US20140274990A1 - Ceftolozane pharmaceutical compositions - Google Patents

Ceftolozane pharmaceutical compositions Download PDF

Info

Publication number
US20140274990A1
US20140274990A1 US14/212,781 US201414212781A US2014274990A1 US 20140274990 A1 US20140274990 A1 US 20140274990A1 US 201414212781 A US201414212781 A US 201414212781A US 2014274990 A1 US2014274990 A1 US 2014274990A1
Authority
US
United States
Prior art keywords
ceftolozane
sodium chloride
pharmaceutical composition
composition
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/212,781
Inventor
Joseph Terracciano
Nicole Miller Damour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Calixa Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calixa Therapeutics Inc filed Critical Calixa Therapeutics Inc
Priority to US14/212,781 priority Critical patent/US20140274990A1/en
Assigned to CUBIST PHARMACEUTICALS, INC. reassignment CUBIST PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAMOUR, NICOLE MILLER, TERRACCIANO, JOSEPH
Publication of US20140274990A1 publication Critical patent/US20140274990A1/en
Assigned to CALIXA THERAPEUTICS, INC. reassignment CALIXA THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUBIST PHARMACEUTICALS, INC.
Assigned to MERCK SHARP & DOHME CORP. reassignment MERCK SHARP & DOHME CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALIXA THERAPEUTICS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • A61K31/546Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • A61K31/431Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems containing further heterocyclic rings, e.g. ticarcillin, azlocillin, oxacillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine

Definitions

  • This disclosure relates to pharmaceutical compositions comprising ceftolozane.
  • Ceftolozane is a cephalosporin antibacterial agent, also referred to as CXA-101, FR264205, or by chemical names such as (6R,7R)-3-[(5-amino-4- ⁇ [(2-aminoethyl)carbamoyl]amino ⁇ -1-methyl-1H-pyrazol-2-ium-2-yl)methyl]-7-( ⁇ (2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(1-carboxy-1-methylethoxy)imino]acetyl ⁇ amino)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, and 7 ⁇ -[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3- ⁇ 3-amino-4-
  • ceftolozane salts are examples of ceftolozane salts.
  • a base or an acid addition salt such as a salt with an inorganic base, for example, an alkali metal salt [e.g., sodium salt, potassium salt, etc.], an alkaline earth metal salt [e.g., calcium salt, magnesium salt, etc.], an ammonium salt; a salt with an organic base, for example, an organic amine salt [e.g., trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N′-dibenzylethylenediamine salt, etc.]; an inorganic acid addition salt [e.g., hydrochloride, hydrobromide, sulfate, hydrogen sulfate, phosphate, etc.]
  • an inorganic acid addition salt e.g., hydrochloride, hydrobromide, sulfate
  • ceftolozane is useful as antibiotics for the treatment of certain serious infections, including serious complicated intra-abdominal infections and complicated urinary tract infections.
  • the ceftolozane pharmaceutical compositions can be administered as intravenous antibacterial agents to treat these infection.
  • the antibacterial activity of ceftolozane is believed to result from its interaction with penicillin binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall which acts to stop bacterial replication.
  • Antibacterial pharmaceutical compositions can include a therapeutically effective unit dose of a pharmaceutically acceptable salt of ceftolozane formulated for intravenous administration.
  • ceftolozane was unstable in certain lyophilized pharmaceutical compositions initially evaluated for intravenous administration.
  • a decrease in ceftolozane purity and the formation of multiple additional related substances were detected in certain initial ceftolozane pharmaceutical compositions by peaks in high purity liquid chromatography (HPLC) after stability testing.
  • HPLC high purity liquid chromatography
  • ceftolozane and other commonly used additives may be included in pharmaceutical compositions comprising ceftolozane or many other cephalosporin compounds “if needed.”
  • the disclosure does not disclose a reduction in ceftolozane purity in pharmaceutical compositions containing ceftolozane sulfate, or the formation of additional related substances observed during stability testing.
  • this disclosure provide guidance on the formation of ceftolozane pharmaceutical compositions to increase ceftolozane purity during stability testing or control the relative amounts of ceftolozane related substances detected by HPLC peak formation during stability testing.
  • the pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg of sodium chloride (including, e.g., 480-500 mg) per 1,000 mg ceftolozane active in the aqueous solution prior to lyophilization.
  • HPLC high performance liquid chromatography
  • lyophilized ceftolozane compositions having 125 mg or more sodium chloride relative to the fixed amount of 1,000 mg ceftolozane active in an aqueous solution prior to lyophilization produced lyophilized compositions having lower quantities of additional substances identified by peaks 1 and 7 having characteristic retention times measured by HPLC relative to the retention time of ceftolozane.
  • HPLC measurements reported herein refer to HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • the retention time of peaks 1 and 7 are about ⁇ 0.1 and about 1.3 relative to ceftolozane (an “RRT of 0.1 and 1.3, respectively).
  • sodium chloride stabilized ceftolozane compositions described in Example 3 were characterized by about 37-94% less of the material of peak 1 and about 38-306% less of the material of peak 7 (measured by corresponding HPLC peak areas) than comparable ceftolozane compositions having less than 125 mg sodium chloride (e.g., see 7-day stability study in Example 3).
  • the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.06% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • preferred pharmaceutical compositions contain ceftolozane sulfate having an improved stability as a decrease in the rate of ceftolozane purity and/or a decrease in the rate of formation of substances characterized by HPLC peaks 1 and 7 identified during a 7-day stability study in Example 3.
  • FIGS. 1A and 1B are chromatograms of CXA-101 ceftolozane drug substance obtained from the lyophilization process of Example 1. The chromatograms were obtained according to the analytical method described in Example 2.
  • FIG. 2 is a diagram of a lyophilization process for the ceftolozane obtained according to the process described in Example 1.
  • FIG. 3 is a table (Table 1) of peaks for the ceftolozane prepared by the lyophilization process in Example 1 obtained by HPLC according to the analytical method of Example 2.
  • FIG. 4 is a table (Table 2) showing the composition of various additional ceftolozane pharmaceutical compositions in which the sodium chloride content is varied.
  • FIG. 5A is a table (Table 3) showing the total purity of ceftolozane in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 5B is a graph showing the total purity of certain pharmaceutical compositions disclosed in FIG. 4 , as measured by HPLC peak area.
  • FIG. 6A is a table (Table 4) showing the amount of material from characteristic peak 1 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 6B is a graph showing the amount of material from characteristic peak 1 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 7A is a table (Table 5) showing the amount of material from characteristic peak 3 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 7B is a graph showing the amount of material from characteristic peak 3 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 8A is a table (Table 6) showing the amount of material from characteristic peak 7 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 8B is a graph showing the amount of material from characteristic peak 7 in the pharmaceutical compositions of FIG. 4 , as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 9A is a table (Table 7) showing the formulation composition of the Co-Lyo-Combo Drug Product used in Example 4A.
  • FIG. 9B is a table (Table 8) showing impurity concentrations at time zero, one month and three months at 25° C./60% relative humidity of the Co-Lyo-Combo Drug Product.
  • FIG. 9C is a table (Table 9) showing impurity concentrations at time zero, one month and three months at 40° C./75% relative humidity of the Co-Lyo-Combo Drug Product.
  • FIG. 10A is a table (Table 10) showing the formulation composition of the Blend Drug Product used in Example 4B.
  • FIG. 10B is a table (Table 11) showing impurity concentrations at time zero, one month and three months at 25° C./60% relative humidity of the Blend Drug Product used in Example 4B.
  • FIG. 10C is a table (Table 12) showing impurity concentrations at time zero, one month and three months at 40° C./75% relative humidity of the Blend Drug Product used in Example 4B.
  • FIG. 11 is a table (Table 13) showing the composition of various ceftolozane pharmaceutical compositions in which the sodium chloride concentration is varied.
  • FIG. 12 is a table (Table 14) showing the purity of Ceftolozane in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at at 30° C. and 60° C.
  • FIG. 13 is a table (Table 15) showing the HPLC area of Impurity of Peak 1 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 14 is a table (Table 16) showing the HPLC area of the Impurity at RRT 0.43 and Impurity Peak 3 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 15 is a table (Table 17) showing the HPLC area of Impurity of Peak 7 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 16 is a table (Table 18) showing the finished drug product unit composition of ceftolozane/tazolactam.
  • FIG. 17 is a table (Table 19) showing the primary container closure system for the ceftolozane/tazobactam unit product.
  • Ceftolozane sulfate can be stabilized in lyophilized pharmaceutical compositions by incorporation of a stabilizing-effective amount of an inorganic salt stabilizing agent in a solution that can be lyophilized to obtain a lyophilized composition containing stabilized ceftolozane.
  • the stabilizing-effective amount of a sodium chloride inorganic salt stabilizing agent is preferably 125 mg to 500 mg (preferably about 480-500 mg) of sodium chloride per 1,000 mg of ceftolozane active.
  • compositions comprising ceftolozane and stabilizing amount of sodium chloride can be obtained by lyophilization of a solution comprising a stabilizing-effective amount of sodium chloride and ceftolozane sulfate.
  • lyophilization is a process of freeze-drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990).
  • a pharmaceutical composition comprising ceftolozane can be prepared by adding a stabilizing amount of sodium chloride in a fixed ratio to ceftolozane in an aqueous solution prior to lyophilization, then lyophilizing the solution to obtain a lyophilized composition comprising sodium chloride and ceftolozane.
  • the pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg (preferably, 480-500 mg) of sodium chloride per 500 mg ceftolozane active in the aqueous solution prior to lyophilization.
  • the pharmaceutical compositions comprising ceftolozane disclosed herein can be prepared by adding 125 to 500 mg (preferably, 480-500 mg) sodium chloride per 1000 mg of ceftolozane prior to lyophilization (or spray drying).
  • the pharmaceutical compositions can be obtained by a method comprising the steps of adding a stabilizing amount (e.g., 125 to 500 mg [more preferably, 480-500 mg] sodium chloride per 1000 mg of ceftolozane active) followed by lyophilizing (or spray drying) the composition comprising the sodium chloride and ceftolozane.
  • a stabilizing amount e.g., 125 to 500 mg [more preferably, 480-500 mg] sodium chloride per 1000 mg of ceftolozane active
  • ceftolozane and a stabilizing amount of sodium chloride can be dissolved in an aqueous solution that can be lyophilized (or spray drying) to obtain a ceftolozane pharmaceutical composition.
  • the pharmaceutical compositions may comprise other additional components including stabilizers, pH adjusting additives (e.g., buffers) and the like.
  • these additives include sodium chloride, citric acid and L-arginine.
  • the pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane sulfate with a stabilizing amount of sodium chloride (e.g., 125 to 500 mg [more preferably, 480-500 mg] of sodium chloride per 1,000 mg ceftolozane active), with L-arginine and/or citric acid in the aqueous solution prior to lyophilization.
  • a stabilizing amount of sodium chloride e.g., 125 to 500 mg [more preferably, 480-500 mg] of sodium chloride per 1,000 mg ceftolozane active
  • the use of sodium chloride results in greater ceftolozane stability, while an amount of L-arginine can be used that is effective to adjust pH and to increase the solubility of ceftolozane, and citric acid can be included in an amount effective to reduce or prevent discoloration of the product, due to its ability to chelate metal ions.
  • the aqueous solution can be subsequently lyophilized (or spray dried) to obtain a stabilized lyophilized ceftolozane sulfate composition comprising ceftolozane sulfate, sodium chloride, L-arginine and citric acid.
  • the pharmaceutical composition can also be a Ceftolozane/Tazobactam for Injection Drug Product, 1000 mg/500 mg. It is presented as a combination of two sterile active powders in a single vial intended for reconstitution and intravenous infusion.
  • the drug product is first prepared by converting ceftolozane sulfate drug substance to a sterile drug product intermediate (DPI) powder with excipients citric acid, sodium chloride and L-arginine. This is commonly done by lyophilization, as described above. Tazobactam sodium drug substance is presented as a sterile powder without any excipients. The tazobactam sodium drug substance is typically lyophilized (or spray dried). The drug product is then prepared by aseptically filling the two powders (e.g., the two separately lyophilized drug powders or spray dried powders) sequentially into a single vial.
  • DPI sterile drug product intermediate
  • Each vial of ceftolozane/tazobactam for injection contains approximately 2255 mg ceftolozane sterile DPI powder that contains 1147 mg ceftolozane sulfate, which is equivalent to 1000 mg ceftolozane free base, as well as approximately 537 mg tazobactam sodium sterile drug substance, equivalent to 500 mg tazobactam free acid.
  • the vial is reconstituted with 10 mL vehicle, 5% Dextrose Injection USP, sterile Water for Injection or 0.9% Sodium Chloride Injection USP, then the vial contents further diluted in an infusion bag of 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP, for administration.
  • the constituents are shown in Table 18, FIG. 16 .
  • the primary container-closure system is a Type 1 20 mL molded glass vial with 20 mm neck finish. The vial is sealed by a 20 mm rubber stopper and 20 mm plastic flip-cap seal with aluminum ferrule.
  • the primary contain-closure system used for the ceftolozane/tazobactam unit product is summarized in Table 19, FIG. 17 .
  • compositions comprising ceftolozane can be obtained by methods that include the steps of: (1) adding a stabilizing amount of sodium chloride to ceftolozane (or preparing an aqueous solution of sodium chloride and ceftolozane) optionally followed by co-lyophilizing or spray drying the ceftolozane and sodium chloride (or aqueous solution thereof); and (2) combining the product of step (1) with other components.
  • the product of step (1) can be combined with a ⁇ -lactamase inhibitor, such as tazobactam (CAS#: 89786-04-9), avibactam (CAS#1192500-31-4), Sulbactam (CAS#68373-14-8) and/or clavulanate (CAS#58001-44-8).
  • a ⁇ -lactamase inhibitor such as tazobactam (CAS#: 89786-04-9), avibactam (CAS#1192500-31-4), Sulbactam (CAS#68373-14-8) and/or clavulanate (CAS#58001-44-8).
  • the beta lactamase inhibitor can be included in a crystalline or amorpous form, such as a lyophilized tazobactam or crystalline tazobactam (e.g., U.S. Pat. Nos. 8,476,425 and 5,763,603) to obtain the pharmaceutical composition.
  • the stabilizing effect of sodium chloride on ceftolozane can be measured by high performance liquid chromatography (HPLC) analysis, for example by detecting the ratio of peak areas obtained for ceftolozane compared to peaks for other substances.
  • HPLC high performance liquid chromatography
  • Various ceftolozane compositions having 50-481 mg of sodium chloride per 1,000 mg ceftolozane active as described in Table 2 ( FIG. 4 ) were tested for stability as described in Example 3.
  • the stability testing of lyophilized ceftolozane pharmaceutical compositions revealed improved ceftolozane stability in compositions formed from aqueous solutions having at least 125 mg sodium chloride.
  • HPLC measurements reported herein are obtained using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • lyophilized ceftolozane compositions having 125 mg more sodium chloride relative to the fixed amount of ceftolozane prior to lyophilization were about 35-90% more stable than comparable ceftolozane compositions having less than 125 mg sodium chloride, as measured by total ceftolozane purity during a 7-day stability study in Example 3.
  • the total purity of ceftolozane was measured by the % decrease in the ceftolozane HPLC peak during the 7-day stability test.
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed a decrease in ceftolozane that was at least about 35% less than reductions in ceftolozane observed for formulations containing 50 mg or 75 mg sodium chloride per 1,000 mg ceftolozane active (e.g., the % decrease in ceftolozane for the sample containing 75 mg sodium chloride was about 35% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride).
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed a decrease in ceftolozane that was up to about 90% less than reductions in ceftolozane observed for forulations containing 50 mg or 75 mg sodium chloride per (e.g., the % decrease in ceftolozane for the sample containing 50 mg sodium chloride was about 90% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • lyophilized ceftolozane compositions having 125 mg more sodium chloride relative to the fixed amount of 1,000 mg ceftolozane active in an aqueous solution prior to lyophilization produced lyophilized compositions having lower quantities of additional substances identified by peaks 1 and 7 having characteristic retention times measured by HPLC (see Table 1, FIG. 3 , indicating retention times of about 0.1 for peak 1 and about 1.3 for peak 7 relative to celftolozane measured according to the HPLC method of Example 2).
  • these sodium chloride stabilized ceftolozane compositions were characterized by about 37-94% less of the material of peak 1 and about 38-306% less of the material of peak 7 (measured by corresponding HPLC peak areas) than comparable ceftolozane compositions having less than 125 mg sodium chloride (e.g., see 7-day stability study in Example 3).
  • the amount of the composition of peak 1 was measured by the % increase in the peak 1 HPLC peak during the 7-day stability test of Example 3.
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 37% reduction in the amount of the peak 1 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 1 for the sample containing 75 mg sodium chloride was about 37% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride).
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 94% reduction in the amount of the peak 1 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 1 for the sample containing 50 mg sodium chloride was about 94% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • the amount of the composition of peak 3 was measured by the % increase in the peak 1 HPLC peak during the 7-day stability test of Example 3.
  • samples obtained by lyophilizing compositions containing 125 mg and 190 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 269% reduction in the amount of the peak 3 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 3 for the sample containing 50 mg sodium chloride was about 269% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride).
  • samples obtained by lyophilizing compositions containing 125 mg or 190 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 333% reduction in the amount of the peak 3 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 3 for the sample containing 75 mg sodium chloride was about 333% greater than the comparable % decrease in ceftolozane for the sample containing 125 mg sodium chloride).
  • the ceftolozane sample containing 481 mg of sodium chloride had a higher amount of the composition of peak 3 than the ceftolozane samples containing 50 mg or 75 mg of sodium chloride.
  • the amount of the composition of peak 7 was measured by the % increase in the peak 7 HPLC peak during the 7-day stability test of Example 3.
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 38% reduction in the amount of the peak 7 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 7 for the sample containing 75 mg sodium chloride was about 38% greater than the comparable % decrease in ceftolozane for the sample containing 125 mg sodium chloride).
  • samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 306% reduction in the amount of the peak 7 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 7 for the sample containing 50 mg sodium chloride was about 306% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • preferred pharmaceutical compositions contain ceftolozane sulfate having an improved stability as a decrease in the rate of ceftolozane purity and/or a decrease in the rate of formation of substances characterized by HPLC peaks 1 and 7 identified during a 7-day stability study in Example 3.
  • the preferred ceftolozane pharmaceutical compositions comprise a stabilizing amount of sodium chloride (e.g., 125 to 500 mg of sodium chloride per 1000 mg of ceftolozane).
  • Certain preferred compositions demonstrate improved ceftolozane purity (e.g., Table 3 in FIG. 5A ) and chemical stability (e.g., with respect to the composition of HPLC peak 1 in Table 4, FIG. 6A ) compared pharmaceutical compositions comprising ceftolozane with comparatively less sodium chloride.
  • compositions comprising ceftolozane can be formulated to treat infections by parenteral administration (including subcutaneous, intramuscular, and intravenous) administration.
  • Pharmaceutical compositions may additionally comprise excipients, stabilizers, pH adjusting additives (e.g., buffers) and the like.
  • pH adjusting additives e.g., buffers
  • Non-limiting examples of these additives include sodium chloride, citric acid and L-arginine.
  • the use of sodium chloride results in greater stability; L-arginine is used to adjust pH and to increase the solubility of ceftolozane; and citric acid is used to prevent discoloration of the product, due to its ability to chelate metal ions.
  • the pharmaceutical compositions described herein are formulated for administration by intravenous injection or infusion.
  • Pharmaceutical antibiotic compositions can include ceftolozane sulfate and stabilizing amount of sodium chloride (e.g., 125 to 500 mg of sodium chloride per 1,000 mg ceftolozane active) in a lyophilized unit dosage form (e.g., powder in a vial).
  • the unit dosage form can be dissolved with a pharmaceutically acceptable carrier, and then intravenously administered.
  • pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg of sodium chloride per 1,000 mg ceftolozane active in the aqueous solution prior to lyophilization.
  • a method for the treatment of bacterial infections in a mammal comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition prepared according to the methods described herein.
  • a method for the treatment of bacterial infections in a mammal can comprise administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising ceftolozane sulfate and sodium chloride.
  • Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes, Viridans group streptococci), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii,
  • bacterial infection is associated with one or more of the following conditions: complicated intra-abdominal infections, complicated urinary tract infections (cUTIs) and pneumonia (e.g., community-acquired, or nosocomial pneumonia).
  • cUTIs complicated intra-abdominal infections
  • pneumonia e.g., community-acquired, or nosocomial pneumonia.
  • Community-acquired pneumonia can include infections caused by piperacillin-resistant, beta-lactamase producing strains of Haemophilus influenza .
  • Nosocomial pneumonia caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae , and Pseudomonas aeruginosa.
  • treating describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to reduce the extent of the disease, condition or disorder.
  • the term “treat” can also include treatment of a cell in vitro or an animal model.
  • a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection).
  • the specific therapeutically effective amount that is required for the treatment of any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A.
  • 125-500 mg sodium chloride per 1000 mg of ceftolozane refers to a ratio of sodium chloride to ceftolozane active.
  • the phrase “125-500 mg sodium chloride per 1000 mg of ceftolozane” includes “62.5 to 250 mg sodium chloride per 500 mg of ceftolozane active” and other similar weight ratios.
  • 1,000 mg of ceftolozane as ceftolozane sulfate refers to an amount of ceftolozane sulfate effective to provide 1,000 mg of ceftolozane.
  • the amount of sodium per gram of ceftolozane activity in a pharmaceutical composition containing ceftolozane sulfate and sodium chloride can be calculated using the relevant molecular weights of ceftolozane, ceftolozane sulfate, sodium chloride and sodium.
  • 1000 mg ceftolozane refers to an amount of ceftolozane that is considered a bioequivalent by the United States Food and Drug Administration (FDA), i.e. for which 90% CI of the relative mean Cmax, AUC(0-t) and AUC(0- ⁇ ) is within 80.00% to 125.00% of the reference formulation in the fasting state (see: “Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations”. Center for Drug Evaluation and Research, United States Food and Drug Administration, 2003).
  • FDA United States Food and Drug Administration
  • Ceftolozane active refers to the active portion of a salt form of ceftolozane, i.e., the free base form of ceftolozane.
  • the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 3.7% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.2% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.5% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 5.0% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 1.8% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1.
  • the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 2.0% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1.
  • the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 2.2% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250 ⁇ 4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH 3 CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1.
  • CXA-101 bulk drug product manufacturing process There are four main steps in the manufacture of CXA-101 bulk drug product: dissolution, sterile filtration, bulk lyophilization, and packaging into Sterbags®. These four main steps are composed of a total of 20 minor steps.
  • the CXA-101 bulk drug product manufacturing process is presented below.
  • WFI water for injection
  • Solution pH is verified to be in the target range of 6.5 to 7.0.
  • a prescribed amount of sodium chloride is added to the solution, wherein the preferred amount of sodium chloride is 125-500 mg of sodium chloride per 1000 mg of ceftolozane active.
  • Solution pH is verified to be in the target range of 6.0 to 7.0. If the pH is out of this range adjust with either L-Arginine or citric acid.
  • the solution is passed through the filter (pore size 0.45 ⁇ m) followed by double filters (pore size 0.22 ⁇ m) onto a shelf on the Criofarma lyophilizer.
  • the washing solution is passed from Step 12 through sterile filtration.
  • the washing solution is loaded onto a separate shelf in the lyophilizer (and later discarded).
  • the solution is lyophilized until dry.
  • the product shelf is cooled to 20° C. ⁇ 5° C.
  • the lyophilized bulk drug product powder is milled.
  • the milled powder is sieved.
  • the sieved powder is blended for 30 minutes.
  • a sterile tilter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) and a 0.1 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) connected in tandem. Confirm the integrity of each filter before and after the filtration. Take approximately 100 mL of the filtrate in order to check bioburden.
  • a sterile filter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter and a 0.1 um polyvinylidene fluoride membrane filter connected in tandem, and introduce the final filtrate into an aseptic room. Confirm the integrity of each filter before and after the filtration.
  • Adjust the fill weight of the filtered compounded solution to 11.37 g (corresponds to 10 mL of the compounded solution), then start filling operation. Check the filled weight in sufficient frequency and confirm it is in target range (11.37 g ⁇ 1%, 11.26 to 11.43 g). When deviation from the control range (11.37 g ⁇ 2%, 11.14 to 11.59 g) is occurred, re-adjust the filling weight.
  • Sodium Perchlorate Buffer Solution was made by dissolving 14.05 g of sodium perchlorate Monohydrate in 1000.0 mL of water followed by adjusting pH to 2.5 with diluted perchloric acid (1 in 20).
  • Sodium Acetate Buffer Solution pH 5.5 (Diluent) was made by dissolving 1.36 g of sodium acetate trihydrate in 1000.0 mL of water followed by adjusting to pH 5.5 with diluted acetic acid (1 in 10).
  • Sample solution dissolve 20.0 mg, exactly weighed, of Sample, in 20.0 mL of water (Prepare just before injection into HPLC system).
  • System Suitability Solution (1%): take 1.0 mL of the Sample Solution (use first sample if more are present) and transfer into a 100.0 mL volumetric flask, dilute with water to volume and mix.
  • a t area of CXA-101 peak in the sample chromatogram
  • ⁇ A i total peak areas of impurities in the sample chromatogram
  • the Amount of Sodium Chloride can be Selected to Stabilize Ceftolozane in Pharmaceutical Compositions
  • the amount of sodium per mg of sodium chloride can be calculated (as known to one of ordinary skill in the art) based on the relative molar weight ratio of sodium and sodium chloride (e.g., 50 mg sodium chloride contains about 20 mg of sodium, etc).
  • ceftolozane in ceftolozane sulfate can similarly be calculated based on the respective molecular molar weights of ceftolozane and ceftolozane sulfate (e.g., 1,147 mg ceftolozane sulfate contains about 1,000 mg of ceftolozane). Accordingly, a composition comprising about 1,147 mg ceftolozane sulfate and 480 mg of sodium chloride also contains 480 mg of sodium chloride per 1,000 mg of ceftolozane.
  • FIG. 5A is Table 3 with data for total purity of ceftolozane measured by HPLC during the 7-day stability test using the HPLC method in Example 2, with the data plotted in the graph of FIG. 5B .
  • FIG. 4 Stability data for amounts of additional substances in the ceftolozane compositions from Table 2 ( FIG. 4 ) as measured by peaks 1, 3 and 7 by HPLC (according to Example 2) are summarized in Tables 4-6, FIGS. 6A , 7 A and 8 A. The data are also plotted in FIGS. 6B , 7 B, and 8 B to show trends of total purity, peak 1, RRT 0.43+peak 3, and peak 7 with respect to sodium chloride (NaCl), respectively.
  • FIG. 5A is Table 3 with total purity of ceftolozane measured by HPLC during the 7-day stability test, with the data plotted in the graph of FIG. 5B .
  • the Amount of Sodium Chloride can be Selected to Stabilize Ceftolozane in Pharmaceutical Compositions Comprising Ceftolozane and Tazobactam
  • a composition comprising ceftolozane, sodium chloride and tazobactam was prepared by co-lyophilizing a stabilizing amount of sodium chloride, ceftolozane sulfate and tazobactam acid in amounts described in Table 7 ( FIG. 9A ) together in an aqueous solution to obtain a stabilized ceftolozane lyophilized composition (“Co-Lyophilized Combo Drug Product”).
  • the components of the composition that was lyophilized to obtain the Co-Lyophilized Combo Drug Product is shown in Table 7 ( FIG. 9A ).
  • this composition included about 484 mg of sodium chloride per 1,000 mg ceftolozane active provided as ceftolozane sulfate, and a weight ratio of about 2:1 between the CXA101 and tazobactam acid.
  • the Co-Lyophilized Combo Drug Product was characterized by amounts of the substances corresponding to HPLC peaks 1-12 that were less than the applicable drug product specification, indicating stabilization of the ceftolozane in the presence of about 484 mg of sodium chloride per 1,000 mg of ceftolozane active.
  • a composition comprising ceftolozane, and a stabilizing amount of sodium chloride was lyophilized, and then blended with a separately lyophilized composition of tazobactam.
  • the stabilized ceftolozane composition was formed by lyophilizing an aqueous solution of the “CXA-101 for Injection Bulk” row of Table 10 ( FIG. 10A ), which was then blended with 5.4 g tazobactam free acid to form a pharmaceutical composition containing ceftolozane, sodium chloride and tazobactam components (“Blend Combo Drug Product”).
  • this composition included about 481 mg of sodium chloride per 1,000 mg ceftolozane active provided as ceftolozane sulfate, and a weight ratio of about 2:1 between the CXA101 and tazobactam acid.
  • Blend Combo Drug Product was characterized by amounts of the substances corresponding to HPLC peaks 1-12 that were less than the applicable drug product specification, indicating stabilization of the ceftolozane in the presence of about 481 mg of sodium chloride per 1,000 mg of ceftolozane active.
  • Example 3 A stability study was carried out at 60° c. as described in Example 3.
  • the sodium chloride content in the CXA-201 compositions is described in Table 13, FIG. 11 .
  • the HPLC data at 60° C. are summarized in Table 14-17, FIGS. 12-15 .

