi-autonomous excavation control system
US8776511B2 (en) Energy recovery system having accumulator and variable relief
US9068575B2 (en) Hydraulic control system having swing motor energy recovery
US10202740B2 (en) System and methods for with a first and a second hand operated control, controlling motion on a work tool for a construction machine
US20060218912A1 (en) Hydraulic system having variable back pressure control
US20140067092A1 (en) Adaptive work cycle control system
CN103299089B (zh) 施工机械的动臂回转型组合驱动液压控制系统
WO2013003047A2 (en) Hydraulic control system having swing motor energy recovery
EP3305995B1 (en) Hydraulic system of construction machine
WO2013003050A2 (en) Hydraulic control system having energy recovery kit
WO2010068749A2 (en) System for controlling a hydraulic system
WO2019012701A1 (ja) 作業機械および作業機械の制御方法
US6618967B2 (en) Work machine control for improving cycle time
CN105102732A (zh) 建筑机械的阀芯位移可变控制装置及控制方法
DE202011003220U1 (de) Steuerung für Arbeitsmaschinen mit Ausleger
US11473271B2 (en) Electrical control of a hydraulic system
JP6876623B2 (ja) 作業機械および作業機械の制御方法
JP2014190514A (ja) 建設機械のポンプ制御装置
JPH10292417A (ja) 建設機械のフロント制御装置
US20140033690A1 (en) Machine hydraulic system having fine control mode
KR20170091933A (ko) 건설기계의 압유 제어 시스템
KR20240049523A (ko) 작업기계

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:O'DONNELL, TIMOTHY MICHAEL;REEL/FRAME:030190/0171

Effective date: 20130405

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION