US20140268908A1 - Converter topologies - Google Patents

Converter topologies Download PDF

Info

Publication number
US20140268908A1
US20140268908A1 US14/214,896 US201414214896A US2014268908A1 US 20140268908 A1 US20140268908 A1 US 20140268908A1 US 201414214896 A US201414214896 A US 201414214896A US 2014268908 A1 US2014268908 A1 US 2014268908A1
Authority
US
United States
Prior art keywords
inverter
waveform
electrically coupled
converter
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/214,896
Other versions
US9584044B2 (en
Inventor
Yan Zhou
Haiyu Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enphase Energy Inc
Original Assignee
Solarbridge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solarbridge Technologies Inc filed Critical Solarbridge Technologies Inc
Priority to US14/214,896 priority Critical patent/US9584044B2/en
Publication of US20140268908A1 publication Critical patent/US20140268908A1/en
Assigned to SUNPOWER CORPORATION reassignment SUNPOWER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOLARBRIDGE TECHNOLOGIES, INC.
Assigned to ENERGY, UNITED STATES DEPARTMENT OF reassignment ENERGY, UNITED STATES DEPARTMENT OF CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: SOLARBRIDGE TECHNOLOGIES, INC.
Assigned to ENERGY, UNITED STATES DEPARTMENT OF reassignment ENERGY, UNITED STATES DEPARTMENT OF CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: SOLARBRIDGE TECHNOLOGIES, INC.
Assigned to SOLARBRIDGE TECHNOLOGIES, INC. reassignment SOLARBRIDGE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, Haiyu, ZHOU, YAN
Application granted granted Critical
Publication of US9584044B2 publication Critical patent/US9584044B2/en
Assigned to ENPHASE ENERGY, INC. reassignment ENPHASE ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNPOWER CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/5381Parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates, generally, to power converters for converting direct current (DC) power to alternating current (AC) power and, more particularly, to boost converter topologies for stepping up DC power.
  • Power inverters convert a DC power to an AC power.
  • some power inverters are configured to convert the DC power to an AC power suitable for supplying energy to an AC grid and, in some cases, an AC load that may or may not be coupled to the AC grid.
  • One particular application for such power inverters is the conversion of DC power generated by an alternative energy source, such as photovoltaic cells (“PV cells” or “solar cells”), fuel cells, DC wind turbine, DC water turbine, and other DC power sources, to a single-phase AC power for delivery to the AC grid at the grid frequency.
  • PV cells photovoltaic cells
  • the amount of power that can be delivered by certain alternative energy sources, such as PV cells may vary in magnitude over time due to temporal variations in operating conditions.
  • the output of a typical PV cell will vary as a function of variations in sunlight intensity, angle of incidence of sunlight, ambient temperature and other factors.
  • Such power inverters typically include a DC-DC converter to step up the voltage from a relatively low DC voltage (e.g., 30 V) to a power bus voltage of the inverter (e.g., 400 V).
  • the converter may be designed with any one of a number of different topologies. Common topologies include, for example, an isolated boost converter design, a “flyback” converter design, and a “series-LLC” converter design, each of which have distinct operational characteristics and/or components.
  • the isolated boost converter is a “hard-switched” converter (i.e., the switches and diodes simultaneously experience a high current and high voltage stress during a switching transition) and often includes an active clamp circuit across a switch bridge to absorb mismatched current and limit the voltage.
  • the flyback design is a generally simple converter topology having relatively simple control and gate drive requirements but has significant switch stresses and is an inherently hard-switched design.
  • the series-LLC converter has an inherently soft-switched design and low voltage stresses and typically does not require an active clamp circuit.
  • series-LLC converters are fundamentally voltage-fed; because the input voltage generated by the PV cells may vary significantly over time, series-LLC converters must account for such variation. Accordingly, voltage-fed topologies tend to “step down” the voltage prior to boosting voltage (e.g., via a turns ratio of the transformer), which can result in inefficiency for the converter.
  • an inverter may be associated with one or more solar cell panels.
  • some systems include strings of solar cell panels that deliver a relatively high, combined voltage (e.g., nominal 450 V) to a single, large inverter.
  • an inverter may be associated with each solar cell panel.
  • the solar cell panels are typically small, relatively low voltage (e.g., 25 V).
  • the inverter may be placed in close proximity to the associated solar cell panel to increase the conversion efficiency of the overall system.
  • an inverter for converting an input direct current (DC) waveform from a DC source to an output alternating current (AC) waveform for delivery to an AC grid may include an input converter electrically coupled to a DC power bus.
  • the input converter may be configured to convert the input DC waveform to a bus waveform supplied to the DC power bus.
  • the input converter may include a full bridge resonant converter, a first boost converter coupled to the full bridge resonant converter, and a second boost converter coupled to the full bridge resonant converter.
  • the full bridge resonant converter may include (i) a first pair of electrical switches electrically coupled to each other at a first electrical connection, and (ii) a second pair of electrical switches electrically coupled to each other at a second electrical connection, and (iii) a resonant tank circuit.
  • the first boost converter may include (i) a capacitor, (ii) the first pair of electrical switches, and (iii) a first inductor having a first terminal to receive the input DC waveform and a second terminal electrically coupled to the first connection.
  • the second boost converter may include (i) the capacitor, (ii) the second pair of electrical switches, and (iii) a second inductor having a first terminal electrically coupled to the first terminal of the first inductor to receive the input DC waveform and a second terminal electrically coupled to the second electrical connection.
  • the capacitor may include (i) a first terminal electrically coupled to a first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches at a third electrical connection and (ii) a second terminal electrically coupled to a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches at a fourth electrical connection.
  • the resonant tank circuit may include a resonant capacitor and a resonant inductor electrically coupled in series.
  • the full bridge resonant converter may further include a transformer and the resonant inductor may include a resonant inductance formed from at least one of a leakage inductance and a magnetizing inductance of the transformer.
  • the resonant capacitor may resonate with the leakage inductance and energy may be transferred from the capacitor across the transformer during resonance in response to one of (i) the first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches being active or (ii) a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches being active.
  • each of the first boost converter and the second boost converter may be configured to increase a magnitude of the input DC waveform to generate a boosted DC waveform.
  • the first pair and second pair of electrical switches of the full bridge resonant converter may be configured to receive the boosted DC waveform and to generate a square waveform.
  • the resonant tank circuit may be configured to receive the square waveform and to convert the square waveform to a resonant sinusoidal waveform.
  • the inverter may further include an inverter controller electrically coupled to the input converter and configured to control operation of the first pair and second pair of electrical switches.
  • the inverter controller may be configured to operate the first pair of electrical switches with a phase shift relative to the second pair of electrical switches for interleaved operation of the first and second boost converters.
  • at least one switch of the first pair of switches or the second pair of switches may be controlled by the inverter controller using zero-voltage switching.
  • the inverter controller may be configured to control operation of the first pair and second pair of electrical switches using pulse width modulation and duty cycle modifications.
  • at least one of the first boost converter and the second boost converter may be configured to operate at a fixed frequency. In such embodiments, the corresponding pair of electrical switches may be controlled via pulse-width modulation duty cycle control.
  • the full bridge resonant converter may further include a transformer.
  • the inverter may also include a rectifier circuit electrically coupled to a secondary winding of the transformer and to the DC power bus.
  • the rectifier circuit may be configured to convert an input AC waveform received from the secondary winding of the transformer to the bus waveform supplied to the DC power bus.
  • the DC source may be embodied as a photovoltaic power source.
  • an input converter of a power inverter for boosting a direct current (DC) waveform from a DC source to supply a DC bus waveform to a power bus may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, a transformer, and/or a rectifier circuit.
  • the half-bridge inverter circuit may include a first electrical switch electrically coupled to a second electrical switch at a first electrical connection, the half-bridge inverter circuit configured to convert an input DC waveform to an AC waveform.
  • the resonant circuit electrically may be coupled to the half-bridge inverter circuit and may include an output electrically coupled to the first electrical connection to supply the input DC waveform to the half-bridge inverter circuit.
  • the capacitor divider circuit may be electrically coupled to the inverter circuit to receive the AC waveform from the inverter circuit and generate a divided AC voltage signal.
  • the transformer may include a primary winding and a secondary winding.
  • the primary winding of the transformer may include a first terminal electrically connected to the first electrical connection and a second terminal electrically connected to the capacitor divider to receive the divided AC voltage signal therefrom.
  • the rectifier circuit may be electrically coupled to the secondary winding of the transformer and to the power bus.
  • the rectifier circuit may be configured to convert an input AC waveform received from the secondary winding of the transformer to the DC bus waveform supplied to the power bus.
  • the capacitor divider circuit may include a first capacitor electrically coupled to a second capacitor at a second electrical connection.
  • each of the first capacitor and second capacitor may have a first terminal electrically coupled to the second electrical connection.
  • the first electrical switch may include a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the first capacitor.
  • the second electrical switch may include a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the second capacitor.
  • the second terminal of the transformer is electrically coupled to the second electrical connection.
  • at least one of the first electrical switch or the second electrical switch may be configured to be controlled in a zero-voltage switching mode.
  • the rectifier circuit may include a plurality of diodes and at least one diode of the plurality of diodes is configured to be controlled by soft switching and with negligible reverse recovery.
  • the DC source may be embodied as a photovoltaic power source.
  • FIG. 1 is a simplified block diagram of one embodiment of a system for converting DC power to AC power
  • FIG. 2 is a simplified block diagram of one embodiment of an AC photovoltaic module of the system of FIG. 1 ;
  • FIG. 3 is a simplified block diagram of one embodiment of an inverter of the system of FIG. 1 ;
  • FIG. 4 is a simplified block diagram of one embodiment of an input converter of the inverter of FIG. 3 ;
  • FIGS. 5-7 are simplified electrical schematics of one embodiment of the input converter of FIG. 4 having an illustrative circuit topology
  • FIGS. 8A-8D illustrate simulated waveforms of various circuits of the input converter of FIGS. 5-7 ;
  • FIG. 9 illustrates a model waveform of a resonant tank circuit of the input converter of FIGS. 5-7 ;
  • FIG. 10 is a simplified block diagram of another embodiment of an input converter of the inverter of FIG. 3 ;
  • FIG. 11 is a simplified electrical schematic of one embodiment of the input converter FIG. 10 having an illustrative circuit topology
  • FIGS. 12A-12D illustrate operational characteristics of the input converter of FIG. 11 at various stages of operation.
  • FIGS. 13A-13C illustrate simulated waveforms of various circuits of the input converter of FIG. 11 .
  • references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Some embodiments of the disclosure, or portions thereof, may be implemented in hardware, firmware, software, or any combination thereof. Embodiments of the disclosure may also be implemented as instructions stored on a tangible, machine-readable medium, which may be read and executed by one or more processors.
  • a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device).
  • a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; and others.
  • a system 100 for supplying alternating current (hereinafter “AC”) power to an AC grid 102 at a grid frequency includes a direct current (hereinafter “DC”) source 104 and an inverter 106 .
  • the DC source 104 may be embodied as any type of DC source configured to generate or produce a DC power, which is supplied to the inverter 106 .
  • the DC power may be embodied as a photovoltaic solar cell or array, a fuel cell, a wind turbine configured to generate a DC power (e.g., via a rectifying circuit), a water turbine configured to generate a DC power, or other unipolar power source.
  • the inverter 106 is electrically connected to the DC source 104 and configured to convert a DC waveform generated by the DC source 104 to an AC waveform suitable for delivery to the AC grid 102 and, in some embodiments, loads coupled to the AC grid 102 .
  • the AC grid 102 may be embodied as, for example, a utility power grid that supplies utility AC power to residential and commercial users.
  • the DC source 104 may be embodied as one or more photovoltaic cells.
  • the DC source 104 and the inverter 106 may be associated with each other to embody an AC photovoltaic module (ACPV) 200 as illustrated in FIG. 2 .
  • the ACPV 200 includes a DC photovoltaic module (DCPV) 202 , which operates as the DC source 104 , electrically coupled to the inverter 106 .