Abstract

Pharmaceutical compositions can include an amount of sodium chloride effective to stabilize ceftolozane in a lyophilized formulation.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 61/792,092, filed Mar. 15, 2013, and U.S. Provisional Patent Application No. 61/793,007, filed Mar. 15, 2013, both of which are incorporated herein in their entirety.
  • TECHNICAL FIELD
  • This disclosure relates to pharmaceutical compositions comprising ceftolozane.
  • BACKGROUND
  • Ceftolozane is a cephalosporin antibacterial agent, also referred to as CXA-101, FR264205, or by chemical names such as (6R,7R)-3-[(5-amino-4-{[(2-aminoethyl)carbamoyl]amino}-1-methyl-1H-pyrazol-2-ium-2-yl)methyl]-7-({(2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-[(1-carboxy-1-methylethoxy)imino]acetyl}amino)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate, and 7β-[(Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-{3-amino-4-[3-(2-aminoethyl)ureido]-2-methyl-1-pyrazolio}methyl-3-cephem-4-carboxylate.
  • The prior art describes a variety of ceftolozane salts. For example, U.S. Pat. No. 7,129,232 discloses ceftolozane hydrogen sulfate salt among other salts “with a base or an acid addition salt such as a salt with an inorganic base, for example, an alkali metal salt [e.g., sodium salt, potassium salt, etc.], an alkaline earth metal salt [e.g., calcium salt, magnesium salt, etc.], an ammonium salt; a salt with an organic base, for example, an organic amine salt [e.g., trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N′-dibenzylethylenediamine salt, etc.]; an inorganic acid addition salt [e.g., hydrochloride, hydrobromide, sulfate, hydrogen sulfate, phosphate, etc.]; an organic carboxylic or sulfonic acid addition salt [e.g., formate, acetate, trifluoroacetate, maleate, tartrate, citrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.]; and a salt with a basic or acidic amino acid [e.g., arginine, aspartic acid, glutamic acid, etc.].” Ceftolozane sulfate is a pharmaceutically acceptable ceftolozane salt of formula (I) that can be formulated for intravenous administration or infusion.
  • Figure US20140274990A1-20140918-C00001
  • Certain pharmaceutical compositions containing ceftolozane are useful as antibiotics for the treatment of certain serious infections, including serious complicated intra-abdominal infections and complicated urinary tract infections. The ceftolozane pharmaceutical compositions can be administered as intravenous antibacterial agents to treat these infection. The antibacterial activity of ceftolozane is believed to result from its interaction with penicillin binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall which acts to stop bacterial replication. Antibacterial pharmaceutical compositions can include a therapeutically effective unit dose of a pharmaceutically acceptable salt of ceftolozane formulated for intravenous administration.
  • As disclosed herein, ceftolozane was unstable in certain lyophilized pharmaceutical compositions initially evaluated for intravenous administration. In particular, a decrease in ceftolozane purity and the formation of multiple additional related substances were detected in certain initial ceftolozane pharmaceutical compositions by peaks in high purity liquid chromatography (HPLC) after stability testing. This testing pointed to the need to develop novel ceftolozane formulations providing increased ceftolozane stability. U.S. Pat. No. 7,129,232 discloses that “auxiliary substances” such as “stabilizing agents . . . and other commonly used additives” may be included in pharmaceutical compositions comprising ceftolozane or many other cephalosporin compounds “if needed.” However, the disclosure does not disclose a reduction in ceftolozane purity in pharmaceutical compositions containing ceftolozane sulfate, or the formation of additional related substances observed during stability testing. Nor does this disclosure provide guidance on the formation of ceftolozane pharmaceutical compositions to increase ceftolozane purity during stability testing or control the relative amounts of ceftolozane related substances detected by HPLC peak formation during stability testing.
  • In view of the above, there is a need for pharmaceutical preparations containing ceftolozane compounds having improved ceftolozane stability.
  • SUMMARY
  • The pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg of sodium chloride (including, e.g., 480-500 mg) per 1,000 mg ceftolozane active in the aqueous solution prior to lyophilization. As disclosed in the Examples herein, high performance liquid chromatography (HPLC) analysis conducted during stability testing of lyophilized ceftolozane pharmaceutical compositions comprising between 50 and 481 mg sodium chloride and 1,000 mg of ceftolozane revealed an improved ceftolozane stability in compositions formed from aqueous solutions having at least 125 mg sodium chloride. Unexpectedly, lyophilized ceftolozane compositions having 125 mg or more sodium chloride relative to the fixed amount of ceftolozane active prior to lyophilization were about 35-90% more stable than comparable ceftolozane compositions having less than 125 mg sodium chloride, as measured by total ceftolozane purity during a 7-day stability study in Example 3. In addition, lyophilized ceftolozane compositions having 125 mg or more sodium chloride relative to the fixed amount of 1,000 mg ceftolozane active in an aqueous solution prior to lyophilization produced lyophilized compositions having lower quantities of additional substances identified by peaks 1 and 7 having characteristic retention times measured by HPLC relative to the retention time of ceftolozane. Unless otherwise indicated, HPLC measurements reported herein refer to HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C. Using this system, the retention time of peaks 1 and 7 are about −0.1 and about 1.3 relative to ceftolozane (an “RRT of 0.1 and 1.3, respectively).
  • In particular, sodium chloride stabilized ceftolozane compositions described in Example 3 were characterized by about 37-94% less of the material of peak 1 and about 38-306% less of the material of peak 7 (measured by corresponding HPLC peak areas) than comparable ceftolozane compositions having less than 125 mg sodium chloride (e.g., see 7-day stability study in Example 3).
  • The disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.06% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C. These sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 1.83% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1.
  • Accordingly, preferred pharmaceutical compositions contain ceftolozane sulfate having an improved stability as a decrease in the rate of ceftolozane purity and/or a decrease in the rate of formation of substances characterized by HPLC peaks 1 and 7 identified during a 7-day stability study in Example 3.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B are chromatograms of CXA-101 ceftolozane drug substance obtained from the lyophilization process of Example 1. The chromatograms were obtained according to the analytical method described in Example 2.
  • FIG. 2 is a diagram of a lyophilization process for the ceftolozane obtained according to the process described in Example 1.
  • FIG. 3 is a table (Table 1) of peaks for the ceftolozane prepared by the lyophilization process in Example 1 obtained by HPLC according to the analytical method of Example 2.
  • FIG. 4 is a table (Table 2) showing the composition of various additional ceftolozane pharmaceutical compositions in which the sodium chloride content is varied.
  • FIG. 5A is a table (Table 3) showing the total purity of ceftolozane in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 5B is a graph showing the total purity of certain pharmaceutical compositions disclosed in FIG. 4, as measured by HPLC peak area.
  • FIG. 6A is a table (Table 4) showing the amount of material from characteristic peak 1 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 6B is a graph showing the amount of material from characteristic peak 1 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 7A is a table (Table 5) showing the amount of material from characteristic peak 3 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 7B is a graph showing the amount of material from characteristic peak 3 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 8A is a table (Table 6) showing the amount of material from characteristic peak 7 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 8B is a graph showing the amount of material from characteristic peak 7 in the pharmaceutical compositions of FIG. 4, as measured by HPLC peak area according to the analytical method of described in Example 2.
  • FIG. 9A is a table (Table 7) showing the formulation composition of the Co-Lyo-Combo Drug Product used in Example 4A.
  • FIG. 9B is a table (Table 8) showing impurity concentrations at time zero, one month and three months at 25° C./60% relative humidity of the Co-Lyo-Combo Drug Product.
  • FIG. 9C is a table (Table 9) showing impurity concentrations at time zero, one month and three months at 40° C./75% relative humidity of the Co-Lyo-Combo Drug Product.
  • FIG. 10A is a table (Table 10) showing the formulation composition of the Blend Drug Product used in Example 4B.
  • FIG. 10B is a table (Table 11) showing impurity concentrations at time zero, one month and three months at 25° C./60% relative humidity of the Blend Drug Product used in Example 4B.
  • FIG. 10C is a table (Table 12) showing impurity concentrations at time zero, one month and three months at 40° C./75% relative humidity of the Blend Drug Product used in Example 4B.
  • FIG. 11 is a table (Table 13) showing the composition of various ceftolozane pharmaceutical compositions in which the sodium chloride concentration is varied.
  • FIG. 12 is a table (Table 14) showing the purity of Ceftolozane in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at at 30° C. and 60° C.
  • FIG. 13 is a table (Table 15) showing the HPLC area of Impurity of Peak 1 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 14 is a table (Table 16) showing the HPLC area of the Impurity at RRT 0.43 and Impurity Peak 3 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 15 is a table (Table 17) showing the HPLC area of Impurity of Peak 7 in CXA-201 Compositions with varying amounts of sodium from sodium chloride at time zero, 1 day, 3 days and 7 days at 30° C. and at 60° C.
  • FIG. 16 is a table (Table 18) showing the finished drug product unit composition of ceftolozane/tazolactam.
  • FIG. 17 is a table (Table 19) showing the primary container closure system for the ceftolozane/tazobactam unit product.
  • DETAILED DESCRIPTION
  • Ceftolozane sulfate can be stabilized in lyophilized pharmaceutical compositions by incorporation of a stabilizing-effective amount of an inorganic salt stabilizing agent in a solution that can be lyophilized to obtain a lyophilized composition containing stabilized ceftolozane. The stabilizing-effective amount of a sodium chloride inorganic salt stabilizing agent is preferably 125 mg to 500 mg (preferably about 480-500 mg) of sodium chloride per 1,000 mg of ceftolozane active.
  • In particular, pharmaceutical compositions comprising ceftolozane and stabilizing amount of sodium chloride can be obtained by lyophilization of a solution comprising a stabilizing-effective amount of sodium chloride and ceftolozane sulfate. Alternatively, they can be obtained by other methods. As is known to those skilled in the art, lyophilization is a process of freeze-drying in which water is sublimed from a frozen solution of one or more solutes. Specific methods of lyophilization are described in Remington's Pharmaceutical Sciences, Chapter 84, page 1565, Eighteenth Edition, A. R. Gennaro, (Mack Publishing Co., Easton, Pa., 1990). A pharmaceutical composition comprising ceftolozane can be prepared by adding a stabilizing amount of sodium chloride in a fixed ratio to ceftolozane in an aqueous solution prior to lyophilization, then lyophilizing the solution to obtain a lyophilized composition comprising sodium chloride and ceftolozane.
  • In particular, the pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg (preferably, 480-500 mg) of sodium chloride per 500 mg ceftolozane active in the aqueous solution prior to lyophilization. The pharmaceutical compositions comprising ceftolozane disclosed herein can be prepared by adding 125 to 500 mg (preferably, 480-500 mg) sodium chloride per 1000 mg of ceftolozane prior to lyophilization (or spray drying). For example, the pharmaceutical compositions can be obtained by a method comprising the steps of adding a stabilizing amount (e.g., 125 to 500 mg [more preferably, 480-500 mg] sodium chloride per 1000 mg of ceftolozane active) followed by lyophilizing (or spray drying) the composition comprising the sodium chloride and ceftolozane. In one aspect (e.g., Example 1), ceftolozane and a stabilizing amount of sodium chloride can be dissolved in an aqueous solution that can be lyophilized (or spray drying) to obtain a ceftolozane pharmaceutical composition.
  • The pharmaceutical compositions may comprise other additional components including stabilizers, pH adjusting additives (e.g., buffers) and the like. Non-limiting examples of these additives include sodium chloride, citric acid and L-arginine. For example, the pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane sulfate with a stabilizing amount of sodium chloride (e.g., 125 to 500 mg [more preferably, 480-500 mg] of sodium chloride per 1,000 mg ceftolozane active), with L-arginine and/or citric acid in the aqueous solution prior to lyophilization. The use of sodium chloride results in greater ceftolozane stability, while an amount of L-arginine can be used that is effective to adjust pH and to increase the solubility of ceftolozane, and citric acid can be included in an amount effective to reduce or prevent discoloration of the product, due to its ability to chelate metal ions. The aqueous solution can be subsequently lyophilized (or spray dried) to obtain a stabilized lyophilized ceftolozane sulfate composition comprising ceftolozane sulfate, sodium chloride, L-arginine and citric acid.
  • The pharmaceutical composition can also be a Ceftolozane/Tazobactam for Injection Drug Product, 1000 mg/500 mg. It is presented as a combination of two sterile active powders in a single vial intended for reconstitution and intravenous infusion.
  • The drug product is first prepared by converting ceftolozane sulfate drug substance to a sterile drug product intermediate (DPI) powder with excipients citric acid, sodium chloride and L-arginine. This is commonly done by lyophilization, as described above. Tazobactam sodium drug substance is presented as a sterile powder without any excipients. The tazobactam sodium drug substance is typically lyophilized (or spray dried). The drug product is then prepared by aseptically filling the two powders (e.g., the two separately lyophilized drug powders or spray dried powders) sequentially into a single vial.
  • Each vial of ceftolozane/tazobactam for injection contains approximately 2255 mg ceftolozane sterile DPI powder that contains 1147 mg ceftolozane sulfate, which is equivalent to 1000 mg ceftolozane free base, as well as approximately 537 mg tazobactam sodium sterile drug substance, equivalent to 500 mg tazobactam free acid. At the time of administration, the vial is reconstituted with 10 mL vehicle, 5% Dextrose Injection USP, sterile Water for Injection or 0.9% Sodium Chloride Injection USP, then the vial contents further diluted in an infusion bag of 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP, for administration. The constituents are shown in Table 18, FIG. 16.
  • The primary container-closure system is a Type 1 20 mL molded glass vial with 20 mm neck finish. The vial is sealed by a 20 mm rubber stopper and 20 mm plastic flip-cap seal with aluminum ferrule. The primary contain-closure system used for the ceftolozane/tazobactam unit product is summarized in Table 19, FIG. 17.
  • In other embodiments, pharmaceutical compositions comprising ceftolozane can be obtained by methods that include the steps of: (1) adding a stabilizing amount of sodium chloride to ceftolozane (or preparing an aqueous solution of sodium chloride and ceftolozane) optionally followed by co-lyophilizing or spray drying the ceftolozane and sodium chloride (or aqueous solution thereof); and (2) combining the product of step (1) with other components. For example, the product of step (1) can be combined with a β-lactamase inhibitor, such as tazobactam (CAS#: 89786-04-9), avibactam (CAS#1192500-31-4), Sulbactam (CAS#68373-14-8) and/or clavulanate (CAS#58001-44-8). The beta lactamase inhibitor can be included in a crystalline or amorpous form, such as a lyophilized tazobactam or crystalline tazobactam (e.g., U.S. Pat. Nos. 8,476,425 and 5,763,603) to obtain the pharmaceutical composition.
  • The stabilizing effect of sodium chloride on ceftolozane can be measured by high performance liquid chromatography (HPLC) analysis, for example by detecting the ratio of peak areas obtained for ceftolozane compared to peaks for other substances. Various ceftolozane compositions having 50-481 mg of sodium chloride per 1,000 mg ceftolozane active as described in Table 2 (FIG. 4) were tested for stability as described in Example 3. The stability testing of lyophilized ceftolozane pharmaceutical compositions (Example 3) revealed improved ceftolozane stability in compositions formed from aqueous solutions having at least 125 mg sodium chloride. Unless otherwise indicated, HPLC measurements reported herein are obtained using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • Unexpectedly, lyophilized ceftolozane compositions having 125 mg more sodium chloride relative to the fixed amount of ceftolozane prior to lyophilization were about 35-90% more stable than comparable ceftolozane compositions having less than 125 mg sodium chloride, as measured by total ceftolozane purity during a 7-day stability study in Example 3. Referring to the data in Table 3 (FIGS. 5A and 5B), the total purity of ceftolozane (measured by HPLC according to Example 2) was measured by the % decrease in the ceftolozane HPLC peak during the 7-day stability test. In particular, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed a decrease in ceftolozane that was at least about 35% less than reductions in ceftolozane observed for formulations containing 50 mg or 75 mg sodium chloride per 1,000 mg ceftolozane active (e.g., the % decrease in ceftolozane for the sample containing 75 mg sodium chloride was about 35% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride). In addition, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed a decrease in ceftolozane that was up to about 90% less than reductions in ceftolozane observed for forulations containing 50 mg or 75 mg sodium chloride per (e.g., the % decrease in ceftolozane for the sample containing 50 mg sodium chloride was about 90% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • In addition, lyophilized ceftolozane compositions having 125 mg more sodium chloride relative to the fixed amount of 1,000 mg ceftolozane active in an aqueous solution prior to lyophilization produced lyophilized compositions having lower quantities of additional substances identified by peaks 1 and 7 having characteristic retention times measured by HPLC (see Table 1, FIG. 3, indicating retention times of about 0.1 for peak 1 and about 1.3 for peak 7 relative to celftolozane measured according to the HPLC method of Example 2). In particular, these sodium chloride stabilized ceftolozane compositions were characterized by about 37-94% less of the material of peak 1 and about 38-306% less of the material of peak 7 (measured by corresponding HPLC peak areas) than comparable ceftolozane compositions having less than 125 mg sodium chloride (e.g., see 7-day stability study in Example 3).
  • Referring to the data in Table 4 (FIGS. 6A and 6B), the amount of the composition of peak 1 (measured by HPLC according to Example 2) was measured by the % increase in the peak 1 HPLC peak during the 7-day stability test of Example 3. In particular, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 37% reduction in the amount of the peak 1 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 1 for the sample containing 75 mg sodium chloride was about 37% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride). In addition, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 94% reduction in the amount of the peak 1 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 1 for the sample containing 50 mg sodium chloride was about 94% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • Referring to the data in Table 5 (FIGS. 7A and 7B), the amount of the composition of peak 3 (measured by HPLC according to Example 2) was measured by the % increase in the peak 1 HPLC peak during the 7-day stability test of Example 3. In particular, samples obtained by lyophilizing compositions containing 125 mg and 190 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 269% reduction in the amount of the peak 3 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 3 for the sample containing 50 mg sodium chloride was about 269% greater than the comparable % decrease in ceftolozane for the sample containing 190 mg sodium chloride). In addition, samples obtained by lyophilizing compositions containing 125 mg or 190 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 333% reduction in the amount of the peak 3 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 3 for the sample containing 75 mg sodium chloride was about 333% greater than the comparable % decrease in ceftolozane for the sample containing 125 mg sodium chloride). The ceftolozane sample containing 481 mg of sodium chloride had a higher amount of the composition of peak 3 than the ceftolozane samples containing 50 mg or 75 mg of sodium chloride.
  • Referring to the data in Table 6 (FIGS. 8A and 8B), the amount of the composition of peak 7 (measured by HPLC according to Example 2) was measured by the % increase in the peak 7 HPLC peak during the 7-day stability test of Example 3. In particular, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed at least a 38% reduction in the amount of the peak 7 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 7 for the sample containing 75 mg sodium chloride was about 38% greater than the comparable % decrease in ceftolozane for the sample containing 125 mg sodium chloride). In addition, samples obtained by lyophilizing compositions containing 125 mg, 190 mg and 481 mg of sodium chloride per 1,000 mg of ceftolozane active showed up to a 306% reduction in the amount of the peak 7 composition observed for these formulations containing at least 125 mg sodium chloride per 1,000 mg ceftolozane active, compared to the compositions obtained by lyophilizing 50 mg or 75 mg sodium chloride per 1,000 mg of ceftolozane active (e.g., the % increase in peak 7 for the sample containing 50 mg sodium chloride was about 306% greater than the comparable % decrease in ceftolozane for the sample containing 481 mg sodium chloride).
  • Accordingly, preferred pharmaceutical compositions contain ceftolozane sulfate having an improved stability as a decrease in the rate of ceftolozane purity and/or a decrease in the rate of formation of substances characterized by HPLC peaks 1 and 7 identified during a 7-day stability study in Example 3. The preferred ceftolozane pharmaceutical compositions comprise a stabilizing amount of sodium chloride (e.g., 125 to 500 mg of sodium chloride per 1000 mg of ceftolozane). Certain preferred compositions demonstrate improved ceftolozane purity (e.g., Table 3 in FIG. 5A) and chemical stability (e.g., with respect to the composition of HPLC peak 1 in Table 4, FIG. 6A) compared pharmaceutical compositions comprising ceftolozane with comparatively less sodium chloride.
  • Pharmaceutical compositions comprising ceftolozane can be formulated to treat infections by parenteral administration (including subcutaneous, intramuscular, and intravenous) administration. Pharmaceutical compositions may additionally comprise excipients, stabilizers, pH adjusting additives (e.g., buffers) and the like. Non-limiting examples of these additives include sodium chloride, citric acid and L-arginine. For example, the use of sodium chloride results in greater stability; L-arginine is used to adjust pH and to increase the solubility of ceftolozane; and citric acid is used to prevent discoloration of the product, due to its ability to chelate metal ions. In one particular embodiment, the pharmaceutical compositions described herein are formulated for administration by intravenous injection or infusion. Pharmaceutical antibiotic compositions can include ceftolozane sulfate and stabilizing amount of sodium chloride (e.g., 125 to 500 mg of sodium chloride per 1,000 mg ceftolozane active) in a lyophilized unit dosage form (e.g., powder in a vial). The unit dosage form can be dissolved with a pharmaceutically acceptable carrier, and then intravenously administered. In another aspect, pharmaceutical antibiotic compositions can include ceftolozane sulfate obtained by a process comprising the steps of lyophilizing an aqueous solution containing ceftolozane and a stabilizing amount of sodium chloride, where the stabilizing amount of sodium chloride is about 125 to 500 mg of sodium chloride per 1,000 mg ceftolozane active in the aqueous solution prior to lyophilization.
  • In one aspect, provided herein is a method for the treatment of bacterial infections in a mammal, comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition prepared according to the methods described herein. A method for the treatment of bacterial infections in a mammal can comprise administering to said mammal a therapeutically effective amount of a pharmaceutical composition comprising ceftolozane sulfate and sodium chloride. Non-limiting examples of bacterial infections that can be treated by the methods of the invention include infections caused by: aerobic and facultative gram-positive microorganisms (e.g., Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumonia, Streptococcus pyogenes, Viridans group streptococci), aerobic and facultative gram-negative microorganisms (e.g., Acinetobacter baumanii, Escherichia coli, Haemophilus influenza, Klebsiella pneumonia, Pseudomonas aeruginosa, Citrobacter koseri, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrhoeae, Proteus mirabilis, Proteus vulgaris, Serratia marcescens, Providencia stuartii, Providencia rettgeri, Salmonella enterica), gram-positive anaerobes (Clostridium perfringens), and gram-negative anaerobes (e.g., Bacteroides fragilis group (e.g., B. fragilis, B. ovatus, B. thetaiotaomicron, and B. vulgates), Bacteroides distasonis, Prevotella melaminogenica). In certain embodiments of the methods described herein, bacterial infection is associated with one or more of the following conditions: complicated intra-abdominal infections, complicated urinary tract infections (cUTIs) and pneumonia (e.g., community-acquired, or nosocomial pneumonia). Community-acquired pneumonia (moderate severity only) can include infections caused by piperacillin-resistant, beta-lactamase producing strains of Haemophilus influenza. Nosocomial pneumonia (moderate to severe) caused by piperacillin-resistant, beta-lactamase producing strains of Staphylococcus aureus and by Acinetobacter baumanii, Haemophilus influenzae, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
  • As used herein, “treating”, “treat” or “treatment” describes the management and care of a patient for the purpose of combating a disease, condition, or disorder and includes the administration of a pharmaceutical composition of the present invention to alleviate the symptoms or complications of a disease, condition or disorder, or to reduce the extent of the disease, condition or disorder. The term “treat” can also include treatment of a cell in vitro or an animal model.
  • By a “therapeutically effective amount” of a compound of the invention is meant a sufficient amount of the compound to treat the disorder (e.g., bacterial infection). The specific therapeutically effective amount that is required for the treatment of any particular patient or organism (e.g., a mammal) will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound or composition employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, “The Pharmacological Basis of Therapeutics”, Tenth Edition, A. Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001, which is incorporated herein by reference in its entirety). The therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment of the ordinary clinician.
  • As used herein, “125-500 mg sodium chloride per 1000 mg of ceftolozane” refers to a ratio of sodium chloride to ceftolozane active. The phrase “125-500 mg sodium chloride per 1000 mg of ceftolozane” includes “62.5 to 250 mg sodium chloride per 500 mg of ceftolozane active” and other similar weight ratios. In addition, “1,000 mg of ceftolozane as ceftolozane sulfate” refers to an amount of ceftolozane sulfate effective to provide 1,000 mg of ceftolozane. The amount of sodium per gram of ceftolozane activity in a pharmaceutical composition containing ceftolozane sulfate and sodium chloride can be calculated using the relevant molecular weights of ceftolozane, ceftolozane sulfate, sodium chloride and sodium.
  • As used herein, “1000 mg ceftolozane” refers to an amount of ceftolozane that is considered a bioequivalent by the United States Food and Drug Administration (FDA), i.e. for which 90% CI of the relative mean Cmax, AUC(0-t) and AUC(0-∞) is within 80.00% to 125.00% of the reference formulation in the fasting state (see: “Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations”. Center for Drug Evaluation and Research, United States Food and Drug Administration, 2003).
  • “Ceftolozane active” refers to the active portion of a salt form of ceftolozane, i.e., the free base form of ceftolozane.
  • In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 3.7% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C. In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.2% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C. In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 4.5% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C. In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions can be characterized by decrease in ceftolozane total purity is not greater than 5.0% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C.
  • In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 1.8% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1. In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 2.0% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1. In another aspect, the disclosed sodium chloride stabilized ceftolozane compositions were characterized by an increase in the amount of the impurity represented by Peak 1 not greater than 2.2% after storing the pharmaceutical composition for seven days at 60° C., as determined by HPLC using a Develosil column ODS-UG-5; 5 micrometers; 250×4.6 mm, a mobile phase of sodium perchlorate buffer solution (pH 2.5)/CH3CN 90:10 (v/v) at a 1.0 mL/min flow rate and oven temperature of 45° C., where Peak 1 has a retention time relative to ceftolozane of 0.1.
  • Illustrative Examples of Selected Embodiments of the Invention Example 1 Manufacturing Procedure of Bulk (Tray) Lyophilized Ceftolozane
  • There are four main steps in the manufacture of CXA-101 bulk drug product: dissolution, sterile filtration, bulk lyophilization, and packaging into Sterbags®. These four main steps are composed of a total of 20 minor steps. The CXA-101 bulk drug product manufacturing process is presented below.
  • I. Dissolution
  • 1. The prescribed amount of water for injection (“WFI”) is charged into the dissolution reactor.
  • 2. A prescribed amount of citric acid is added.
  • 3. The solution is cooled at 5° C. to 10° C.
  • 4. A prescribed amount of CXA-101 drug substance is added to the solution.
  • 5. A prescribed amount of L-arginine is slowly added to the solution.
  • 6. A check for complete dissolution is performed. Solution pH is verified to be in the target range of 6.5 to 7.0.
  • 7. A prescribed amount of sodium chloride is added to the solution, wherein the preferred amount of sodium chloride is 125-500 mg of sodium chloride per 1000 mg of ceftolozane active.
  • 8. A check for complete dissolution is performed. Solution pH is verified to be in the target range of 6.0 to 7.0. If the pH is out of this range adjust with either L-Arginine or citric acid.
  • 9. WFI is added to bring the net weight to 124.4 kg and the solution is mixed well.
  • 10. Samples are withdrawn for testing of final pH.
  • II. Sterile Filtration
  • 11. The solution is passed through the filter (pore size 0.45 μm) followed by double filters (pore size 0.22 μm) onto a shelf on the Criofarma lyophilizer.
  • 12. The line is washed with WFI.
  • 13. The washing solution is passed from Step 12 through sterile filtration.
  • III. Bulk Lyophilization
  • 14. The washing solution is loaded onto a separate shelf in the lyophilizer (and later discarded).
  • 15. The solution is lyophilized until dry.
  • 16. The product shelf is cooled to 20° C.±5° C.
  • IV. Packaging into Sterbags®
  • 17. The lyophilized bulk drug product powder is milled.
  • 18. The milled powder is sieved.
  • 19. The sieved powder is blended for 30 minutes.
  • 20. The powder is then discharged into Sterbags®
  • Prefiltration and Sterile-Filtration
  • Filtrate the compounded solution with a sterile tilter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) and a 0.1 um polyvinylidene fluoride membrane filter (Durapore®, Millipore) connected in tandem. Confirm the integrity of each filter before and after the filtration. Take approximately 100 mL of the filtrate in order to check bioburden.
  • Filter the prefiltered compounded solution through a sterile filter-set which consists of a 0.2 um polyvinylidene fluoride membrane filter and a 0.1 um polyvinylidene fluoride membrane filter connected in tandem, and introduce the final filtrate into an aseptic room. Confirm the integrity of each filter before and after the filtration.
  • Processing of Vial, Stopper and Flip-Off Cap
  • Wash a sufficient quantity of 28 mL vials with water for injection and sterilize the washed vials by a dry-heat sterilizer. Then transfer the sterilized vials into a Grade A area located in an aseptic room.
  • Wash a sufficient quantity of stoppers with, water for injection. Sterilize and dry the washed stoppers by steam sterilizer. Then transfer the sterilized stoppers into a Grade A area located in an aseptic room.
  • Sterilize a sufficient quantity of flip-off caps by steam sterilizer. Then transfer the sterilized flip-off caps into a Grade A or B area located in an aseptic room.
  • Filling and Partially Stoppering
  • Adjust the fill weight of the filtered compounded solution to 11.37 g (corresponds to 10 mL of the compounded solution), then start filling operation. Check the filled weight in sufficient frequency and confirm it is in target range (11.37 g±1%, 11.26 to 11.43 g). When deviation from the control range (11.37 g±2%, 11.14 to 11.59 g) is occurred, re-adjust the filling weight.
  • Immediately after a vial is filled, partially stopper the vial with a sterilized stopper. Load the filled and partially stoppered vials onto the shelves of a lyophilizer aseptically.
  • Lyophilization to Crimping, Visual Inspection, Labeling and Packaging
  • After all filled and partially stoppered vials are loaded into a lyophilizer, start the lyophilization program shown in FIG. 2. Freeze the loaded vials at −40° C. and keep until all vials freeze. Forward the program to primary drying step (shelf temperature; −20° C., chamber pressure; 100 to 150 mTorr). Primary drying time should be determined by monitoring the product temperature. Forward the program to secondary drying step (shelf temperature; 30° C., chamber pressure; not more than 10 mTorr) after completion of the primary drying step. After all vials are dried completely, return the chamber pressure to atmospheric pressure with sterilized nitrogen. Then stopper vials completely.
  • Unload the lyophilized vials from the chamber and crimp with sterilized flip-off caps.
  • Subject all crimped vials to visual inspection and label and package all passed vials.
  • Example 2 Analytical HPLC Method A. Operative Conditions
  • Column Develosil ODS-UG-5; 5 μm, 250 × 4.6 mm
    (Nomura Chemical, Japan)
    Mobile phase Sodium Perchlorate Buffer Solution
    (PH 2.5)/CH3CN 90:10 (vlv)
    Flow rate 1.0 mL/min
    Wavelength 254 nm
    Injection volume
    10 μL
    Oven Temperature 45° C.
    Run Time 85 minutes
  • Gradient Profile:
  • Time (min) A % B %
    0 75 25
    30 70 30
    60 0 100
    85 0 100
    85.1 75 25
    110 75 25
  • B. Mobile Phase Preparation.
  • Sodium Perchlorate Buffer Solution was made by dissolving 14.05 g of sodium perchlorate Monohydrate in 1000.0 mL of water followed by adjusting pH to 2.5 with diluted perchloric acid (1 in 20).
  • Mobile Phase was then made by mixing Sodium Perchlorate Buffer Solution (pH 2.5) and acetonitrile in the ratio 90:10 (v/v).
  • Sodium Acetate Buffer Solution pH 5.5 (Diluent) was made by dissolving 1.36 g of sodium acetate trihydrate in 1000.0 mL of water followed by adjusting to pH 5.5 with diluted acetic acid (1 in 10).
  • C. Sample Preparation.
  • Sample solution: dissolve 20.0 mg, exactly weighed, of Sample, in 20.0 mL of water (Prepare just before injection into HPLC system).
  • System Suitability Solution (1%): take 1.0 mL of the Sample Solution (use first sample if more are present) and transfer into a 100.0 mL volumetric flask, dilute with water to volume and mix.
  • D. HPLC Analysis Procedure
  • 1. Inject Blank (water)
    2. Inject System Suitability Solution and check for tailing factor and theoretical plate number for CXA-101 peak:
      • The tailing factor must not be greater than 1.5
      • Theoretical plates number must not be less than 10000
    3. Inject Sample Solution
  • 4. Inject System Suitability Solution and check for tailing factor and theoretical plate number for CXA-101 peak.
      • The tailing factor must not be greater than 1.5
      • Theoretical plates number must not be less than 10000
        5. Identify the peaks of Related Substances in the Sample chromatogram based on the reference chromatogram reported in FIGS. 1A and 1B or, alternatively, on the basis of the RRT values reported in Table 1 (FIG. 3), with a retention time of about 0.14 relative to ceftolozane is believed to have the chemical structure of formula (II):
  • Figure US20140274990A1-20140918-C00002
  • E. Calculations
  • I. Report for each related substance its amount as expressed by area percent.
  • C i = A i × 100 A t + A i
  • wherein:
  • Ci=Amount of related substance i in the Sample, area %
  • Ai=Peak area of related substance i in the Sample chromatogram
  • At=Area of CXA-101 peak in the Sample chromatogram
  • At+Σ Ai=Total peaks area in the Sample chromatogram
  • Consider as any Unspecified Impurity, each peak in the chromatogram except CXA-101, peaks from 1 to 11 and every peak present in the blank chromatogram and report the largest.
  • II. Report the total impurities content as expressed by the following formula:
  • C T = A i × 100 A t + A i
  • wherein:
  • CT=total impurities content in the Sample, area %
  • At=area of CXA-101 peak in the sample chromatogram
  • Σ Ai=total peak areas of impurities in the sample chromatogram
  • Example 3 The Amount of Sodium Chloride can be Selected to Stabilize Ceftolozane in Pharmaceutical Compositions
  • Multiple stability studies were performed on ceftolozane sulfate, wherein the effect of varying amounts of sodium chloride on the stability of ceftolozane was examined.
  • The amount of sodium per mg of sodium chloride can be calculated (as known to one of ordinary skill in the art) based on the relative molar weight ratio of sodium and sodium chloride (e.g., 50 mg sodium chloride contains about 20 mg of sodium, etc).
  • The amount of ceftolozane in ceftolozane sulfate can similarly be calculated based on the respective molecular molar weights of ceftolozane and ceftolozane sulfate (e.g., 1,147 mg ceftolozane sulfate contains about 1,000 mg of ceftolozane). Accordingly, a composition comprising about 1,147 mg ceftolozane sulfate and 480 mg of sodium chloride also contains 480 mg of sodium chloride per 1,000 mg of ceftolozane.
  • A. CXA-101 Purity Increases in Compositions Having at Least about 125 Mg NaCl/1,000 Mg Ceftolozane Active
  • A stability study was carried out at 60° C. as described herein. Sodium chloride content in test samples is described in Table 2 (FIG. 4). The samples were formulated with 481, 190, 125, 75, and 50 mg sodium chloride per 1 g of ceftolozane active.
  • FIG. 5A is Table 3 with data for total purity of ceftolozane measured by HPLC during the 7-day stability test using the HPLC method in Example 2, with the data plotted in the graph of FIG. 5B.
  • B. The Amount of Substances Identified by HPLC Peaks 1 and 7 Decreases in Compositions Having at Least about 125 Mg NaCl/1,000 Mg Ceftolozane Active
  • A stability study was carried out at and 60° C. as described herein. Sodium chloride content in test samples is described in Table 2 (FIG. 4). The samples were formulated with 481, 190, 125, 75, and 50 mg sodium chloride per 1 g of ceftolozane active.
  • Stability data for amounts of additional substances in the ceftolozane compositions from Table 2 (FIG. 4) as measured by peaks 1, 3 and 7 by HPLC (according to Example 2) are summarized in Tables 4-6, FIGS. 6A, 7A and 8A. The data are also plotted in FIGS. 6B, 7B, and 8B to show trends of total purity, peak 1, RRT 0.43+peak 3, and peak 7 with respect to sodium chloride (NaCl), respectively. FIG. 5A is Table 3 with total purity of ceftolozane measured by HPLC during the 7-day stability test, with the data plotted in the graph of FIG. 5B.
  • Example 4 The Amount of Sodium Chloride can be Selected to Stabilize Ceftolozane in Pharmaceutical Compositions Comprising Ceftolozane and Tazobactam
  • A. Stabilized Ceftolozane Compositions Co-Lyophilized with Tazobactam
  • A composition comprising ceftolozane, sodium chloride and tazobactam was prepared by co-lyophilizing a stabilizing amount of sodium chloride, ceftolozane sulfate and tazobactam acid in amounts described in Table 7 (FIG. 9A) together in an aqueous solution to obtain a stabilized ceftolozane lyophilized composition (“Co-Lyophilized Combo Drug Product”). The components of the composition that was lyophilized to obtain the Co-Lyophilized Combo Drug Product is shown in Table 7 (FIG. 9A). Notably, this composition included about 484 mg of sodium chloride per 1,000 mg ceftolozane active provided as ceftolozane sulfate, and a weight ratio of about 2:1 between the CXA101 and tazobactam acid.
  • The results of a stability study of the Co-Lyophilized Combo Drug Product are shown in Table 8 (FIG. 9B) and Table 9 (FIG. 9C) as representative examples that summarize the results at 25° C./RH=60% and 40° C./RH=75% after one month (T1) and three months (T2). Samples were analyzed using a HPLC method as described in Example 2.
  • Referring to the data in Tables 8 and 9, the Co-Lyophilized Combo Drug Product was characterized by amounts of the substances corresponding to HPLC peaks 1-12 that were less than the applicable drug product specification, indicating stabilization of the ceftolozane in the presence of about 484 mg of sodium chloride per 1,000 mg of ceftolozane active.
  • B. Stabilized Ceftolozane Compositions Lyophilized without Tazobactam
  • A composition comprising ceftolozane, and a stabilizing amount of sodium chloride was lyophilized, and then blended with a separately lyophilized composition of tazobactam. The stabilized ceftolozane composition was formed by lyophilizing an aqueous solution of the “CXA-101 for Injection Bulk” row of Table 10 (FIG. 10A), which was then blended with 5.4 g tazobactam free acid to form a pharmaceutical composition containing ceftolozane, sodium chloride and tazobactam components (“Blend Combo Drug Product”). Notably, this composition included about 481 mg of sodium chloride per 1,000 mg ceftolozane active provided as ceftolozane sulfate, and a weight ratio of about 2:1 between the CXA101 and tazobactam acid.
  • The results of a stability study of the Blend Combo Drug Product are shown in Table 11 (FIG. 10B) and Table 12 (FIG. 10C) as representative examples that summarize the results at 25° C./RH=60% and 40° C./RH=75% after one month (T1) and three months (T2). Samples were analyzed using a HPLC method as described in Example 2.
  • Referring to the data in tables 11 and 12, the Blend Combo Drug Product was characterized by amounts of the substances corresponding to HPLC peaks 1-12 that were less than the applicable drug product specification, indicating stabilization of the ceftolozane in the presence of about 481 mg of sodium chloride per 1,000 mg of ceftolozane active.
  • Example 5 Improvement in the Purity of Ceftolozane CXA-201 Pharmaceutical Compositions with Varying Amounts of Sodium Chloride
  • A stability study was carried out at 60° c. as described in Example 3. The sodium chloride content in the CXA-201 compositions is described in Table 13, FIG. 11. The HPLC data at 60° C. are summarized in Table 14-17, FIGS. 12-15.