  • the DCPV 202 includes one or more photovoltaic cells and is configured to deliver a DC waveform to the inverter 106 in response to receiving an amount of sunlight.
  • the DC power delivered by the ACPV 200 is a function of environmental variables, such as, e.g., sunlight intensity, sunlight angle of incidence and temperature.
  • the inverter 106 is positioned in a housing of the ACPV 200 .
  • the inverter 106 may include its own housing secured to the housing of the ACPV 200 .
  • the inverter 106 is separate from the housing, but located near the DCPV 202 .
  • the inverter 106 is configured to convert the DC power received from the DCPV 202 to an AC power suitable for delivery to the AC grid 102 at the grid frequency. It should be appreciated that multiple ACPVs 200 may be used to form a solar array with each ACPV 200 having a dedicated inverter 106 .
  • the inverter 106 includes an input converter 300 , a power bus 302 , and an output converter 304 .
  • the input converter 300 is electrically coupled to the power bus 302 and is electrically couplable to the DC source 104 as shown in FIG. 3 .
  • the output converter 304 is electrically coupled to the power bus 302 and electrically couplable to the AC grid 102 .
  • the inverter 106 also includes an inverter controller 310 , which controls the operation of the input converter 300 and the output converter 304 .
  • the inverter controller 310 is shown as a single controller in the embodiment of FIG. 3 , the inverter controller 310 may be embodied as two separate controllers in some embodiments.
  • the inverter 106 may include an input controller to control the operation of the input converter 300 and an output controller, separate from the input controller (e.g., galvanically isolated from the input controller), to control the operation of the output converter 304 .
  • the input converter 300 of the inverter 106 is configured for electrically coupling to the DC source 104 to receive a DC waveform therefrom.
  • the input converter 300 converts the DC waveform to a bus waveform, which in the illustrative embodiment is embodied as a DC waveform.
  • the output converter 304 is configured to be electrically coupled to the AC grid 102 and convert the bus waveform (i.e., either a DC waveform or an AC waveform) to the output AC waveform at the grid frequency for delivery to the AC grid 102 .
  • the inverter controller 310 is electrically coupled to the input converter 300 and configured to control the operation of the input converter 300 to convert the input DC waveform from the DC source 104 to the bus waveform (e.g., a DC bus waveform) at the power bus 302 .
  • the inverter controller 310 may provide a plurality of switching and/or control signals to various circuits of the input converter 300 .
  • the inverter controller 310 controls the operation of the input converter 300 based on a global maximum power point tracking (“MPPT”) method.
  • MPPT global maximum power point tracking
  • the inverter controller 310 is also electrically coupled to the output converter 304 and configured to control the operation of the output converter 304 to convert the bus waveform to the output AC waveform suitable for delivery to the AC grid 102 .
  • the illustrative inverter controller 310 includes a pulse width modulation (“PWM”) controller 312 that utilizes a PWM algorithm to control various switches of the inverter 106 as described in greater detail below. To do so, the PWM controller 312 may provide a plurality of switching and/or control signals to various circuits of the inverter 106 .
  • PWM pulse width modulation
  • the inverter 106 may include circuits not shown herein for clarity of the description.
  • the inverter 106 may include communication circuitry, which may be communicatively coupled to the inverter controller 310 or may be incorporated therein.
  • the inverter controller 310 may utilize the communication circuitry to communicate with remote devices, such as remote controllers or servers.
  • the communication circuitry may be configured to communicate with remote devices over an AC power line, such as the AC power line interconnects coupled to the output of the output converter 304 , or using other communication technologies and/or protocols.
  • the communication circuitry may be embodied as a wireless or wired communication circuit configured to communicate with remote devices utilizing one or more wireless or wired communication technologies and/or protocols such as Wi-FiTM, Zigbee®, ModBus®, WiMAX, Wireless USB, Bluetooth®, TCP/IP, USB, CAN-bus, HomePNATM, and/or other wired or wireless communication technology and/or protocol.
  • wireless or wired communication technologies and/or protocols such as Wi-FiTM, Zigbee®, ModBus®, WiMAX, Wireless USB, Bluetooth®, TCP/IP, USB, CAN-bus, HomePNATM, and/or other wired or wireless communication technology and/or protocol.
  • the input converter 300 is embodied as a DC-to-DC input converter 350 .
  • the illustrative input converter 350 includes two boost converters 400 , 402 , a full bridge LLC resonant converter 404 , and a rectifier 406 .
  • Each of the boost converters 400 , 402 is embodied as a DC-to-DC power converter configured to boost or “step up” the voltage (i.e., generate an output voltage greater than its input voltage).
  • the boost converters 400 , 402 are electrically coupled to the full bridge LLC resonant converter 404 and configured for electrical coupling to the DC source 104 .
  • the boost converter 400 includes an energy storage device (ESD) 410 and pair of electrical switches 420 , 422 .
  • the boost converter 402 includes the energy storage device 410 and a pair of switches 424 , 426 .
  • ESD energy storage device
  • the full bridge LLC resonant converter 404 includes a resonant tank circuit 412 , a transformer 414 , and the switches 420 , 422 , 424 , 426 .
  • the full bridge LLC resonant converter 404 share common switches 420 , 422 with the boost converter 400 and common switches 424 , 426 with the boost converter 402 , and is therefore coupled to the boost converters 400 , 402 .
  • the full bridge LLC resonant converter 404 is illustratively embodied as a DC-to-AC inverter circuit configured to convert the DC waveform supplied by the DC source 104 to an AC waveform delivered to the rectifier 406 .
  • the full bridge LLC resonant converter 404 utilizes the switches 420 , 422 , 424 , 426 , which may be controlled by the inverter controller 310 , to generate a square waveform having a voltage, V ab , as shown in FIGS. 5-7 .
  • the full bridge LLC resonant converter 404 converts the square waveform into a resonant sinusoidal current waveform by virtue of the resonant tank circuit 412 .
  • the resonant tank circuit 412 may include, or otherwise be configured based on, a component of the transformer 414 (e.g., the leakage inductance and/or magnetizing inductance of the transformer 414 ).
  • a component of the transformer 414 e.g., the leakage inductance and/or magnetizing inductance of the transformer 414 .
  • the resonant sinusoidal waveform generated by the resonant tank circuit 412 may be embodied as sinusoidal or sinusoidal-like waveforms. That is, a sinusoidal waveform may be embodied as a “pure” sinusoidal waveform or otherwise include some amount of distortion, offset, or other waveform imperfections due to dead time, nonlinearity of the transformer 414 , and/or other circuit parameters and/or operational characteristics.
  • the transformer 414 may be embodied as a two or more winding transformer having a primary winding electrically coupled to, or otherwise forming a portion of, the resonant tank circuit 412 of the full bridge LLC resonant converter 404 and a secondary winding coupled to the rectifier 406 .
  • the transformer 414 is configured to convert an input AC waveform at the primary winding to a second AC waveform at the secondary winding.
  • the first and second AC waveforms may have substantially equal frequency and may or may not have substantially equal voltages.
  • the rectifier circuit 408 is electrically coupled to the secondary winding of the transformer 414 and configured to rectify the second AC waveform to a DC waveform supplied to the power bus 302 .
  • an input converter 300 having other circuit topology and/or additional or fewer modules may be used in other embodiments.
  • the illustrative input converter 350 is electrically coupled to the DC source 104 , which is embodied as a photovoltaic cell, at electrical connections 550 , 552 .
  • a filter capacitor 500 and inductors 502 , 504 are electrically coupled to the DC source 104 at the electrical connection 550 .
  • the energy storage device 410 is illustratively embodied as a capacitor, and the capacitors 410 , 500 and switches 422 , 426 (i.e., switches of a bridge circuit formed by the plurality of switches 420 , 422 , 424 , 426 ) are also electrically coupled to the DC source 104 at the electrical connection 552 .
  • the capacitor 410 is further electrically coupled to the switches 420 , 424 at an electrical connection 554 .
  • each of the switches 420 , 422 , 424 , 426 is illustrated as MOSFET devices, other types of switches may be used in other embodiments.
  • the inductor 502 is electrically coupled to the switches 420 , 422 at an electrical connection 556
  • the inductor 504 is electrically coupled to the switches 424 , 426 at an electrical connection 558
  • each of the switches 420 , 422 , 424 , 426 is configured to receive a corresponding control signal from the inverter controller 310 to control operation of the inverter 106 .
  • the control circuit may use PWM to control the switches 420 , 422 , 424 , 426 at a relatively high switching frequency (e.g., at a frequency that is substantially higher than the AC grid frequency).
  • a resonant capacitor 506 is electrically coupled in series between the electrical connection 556 and a resonant inductance 508 .
  • the resonant inductance 508 may be embodied as, or otherwise include, a physical inductor and/or represent the leakage inductance and/or magnetizing inductance of the transformer 414 , an inductance associated with one or more discrete inductors, and/or the inductance of a circuit path (e.g., circuit board traces).
  • the illustrative transformer 414 includes a primary winding 510 electrically coupled to the resonant inductance 508 and the electrical connection 558 and a secondary winding 512 electrically coupled to the rectifier circuit 408 (see FIG. 7 ).
  • the transformer 414 provides galvanic isolation between the primary side converter circuitry (including the DC source 104 ) and the secondary side circuitry (including the power bus 302 ).
  • the turns ratio of the transformer 414 may also provide voltage and current transformation between the first AC waveform at the primary winding 510 and the second AC waveform at the secondary winding 512 .
  • the rectifier circuit 408 is embodied as a full-bridge rectifier formed from a plurality of diodes 514 , 516 , 518 , 520 and also includes a bus capacitor 522 , or other energy storage device, for filtering the DC bus waveform.
  • a bus capacitor 522 or other energy storage device, for filtering the DC bus waveform.
  • other circuit topologies may be used in the rectifier circuit 408 .
  • the boost converter 400 includes the capacitor 410 , the inductor 502 , and the switches 420 , 422 and the boost converter 402 includes the capacitor 410 , the inductor 504 , and the switches 424 , 426 as shown in FIG. 6 via separate dashed boundary lines.
  • the full bridge LLC resonant converter 404 includes the resonant tank circuit 412 (i.e., the resonant capacitor 506 and the resonant inductance 508 ), the transformer 414 , and the bridge circuit formed by the switches 420 , 422 , 424 , 426 .
  • the boost converters 400 , 402 collectively form an interleaved boost converter.
  • the switches 420 , 422 and the switches 424 , 426 are controlled by the inverter controller 310 to operate with a phase shift relative to one another, which permits the boost converters 400 , 402 to operate in an interleaved manner.
  • the pair of switches 420 , 422 and the pair of switches 424 , 426 operate with a 180 degree phase shift relative to one another.
  • the illustrative boost converters 400 , 402 have PWM-based duty cycle control rather than frequency-based control common to most resonant converters.
  • the inverter controller 310 may operate the boost converters 400 , 402 at a fixed frequency.
  • the inverter controller 310 may control the boost converters 400 , 402 via PWM at a variable frequency for various design considerations other than power control (e.g., to optimize/improve efficiency and/or mitigate electromagnetic interference). It should be appreciated, however, that in such embodiments the voltage and/or power control of the boost converters 400 , 402 is accomplished via duty cycle control, not by the variation of the frequency of the boost converters 400 , 402 .
  • the boost converters 400 , 402 “feed” voltage across the capacitor 410 , which in turn feeds the full bridge LLC resonant converter 404 .
  • the capacitor 410 regulates the voltage across the bridge consisting of the switches 420 , 422 , 424 , 426 to maintain a relatively stable DC voltage without voltage transients, which can damage the switches 420 , 422 , 424 , 426 .
  • the resonant capacitor 506 resonates with the resonant inductance 508 and energy is transferred from the capacitor 410 to the secondary side of the transformer 414 during the resonation.
  • the full bridge LLC resonant converter 404 outputs a “smooth” sinusoidal wave rather than a square wave, which eliminates the need for an active voltage clamp and permits “soft” switching. That is, the switches 420 , 422 , 424 , 426 may be controlled using zero-voltage switching or conditional zero-voltage switching (i.e., operation in a critical conduction mode) in which there is no or otherwise minimal reverse recovery for the switches 420 , 422 , 424 , 426 . In other words, the diodes 514 , 516 , 518 , 520 turn of “softly” so that the corresponding reverse recovery effects from such switching are negligible or otherwise less severe than would be present in response to hard switching.
  • the diodes 514 , 516 , 518 , 520 may be embodied as fast recovery diodes (e.g., P-i-N diodes and other conventional diodes) rather than as Schottky diodes (e.g., silicon carbide (SiC) diodes) and other diodes designed to have negligible reverse recovery effects.
  • each of the diodes 514 , 616 , 518 , 520 may be embodied as any suitable diode depending on the particular implementation.
  • the high-voltage side diodes 514 , 518 turn off naturally (i.e., the turn-off is “soft”).
  • the low-voltage side switches 422 , 426 turn off their channels and can utilize zero-voltage switching.
  • the inductor current flows through the body diode of the high-side switches 420 , 424 .
  • the switches 422 , 426 utilize zero-voltage switching during turn-on In order for the switches 420 , 424 to avoid turning off their corresponding body diodes (i.e., to avoid reverse recovery), critical conduction mode is necessary for the inductors 502 , 504 .
  • An illustrative condition for critical conduction mode is that
  • V i is the input voltage
  • D 2 is the duty cycle of the corresponding switch
  • V bus is the voltage across the power bus 302
  • f is the frequency
  • L is the inductance of the corresponding inductor 502 , 504
  • i dc is the current supplied to the power bus 302 .
  • FIGS. 8A-8D simulated waveforms illustrating various operational characteristics of the input converter 350 are shown.
  • FIG. 8A illustrates a voltage 800 (i.e., a drain to source voltage) across the switch 420 and a current 802 flowing through the switch 420 over time.
  • the switch 420 engages in zero-voltage switching. That is, the switch 420 is turned on when the voltage 800 across the switch 420 is zero or substantially near zero.
  • FIG. 8B illustrates a voltage 810 across the switch 422 , a current 812 flowing through the switch 422 , and an input current 814 of the corresponding inductor 502 over time.
  • FIG. 8C illustrates a current 820 flowing through the output diode 514 and a current 822 flowing through the output diode 516 .
  • the current 820 , 822 waveforms through the diodes 514 , 516 are approximately half-sinusoidal waves.
  • the current 820 , 822 of the corresponding diode 514 , 516 reaches zero such that the diode 514 , 516 can shut itself off rather than being forcibly shut off when not conducting zero current.
  • FIG. 8D illustrates waveforms of the resonant tank circuit 412 .
  • FIG. 8D illustrates a voltage 830 (shown as V ab in FIGS. 5-7 ) generated by the bridge formed from the switches 420 , 422 , 424 , 426 , a voltage 832 across the resonant capacitor 506 , and a resonant current 834 (e.g., the current flowing through the resonant inductance 508 ).
  • the voltage 830 is a tri-level square wave, which has a brief period 836 of zero voltage that corresponds with the dead time in which all of the switches 420 , 422 , 424 , 426 are turned off.
  • the inductor current 834 (i.e., the resonant current) is embodied as a half-sinusoidal wave for a period 838 , a period 840 of zero current, a negative half-sinusoidal wave for a period 842 , and another period 844 of zero current.
  • each positive and negative voltage-level period may be determined according to
  • t active ⁇ ( 1 - D 2 ) ⁇ T sw when ⁇ ⁇ D 2 ⁇ 0.5 D 2 ⁇ T sw when ⁇ ⁇ D 2 ⁇ 0.5 .
  • half of the LC resonant period should be less than t active .
  • the resonant period should satisfy the condition, 0.5t r ⁇ t active .
  • the resonant current 834 drops to zero prior to the step change of the input voltage 830 for a dead time 900 .
  • the input converter 300 is embodied as a DC-to-DC input converter 352 .
  • the illustrative input converter 352 includes a resonant circuit 1000 , an inverter circuit 1002 , a capacitor divider 1004 , a transformer 1006 , and a rectifier circuit 1008 .
  • the resonant circuit 1000 is illustratively embodied as an LC tank circuit and is electrically coupled to the inverter circuit 1002 and configured for electrical coupling to the DC source 104 .
  • the resonant circuit 1000 and the DC source 104 when coupled to the DC source 104 , function similar to, and may be treated as, an “ideal” current source for purposes of analysis.
  • the inverter circuit 1002 is embodied as a DC-to-AC inverter circuit configured to convert the DC waveform supplied by the DC source 104 to an AC waveform delivered to the capacitor divider 1004 , which generates a divided voltage that is supplied to a primary winding of the transformer 1006 .
  • the transformer 1006 may be embodied as a two or more winding transformer having a primary winding electrically coupled to the capacitor divider 1004 and the inverter circuit 1002 .
  • the transformer 1006 is configured to convert the first AC waveform supplied by the capacitor divider 1004 at the primary winding to a second AC waveform at the secondary winding.
  • the first and second AC waveforms may have substantially equal frequency and may or may not have substantially equal voltages.
  • the rectifier circuit 1008 is electrically coupled to the secondary winding of the transformer 1006 and configured to rectify the second AC waveform to a DC waveform supplied to the power bus 302 .
  • FIG. 11 An illustrative embodiment of the input converter 352 is illustrated in FIG. 11 .
  • the input converter 352 is electrically coupled to the DC source 104 , embodied as a photovoltaic cell, via the resonant circuit 1000 .
  • the resonant circuit 1000 is embodied as an LC circuit including an input capacitor 1120 and an input inductor 1122 .
  • the inverter circuit 1002 is illustratively embodied as a half-bridge circuit formed by a plurality of switches 1124 , 1126 . In other embodiments, the inverter circuit 1002 may include a different number of switches and/or be otherwise embodied as a full-bridge circuit.
  • each of the switches 1124 , 1126 is configured to receive a corresponding control signal from the inverter controller 310 to control operation of the inverter 106 .
  • the PWM controller 312 of the inverter controller 310 may use PWM to control the switches 1124 , 1126 at a relatively high switching frequency (e.g., at a frequency that is substantially higher than the AC grid frequency).
  • the inverter circuit 1002 converts the DC waveform from the DC source 104 or, more particularly, from the resonant circuit 1000 to a first AC waveform based on the control signals received from the inverter controller 310 as discussed above.
  • each of the switches 1124 , 1126 is illustrated as MOSFET devices, other types of switches may be used in other embodiments.
  • the capacitor divider 1004 is electrically coupled to each of the transformer 1006 and the inverter circuit 1002 .
  • the capacitor divider 1004 includes capacitors 1128 , 1130 and is configured to generate a divided voltage.
  • the transformer 1006 includes a primary winding 1132 electrically coupled to the capacitor divider 1004 and the inverter circuit 1002 and a secondary winding 1134 electrically coupled to the rectifier circuit 1008 .
  • the transformer 1006 includes a leakage inductance, which is represented in FIG. 11 by a resonant inductance 1136 electrically coupled to the primary winding 1132 of the transformer 1006 .
  • the resonant inductance 1136 may be embodied as, or otherwise include, as a physical inductor and/or represent the leakage inductance and/or magnetizing inductance of the transformer 1006 , an inductance associated with one or more discrete inductors, and/or the inductance of a circuit path (e.g., circuit board traces).
  • the transformer 1006 provides galvanic isolation between the primary side converter circuitry (including DC source 104 ) and the secondary side circuitry (including power bus 302 ).
  • the turns ratio of the transformer 1006 may also provide voltage and current transformation between the first AC waveform at the primary winding 1132 and the second AC waveform at the secondary winding 1134 .
  • the input converter 352 is electrically coupled to the DC source 104 at electrical connections 1150 , 1152 . That is, the input capacitor 1120 and the input inductor 1122 are electrically coupled to the DC source 104 at the electrical connection 1150 .
  • the capacitors 1120 , 1130 and the switch 1126 are electrically coupled to the DC source 104 at the electrical connection 1152 .
  • the switches 1124 , 1126 are electrically coupled to the input inductor 1122 at an electrical connection 1154
  • the capacitors 1128 , 1130 are electrically coupled to one another at an electrical connection 1156 .
  • the resonant inductance 1136 is shown as being electrically coupled in series between the electrical connection 1154 and the primary winding 1132 of the transformer 1006 .
  • the primary winding 1132 is further coupled to the capacitors 1128 , 1130 at the electrical connection 1156 .
  • the rectifier circuit 1008 is electrically coupled to the secondary winding 1134 of the transformer 1006 and configured to convert the second AC waveform supplied by the transformer 1006 to a DC bus waveform supplied to the power bus 302 .
  • the rectifier circuit 1008 is embodied as a half-bridge rectifier formed from a plurality of diodes 1138 , 1140 and includes a capacitor divider of capacitors 1142 , 1144 . Again, in other embodiments, other circuit topologies may be used in the rectifier circuit 1008 .
  • the rectifier circuit 1008 may also include an energy storage device, such as a bus capacitor 1146 , for filtering the DC bus waveform.
  • the secondary winding 1034 of the transformer 1006 is electrically coupled to the diodes 1138 , 1040 at an electrical connection 1158 and electrically coupled to the capacitors 1142 , 1144 at an electrical connection 1160 .
  • the bus capacitor 1146 is electrically coupled to the diode 1138 and the capacitor 1142 at an electrical connection 1162 and is electrically coupled to the diode 1140 and the capacitor 1144 at an electrical connection 1164 .
  • the input converter 352 may operate according to similar principles as the input converter 350 .
  • the input converter 352 is embodied as the half-bridge topological counterpart to the converter 350 (i.e., a full-bridge boost resonant converter). Similar to the input converter 350 , the resonant operation of the input converter 352 eliminates the need for active clamping, and the output power is regulated by varying the duty cycle and maintaining a constant or near-constant frequency.
  • FIGS. 12A-12D Electrical schematics of the input converter 352 illustrating a flow 1200 of current through the input converter 352 at various stages of operation are shown in FIGS. 12A-12D .
  • the input inductor 1122 is carrying a positive, nearly-constant current with low ripple.
  • FIG. 12A before the switch 1124 turns on, current flows through the body diode of the switch 1124 and through the transformer 1006 .
  • a parasitic capacitance is present across the switch 1124 , which prevents the voltage of the switch 1124 from instantly rising or falling (e.g., to zero); instead, there is some delay in such voltage transitions.
  • the parasitic capacitance across the switch 1124 is discharged by the current flowing through the body diode of the switch 1124 .
  • the switch 1124 is turned on by virtue of zero voltage switching.
  • the capacitor 1128 resonates with the resonant inductance 1136 of the transformer 1006 and with the capacitor 1142 .
  • the output diode 1138 prevents the continued resonation in the reverse direction.
  • resonant frequency, f 1 at this stage may be expressed according to:
  • f 1 1 2 ⁇ ⁇ ⁇ ⁇ L 4 ⁇ n 2 ⁇ C 3 ⁇ ( C 1 + C 2 ) C 1 + C 2 + n 2 + C 3
  • n is the turns ratio of the secondary side to the primary side of the transformer 1006
  • L 4 is the resonant inductance 1136
  • C 1 is the capacitance of the capacitor 1128
  • C 2 is the capacitance of the capacitor 1130
  • C 3 is the capacitance of the capacitor 1138 .
  • the turns ratio, n may be expressed as
  • n sec is the number of turns of the secondary side of the transformer 1006
  • n prim is the number of turns of the primary side of the transformer 1006
  • V o is the output voltage of the input converter 352
  • V c the voltage across the capacitors 1128 , 1130 . It should further be appreciated that the relationship between the input voltage, the duty cycle of the switch 1126 , and the voltage across the capacitors 1128 , 1130 may be expressed as
  • V o V c 1 1 - D ,
  • D is the duty cycle
  • the switch 1124 is turned on, the current flow through the non-body diode portion (e.g., the MOSFET portion) of the switch 1124 , rather than through the body diode of the switch 1124 , and begins supplying energy to the capacitors 1128 , 1130 . It should be appreciated that there is no operational current flowing through the transformer 1006 and both of the diodes 1138 , 1140 turn off at this point.
  • the switch 1124 is then turned back off. As shown in FIG. 12C , the switch 1126 is turned on and the current of the input inductor 1122 flow through the switch 1126 .
  • the resonant frequency, f 2 at this stage may be expressed according to:
  • f 1 1 2 ⁇ ⁇ ⁇ ⁇ L 4 ⁇ n 2 ⁇ C 4 ⁇ C 2 C 2 + n 2 + C 4
  • C 4 is the capacitance of the capacitor 1144 and the other variables are similar to those described above.
  • FIG. 12D the resonant half-cycle, which may be similar to the current 834 of FIGS. 8D and 9 , has completed and the transformer 1006 therefore stops conducting. That is, the transformer 1006 current falls to zero, the switch 1126 is conducting (i.e., the non-body diode portion), and neither of the diodes 1138 , 1140 are conducting. The switch 1126 then turns back off. For a brief period thereafter (i.e., a dead time), both of the switches 1124 , 1126 are off, following which the input converter 352 resumes operation similar to that described above in reference to FIG. 12A . In other words, in the illustrative embodiment, FIGS. 12A-12D embody a complete cycle of operation of the input converter 352 .
  • FIGS. 13A-13C simulated waveforms illustrating the operation of various circuits of the input converter 352 of FIG. 11 .
  • FIG. 13A illustrates a current 1300 flowing through the diode 1138 , a current 1302 flowing through the diode 1140 , a voltage 1304 across the diode 1138 , a voltage 1306 across the diode 1140 , and a voltage 1308 across the capacitor 1128 over time.
  • FIG. 13A illustrates a current 1300 flowing through the diode 1138 , a current 1302 flowing through the diode 1140 , a voltage 1304 across the diode 1138 , a voltage 1306 across the diode 1140 , and a voltage 1308 across the capacitor 1128 over time.
  • FIG. 13A illustrates a current 1300 flowing through the diode 1138 , a current 1302 flowing through the diode 1140 , a voltage 1304 across the diode 1138 , a voltage 1306 across the diode
  • FIG. 13B illustrates a current 1310 flowing through the switch 1124 , a current 1312 flowing through the switch 1126 , a current 1314 flowing through the input inductor 1122 , a current 1316 flowing through the capacitor 1128 , and a current 1318 flowing through the capacitor 1130 over time.
  • FIG. 13C illustrates a voltage 1320 across the switch 1124 and a voltage 1322 across the switch 1126 over time.
  • FIG. 13C also illustrates a driving signal 1324 of the switch 1124 and a driving signal 1326 of the switch 1126 over time.
  • the switches 1124 , 1126 engage in zero-voltage switching such that the corresponding switch 1124 , 1126 is turned on when the corresponding voltage 1320 , 1322 is zero.
  • the input converter 352 may exhibit characteristics that are advantageous to a DC-to-DC boost converter in some implementations and may be similar to the benefits of the topology of the input converter 350 .
  • the resonant operation of the input converter 352 may generate a relatively sinusoidal waveform across the transformer 1006 , eliminate the need for an active clamping circuit, and/or permit soft switching of the output diodes 1138 , 1140 (i.e., the diodes 1138 , 1140 require little or no reverse recovery).
  • the output power may be regulated by varying the duty cycle while maintaining a constant or near-constant frequency.