Claims (18)

What is claimed is:
1. A pharmaceutical composition comprising stabilized ceftolozane sulfate obtained by a process comprising lyophilizing an aqueous solution comprising 125 mg to 500 mg sodium chloride with an amount of ceftolozane sulfate providing 1,000 mg of ceftolozane active, to obtain the lyophilized stabilized ceftolozane sulfate composition.
2. The pharmaceutical composition of claim 1, wherein the stabilized ceftolozane is obtained by lyophilizing the sodium chloride and ceftolozane sulfate with L-arginine.
3. The pharmaceutical composition of claim 2, wherein the stabilized ceftolozane is obtained by lyophilizing an aqueous solution having a pH of about 6.0 to 7.0.
4. The pharmaceutical composition of claim 1, wherein the stabilized ceftolozane is obtained by lyophilizing the sodium chloride and ceftolozane sulfate with L-arginine and citric acid.
5. The pharmaceutical composition of claim 1, wherein the pharmaceutical composition is formulated for parenteral administration.
6. The pharmaceutical composition of claim 5, wherein the composition is a unit dosage form in a vial comprising 125 mg to 500 mg sodium chloride, 1,000 mg of ceftolozane in the form of ceftolozane sulfate, and L-arginine.
7. The pharmaceutical composition of claim 1, formulated for parenteral administration.
8. The pharmaceutical composition of claim 1, wherein the pH of the aqueous solution is 6.0 to 7.0.
9. A unit dosage form container comprising a pharmaceutical composition of stabilized ceftolozane sulfate, obtained by a process comprising the step of
a. lyophilizing an aqueous solution comprising 125 mg to 500 mg sodium chloride with an amount of ceftolozane sulfate providing 1,000 mg of ceftolozane active, to obtain the lyophilized stabilized ceftolozane sulfate composition;
b. filling the lyophilized stabilized ceftolozane composition into a unit dosage form container.
10. The unit dosage form container of claim 9, wherein the stabilized ceftolozane is obtained by lyophilizing the sodium chloride and ceftolozane sulfate with L-arginine.
11. The unit dosage form container of claim 9, wherein the stabilized ceftolozane is obtained by lyophilizing the sodium chloride and ceftolozane sulfate with L-arginine and citric acid.
12. The unit dosage form container of claim 10, wherein the stabilized ceftolozane is obtained by lyophilizing an aqueous solution having a pH of about 6.0 to 7.0.
13. The unit dosage form container of claim 9, wherein pharmaceutical composition is formulated for parenteral administration.
14. The unit dosage form container of claim 13, wherein the composition is a unit dosage form in a vial comprising 125 mg to 500 mg sodium chloride, 1,000 mg of ceftolozane in the form of ceftolozane sulfate, and L-arginine.
15. The pharmaceutical composition of claim 1, further comprising tazobactam or a pharmaceutically acceptable salt thereof.
16. The unit dosage form container of claim 9, further comprising tazobactam sodium.
17. The unit dosage form container of claim 14, further comprising lyophilized tazobactam sodium.
18. A unit dosage form of a pharmaceutical composition comprising 1,000 mg ceftolozane and 500 mg tazobactam, the pharmaceutical composition formulated for parenteral administration for the treatment of complicated intra-abdominal infections or complicated urinary tract infections, the pharmaceutical composition comprising ceftolozane sulfate and tazobactam, obtained by a process comprising the steps of:
a. lyophlizing an aqueous solution to obtain a lyophilized ceftolozane composition, wherein the aqueous solution comprises water, ceftolozane sulfate, 125-500 mg sodium chloride per 1,000 mg ceftolozane active in the aqueous solution, an amount of L-arginine to provide a pH of 6-7 in the solution prior to lyophilization;
b. blending the lyophilized ceftolozane composition with a lyophilized tazobactam composition in an amount providing about 500 mg tazobactam free active per 1,000 mg of ceftolozane active to obtain the unit dosage form.
US14/212,781 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions Abandoned US20140274990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/212,781 US20140274990A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361793007P 2013-03-15 2013-03-15
US201361792092P 2013-03-15 2013-03-15
US14/212,781 US20140274990A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions

Publications (1)

Publication Number Publication Date
US20140274990A1 true US20140274990A1 (en) 2014-09-18

Family

ID=51522651

Family Applications (12)

Application Number Title Priority Date Filing Date
US14/213,532 Abandoned US20140274991A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions
US14/214,367 Abandoned US20140274996A1 (en) 2013-03-15 2014-03-14 Tazobactam and ceftolozane antibiotic compositions
US14/214,221 Active US9320740B2 (en) 2013-03-15 2014-03-14 Ceftolozane-tazobactam pharmaceutical compositions
US14/214,417 Abandoned US20140274997A1 (en) 2013-03-15 2014-03-14 Cephalosporin pharmaceutical compositions
US14/214,212 Abandoned US20140274993A1 (en) 2013-03-15 2014-03-14 Ceftolozane-tazobactam pharmaceutical compositions
US14/212,590 Abandoned US20140275000A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions
US14/212,781 Abandoned US20140274990A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions
US14/285,185 Active US8968753B2 (en) 2013-03-15 2014-05-22 Ceftolozane-tazobactam pharmaceutical compositions
US14/522,893 Abandoned US20150045336A1 (en) 2013-03-15 2014-10-24 Tazobactam and ceftolozane antibiotic compositions
US14/531,352 Abandoned US20150150883A1 (en) 2013-03-15 2014-11-03 Ceftolozane-tazobactam pharmaceutical compositions
US15/071,530 Active US9925196B2 (en) 2013-03-15 2016-03-16 Ceftolozane-tazobactam pharmaceutical compositions
US15/895,279 Abandoned US20180169106A1 (en) 2013-03-15 2018-02-13 Ceftolozane-tazobactam pharmaceutical compositions