Abstract

Inverter topologies for converting an input direct current (DC) waveform from a DC source to an output alternating current (AC) waveform are disclosed. In some disclosed embodiments, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

Description

    CROSS-REFERENCE TO RELATED U.S. PATENT APPLICATION
  • The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/794,480, entitled “CONVERTER TOPOLOGIES” by Yan Zhou et al., which was filed on Mar. 15, 2013, the entirety of which is hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present disclosure relates, generally, to power converters for converting direct current (DC) power to alternating current (AC) power and, more particularly, to boost converter topologies for stepping up DC power.
  • BACKGROUND
  • Power inverters convert a DC power to an AC power. For example, some power inverters are configured to convert the DC power to an AC power suitable for supplying energy to an AC grid and, in some cases, an AC load that may or may not be coupled to the AC grid. One particular application for such power inverters is the conversion of DC power generated by an alternative energy source, such as photovoltaic cells (“PV cells” or “solar cells”), fuel cells, DC wind turbine, DC water turbine, and other DC power sources, to a single-phase AC power for delivery to the AC grid at the grid frequency. The amount of power that can be delivered by certain alternative energy sources, such as PV cells, may vary in magnitude over time due to temporal variations in operating conditions. For example, the output of a typical PV cell will vary as a function of variations in sunlight intensity, angle of incidence of sunlight, ambient temperature and other factors.
  • Such power inverters typically include a DC-DC converter to step up the voltage from a relatively low DC voltage (e.g., 30 V) to a power bus voltage of the inverter (e.g., 400 V). Depending on the particular implementation, the converter may be designed with any one of a number of different topologies. Common topologies include, for example, an isolated boost converter design, a “flyback” converter design, and a “series-LLC” converter design, each of which have distinct operational characteristics and/or components. In particular, the isolated boost converter is a “hard-switched” converter (i.e., the switches and diodes simultaneously experience a high current and high voltage stress during a switching transition) and often includes an active clamp circuit across a switch bridge to absorb mismatched current and limit the voltage. The flyback design is a generally simple converter topology having relatively simple control and gate drive requirements but has significant switch stresses and is an inherently hard-switched design. The series-LLC converter has an inherently soft-switched design and low voltage stresses and typically does not require an active clamp circuit. Unlike isolated boost converters, which are typically current-fed, series-LLC converters are fundamentally voltage-fed; because the input voltage generated by the PV cells may vary significantly over time, series-LLC converters must account for such variation. Accordingly, voltage-fed topologies tend to “step down” the voltage prior to boosting voltage (e.g., via a turns ratio of the transformer), which can result in inefficiency for the converter.
  • In a typical photovoltaic power system, an inverter may be associated with one or more solar cell panels. For example, some systems include strings of solar cell panels that deliver a relatively high, combined voltage (e.g., nominal 450 V) to a single, large inverter. Alternatively, in other systems such as a distributed photovoltaic power system, an inverter may be associated with each solar cell panel. In such systems, the solar cell panels are typically small, relatively low voltage (e.g., 25 V). The inverter may be placed in close proximity to the associated solar cell panel to increase the conversion efficiency of the overall system.
  • SUMMARY
  • According to one aspect, an inverter for converting an input direct current (DC) waveform from a DC source to an output alternating current (AC) waveform for delivery to an AC grid may include an input converter electrically coupled to a DC power bus. The input converter may be configured to convert the input DC waveform to a bus waveform supplied to the DC power bus. Additionally, the input converter may include a full bridge resonant converter, a first boost converter coupled to the full bridge resonant converter, and a second boost converter coupled to the full bridge resonant converter. The full bridge resonant converter may include (i) a first pair of electrical switches electrically coupled to each other at a first electrical connection, and (ii) a second pair of electrical switches electrically coupled to each other at a second electrical connection, and (iii) a resonant tank circuit. The first boost converter may include (i) a capacitor, (ii) the first pair of electrical switches, and (iii) a first inductor having a first terminal to receive the input DC waveform and a second terminal electrically coupled to the first connection. The second boost converter may include (i) the capacitor, (ii) the second pair of electrical switches, and (iii) a second inductor having a first terminal electrically coupled to the first terminal of the first inductor to receive the input DC waveform and a second terminal electrically coupled to the second electrical connection.
  • In some embodiments, the capacitor may include (i) a first terminal electrically coupled to a first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches at a third electrical connection and (ii) a second terminal electrically coupled to a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches at a fourth electrical connection. Additionally, in some embodiments, the resonant tank circuit may include a resonant capacitor and a resonant inductor electrically coupled in series. In such embodiments, the full bridge resonant converter may further include a transformer and the resonant inductor may include a resonant inductance formed from at least one of a leakage inductance and a magnetizing inductance of the transformer. Additionally or alternatively, in such embodiments, the resonant capacitor may resonate with the leakage inductance and energy may be transferred from the capacitor across the transformer during resonance in response to one of (i) the first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches being active or (ii) a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches being active.
  • In some embodiments, each of the first boost converter and the second boost converter may be configured to increase a magnitude of the input DC waveform to generate a boosted DC waveform. Additionally, the first pair and second pair of electrical switches of the full bridge resonant converter may be configured to receive the boosted DC waveform and to generate a square waveform. The resonant tank circuit may be configured to receive the square waveform and to convert the square waveform to a resonant sinusoidal waveform.
  • Additionally, in some embodiments, the inverter may further include an inverter controller electrically coupled to the input converter and configured to control operation of the first pair and second pair of electrical switches. In such embodiments, the inverter controller may be configured to operate the first pair of electrical switches with a phase shift relative to the second pair of electrical switches for interleaved operation of the first and second boost converters. Additionally, in some embodiments, at least one switch of the first pair of switches or the second pair of switches may be controlled by the inverter controller using zero-voltage switching. Further, in some embodiments, the inverter controller may be configured to control operation of the first pair and second pair of electrical switches using pulse width modulation and duty cycle modifications. Additionally, in some embodiments, at least one of the first boost converter and the second boost converter may be configured to operate at a fixed frequency. In such embodiments, the corresponding pair of electrical switches may be controlled via pulse-width modulation duty cycle control.
  • In some embodiments, the full bridge resonant converter may further include a transformer. In such embodiments, the inverter may also include a rectifier circuit electrically coupled to a secondary winding of the transformer and to the DC power bus. The rectifier circuit may be configured to convert an input AC waveform received from the secondary winding of the transformer to the bus waveform supplied to the DC power bus. Additionally, in some embodiments, the DC source may be embodied as a photovoltaic power source.
  • According to another aspect, an input converter of a power inverter for boosting a direct current (DC) waveform from a DC source to supply a DC bus waveform to a power bus may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, a transformer, and/or a rectifier circuit. The half-bridge inverter circuit may include a first electrical switch electrically coupled to a second electrical switch at a first electrical connection, the half-bridge inverter circuit configured to convert an input DC waveform to an AC waveform. The resonant circuit electrically may be coupled to the half-bridge inverter circuit and may include an output electrically coupled to the first electrical connection to supply the input DC waveform to the half-bridge inverter circuit. The capacitor divider circuit may be electrically coupled to the inverter circuit to receive the AC waveform from the inverter circuit and generate a divided AC voltage signal. The transformer may include a primary winding and a secondary winding. The primary winding of the transformer may include a first terminal electrically connected to the first electrical connection and a second terminal electrically connected to the capacitor divider to receive the divided AC voltage signal therefrom. The rectifier circuit may be electrically coupled to the secondary winding of the transformer and to the power bus. The rectifier circuit may be configured to convert an input AC waveform received from the secondary winding of the transformer to the DC bus waveform supplied to the power bus.
  • In some embodiments, the capacitor divider circuit may include a first capacitor electrically coupled to a second capacitor at a second electrical connection. In such embodiments, each of the first capacitor and second capacitor may have a first terminal electrically coupled to the second electrical connection. Additionally, the first electrical switch may include a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the first capacitor. Similarly, the second electrical switch may include a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the second capacitor.
  • Additionally, in some embodiments, the second terminal of the transformer is electrically coupled to the second electrical connection. In some embodiments, at least one of the first electrical switch or the second electrical switch may be configured to be controlled in a zero-voltage switching mode. Additionally, in some embodiments, the rectifier circuit may include a plurality of diodes and at least one diode of the plurality of diodes is configured to be controlled by soft switching and with negligible reverse recovery. Further, in some embodiments, the DC source may be embodied as a photovoltaic power source.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified block diagram of one embodiment of a system for converting DC power to AC power;
  • FIG. 2 is a simplified block diagram of one embodiment of an AC photovoltaic module of the system of FIG. 1;
  • FIG. 3 is a simplified block diagram of one embodiment of an inverter of the system of FIG. 1;
  • FIG. 4 is a simplified block diagram of one embodiment of an input converter of the inverter of FIG. 3;
  • FIGS. 5-7 are simplified electrical schematics of one embodiment of the input converter of FIG. 4 having an illustrative circuit topology;
  • FIGS. 8A-8D illustrate simulated waveforms of various circuits of the input converter of FIGS. 5-7;
  • FIG. 9 illustrates a model waveform of a resonant tank circuit of the input converter of FIGS. 5-7;
  • FIG. 10 is a simplified block diagram of another embodiment of an input converter of the inverter of FIG. 3;
  • FIG. 11 is a simplified electrical schematic of one embodiment of the input converter FIG. 10 having an illustrative circuit topology;
  • FIGS. 12A-12D illustrate operational characteristics of the input converter of FIG. 11 at various stages of operation; and
  • FIGS. 13A-13C illustrate simulated waveforms of various circuits of the input converter of FIG. 11.
  • DETAILED DESCRIPTION
  • While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
  • References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Some embodiments of the disclosure, or portions thereof, may be implemented in hardware, firmware, software, or any combination thereof. Embodiments of the disclosure may also be implemented as instructions stored on a tangible, machine-readable medium, which may be read and executed by one or more processors. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device). For example, a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; and others.
  • Referring to FIG. 1, a system 100 for supplying alternating current (hereinafter “AC”) power to an AC grid 102 at a grid frequency includes a direct current (hereinafter “DC”) source 104 and an inverter 106. The DC source 104 may be embodied as any type of DC source configured to generate or produce a DC power, which is supplied to the inverter 106. For example, the DC power may be embodied as a photovoltaic solar cell or array, a fuel cell, a wind turbine configured to generate a DC power (e.g., via a rectifying circuit), a water turbine configured to generate a DC power, or other unipolar power source.
  • The inverter 106 is electrically connected to the DC source 104 and configured to convert a DC waveform generated by the DC source 104 to an AC waveform suitable for delivery to the AC grid 102 and, in some embodiments, loads coupled to the AC grid 102. The AC grid 102 may be embodied as, for example, a utility power grid that supplies utility AC power to residential and commercial users. Such utility power grids may be characterized as having an essentially sinusoidal bipolar voltage at a fixed grid frequency (e.g., f=ω/2π=50 Hz or 60 Hz).
  • As discussed above, in some embodiments, the DC source 104 may be embodied as one or more photovoltaic cells. In such embodiments, the DC source 104 and the inverter 106 may be associated with each other to embody an AC photovoltaic module (ACPV) 200 as illustrated in FIG. 2. The ACPV 200 includes a DC photovoltaic module (DCPV) 202, which operates as the DC source 104, electrically coupled to the inverter 106. The DCPV 202 includes one or more photovoltaic cells and is configured to deliver a DC waveform to the inverter 106 in response to receiving an amount of sunlight. The DC power delivered by the ACPV 200 is a function of environmental variables, such as, e.g., sunlight intensity, sunlight angle of incidence and temperature. In some embodiments, the inverter 106 is positioned in a housing of the ACPV 200. Alternatively, the inverter 106 may include its own housing secured to the housing of the ACPV 200. Additionally, in some embodiments, the inverter 106 is separate from the housing, but located near the DCPV 202. As discussed above, the inverter 106 is configured to convert the DC power received from the DCPV 202 to an AC power suitable for delivery to the AC grid 102 at the grid frequency. It should be appreciated that multiple ACPVs 200 may be used to form a solar array with each ACPV 200 having a dedicated inverter 106.