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US14/213,532 Abandoned US20140274991A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions
US14/214,367 Abandoned US20140274996A1 (en) 2013-03-15 2014-03-14 Tazobactam and ceftolozane antibiotic compositions
US14/214,221 Active US9320740B2 (en) 2013-03-15 2014-03-14 Ceftolozane-tazobactam pharmaceutical compositions
US14/214,417 Abandoned US20140274997A1 (en) 2013-03-15 2014-03-14 Cephalosporin pharmaceutical compositions
US14/214,212 Abandoned US20140274993A1 (en) 2013-03-15 2014-03-14 Ceftolozane-tazobactam pharmaceutical compositions
US14/212,590 Abandoned US20140275000A1 (en) 2013-03-15 2014-03-14 Ceftolozane pharmaceutical compositions

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/285,185 Active US8968753B2 (en) 2013-03-15 2014-05-22 Ceftolozane-tazobactam pharmaceutical compositions
US14/522,893 Abandoned US20150045336A1 (en) 2013-03-15 2014-10-24 Tazobactam and ceftolozane antibiotic compositions
US14/531,352 Abandoned US20150150883A1 (en) 2013-03-15 2014-11-03 Ceftolozane-tazobactam pharmaceutical compositions
US15/071,530 Active US9925196B2 (en) 2013-03-15 2016-03-16 Ceftolozane-tazobactam pharmaceutical compositions
US15/895,279 Abandoned US20180169106A1 (en) 2013-03-15 2018-02-13 Ceftolozane-tazobactam pharmaceutical compositions

Country Status (1)

Country Link
US (12) US20140274991A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968753B2 (en) 2013-03-15 2015-03-03 Calixa Therapeutics, Inc. Ceftolozane-tazobactam pharmaceutical compositions
US9044485B2 (en) 2013-03-15 2015-06-02 Calixa Therapeutics, Inc. Ceftolozane antibiotic compositions
US9724353B2 (en) 2011-09-09 2017-08-08 Merck Sharp & Dohme Corp. Methods for treating intrapulmonary infections
US9872906B2 (en) 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US10376496B2 (en) 2013-09-09 2019-08-13 Merck, Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
CN110314163A (en) * 2018-03-30 2019-10-11 杭州森泽医药科技有限公司 A kind of latamoxef sodium pharmaceutical composition and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001301T5 (en) 2007-05-14 2010-04-29 Reserach Foundation Of State University Of New York Induction of a physiological dispersion response in bacterial cells in a biofilm
KR102143256B1 (en) * 2012-09-27 2020-08-11 머크 샤프 앤드 돔 코포레이션 Tazobactam arginine antibiotic compositions
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance

Family Cites Families (266)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL37879A (en) 1970-10-27 1974-12-31 Ciba Geigy Ag 3-unsubstituted cephalosporin derivatives,process for their manufacture and compositions containing them
US4299829A (en) 1976-03-12 1981-11-10 Fujisawa Pharmaceutical Co., Ltd. 2-Lower alkyl-7-substituted-2 or 3-cephem 4-carboxylic acid compounds
PH17188A (en) 1977-03-14 1984-06-14 Fujisawa Pharmaceutical Co New cephem and cepham compounds and their pharmaceutical compositions and method of use
US4409217A (en) 1977-03-14 1983-10-11 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4464369A (en) 1977-03-14 1984-08-07 Fujisawa Pharmaceutical Co., Ltd. 7-Acylamino-3-cephem-4-carboxylic acid derivatives and pharmaceutical compositions
US4496562A (en) 1977-03-14 1985-01-29 Fujisawa Pharmaceutical Co., Ltd. 7-Substituted-3-cephem-4-carboxylic acid esters
JPS543087A (en) 1977-06-03 1979-01-11 Fujisawa Pharmaceut Co Ltd Preparation of cephalosporin compound
GB1604738A (en) 1977-07-28 1981-12-16 Yamanouchi Pharma Co Ltd 1,3-dithietane-2-carboxylic acid derivatives and the preparation thereof
JPS609719B2 (en) 1977-08-06 1985-03-12 武田薬品工業株式会社 Cephalosporin derivatives and their production method
US4370326A (en) 1977-09-13 1983-01-25 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds and composition
IT1192287B (en) 1977-11-14 1988-03-31 Fujisawa Pharmaceutical Co PHARMACEUTICAL ACTION DERIVATIVES OF CEPHALOSPORANIC ACID AND RELATED PREPARATION PROCEDURE
US4363807A (en) 1978-04-06 1982-12-14 Fujisawa Pharmaceutical Company, Limited Cepham compounds
SE7804231L (en) 1978-04-14 1979-10-15 Haessle Ab Gastric acid secretion
AR228726A1 (en) 1978-05-26 1983-04-15 Glaxo Group Ltd PROCEDURE FOR THE PREPARATION OF ANTIBIOTIC (6R, 7R) -7 - ((Z) -2- (2-AMINOTIAZOL-4-IL) -2- (2-CARBOXIPROP-2-OXIIMINO) ACETAMIDO) -3- (1- PIRIDINIOMETIL) CEF-3-EM-4-CARBOXILATO
US4264597A (en) 1978-06-06 1981-04-28 Masashi Hashimoto Cephalosporin analogues and processes for the preparation thereof
US4268509A (en) 1978-07-10 1981-05-19 Fujisawa Pharmaceutical Co., Ltd. New cephem compounds and processes for preparation thereof
US4284631A (en) 1978-07-31 1981-08-18 Fujisawa Pharmaceutical Co., Ltd. 7-Substituted cephem compounds and pharmaceutical antibacterial compositions containing them
US4305937A (en) 1978-08-17 1981-12-15 Fujisawa Pharmaceutical Co., Ltd. 2-Lower alkyl-7-substituted-2 or 3-cephem-4-carboxylic acid compounds and antibacterial pharmaceutical compositions containing them
US4703046A (en) 1978-09-08 1987-10-27 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds and processes for preparation thereof
EP0009671B1 (en) 1978-09-12 1984-06-13 Fujisawa Pharmaceutical Co., Ltd. Starting compounds for preparing cephem compounds and processes for their preparation
US4327093A (en) 1978-10-24 1982-04-27 Fujisawa Pharmaceutical Co., Ltd. 3,7-Disubstituted-2 or 3-cephem-4-carboxylic acid compounds
DE2945248A1 (en) 1978-11-13 1980-05-22 Fujisawa Pharmaceutical Co CEPHEM COMPOUNDS, METHOD FOR THEIR PRODUCTION AND ANTIBACTERIAL PHARMACEUTICAL AGENTS CONTAINING THE SAME
US4332798A (en) 1978-12-29 1982-06-01 Fujisawa Pharmaceutical Co., Ltd. 7-Amino-thia-diazole oxyimino derivatives of cephem and cephem compounds
US4390534A (en) 1978-12-29 1983-06-28 Fujisawa Pharmaceutical Co., Ltd. Cephem and cepham compounds
AU536842B2 (en) 1978-12-29 1984-05-24 Fujisawa Pharmaceutical Co., Ltd. Cephalosporin antibiotics
US4291031A (en) 1979-02-19 1981-09-22 Fujisawa Pharmaceutical Co., Ltd. 3-Phosphonocephalosporanic acid derivatives, and pharmaceutical composition comprising the same
US4339449A (en) 1979-03-27 1982-07-13 Fujisawa Pharmaceutical Company, Limited Analogous compounds of cephalosporins, and pharmaceutical composition comprising the same
FR2462439A1 (en) 1979-07-26 1981-02-13 Roussel Uclaf NOVEL PROCESS FOR THE PREPARATION OF PRODUCTS DERIVED FROM 7 - / (2-ARYL) 2-HYDROXYIMINO ACETAMIDO / CEPHALOSPORANIC ACID
DE3069560D1 (en) 1979-09-03 1984-12-06 Fujisawa Pharmaceutical Co Cephem compounds, processes for their preparation and pharmaceutical compositions containing them
US4332800A (en) 1979-10-12 1982-06-01 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4338313A (en) 1979-10-12 1982-07-06 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4381299A (en) 1980-03-07 1983-04-26 Fujisawa Pharmaceutical Co., Ltd. 7-Amino-thiadiazole oxyimino derivatives of cephem and cepham compounds
US4409215A (en) 1979-11-19 1983-10-11 Fujisawa Pharmaceutical Co., Ltd. 7-Acylamino-3-substituted cephalosporanic acid derivatives and processes for the preparation thereof
US4409214A (en) 1979-11-19 1983-10-11 Fujisawa Pharmaceutical, Co., Ltd. 7-Acylamino-3-vinylcephalosporanic acid derivatives and processes for the preparation thereof
US4420477A (en) 1979-11-30 1983-12-13 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4443443A (en) 1979-12-17 1984-04-17 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4405617A (en) 1980-02-11 1983-09-20 Fujisawa Pharmaceutical Co., Ltd. 3-(Propynyltetrazol)thiomethyl-3-cephems
JPS56125392A (en) 1980-03-06 1981-10-01 Fujisawa Pharmaceut Co Ltd Cepham and cephem compound and preparation thereof
US4470980A (en) 1980-03-07 1984-09-11 Interx Research Corp. Method of increasing oral absorption of β-lactam antibiotics
JPS5711909A (en) 1980-06-23 1982-01-21 Shionogi & Co Ltd Stable freeze-dried preparation of beta-lactam
DE3173613D1 (en) 1980-07-04 1986-03-13 Fujisawa Pharmaceutical Co 7-oxo-cephalosporins and 6-oxo-penicillins, their analogues and process for their preparation
US4443444A (en) 1980-08-11 1984-04-17 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
EP0156118A1 (en) 1980-08-29 1985-10-02 Fujisawa Pharmaceutical Co., Ltd. New starting compounds for the preparation of cephem compounds and processes for preparation thereof
US4416879A (en) 1980-09-08 1983-11-22 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
GR78245B (en) 1980-09-12 1984-09-26 Ciba Geigy Ag
US4367228A (en) 1980-10-29 1983-01-04 Fujisawa Pharmaceutical Co., Ltd. Cephem compound and composition
US4431642A (en) 1980-12-01 1984-02-14 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
DK554481A (en) 1980-12-15 1982-06-16 Fujisawa Pharmaceutical Co METHOD OF PREPARING CEPHALOSPORANIC ACID DERIVATIVES
EP0055465B1 (en) 1980-12-31 1989-08-23 Fujisawa Pharmaceutical Co., Ltd. 7-acylaminocephalosporanic acid derivatives and processes for the preparation thereof
US4427677A (en) 1980-12-31 1984-01-24 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
GR76342B (en) 1981-02-02 1984-08-06 Fujisawa Pharmaceutical Co
US4336253A (en) 1981-03-11 1982-06-22 Eli Lilly And Company Cephalosporin antibiotics
JPS6011917B2 (en) 1981-04-09 1985-03-28 山之内製薬株式会社 Novel cephalosporin compounds
DE3118732A1 (en) 1981-05-12 1982-12-02 Hoechst Ag, 6000 Frankfurt CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION
JPS57193489A (en) 1981-05-21 1982-11-27 Fujisawa Pharmaceut Co Ltd Syn-isomer of 7-substituted-3-cephem-4-carboxylic acid ester and its preparation
GR75487B (en) 1981-06-22 1984-07-23 Fujisawa Pharmaceutical Co
IE53429B1 (en) 1981-08-03 1988-11-09 Fujisawa Pharmaceutical Co New cephem compounds and processes for preparation thereof
US4577014A (en) 1981-09-08 1986-03-18 Eli Lilly And Company Thieno and furopyridinium-substituted cephalosporins
US4436912A (en) 1981-09-08 1984-03-13 Eli Lilly And Company 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido cephalosporin antibiotics and intermediates therefor
US4430499A (en) 1981-09-08 1984-02-07 Eli Lilly And Company 7-[2-(2-Aminooxazol-4-yl)-2-(oximino)acetamido]cephalosporin antibiotics
JPS5859991A (en) 1981-09-14 1983-04-09 Fujisawa Pharmaceut Co Ltd Novel cephem compound and its preparation
US4521413A (en) 1981-09-14 1985-06-04 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4450270A (en) 1981-10-02 1984-05-22 Eli Lilly And Company Dioximino cephalosporin antibiotics
US4402955A (en) 1981-10-02 1983-09-06 Eli Lilly And Company Dioximino cephalosporin antibiotics
US4501739A (en) 1982-01-19 1985-02-26 Eli Lilly And Company Thieno and furopyridinium-substituted cephalosporins
DE3207840A1 (en) 1982-03-04 1983-09-15 Hoechst Ag, 6230 Frankfurt "CEPHALOSPORINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF"
JPS58154547A (en) 1982-03-09 1983-09-14 Nippon Shinyaku Co Ltd Stabilization of azulene derivative
US4640915A (en) 1982-03-29 1987-02-03 Fujisawa Pharmaceutical Co., Ltd. 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid derivatives
AU541028B2 (en) 1982-06-21 1984-12-13 Taiho Pharmaceutical Co., Ltd. 6-unsubstituted penicillin derivatives
JPS58225091A (en) 1982-06-21 1983-12-27 Taiho Yakuhin Kogyo Kk Penicillin derivative and its preparation
US4563449A (en) 1982-07-19 1986-01-07 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4546101A (en) 1982-09-10 1985-10-08 Fujisawa Pharmaceutical Co., Ltd. New cephem compounds useful for treating infectious diseases in human being and animals and processes for preparation thereof
GB8323034D0 (en) 1983-08-26 1983-09-28 Fujisawo Pharmaceutical Co Ltd 7-substituted-3-vinyl-3-cephem compounds
US4609730A (en) 1982-11-22 1986-09-02 Fujisawa Pharmaceutical Co., Ltd. 7-[substituted imino-2-(2-aminothiazol-4-yl)-acetamido]-3(2,2-dihalovinyl or ethynyl)-3-cephem-4-carboxylic acid (syn isomers), having antimicrobial activities
GR79043B (en) 1982-12-06 1984-10-02 Fujisawa Pharmaceutical Co
US4608373A (en) 1982-12-13 1986-08-26 Yamanouchi Pharmaceutical Co., Ltd. Cephem compounds
US4487768A (en) 1982-12-22 1984-12-11 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4463003A (en) 1982-12-22 1984-07-31 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
DE3247613A1 (en) 1982-12-23 1984-07-05 Hoechst Ag, 6230 Frankfurt CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION
US4562073A (en) 1982-12-24 1985-12-31 Taiho Pharmaceutical Company Limited Penicillin derivatives
US4499088A (en) 1983-01-04 1985-02-12 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
DE3316798A1 (en) 1983-05-07 1984-11-08 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING CEPHEM COMPOUNDS
FR2550200B1 (en) 1983-08-01 1988-04-08 Fujisawa Pharmaceutical Co PROCESS FOR THE PREPARATION OF CEPHEM COMPOUNDS WITH ANTIMICROBIAL ACTIVITY AND NOVEL PRODUCTS THUS OBTAINED
JPS6045514A (en) 1983-08-22 1985-03-12 Shionogi & Co Ltd Stable antibacterial lyophilized pharmactical preparation
DE3409431A1 (en) 1983-10-08 1985-04-18 Hoechst Ag, 6230 Frankfurt CEPHALOSPORINE DERIVATIVES AND METHOD FOR THEIR PRODUCTION
EP0137442A3 (en) 1983-10-08 1986-01-15 Hoechst Aktiengesellschaft Cephalosporin derivatives and process for their preparation
US4690921A (en) 1983-10-11 1987-09-01 Yamanouchi Pharmaceutical Co., Ltd. Cephalosporin compounds and salts thereof
ZA847926B (en) 1983-10-17 1986-05-28 Lilly Co Eli 3-bicyclicpyridinium-methyl cephalosporins
US4748172A (en) 1983-10-17 1988-05-31 Eli Lilly And Company 3-bicyclicpyridinium-methyl cephalosporins
US4692443A (en) 1983-10-17 1987-09-08 Eli Lilly And Company 3-bicyclicpyridinium-methyl cephalosporins
GB8329030D0 (en) 1983-10-31 1983-11-30 Fujisawa Pharmaceutical Co Cephem compounds
GB8401093D0 (en) 1984-01-16 1984-02-15 Fujisawa Pharmaceutical Co Cephem compounds
JPS60169486A (en) 1984-02-10 1985-09-02 Yamanouchi Pharmaceut Co Ltd Preparation of 7-amino-3-substituted methyl-3-cephem-4- carboxylic acid and lower alkylsilyl derivative thereof
GB8406231D0 (en) 1984-03-09 1984-04-11 Fujisawa Pharmaceutical Co Cephem compounds
JPS60214792A (en) 1984-04-06 1985-10-28 Taiho Yakuhin Kogyo Kk Penamylacid ester derivative
US4705851A (en) 1984-09-28 1987-11-10 Fujisawa Pharmaceutical Co., Ltd. Process for the preparation of 3-phosphoniummethyl-3-cephem compounds
US4761410A (en) 1985-01-14 1988-08-02 Fujisawa Pharmaceutical Co., Ltd. Cephem Compounds
NZ214864A (en) 1985-01-21 1988-04-29 Sankei Yakuhin Kk #b#-lactam compounds
GB8504072D0 (en) 1985-02-18 1985-03-20 Fujisawa Pharmaceutical Co Cephem compounds
JPS62103092A (en) 1985-07-18 1987-05-13 Sagami Chem Res Center Beta-lactam derivative
JPS6230789A (en) 1985-08-01 1987-02-09 Yamanouchi Pharmaceut Co Ltd 7-formylaminocephalosporin compound and production thereof
CN86107947A (en) 1985-11-22 1987-05-27 藤沢药品工业株式会社 New cephem compounds and preparation method thereof
US5194432A (en) 1985-11-22 1993-03-16 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4808617A (en) 1985-12-18 1989-02-28 Bristol-Myers Company Lyophilized or precipitated cephalosporin zwitterion and salt combination
JPS62158290A (en) 1985-12-28 1987-07-14 Banyu Pharmaceut Co Ltd Novel cephalosporin derivative
EP0237735B1 (en) 1986-03-17 1994-03-30 Fujisawa Pharmaceutical Co., Ltd. 3,7-Disubstituted-3-cephem compounds and process for production of the same
JP2690009B2 (en) 1986-07-10 1997-12-10 エーザイ 株式会社 Cefalosporin injection
US4833134A (en) 1986-08-19 1989-05-23 Takeda Chemical Industries, Ltd. Cephem compounds
JPS6351388A (en) 1986-08-22 1988-03-04 Teijin Ltd Cephalosporin derivative, production thereof and composition having antimicrobial activity
JPS6351389A (en) 1986-08-22 1988-03-04 Teijin Ltd Cephalosporin derivative, production thereof and composition having antimicrobial activity
US5162520A (en) 1986-09-22 1992-11-10 Fujisawa Pharmaceutical Co., Ltd. Intermediates for cephem compounds
CA1293719C (en) 1986-09-22 1991-12-31 Takao Takaya Cephem compounds and processes for preparation thereof
US4882434A (en) 1986-10-29 1989-11-21 Takeda Chemical Industries, Ltd. Gamma-lactonecarboxylic acid derivatives and their use as antibacterial agents or intermediates
KR880006244A (en) 1986-11-24 1988-07-22 후지사와 도모 기찌 로 3-Pyrrolidinylthio-1-azabibischloro [3.2.0] hapt2-ene-2-carboxylic acid compound and preparation method thereof
EP0272455B1 (en) 1986-11-24 1993-02-10 Fujisawa Pharmaceutical Co., Ltd. 3-Pyrrolidinylthio-1-azabicyclo [3.2.0] hept-2-ene-2-carboxylic acid compounds
AU1630988A (en) 1987-05-30 1988-12-01 Kyoto Pharmaceutical Industries, Ltd. Cephalosporin compound and pharmaceutical composition thereof
IE61679B1 (en) 1987-08-10 1994-11-16 Fujisawa Pharmaceutical Co Water-soluble antibiotic composition and water-soluble salts of new cephem compounds
US5138066A (en) 1987-08-14 1992-08-11 Hoffmann-La Roche, Inc. Intermediates for cephalosporins with sulfur-containing oxyimino side chain
EP0303172A3 (en) 1987-08-14 1991-05-15 F. Hoffmann-La Roche Ag Oxyimino-cephalosporins
US5073550A (en) 1987-08-14 1991-12-17 Hoffmann-La Roche Inc. Cephalosphorins with sulfur-containing oxyimino side chain
ZA885709B (en) 1987-08-19 1989-04-26 Fujisawa Pharmaceutical Co Novel crystalline 7-(2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-3-vinyl-3-cephem-4-carboxylic acid(syn isomer)
US5663163A (en) 1987-09-07 1997-09-02 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds and processes for preparation thereof
US5210080A (en) 1987-09-07 1993-05-11 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
IE63094B1 (en) 1987-09-14 1995-03-22 Fujisawa Pharmaceutical Co Cephem compound and a process for preparation thereof
DK637888A (en) 1987-11-24 1989-05-25 Hoffmann La Roche carboxylic esters
GB8804058D0 (en) 1988-02-22 1988-03-23 Fujisawa Pharmaceutical Co 3-alkenyl-1-azabicyclo(3 2 0)hept-2-ene-2-carboxylic acid compounds
JP2648750B2 (en) 1988-03-02 1997-09-03 大塚化学株式会社 Method for producing β-lactam derivative
US5173485A (en) 1988-03-09 1992-12-22 Fujisawa Pharmaceutical Company, Ltd. Cephem compounds
US5336768A (en) 1988-05-24 1994-08-09 Hoffmann-La Roche Inc. Antibacterial cephalosporin compounds
CS273349B2 (en) 1988-03-31 1991-03-12 Hoffmann La Roche Method of cephalosporin's new derivatives production
KR900006811B1 (en) 1988-05-11 1990-09-21 주식회사 럭 키 Cephalosphorin derivatives and its process
US4963544A (en) 1988-05-23 1990-10-16 Fujisawa Pharmaceutical Company, Ltd. 3-pyrrolidinylthio-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylic acid compounds
US5244890A (en) 1988-06-06 1993-09-14 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
EP0366189A3 (en) 1988-10-24 1992-01-02 Norwich Eaton Pharmaceuticals, Inc. Novel antimicrobial lactam-quinolones
JP2785195B2 (en) 1989-01-11 1998-08-13 ソニー株式会社 Optical encoder for disk drive
GB8905301D0 (en) 1989-03-08 1989-04-19 Fujisawa Pharmaceutical Co New cephem compound and a process for preparation thereof
US5081116A (en) 1989-04-12 1992-01-14 Yamanouchi Pharmaceutical Co., Ltd. Cephalosporin derivatives
US5102877A (en) 1989-04-28 1992-04-07 Fujisawa Pharmaceutical Co., Ltd. 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds
NO903360L (en) 1989-08-11 1991-02-12 Ici Pharma ANTIBIOTIC COMPOUNDS.
GB8923844D0 (en) 1989-10-23 1989-12-13 Fujisawa Pharmaceutical Co Carbapenem compounds