  • Referring now to FIG. 3, in one embodiment, the inverter 106 includes an input converter 300, a power bus 302, and an output converter 304. The input converter 300 is electrically coupled to the power bus 302 and is electrically couplable to the DC source 104 as shown in FIG. 3. Similarly, the output converter 304 is electrically coupled to the power bus 302 and electrically couplable to the AC grid 102. The inverter 106 also includes an inverter controller 310, which controls the operation of the input converter 300 and the output converter 304. Although the inverter controller 310 is shown as a single controller in the embodiment of FIG. 3, the inverter controller 310 may be embodied as two separate controllers in some embodiments. That is, in some embodiments, the inverter 106 may include an input controller to control the operation of the input converter 300 and an output controller, separate from the input controller (e.g., galvanically isolated from the input controller), to control the operation of the output converter 304.
  • In use, the input converter 300 of the inverter 106 is configured for electrically coupling to the DC source 104 to receive a DC waveform therefrom. The input converter 300 converts the DC waveform to a bus waveform, which in the illustrative embodiment is embodied as a DC waveform. Similarly, the output converter 304 is configured to be electrically coupled to the AC grid 102 and convert the bus waveform (i.e., either a DC waveform or an AC waveform) to the output AC waveform at the grid frequency for delivery to the AC grid 102.
  • As discussed above, the inverter controller 310 is electrically coupled to the input converter 300 and configured to control the operation of the input converter 300 to convert the input DC waveform from the DC source 104 to the bus waveform (e.g., a DC bus waveform) at the power bus 302. To do so, the inverter controller 310 may provide a plurality of switching and/or control signals to various circuits of the input converter 300. For example, in some embodiments, the inverter controller 310 controls the operation of the input converter 300 based on a global maximum power point tracking (“MPPT”) method. Illustratively, the inverter controller 310 is also electrically coupled to the output converter 304 and configured to control the operation of the output converter 304 to convert the bus waveform to the output AC waveform suitable for delivery to the AC grid 102. As shown in FIG. 3, the illustrative inverter controller 310 includes a pulse width modulation (“PWM”) controller 312 that utilizes a PWM algorithm to control various switches of the inverter 106 as described in greater detail below. To do so, the PWM controller 312 may provide a plurality of switching and/or control signals to various circuits of the inverter 106.
  • Additionally, in some embodiments, the inverter 106 may include circuits not shown herein for clarity of the description. For example, the inverter 106 may include communication circuitry, which may be communicatively coupled to the inverter controller 310 or may be incorporated therein. In such embodiments, the inverter controller 310 may utilize the communication circuitry to communicate with remote devices, such as remote controllers or servers. For example, depending on the particular embodiment, the communication circuitry may be configured to communicate with remote devices over an AC power line, such as the AC power line interconnects coupled to the output of the output converter 304, or using other communication technologies and/or protocols. For example, in some embodiments, the communication circuitry may be embodied as a wireless or wired communication circuit configured to communicate with remote devices utilizing one or more wireless or wired communication technologies and/or protocols such as Wi-Fi™, Zigbee®, ModBus®, WiMAX, Wireless USB, Bluetooth®, TCP/IP, USB, CAN-bus, HomePNA™, and/or other wired or wireless communication technology and/or protocol.
  • Referring now to FIG. 4, in an illustrative embodiment, the input converter 300 is embodied as a DC-to-DC input converter 350. The illustrative input converter 350 includes two boost converters 400, 402, a full bridge LLC resonant converter 404, and a rectifier 406. Each of the boost converters 400, 402 is embodied as a DC-to-DC power converter configured to boost or “step up” the voltage (i.e., generate an output voltage greater than its input voltage). The boost converters 400, 402 are electrically coupled to the full bridge LLC resonant converter 404 and configured for electrical coupling to the DC source 104.
  • As shown in FIG. 4, the boost converter 400 includes an energy storage device (ESD) 410 and pair of electrical switches 420, 422. Similarly, the boost converter 402 includes the energy storage device 410 and a pair of switches 424, 426. As such, it should be appreciated that the boost converters 400, 402 share a common energy storage device 410, and they are therefore also coupled to one another. Additionally, as shown in the illustrative embodiment, the full bridge LLC resonant converter 404 includes a resonant tank circuit 412, a transformer 414, and the switches 420, 422, 424, 426. Again, it should be appreciated that the full bridge LLC resonant converter 404 share common switches 420, 422 with the boost converter 400 and common switches 424, 426 with the boost converter 402, and is therefore coupled to the boost converters 400, 402.
  • The full bridge LLC resonant converter 404 is illustratively embodied as a DC-to-AC inverter circuit configured to convert the DC waveform supplied by the DC source 104 to an AC waveform delivered to the rectifier 406. In particular, the full bridge LLC resonant converter 404 utilizes the switches 420, 422, 424, 426, which may be controlled by the inverter controller 310, to generate a square waveform having a voltage, Vab, as shown in FIGS. 5-7. The full bridge LLC resonant converter 404 converts the square waveform into a resonant sinusoidal current waveform by virtue of the resonant tank circuit 412. As discussed below, the resonant tank circuit 412 may include, or otherwise be configured based on, a component of the transformer 414 (e.g., the leakage inductance and/or magnetizing inductance of the transformer 414). It should be appreciated that the resonant sinusoidal waveform generated by the resonant tank circuit 412, and other sinusoidal waveforms discussed herein, may be embodied as sinusoidal or sinusoidal-like waveforms. That is, a sinusoidal waveform may be embodied as a “pure” sinusoidal waveform or otherwise include some amount of distortion, offset, or other waveform imperfections due to dead time, nonlinearity of the transformer 414, and/or other circuit parameters and/or operational characteristics.
  • The transformer 414 may be embodied as a two or more winding transformer having a primary winding electrically coupled to, or otherwise forming a portion of, the resonant tank circuit 412 of the full bridge LLC resonant converter 404 and a secondary winding coupled to the rectifier 406. The transformer 414 is configured to convert an input AC waveform at the primary winding to a second AC waveform at the secondary winding. The first and second AC waveforms may have substantially equal frequency and may or may not have substantially equal voltages. The rectifier circuit 408 is electrically coupled to the secondary winding of the transformer 414 and configured to rectify the second AC waveform to a DC waveform supplied to the power bus 302. Of course, it should be appreciated that an input converter 300 having other circuit topology and/or additional or fewer modules may be used in other embodiments.
  • An embodiment of the input converter 350 is illustrated in FIGS. 5-7. The illustrative input converter 350 is electrically coupled to the DC source 104, which is embodied as a photovoltaic cell, at electrical connections 550, 552. In particular, a filter capacitor 500 and inductors 502, 504 are electrically coupled to the DC source 104 at the electrical connection 550. The energy storage device 410 is illustratively embodied as a capacitor, and the capacitors 410, 500 and switches 422, 426 (i.e., switches of a bridge circuit formed by the plurality of switches 420, 422, 424, 426) are also electrically coupled to the DC source 104 at the electrical connection 552. The capacitor 410 is further electrically coupled to the switches 420, 424 at an electrical connection 554. Although each of the switches 420, 422, 424, 426 is illustrated as MOSFET devices, other types of switches may be used in other embodiments.
  • The inductor 502 is electrically coupled to the switches 420, 422 at an electrical connection 556, and the inductor 504 is electrically coupled to the switches 424, 426 at an electrical connection 558. As indicated above, each of the switches 420, 422, 424, 426 is configured to receive a corresponding control signal from the inverter controller 310 to control operation of the inverter 106. The control circuit may use PWM to control the switches 420, 422, 424, 426 at a relatively high switching frequency (e.g., at a frequency that is substantially higher than the AC grid frequency). As shown, a resonant capacitor 506 is electrically coupled in series between the electrical connection 556 and a resonant inductance 508. The resonant inductance 508 may be embodied as, or otherwise include, a physical inductor and/or represent the leakage inductance and/or magnetizing inductance of the transformer 414, an inductance associated with one or more discrete inductors, and/or the inductance of a circuit path (e.g., circuit board traces).
  • The illustrative transformer 414 includes a primary winding 510 electrically coupled to the resonant inductance 508 and the electrical connection 558 and a secondary winding 512 electrically coupled to the rectifier circuit 408 (see FIG. 7). The transformer 414 provides galvanic isolation between the primary side converter circuitry (including the DC source 104) and the secondary side circuitry (including the power bus 302). The turns ratio of the transformer 414 may also provide voltage and current transformation between the first AC waveform at the primary winding 510 and the second AC waveform at the secondary winding 512. As shown, the rectifier circuit 408 is embodied as a full-bridge rectifier formed from a plurality of diodes 514, 516, 518, 520 and also includes a bus capacitor 522, or other energy storage device, for filtering the DC bus waveform. Of course, in other embodiments, other circuit topologies may be used in the rectifier circuit 408.
  • It should be appreciated that, in the illustrative embodiment, the boost converter 400 includes the capacitor 410, the inductor 502, and the switches 420, 422 and the boost converter 402 includes the capacitor 410, the inductor 504, and the switches 424, 426 as shown in FIG. 6 via separate dashed boundary lines. Additionally, as shown in FIG. 7, the full bridge LLC resonant converter 404 includes the resonant tank circuit 412 (i.e., the resonant capacitor 506 and the resonant inductance 508), the transformer 414, and the bridge circuit formed by the switches 420, 422, 424, 426. As such, it should be appreciated that the boost converters 400, 402 collectively form an interleaved boost converter.
  • During operation of the converter 350, the switches 420, 422 and the switches 424, 426 are controlled by the inverter controller 310 to operate with a phase shift relative to one another, which permits the boost converters 400, 402 to operate in an interleaved manner. For example, in an illustrative embodiment, the pair of switches 420, 422 and the pair of switches 424, 426 operate with a 180 degree phase shift relative to one another. It should be appreciated that the illustrative boost converters 400, 402 have PWM-based duty cycle control rather than frequency-based control common to most resonant converters. As such, in some embodiments, the inverter controller 310 may operate the boost converters 400, 402 at a fixed frequency. However, in other embodiments, the inverter controller 310 may control the boost converters 400, 402 via PWM at a variable frequency for various design considerations other than power control (e.g., to optimize/improve efficiency and/or mitigate electromagnetic interference). It should be appreciated, however, that in such embodiments the voltage and/or power control of the boost converters 400, 402 is accomplished via duty cycle control, not by the variation of the frequency of the boost converters 400, 402. The boost converters 400, 402 “feed” voltage across the capacitor 410, which in turn feeds the full bridge LLC resonant converter 404. In particular, the capacitor 410 regulates the voltage across the bridge consisting of the switches 420, 422, 424, 426 to maintain a relatively stable DC voltage without voltage transients, which can damage the switches 420, 422, 424, 426. At the start of the interval during which the diagonal switches 420, 422, 424, 426 are on (i.e., the pair of switches 420, 426 or switches 422, 424), the resonant capacitor 506 resonates with the resonant inductance 508 and energy is transferred from the capacitor 410 to the secondary side of the transformer 414 during the resonation.
  • As indicated above, the full bridge LLC resonant converter 404 outputs a “smooth” sinusoidal wave rather than a square wave, which eliminates the need for an active voltage clamp and permits “soft” switching. That is, the switches 420, 422, 424, 426 may be controlled using zero-voltage switching or conditional zero-voltage switching (i.e., operation in a critical conduction mode) in which there is no or otherwise minimal reverse recovery for the switches 420, 422, 424, 426. In other words, the diodes 514, 516, 518, 520 turn of “softly” so that the corresponding reverse recovery effects from such switching are negligible or otherwise less severe than would be present in response to hard switching. For that reason, the diodes 514, 516, 518, 520 may be embodied as fast recovery diodes (e.g., P-i-N diodes and other conventional diodes) rather than as Schottky diodes (e.g., silicon carbide (SiC) diodes) and other diodes designed to have negligible reverse recovery effects. Of course, each of the diodes 514, 616, 518, 520 may be embodied as any suitable diode depending on the particular implementation.
  • At the end of the interval during which the energy is transferred across the transformer 414, the high- voltage side diodes 514, 518 turn off naturally (i.e., the turn-off is “soft”). The low-voltage side switches 422, 426 turn off their channels and can utilize zero-voltage switching. During the “dead time” in which all of the switches 420, 422, 424, 426 are off, the inductor current flows through the body diode of the high- side switches 420, 424. The switches 422, 426 utilize zero-voltage switching during turn-on In order for the switches 420, 424 to avoid turning off their corresponding body diodes (i.e., to avoid reverse recovery), critical conduction mode is necessary for the inductors 502, 504. An illustrative condition for critical conduction mode is that
  • Δ i = V i D 2 fL = 2 i dc where D 2 = 1 - NV i V bus ,
  • Vi is the input voltage, D2 is the duty cycle of the corresponding switch, Vbus is the voltage across the power bus 302, f is the frequency, L is the inductance of the corresponding inductor 502, 504, and idc is the current supplied to the power bus 302.
  • Referring now to FIGS. 8A-8D, simulated waveforms illustrating various operational characteristics of the input converter 350 are shown. In particular, FIG. 8A illustrates a voltage 800 (i.e., a drain to source voltage) across the switch 420 and a current 802 flowing through the switch 420 over time. As shown at point 804 and described above, the switch 420 engages in zero-voltage switching. That is, the switch 420 is turned on when the voltage 800 across the switch 420 is zero or substantially near zero. FIG. 8B illustrates a voltage 810 across the switch 422, a current 812 flowing through the switch 422, and an input current 814 of the corresponding inductor 502 over time. As shown at point 816, the switch 422 also utilizes zero voltage switching. As shown, FIG. 8C illustrates a current 820 flowing through the output diode 514 and a current 822 flowing through the output diode 516. It should be appreciated that the current 820, 822 waveforms through the diodes 514, 516 are approximately half-sinusoidal waves. Additionally, as discussed above, the current 820, 822 of the corresponding diode 514, 516 reaches zero such that the diode 514, 516 can shut itself off rather than being forcibly shut off when not conducting zero current.
  • FIG. 8D illustrates waveforms of the resonant tank circuit 412. In particular, FIG. 8D illustrates a voltage 830 (shown as Vab in FIGS. 5-7) generated by the bridge formed from the switches 420, 422, 424, 426, a voltage 832 across the resonant capacitor 506, and a resonant current 834 (e.g., the current flowing through the resonant inductance 508). As shown by the illustrative waveform, the voltage 830 is a tri-level square wave, which has a brief period 836 of zero voltage that corresponds with the dead time in which all of the switches 420, 422, 424, 426 are turned off. Additionally, the inductor current 834 (i.e., the resonant current) is embodied as a half-sinusoidal wave for a period 838, a period 840 of zero current, a negative half-sinusoidal wave for a period 842, and another period 844 of zero current.
  • It should be appreciated that, in the illustrative embodiment, energy is transferred to the secondary side of the transformer 414 during the positive and negative voltage-level periods. The duration, tactive, of each positive and negative voltage-level period may be determined according to
  • t active = { ( 1 - D 2 ) T sw when D 2 0.5 D 2 T sw when D 2 < 0.5 .
  • In order to achieve soft switching of the output diodes 514, 516, 518, 520, half of the LC resonant period should be less than tactive. In other words, the resonant period should satisfy the condition, 0.5tr≦tactive. As shown in FIG. 9, when that condition is satisfied, the resonant current 834 drops to zero prior to the step change of the input voltage 830 for a dead time 900. For that reason, unlike traditional resonant converters, there will be little or no circulating energy in the resonant tank circuit 412 of the input converter 350. In the illustrative embodiment, the condition, 0.5tr=tactive, is satisfied by the converter 350.
  • Referring now to FIG. 10, in another illustrative embodiment, the input converter 300 is embodied as a DC-to-DC input converter 352. The illustrative input converter 352 includes a resonant circuit 1000, an inverter circuit 1002, a capacitor divider 1004, a transformer 1006, and a rectifier circuit 1008. The resonant circuit 1000 is illustratively embodied as an LC tank circuit and is electrically coupled to the inverter circuit 1002 and configured for electrical coupling to the DC source 104. In some embodiments, when coupled to the DC source 104, the resonant circuit 1000 and the DC source 104 function similar to, and may be treated as, an “ideal” current source for purposes of analysis. The inverter circuit 1002 is embodied as a DC-to-AC inverter circuit configured to convert the DC waveform supplied by the DC source 104 to an AC waveform delivered to the capacitor divider 1004, which generates a divided voltage that is supplied to a primary winding of the transformer 1006. The transformer 1006 may be embodied as a two or more winding transformer having a primary winding electrically coupled to the capacitor divider 1004 and the inverter circuit 1002. The transformer 1006 is configured to convert the first AC waveform supplied by the capacitor divider 1004 at the primary winding to a second AC waveform at the secondary winding. The first and second AC waveforms may have substantially equal frequency and may or may not have substantially equal voltages. The rectifier circuit 1008 is electrically coupled to the secondary winding of the transformer 1006 and configured to rectify the second AC waveform to a DC waveform supplied to the power bus 302.
  • An illustrative embodiment of the input converter 352 is illustrated in FIG. 11. As shown, the input converter 352 is electrically coupled to the DC source 104, embodied as a photovoltaic cell, via the resonant circuit 1000. In the illustrative embodiment, the resonant circuit 1000 is embodied as an LC circuit including an input capacitor 1120 and an input inductor 1122. The inverter circuit 1002 is illustratively embodied as a half-bridge circuit formed by a plurality of switches 1124, 1126. In other embodiments, the inverter circuit 1002 may include a different number of switches and/or be otherwise embodied as a full-bridge circuit. As indicated above, each of the switches 1124, 1126 is configured to receive a corresponding control signal from the inverter controller 310 to control operation of the inverter 106. For example, the PWM controller 312 of the inverter controller 310 may use PWM to control the switches 1124, 1126 at a relatively high switching frequency (e.g., at a frequency that is substantially higher than the AC grid frequency). The inverter circuit 1002 converts the DC waveform from the DC source 104 or, more particularly, from the resonant circuit 1000 to a first AC waveform based on the control signals received from the inverter controller 310 as discussed above. Additionally, although each of the switches 1124, 1126 is illustrated as MOSFET devices, other types of switches may be used in other embodiments.
  • The capacitor divider 1004 is electrically coupled to each of the transformer 1006 and the inverter circuit 1002. In the illustrative embodiment, the capacitor divider 1004 includes capacitors 1128, 1130 and is configured to generate a divided voltage. The transformer 1006 includes a primary winding 1132 electrically coupled to the capacitor divider 1004 and the inverter circuit 1002 and a secondary winding 1134 electrically coupled to the rectifier circuit 1008. As shown, the transformer 1006 includes a leakage inductance, which is represented in FIG. 11 by a resonant inductance 1136 electrically coupled to the primary winding 1132 of the transformer 1006. Of course, as indicated above, the resonant inductance 1136 may be embodied as, or otherwise include, as a physical inductor and/or represent the leakage inductance and/or magnetizing inductance of the transformer 1006, an inductance associated with one or more discrete inductors, and/or the inductance of a circuit path (e.g., circuit board traces). The transformer 1006 provides galvanic isolation between the primary side converter circuitry (including DC source 104) and the secondary side circuitry (including power bus 302). The turns ratio of the transformer 1006 may also provide voltage and current transformation between the first AC waveform at the primary winding 1132 and the second AC waveform at the secondary winding 1134.
  • More specifically, in the illustrative embodiment of FIG. 11, the input converter 352 is electrically coupled to the DC source 104 at electrical connections 1150, 1152. That is, the input capacitor 1120 and the input inductor 1122 are electrically coupled to the DC source 104 at the electrical connection 1150. The capacitors 1120, 1130 and the switch 1126 are electrically coupled to the DC source 104 at the electrical connection 1152. In the illustrative embodiment, the switches 1124, 1126 are electrically coupled to the input inductor 1122 at an electrical connection 1154, and the capacitors 1128, 1130 are electrically coupled to one another at an electrical connection 1156. The resonant inductance 1136 is shown as being electrically coupled in series between the electrical connection 1154 and the primary winding 1132 of the transformer 1006. The primary winding 1132 is further coupled to the capacitors 1128, 1130 at the electrical connection 1156.
  • The rectifier circuit 1008 is electrically coupled to the secondary winding 1134 of the transformer 1006 and configured to convert the second AC waveform supplied by the transformer 1006 to a DC bus waveform supplied to the power bus 302. In the illustrative embodiment, the rectifier circuit 1008 is embodied as a half-bridge rectifier formed from a plurality of diodes 1138, 1140 and includes a capacitor divider of capacitors 1142, 1144. Again, in other embodiments, other circuit topologies may be used in the rectifier circuit 1008. The rectifier circuit 1008 may also include an energy storage device, such as a bus capacitor 1146, for filtering the DC bus waveform. In particular, the secondary winding 1034 of the transformer 1006 is electrically coupled to the diodes 1138, 1040 at an electrical connection 1158 and electrically coupled to the capacitors 1142, 1144 at an electrical connection 1160. Further, the bus capacitor 1146 is electrically coupled to the diode 1138 and the capacitor 1142 at an electrical connection 1162 and is electrically coupled to the diode 1140 and the capacitor 1144 at an electrical connection 1164.
  • It should be appreciated that, in some embodiments, the input converter 352 may operate according to similar principles as the input converter 350. For example, in the illustrative embodiment, the input converter 352 is embodied as the half-bridge topological counterpart to the converter 350 (i.e., a full-bridge boost resonant converter). Similar to the input converter 350, the resonant operation of the input converter 352 eliminates the need for active clamping, and the output power is regulated by varying the duty cycle and maintaining a constant or near-constant frequency.
  • Electrical schematics of the input converter 352 illustrating a flow 1200 of current through the input converter 352 at various stages of operation are shown in FIGS. 12A-12D. For ease of discussion, it should be appreciated that the input inductor 1122 is carrying a positive, nearly-constant current with low ripple. Referring now to FIG. 12A, before the switch 1124 turns on, current flows through the body diode of the switch 1124 and through the transformer 1006. It should be appreciated that a parasitic capacitance is present across the switch 1124, which prevents the voltage of the switch 1124 from instantly rising or falling (e.g., to zero); instead, there is some delay in such voltage transitions. Accordingly, the parasitic capacitance across the switch 1124 is discharged by the current flowing through the body diode of the switch 1124. When the voltage of the switch 1124 reaches zero (i.e., a low stress condition), the switch 1124 is turned on by virtue of zero voltage switching. At that point, the capacitor 1128 resonates with the resonant inductance 1136 of the transformer 1006 and with the capacitor 1142. After the transformer 1006 current resonates back to zero, the output diode 1138 prevents the continued resonation in the reverse direction.
  • It will be appreciated the resonant frequency, f1, at this stage may be expressed according to:
  • f 1 = 1 2 π L 4 n 2 C 3 ( C 1 + C 2 ) C 1 + C 2 + n 2 + C 3
  • where n is the turns ratio of the secondary side to the primary side of the transformer 1006, L4 is the resonant inductance 1136, C1 is the capacitance of the capacitor 1128, C2 is the capacitance of the capacitor 1130, and C3 is the capacitance of the capacitor 1138. Further, the turns ratio, n, may be expressed as
  • n = n sec n prim = V o V c ,
  • where nsec is the number of turns of the secondary side of the transformer 1006, nprim is the number of turns of the primary side of the transformer 1006, Vo is the output voltage of the input converter 352, and is Vc the voltage across the capacitors 1128, 1130. It should further be appreciated that the relationship between the input voltage, the duty cycle of the switch 1126, and the voltage across the capacitors 1128, 1130 may be expressed as
  • V o V c = 1 1 - D ,
  • where D is the duty cycle.
  • Referring now to FIG. 12B, after the switch 1124 is turned on, the current flow through the non-body diode portion (e.g., the MOSFET portion) of the switch 1124, rather than through the body diode of the switch 1124, and begins supplying energy to the capacitors 1128, 1130. It should be appreciated that there is no operational current flowing through the transformer 1006 and both of the diodes 1138, 1140 turn off at this point. The switch 1124 is then turned back off. As shown in FIG. 12C, the switch 1126 is turned on and the current of the input inductor 1122 flow through the switch 1126. By virtue of the switching from the switch 1124 to the switch 1126, resonance is excited between the resonant inductance 1136 and the capacitor 1130, which causes the transformer 1006 to conduct and the diode 1140 to turn on. The resonant frequency, f2, at this stage may be expressed according to:
  • f 1 = 1 2 π L 4 n 2 C 4 C 2 C 2 + n 2 + C 4
  • where C4 is the capacitance of the capacitor 1144 and the other variables are similar to those described above.
  • Referring now to FIG. 12D, the resonant half-cycle, which may be similar to the current 834 of FIGS. 8D and 9, has completed and the transformer 1006 therefore stops conducting. That is, the transformer 1006 current falls to zero, the switch 1126 is conducting (i.e., the non-body diode portion), and neither of the diodes 1138, 1140 are conducting. The switch 1126 then turns back off. For a brief period thereafter (i.e., a dead time), both of the switches 1124, 1126 are off, following which the input converter 352 resumes operation similar to that described above in reference to FIG. 12A. In other words, in the illustrative embodiment, FIGS. 12A-12D embody a complete cycle of operation of the input converter 352.
  • Referring now to FIGS. 13A-13C, simulated waveforms illustrating the operation of various circuits of the input converter 352 of FIG. 11. In particular, FIG. 13A illustrates a current 1300 flowing through the diode 1138, a current 1302 flowing through the diode 1140, a voltage 1304 across the diode 1138, a voltage 1306 across the diode 1140, and a voltage 1308 across the capacitor 1128 over time. FIG. 13B illustrates a current 1310 flowing through the switch 1124, a current 1312 flowing through the switch 1126, a current 1314 flowing through the input inductor 1122, a current 1316 flowing through the capacitor 1128, and a current 1318 flowing through the capacitor 1130 over time. FIG. 13C illustrates a voltage 1320 across the switch 1124 and a voltage 1322 across the switch 1126 over time. FIG. 13C also illustrates a driving signal 1324 of the switch 1124 and a driving signal 1326 of the switch 1126 over time. As shown at point 1328 and described above, the switches 1124, 1126 engage in zero-voltage switching such that the corresponding switch 1124, 1126 is turned on when the corresponding voltage 1320, 1322 is zero.
  • It should be appreciated that the input converter 352 may exhibit characteristics that are advantageous to a DC-to-DC boost converter in some implementations and may be similar to the benefits of the topology of the input converter 350. For example, the resonant operation of the input converter 352 may generate a relatively sinusoidal waveform across the transformer 1006, eliminate the need for an active clamping circuit, and/or permit soft switching of the output diodes 1138, 1140 (i.e., the diodes 1138, 1140 require little or no reverse recovery). Additionally, the output power may be regulated by varying the duty cycle while maintaining a constant or near-constant frequency.
  • There is a plurality of advantages of the present disclosure arising from the various features of the apparatuses, circuits, and methods described herein. It will be noted that alternative embodiments of the apparatuses, circuits, and methods of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the apparatuses, circuits, and methods that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