US5215982A (en) 1989-11-10 1993-06-01 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
US4982596A (en) 1990-01-26 1991-01-08 Buell Industries, Inc. Die for manufacturing a fastener blank
KR910015587A (en) 1990-02-27 1991-09-30 후지사와 토모키치로 Cefem compound
US5095012A (en) 1990-08-23 1992-03-10 Bristol-Myers Squibb Company Antibiotic c-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof
US5234920A (en) 1990-08-23 1993-08-10 Bristol-Myers Squibb Company Antibiotic C-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof
US5286721A (en) 1990-10-15 1994-02-15 Fujisawa Pharmaceutical Co., Ltd. 1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid compounds
GB9023479D0 (en) 1990-10-29 1990-12-12 Fujisawa Pharmaceutical Co New cephem compounds and processes for preparation thereof
US5281589A (en) 1991-06-15 1994-01-25 Cheil Foods & Chemicals, Inc. 3-fused pyridiniummethyl cephalosporins
US5523400A (en) 1993-04-16 1996-06-04 Hoffmann-La Roche Inc. Cephalosporin antibiotics
KR100194994B1 (en) 1993-06-05 1999-06-15 손경식 New cefem compound
EP0678095A1 (en) 1993-11-06 1995-10-25 Taiho Pharmaceutical Co., Ltd. Crystalline penicillin derivative, and its production and use
EP0664117A1 (en) 1994-01-25 1995-07-26 F. Hoffmann-La Roche Ag Liposome solutions
TW293010B (en) 1994-04-20 1996-12-11 Hui-Po Wang Method for preparing cephalosporin derivatives
KR100248851B1 (en) 1994-08-16 2000-04-01 이치로 키타사토 A novel cephem derivative
DE4440141A1 (en) 1994-11-10 1996-05-15 Hoechst Ag Novel crystalline cephem acid addition salts and process for their preparation
JPH09110877A (en) 1995-10-17 1997-04-28 Katayama Seiyakushiyo:Kk Cephem compound, its production and antibacterial agent containing the compound
ATE341554T1 (en) 1996-04-04 2006-10-15 Shionogi & Co CEPHEM COMPOUNDS AND MEDICATIONS CONTAINING THESE COMPOUNDS
AUPN955596A0 (en) 1996-04-30 1996-05-23 Fujisawa Pharmaceutical Co., Ltd. New compound
WO1999028308A1 (en) 1997-11-29 1999-06-10 Truett William L Antibiotics and process for preparation
US6235311B1 (en) 1998-03-18 2001-05-22 Bristol-Myers Squibb Company Pharmaceutical composition containing a combination of a statin and aspirin and method
CA2319495A1 (en) 1998-06-08 1999-12-16 Advanced Medicine, Inc. Multibinding inhibitors of microsomal triglyceride transferase protein
WO2000004915A1 (en) 1998-07-23 2000-02-03 Intrabiotics Pharmaceuticals, Inc. Compositions and methods for the treatment or prevention of pulmonary infections
TW526202B (en) 1998-11-27 2003-04-01 Shionogi & Amp Co Broad spectrum cephem having benzo[4,5-b]pyridium methyl group of antibiotic activity
CN1109688C (en) 1999-01-12 2003-05-28 中国药品生物制品检定所 Preparation and application of tazobactam semihydrate
US6207661B1 (en) 1999-02-22 2001-03-27 Baxter International Inc. Premixed formulation of piperacillin sodium and tazobactam sodium injection
TWI233805B (en) 1999-07-01 2005-06-11 Fujisawa Pharmaceutical Co Stabilized pharmaceutical composition in lyophilized form as antifungal agent
BR0013366A (en) 1999-08-16 2002-07-23 Revaax Pharmaceuticals Llc Methods to treat a behavioral disorder, a human patient, prostate disease, anxiety and cognitive disorders in a human patient afflicted with a condition or willing to develop a condition distinguished at least in part by the concentration of abnormal extracellular glutamate in the brain or in other nervous tissue, behavioral disorder in human, canine, feline and equine species and a patient afflicted with or willing to develop a disease comprising abnormally high glutamate concentrations in neuronal tissue or elevated naaladase levels in prostate tissue and with multiple sclerosis and to enhance cognitive function, pharmaceutical formulation and uses of an inhibitor of peptidase activity of an acidic dipeptidase bound in n-acetylated alpha and a beta-lactam compound
WO2001080858A1 (en) 2000-04-24 2001-11-01 Daiichi Pharmaceutical Co., Ltd. Stable liquid preparation
JP3743822B2 (en) 2000-08-11 2006-02-08 大塚化学ホールディングス株式会社 Penicillin crystals and production method thereof
JP3743823B2 (en) 2000-08-11 2006-02-08 大塚化学ホールディングス株式会社 Penicillin crystals and production method thereof
US6599893B2 (en) 2000-08-29 2003-07-29 Essential Therapeutics, Inc. Cephalosporin antibiotics and prodrugs thereof
JP3306473B1 (en) 2001-05-01 2002-07-24 大塚化学株式会社 Anhydrous crystal of β-lactam compound and method for producing the same
DE60209341T2 (en) 2001-05-01 2006-08-03 Astellas Pharma Inc. Cephem CONNECTIONS
JP2002338578A (en) 2001-05-14 2002-11-27 Otsuka Chem Co Ltd HYDRATE CRYSTAL OF beta-LACTAM COMPOUND
US7166626B2 (en) 2001-06-18 2007-01-23 Revaax Pharmaceuticals, Llc Therapeutic treatment for sexual dysfunction
TWI335332B (en) 2001-10-12 2011-01-01 Theravance Inc Cross-linked vancomycin-cephalosporin antibiotics
US7378408B2 (en) 2001-11-30 2008-05-27 Pfizer Inc. Methods of treatment and formulations of cephalosporin
WO2003066053A1 (en) 2002-02-07 2003-08-14 Rutgers, The State University Antibiotic polymers
TW200305422A (en) 2002-03-18 2003-11-01 Shionogi & Co Broad spectrum cefem compounds
WO2003099858A1 (en) 2002-05-24 2003-12-04 Theravance, Inc. Cross-linked glycopeptide-cephalosporin antibiotics
AU2002309162A1 (en) 2002-06-07 2003-12-22 Orchid Chemicals And Pharmaceuticals Limited Process for preparation of penam derivatives from cepham derivatives
WO2004019901A2 (en) 2002-08-30 2004-03-11 Orchid Chemicals & Pharmaceuticals Ltd. Sustained release pharmaceutical composition
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
JP4448821B2 (en) 2002-10-30 2010-04-14 アステラス製薬株式会社 Cephem compound
AU2003274518A1 (en) 2002-11-01 2004-05-25 Orchid Chemicals And Pharmaceuticals Ltd A process for the preparation of benzyl 2-oxo-4- (heteroaryl) dithio-alpha-isoprenyl-1- azetidineazetate derivatives
EP1908850B1 (en) 2002-11-22 2012-01-04 The Johns Hopkins University Target for therapy of cognitive impairment
DE10304403A1 (en) 2003-01-28 2004-08-05 Röhm GmbH & Co. KG Process for the preparation of an oral dosage form with immediate disintegration and drug release
JP4288086B2 (en) 2003-02-25 2009-07-01 大日本印刷株式会社 Exposure equipment
WO2004098643A1 (en) 2003-04-14 2004-11-18 Wyeth Holdings Corporation Compositions containing piperacillin and tazobactam useful for injection
PL1468697T3 (en) 2003-04-14 2008-05-30 Wyeth Corp Compositions containing piperacillin and tazobactam useful for injection
AU2003902380A0 (en) 2003-05-16 2003-06-05 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
ATE450540T1 (en) 2003-05-23 2009-12-15 Theravance Inc CROSS-LINKED GLYCOPEPTIDE CEPHALOSPORIN ANTIBIOTICS
EP1644382B1 (en) 2003-07-11 2008-03-05 Theravance, Inc. Cross-linked glycopeptide-cephalosporin antibiotics
US8173840B2 (en) 2003-07-29 2012-05-08 Signature R&D Holdings, Llc Compounds with high therapeutic index
US7589233B2 (en) 2003-07-29 2009-09-15 Signature R&D Holdings, Llc L-Threonine derivatives of high therapeutic index
US7273935B2 (en) 2003-08-21 2007-09-25 Orchid Chemicals & Pharmaceuticals, Ltd. Process for the preparation of 3-methylcepham derivatives
DE602004026451D1 (en) 2003-09-18 2010-05-20 Astellas Pharma Inc Cephem CONNECTIONS
FR2860235A1 (en) 2003-09-29 2005-04-01 Yang Ji Chemical Company Ltd USE OF A COMPOUND OF FORMULA (I) INHIBITOR OF AROMATASE FOR THERAPEUTIC PURPOSES AND COMPOUNDS OF FORMULA (I) AS SUCH
TW200523264A (en) 2003-10-09 2005-07-16 Otsuka Chemical Co Ltd CMPB crystal and method for producing the same
TW200519119A (en) 2003-10-10 2005-06-16 Otsuka Chemical Co Ltd PENAM crystal and process for producing the same
JP4535366B2 (en) 2003-12-03 2010-09-01 塩野義製薬株式会社 Method for producing cephem agent
EP1711178A1 (en) 2004-01-30 2006-10-18 Wyeth Compositions substantially free of galactomannan containing piperacillin and tazobactam
WO2005078848A2 (en) 2004-02-11 2005-08-25 University Of Tennessee Research Foundation Inhibition of tumor growth and invasion by anti-matrix metalloproteinase dnazymes
CA2557988A1 (en) 2004-03-05 2005-09-15 Shionogi & Co., Ltd. 3-pyridinium methylcephem compound
US7417143B2 (en) 2004-04-07 2008-08-26 Orchid Chemicals & Pharmaceuticals Limited Process for the preparation of Tazobactam in pure form
JP2008516967A (en) 2004-10-14 2008-05-22 ワイス Composition comprising piperacillin, tazobactam and aminocarboxylic acid in a dilute solution of sodium lactate
US20060099253A1 (en) 2004-10-20 2006-05-11 Wyeth Antibiotic product formulation
US20060173177A1 (en) 2005-01-28 2006-08-03 Gego Csaba L Process for preparation of penam derivatives
EP1848413B1 (en) 2005-02-14 2014-04-09 Venus Remedies Limited Parenteral combination therapy for infective conditions with drug resistant bacterium
KR100822519B1 (en) 2005-02-15 2008-04-16 주식회사종근당 Gastric-retentive controlled release mono-matrix tablet
AU2006339311A1 (en) 2005-06-07 2007-09-07 Foamix Ltd. Antibiotic kit and composition and uses thereof
ITMI20051630A1 (en) 2005-09-02 2007-03-03 Acs Dobfar Spa INJECTABLE STERILE PHARMACEUTICAL FORMULATION CONTAINING AT LEAST TWO ACTIVE PRINCIPLES
EP1928410A2 (en) 2005-09-29 2008-06-11 Nektar Therapeutics Antibiotic formulations, unit doses, kits, and methods
EP1787641A1 (en) 2005-11-22 2007-05-23 Helm AG Tazobactam-piperacillin lyophilisate
ATE485043T1 (en) 2005-12-05 2010-11-15 Sandoz Ag METHOD FOR PRODUCING LYOPHILIZED PIPERACILLIN SODIUM IN COMBINATION WITH TAZOBACTAM SODIUM, WITH IMPROVED STABILITY AFTER RECONSTITUTION
WO2007086014A1 (en) 2006-01-25 2007-08-02 Jegannathan Srinivas Formulation comprising cefpirome, tazobactam and linezolid
WO2007086013A1 (en) 2006-01-25 2007-08-02 Jegannathan Srinivas Formulation comprising of ceftazidime, tazobactam and linezolid
WO2007086011A1 (en) 2006-01-25 2007-08-02 Jegannathan Srinivas Formulation comprising cefepime, tazobactam and linezolid
WO2008075207A2 (en) 2006-04-04 2008-06-26 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
WO2007129176A2 (en) 2006-04-28 2007-11-15 Wockhardt Ltd Improvements in therapy for treating resistant bacterial infections
WO2007145868A1 (en) 2006-06-07 2007-12-21 Wyeth Treating cystic fibrosis with antibiotics via an aerosol drug
US20070286818A1 (en) 2006-06-07 2007-12-13 Wyeth Treating cystic fibrosis with antibiotics via an aerosol drug
US20070286817A1 (en) 2006-06-07 2007-12-13 Wyeth Treating cystic fibrosis with antibiotics via a swirler delivery
WO2007145866A1 (en) 2006-06-07 2007-12-21 Wyeth Treating cystic fibrosis with antibiotics via a swirler delivery
EP2046802B1 (en) 2006-07-12 2013-08-21 Allecra Therapeutics GmbH 2-substituted methyl penam derivatives
CN101129381B (en) 2006-08-25 2012-02-01 天津和美生物技术有限公司 Antibiotic compound containing beta-lactam antibiotic and ion chelating agent
CN101129382B (en) 2006-08-25 2013-12-25 天津和美生物技术有限公司 Antibiotic compound containing beta-lactam antibiotic and buffering component
CN101129383B (en) 2006-08-25 2014-04-02 天津和美生物技术有限公司 Antibiotic compound containing aminoglycoside antibiotic
NZ575435A (en) 2006-09-07 2012-01-12 Merial Ltd Soft chewable, tablet, and long-acting injectable veterinary antibiotic formulations
US20080103121A1 (en) 2006-10-30 2008-05-01 Gole Dilip J Cephalosporin derivative formulation
FI119678B (en) 2006-11-28 2009-02-13 Ipsat Therapies Oy Use of beta-lactamase
JP5324463B2 (en) 2006-12-10 2013-10-23 チョンシー ユー Transdermal delivery system for β-lactam antibiotics
DE102007009242A1 (en) 2007-02-22 2008-09-18 Evonik Röhm Gmbh Pellets with enteric-coated matix
WO2008113177A1 (en) 2007-03-20 2008-09-25 Centre De Recherche Sur Les Biotechnologies Marines Compositions comprising polyunsaturated fatty acid monoglycerides or derivatives thereof and uses thereof
ITMI20070568A1 (en) 2007-03-22 2008-09-23 Acs Dobfar Spa INJECTABLE STERILE PHARMACEUTICAL COMOSIATION HAVING PIPERACILLIN SODIUM AND TAZOBACTAM SODIUM AS ACTIVE PRINCIPLES
US20090098088A1 (en) 2007-10-10 2009-04-16 The Procter & Gamble Company Methods And Kits For The Treatment Of Diverticular Conditions
US8673970B2 (en) 2008-02-21 2014-03-18 Sequoia Pharmaceuticals, Inc. HIV protease inhibitor and cytochrome p450 inhibitor combinations
JP2011514902A (en) 2008-03-04 2011-05-12 エラン・ファルマ・インターナショナル・リミテッド Stable liquid formulations of anti-infectives and controlled anti-infective regimens
ITPI20080025A1 (en) 2008-03-31 2009-10-01 Italmed S R L COMPOSITION FOR DENTAL USE FOR THE TREATMENT OF PERIMPLANTS
WO2009134948A1 (en) 2008-05-01 2009-11-05 The Procter & Gamble Company Methods and kits for the treatment of inflammatory bowel disorder conditions
WO2010014285A1 (en) 2008-07-30 2010-02-04 Estabrook Pharmaceuticals, Inc. Compositions including clavulanic acid and related methods of use
CN101434610B (en) 2008-12-19 2011-07-20 齐鲁天和惠世制药有限公司 Penam iodide, preparation and use thereof
AU2010257905B2 (en) 2009-06-10 2016-11-10 Techfields Biochem Co., Ltd. High penetration compositions or prodrugs of antimicrobials and antimicrobial-related compounds
JP2013500974A (en) 2009-07-28 2013-01-10 アナコール ファーマシューティカルズ,インコーポレイテッド Trisubstituted boron-containing molecules
CN101696212B (en) 2009-08-28 2012-01-11 海南美大制药有限公司 High-purity tazobactam sodium compound
EP2536408A1 (en) 2010-02-16 2012-12-26 Wockhardt Research Centre Efflux pump inhibitors
US20130203726A1 (en) 2010-03-09 2013-08-08 Terry Roemer FtsZ INHIBITORS AS POTENTIATORS OF BETA-LACTAM ANTIBIOTICS AGAINST METHICILLIN-RESISTANT STAPHYLOCOCCUS
EP2555767A4 (en) 2010-04-06 2013-08-28 Prescience Labs Llc Methods of treatment using 3-bromopyruvate and other selective inhibitors of atp production
CN102020663B (en) 2010-11-24 2013-04-03 山东鑫泉医药有限公司 Tazobactam synthesis method
CN102382123A (en) 2011-03-10 2012-03-21 海南美好西林生物制药有限公司 Preparation method of tazobactam sodium
AU2011373912B2 (en) 2011-07-26 2016-09-29 Wockhardt Limited Pharmaceutical compositions comprising beta-lactam antibiotic, sulbactam and beta-lactamase inhibitor
PL2748165T3 (en) 2011-08-27 2017-05-31 Wockhardt Limited 1,6-diazabicyclo[3,2,1]octan-7-one derivatives and their use in the treatment of bacterial infections.
JP6151257B2 (en) 2011-09-09 2017-06-21 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Treatment of pulmonary infections
US8969570B2 (en) 2012-03-30 2015-03-03 Cubist Pharmaceuticals, Inc. Beta-lactamase inhibitors
TW201343645A (en) 2012-03-30 2013-11-01 Cubist Pharm Inc 1,3,4-oxadiazole and 1,3,4-thiadiazole β-lactamase inhibitors
SG11201406120SA (en) 2012-03-30 2014-10-30 Cubist Pharm Inc ISOXAZOLE β-LACTAMASE INHIBITORS
US8916709B2 (en) 2012-03-30 2014-12-23 Cubist Pharmaceuticals, Inc. 1,2,4-oxadiazole and 1,2,4-thiadiazole β-lactamase inhibitors
US8809314B1 (en) 2012-09-07 2014-08-19 Cubist Pharmacueticals, Inc. Cephalosporin compound
KR102143256B1 (en) 2012-09-27 2020-08-11 머크 샤프 앤드 돔 코포레이션 Tazobactam arginine antibiotic compositions
US8476425B1 (en) 2012-09-27 2013-07-02 Cubist Pharmaceuticals, Inc. Tazobactam arginine compositions
US9872906B2 (en) * 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US20140274991A1 (en) 2013-03-15 2014-09-18 Cubist Pharmaceuticals, Inc. Ceftolozane pharmaceutical compositions
KR102226197B1 (en) 2013-03-15 2021-03-11 머크 샤프 앤드 돔 코포레이션 Ceftolozane antibiotic compositions
US20150072968A1 (en) * 2013-09-09 2015-03-12 Calixa Therapeutics, Inc. Treating Infections with Ceftolozane/Tazobactam in Subjects Having Impaired Renal Function
US20160228448A1 (en) * 2013-09-27 2016-08-11 Merck Sharp & Dohme Corp. Solid Forms of Ceftolozane
US8906898B1 (en) * 2013-09-27 2014-12-09 Calixa Therapeutics, Inc. Solid forms of ceftolozane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9724353B2 (en) 2011-09-09 2017-08-08 Merck Sharp & Dohme Corp. Methods for treating intrapulmonary infections
US10028963B2 (en) 2011-09-09 2018-07-24 Merck Sharp & Dohme Corp. Methods for treating intrapulmonary infections
US8968753B2 (en) 2013-03-15 2015-03-03 Calixa Therapeutics, Inc. Ceftolozane-tazobactam pharmaceutical compositions
US9044485B2 (en) 2013-03-15 2015-06-02 Calixa Therapeutics, Inc. Ceftolozane antibiotic compositions
US9320740B2 (en) 2013-03-15 2016-04-26 Merck Sharp & Dohme Corp. Ceftolozane-tazobactam pharmaceutical compositions
US9872906B2 (en) 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US9925196B2 (en) 2013-03-15 2018-03-27 Merck Sharp & Dohme Corp. Ceftolozane-tazobactam pharmaceutical compositions
US10420841B2 (en) 2013-03-15 2019-09-24 Merck, Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US11278622B2 (en) 2013-03-15 2022-03-22 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US10376496B2 (en) 2013-09-09 2019-08-13 Merck, Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
US10933053B2 (en) 2013-09-09 2021-03-02 Merck Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
CN110314163A (en) * 2018-03-30 2019-10-11 杭州森泽医药科技有限公司 A kind of latamoxef sodium pharmaceutical composition and application