1. An inverter for converting an input direct current (DC) waveform from a DC source to an output alternating current (AC) waveform for delivery to an AC grid, the inverter comprising:
an input converter electrically coupled to a DC power bus, wherein the input converter is configured to convert the input DC waveform to a bus waveform supplied to the DC power bus and comprises:
a full bridge resonant converter including (i) a first pair of electrical switches electrically coupled to each other at a first electrical connection, and (ii) a second pair of electrical switches electrically coupled to each other at a second electrical connection, and (iii) a resonant tank circuit;
a first boost converter electrically coupled to the full bridge resonant converter, wherein the first boost converter includes (i) a capacitor, (ii) the first pair of electrical switches, and (iii) a first inductor having a first terminal to receive the input DC waveform and a second terminal electrically coupled to the first connection; and
a second boost converter electrically coupled to the full bridge resonant converter and the first boost converter, wherein the second boost converter includes (i) the capacitor, (ii) the second pair of electrical switches, and (iii) a second inductor having a first terminal electrically coupled to the first terminal of the first inductor to receive the input DC waveform and a second terminal electrically coupled to the second electrical connection.
2. The inverter of claim 1, wherein the capacitor comprises (i) a first terminal electrically coupled to a first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches at a third electrical connection and (ii) a second terminal electrically coupled to a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches at a fourth electrical connection.
3. The inverter of claim 1, wherein the resonant tank circuit includes a resonant capacitor and a resonant inductor electrically coupled in series.
4. The inverter of claim 3, wherein the full bridge resonant converter further comprises a transformer and the resonant inductor comprises a resonant inductance formed from at least one of a leakage inductance and a magnetizing inductance of the transformer.
5. The inverter of claim 3, wherein the resonant capacitor resonates with the leakage inductance and energy is transferred from the capacitor across the transformer during resonance in response to one of (i) the first switch of the first pair of electrical switches and a first switch of the second pair of electrical switches being active or (ii) a second switch of the first pair of electrical switches and a second switch of the second pair of electrical switches being active.
6. The inverter of claim 1, wherein each of the first boost converter and the second boost converter is configured to increase a magnitude of the input DC waveform to generate a boosted DC waveform.
7. The inverter of claim 6, wherein:
the first pair and second pair of electrical switches of the full bridge resonant converter are configured to receive the boosted DC waveform and to generate a square waveform; and
the resonant tank circuit is configured to receive the square waveform and to convert the square waveform to a resonant sinusoidal waveform.
8. The inverter of claim 1, further comprising an inverter controller electrically coupled to the input converter and configured to control operation of the first pair and second pair of electrical switches.
9. The inverter of claim 8, wherein the inverter controller is configured to operate the first pair of electrical switches with a phase shift relative to the second pair of electrical switches for interleaved operation of the first and second boost converters.
10. The inverter of claim 8, wherein at least one switch of the first pair of switches or the second pair of switches is controlled by the inverter controller using zero-voltage switching.
11. The inverter of claim 8, wherein the inverter controller is configured to control operation of the first pair and second pair of electrical switches using pulse width modulation and duty cycle modifications.
12. The inverter of claim 8, wherein at least one of the first boost converter and the second boost converter is configured to operate at a fixed frequency; and
wherein the corresponding pair of electrical switches is controlled via pulse-width modulation duty cycle control.
13. The inverter of claim 1, wherein the full bridge resonant converter further comprises a transformer, and further comprising:
a rectifier circuit electrically coupled to a secondary winding of the transformer and to the DC power bus, wherein the rectifier circuit is configured to convert an input AC waveform received from the secondary winding of the transformer to the bus waveform supplied to the DC power bus.
14. The inverter of claim 1, wherein the DC source is embodied as a photovoltaic power source.
15. An input converter of a power inverter for boosting a direct current (DC) waveform from a DC source to supply a DC bus waveform to a power bus, the input converter comprising:
a half-bridge inverter circuit comprising a first electrical switch electrically coupled to a second electrical switch at a first electrical connection, the half-bridge inverter circuit configured to convert an input DC waveform to an AC waveform;
a resonant circuit electrically coupled to the half-bridge inverter circuit, wherein the resonant circuit includes an output electrically coupled to the first electrical connection to supply the input DC waveform to the half-bridge inverter circuit;
a capacitor divider circuit electrically coupled to the inverter circuit to receive the AC waveform from the inverter circuit and generate a divided AC voltage signal;
a transformer having a primary winding and a secondary winding, wherein the primary winding includes a first terminal electrically connected to the first electrical connection and a second terminal electrically connected to the capacitor divider to receive the divided AC voltage signal therefrom; and
a rectifier circuit electrically coupled to the secondary winding of the transformer and to the power bus, wherein the rectifier circuit is configured to convert an input AC waveform received from the secondary winding of the transformer to the DC bus waveform supplied to the power bus.
16. The input converter of claim 15, wherein:
the capacitor divider circuit comprises a first capacitor electrically coupled to a second capacitor at a second electrical connection, each of the first capacitor and second capacitor having a first terminal electrically coupled to the second electrical connection;
the first electrical switch including a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the first capacitor; and
the second electrical switch including a first terminal electrically coupled to the first electrical connection and a second terminal electrically coupled to a second terminal of the second capacitor.
17. The input converter of claim 14, wherein the second terminal of the transformer is electrically coupled to the second electrical connection.
18. The input converter of claim 14, wherein at least one of the first electrical switch or the second electrical switch is configured to be controlled in a zero-voltage switching mode.
19. The input converter of claim 14, wherein the rectifier circuit comprises a plurality of diodes and at least one diode of the plurality of diodes is configured to be controlled by soft switching and with negligible reverse recovery.
20. The inverter of claim 14, wherein the DC source is embodied as a photovoltaic power source.
US14/214,896 2013-03-15 2014-03-15 Technologies for converter topologies Active 2034-07-09 US9584044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/214,896 US9584044B2 (en) 2013-03-15 2014-03-15 Technologies for converter topologies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361794480P 2013-03-15 2013-03-15
US14/214,896 US9584044B2 (en) 2013-03-15 2014-03-15 Technologies for converter topologies