Also Published As

Publication number Publication date
US8968753B2 (en) 2015-03-03
US20180169106A1 (en) 2018-06-21
US9320740B2 (en) 2016-04-26
US20140274991A1 (en) 2014-09-18
US9925196B2 (en) 2018-03-27
US20140275000A1 (en) 2014-09-18
US20140274993A1 (en) 2014-09-18
US20140274998A1 (en) 2014-09-18
US20140274997A1 (en) 2014-09-18
US20140274996A1 (en) 2014-09-18
US20140262868A1 (en) 2014-09-18
US20150045336A1 (en) 2015-02-12
US20150150883A1 (en) 2015-06-04
US20160193221A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US20140274990A1 (en) Ceftolozane pharmaceutical compositions
US20140274994A1 (en) Stabilizing ceftolozane
US11278622B2 (en) Ceftolozane antibiotic compositions
AU2015200599B2 (en) Ceftolozane Antibiotic Compositions
NZ711823B2 (en) Ceftolozane antibiotic compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: CUBIST PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TERRACCIANO, JOSEPH;DAMOUR, NICOLE MILLER;REEL/FRAME:032552/0473

Effective date: 20140326

AS Assignment

Owner name: CALIXA THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUBIST PHARMACEUTICALS, INC.;REEL/FRAME:033972/0841

Effective date: 20140603

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALIXA THERAPEUTICS, INC.;REEL/FRAME:037198/0658

Effective date: 20150610