Publications (2)

Publication Number Publication Date
US20140268908A1 true US20140268908A1 (en) 2014-09-18
US9584044B2 US9584044B2 (en) 2017-02-28

Family

ID=51526386

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/214,896 Active 2034-07-09 US9584044B2 (en) 2013-03-15 2014-03-15 Technologies for converter topologies

Country Status (1)

Country Link
US (1) US9584044B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716863A (en) * 2015-02-12 2015-06-17 中国科学院长春光学精密机械与物理研究所 Resonant charging type triggering device for rotary spark switch
US20150236617A1 (en) * 2014-02-14 2015-08-20 Majid Pahlevaninezhad Zvs voltage source inverter with reduced output current ripple
US20160111888A1 (en) * 2014-10-20 2016-04-21 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting power wirelessly
CN105743351A (en) * 2016-03-25 2016-07-06 华为技术有限公司 Switching power supply circuit and method for prolonging power-off protection time
US20160285387A1 (en) * 2015-03-25 2016-09-29 Sunpower Corporation Converter topologies and control
DE102017213418A1 (en) 2016-08-02 2018-02-08 Omron Automotive Electronics Co., Ltd. TENSION DEVICE IMPLEMENTATION
DE102017214721A1 (en) 2016-08-24 2018-03-01 Omron Automotive Electronics Co., Ltd. POWER CONVERSION DEVICE
US9954462B2 (en) 2016-06-30 2018-04-24 Sunpower Corporation Converter topologies and control
CN108011395A (en) * 2017-12-11 2018-05-08 江苏辉伦太阳能科技有限公司 The control method of charging and discharging circuit automatic optimal in a kind of mixing inverter
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US10046657B2 (en) * 2016-11-25 2018-08-14 Toyota Jidosha Kabushiki Kaisha Driving device
EP3367553A1 (en) * 2017-02-28 2018-08-29 LG Electronics Inc. Power conversion device and photovoltaic module including the same
KR20180103036A (en) * 2016-11-29 2018-09-18 삼성전기주식회사 Wireless power transmitter
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
JP2018179716A (en) * 2017-04-11 2018-11-15 新電元工業株式会社 Switching loss evaluation device
KR101901703B1 (en) * 2016-11-29 2018-11-22 삼성전기 주식회사 Wireless power transmitter
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
US20190149030A1 (en) * 2017-11-14 2019-05-16 Chengdu Monolithic Power Systems Co., Ltd. Isolated power supply circuit and associated control method
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
US20190326824A1 (en) * 2018-04-24 2019-10-24 Shanghai Tuituo Technology Co., Ltd. Control method for combination power supply of boost and bridge type dc-dc
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
US10819244B1 (en) 2019-06-20 2020-10-27 Abb Power Electronics Inc. Single-stage isolated DC-DC converters with interleaved arms
TWI743862B (en) * 2020-07-01 2021-10-21 國立虎尾科技大學 Tri-port power converter
US20220103058A1 (en) * 2020-09-30 2022-03-31 Solaredge Technologies Ltd. Method and Apparatus for Power Conversion
WO2022208644A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Power conversion device and power conversion system
US20220382313A1 (en) * 2015-05-22 2022-12-01 Tigo Energy, Inc. Systems and methods for quick dissipation of stored energy from input capacitors of power inverters
CN116632984A (en) * 2023-07-24 2023-08-22 鹏元晟高科技股份有限公司 Charging and discharging circuit of mobile power supply
US20230318470A1 (en) * 2022-03-31 2023-10-05 Lear Corporation Wide-Range Input DC/DC Converter
US20230396174A1 (en) * 2022-06-03 2023-12-07 Infineon Technologies Austria Ag Voltage converter with switch control circuitry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536095B1 (en) 2017-04-20 2020-01-14 Maxim Integrated Product, Inc. Resonant converter with negative current feedback
CN113273073B (en) * 2018-11-08 2023-01-31 广东锐顶电力技术有限公司 Novel full-wave switch DC-AC grid-connected inverter

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064580A (en) * 1998-03-09 2000-05-16 Shindengen Electric Manufacturing Co., Ltd. Switching power supply
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
US6862195B2 (en) * 1999-03-01 2005-03-01 Delta Energy Systems (Switzerland) Ag Soft transition converter
US20070051712A1 (en) * 2004-07-13 2007-03-08 Lincoln Global, Inc. Three stage power source for electric arc welding
US20090167285A1 (en) * 2007-12-28 2009-07-02 Industrial Technology Research Institute Resonance circuit for use in h-bridge dc-dc converter
US7746669B2 (en) * 2005-05-20 2010-06-29 SMP Solar Technology AG Bidirectional battery power inverter
US20100214808A1 (en) * 2006-01-13 2010-08-26 Cuauhtemoc Rodriguez Power conditioning unit
US20110051467A1 (en) * 2009-08-26 2011-03-03 Sanken Electric Co., Ltd. Resonant switching power supply device
US20120063177A1 (en) * 2011-03-22 2012-03-15 Paul Garrity Solar Photovoltaic Power Conditioning Units
US20120112547A1 (en) * 2010-11-05 2012-05-10 American Power Conversion Corporation System and method for bidirectional dc-ac power conversion
US20120112702A1 (en) * 2010-11-05 2012-05-10 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
US20120153729A1 (en) * 2010-12-17 2012-06-21 Korea Institute Of Energy Research Multi-input bidirectional dc-dc converter
US20120262953A1 (en) * 2011-04-12 2012-10-18 Flextronics Ap, Llc Multi-phase resonant converter
US20120300502A1 (en) * 2011-05-26 2012-11-29 Hitachi Computer Peripherals Co. Ltd. Power supply apparatus
US20130076135A1 (en) * 2011-09-28 2013-03-28 General Electric Company High-Power Boost Converter
US20140198542A1 (en) * 2013-01-14 2014-07-17 Yaskawa America, Inc. Single-phase active front end rectifier system for use with three-phase variable frequency drives

Family Cites Families (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670230A (en) 1970-12-21 1972-06-13 Ibm Active filter capacitor for power supply switching regulators
AU2296677A (en) 1976-03-10 1978-09-14 Westinghouse Electric Corp Load balancing system for ups rectifiers
US4217633A (en) 1978-06-09 1980-08-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cell system having alternating current output
FR2438934A1 (en) 1978-10-09 1980-05-09 Accumulateurs Fixes DEVICE FOR REGULATING THE CHARGE OF A BATTERY
US4277692A (en) 1979-06-04 1981-07-07 Tab Products Company Continuous power source with bi-directional converter
US4661758A (en) 1980-02-22 1987-04-28 Lane S. Garrett Solar power supply and battery charging circuit
JPS6154820A (en) 1984-08-23 1986-03-19 シャープ株式会社 Dc/ac converter of photogenerator system
US4651265A (en) 1985-07-29 1987-03-17 Westinghouse Electric Corp. Active power conditioner system
JPS62107647A (en) 1985-10-31 1987-05-19 三菱電機株式会社 Flywheel source apparatus
US4719550A (en) 1986-09-11 1988-01-12 Liebert Corporation Uninterruptible power supply with energy conversion and enhancement
US4709318A (en) 1986-10-22 1987-11-24 Liebert Corporation UPS apparatus with control protocols
US5148043A (en) 1989-07-25 1992-09-15 Kabushiki Kaisha Toshiba Uninterruptible power supply diagnosing remaining battery capacity during normal external power source operation
US5041959A (en) 1990-08-14 1991-08-20 General Electric Company Control system for a current source converter supplying an AC bus
US5160851A (en) 1990-08-28 1992-11-03 Nynex Corporation Rechargeable back-up battery system including a number of battery cells having float voltage exceeding maximum load voltage
JPH04299027A (en) 1991-03-27 1992-10-22 Toshiba Corp Inverter device
TW245848B (en) 1991-09-18 1995-04-21 Toshiba Kk
US5309073A (en) 1991-10-21 1994-05-03 Hitachi, Ltd. Electric vehicle control device
US5345375A (en) 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
US5499178A (en) 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US5982645A (en) 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
US5343380A (en) 1992-11-17 1994-08-30 Champlin Keith S Method and apparatus for suppressing time-varying signals in batteries undergoing charging or discharging
SG44798A1 (en) 1994-02-10 1997-12-19 Philips Electronics Nv High frequency ac/ac converter with power factor correction
WO1996013766A1 (en) 1994-10-26 1996-05-09 Board Of Trustees Of The University Of Illinois Feedforward active filter for output ripple cancellation in switching power converters
JP2986059B2 (en) 1995-03-08 1999-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Battery charger
FR2732170B1 (en) 1995-03-24 1997-05-09 Guyonneau Claude HIGH VOLTAGE PHOTOVOLTAIC ENERGY STATION WITH PERSONALIZED STORAGE
JP3357808B2 (en) 1996-01-29 2002-12-16 三洋電機株式会社 Solar cell device
US5801519A (en) 1996-06-21 1998-09-01 The Board Of Trustees Of The University Of Illinois Self-excited power minimizer/maximizer for switching power converters and switching motor drive applications
EP0817350B1 (en) 1996-06-24 2008-03-26 SANYO ELECTRIC Co., Ltd. Power-supply system involving system interconnection
US5745356A (en) 1996-06-25 1998-04-28 Exide Electronics Corporation Independent load sharing of AC power systems connected in parallel
US5796182A (en) 1996-06-27 1998-08-18 Martin; Richard A. Capacator storage circuit for sustaining a DC converter
CA2258340A1 (en) 1997-01-31 1998-08-06 Ira S. Faberman Uninterruptible power supply
US5929537A (en) 1997-06-30 1999-07-27 Sundstrand Corporation PMG main engine starter/generator system
US6046402A (en) 1998-05-21 2000-04-04 Motorola, Inc. Solar hybrid electrical powering devices for pulse discharge applications
JP2000014043A (en) 1998-06-05 2000-01-14 Internatl Business Mach Corp <Ibm> Uninterruptive power supply
JP2000068537A (en) 1998-06-12 2000-03-03 Canon Inc Solar cell module, string, system, and management method
US5982652A (en) 1998-07-14 1999-11-09 American Power Conversion Method and apparatus for providing uninterruptible power using a power controller and a redundant power controller
US6154379A (en) 1998-07-16 2000-11-28 Tdk Corporation Electric power conversion device
US6111189A (en) 1998-07-28 2000-08-29 Bp Solarex Photovoltaic module framing system with integral electrical raceways
US6462507B2 (en) 1998-08-07 2002-10-08 Okc Products, Inc. Apparatus and method for initial charging, self-starting, and operation of a power supply with an intermittent and/or variable energy source and a rechargeable energy storage device
US6311279B1 (en) 1998-10-27 2001-10-30 Compaq Computer Corporation Network node with internal battery backup
JP2000197347A (en) 1998-12-25 2000-07-14 Hitachi Ltd Power supply device
US6046400A (en) 1999-01-28 2000-04-04 Drummer; Lennier Solar power supply system
JP3469807B2 (en) 1999-03-24 2003-11-25 鐘淵化学工業株式会社 Solar cell power generation device, wiring device for the device, and wiring structure
US6291764B1 (en) 1999-03-24 2001-09-18 Sanyo Electronics Co., Ltd. Photovoltaic power generation device
US6201180B1 (en) 1999-04-16 2001-03-13 Omnion Power Engineering Corp. Integrated photovoltaic system
US6285572B1 (en) 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
US6624533B1 (en) 1999-08-04 2003-09-23 Westerbeke Corporation Controlling generator power
US6157168A (en) 1999-10-29 2000-12-05 International Business Machines Corporation Secondary power supply for an uninterruptible power system
EP1120897A3 (en) 2000-01-06 2004-01-21 Axel Akerman A/S Independent load sharing between parallel inverter units in an AC power system
JP3352662B2 (en) 2000-02-03 2002-12-03 関西電力株式会社 Power system stabilizing apparatus and power system stabilizing method using secondary battery system
US6700802B2 (en) 2000-02-14 2004-03-02 Aura Systems, Inc. Bi-directional power supply circuit
US6356471B1 (en) 2000-07-10 2002-03-12 Powerware Corporation Dynamic feedback adaptive control system and method for paralleling electric power sources and an uninterruptible power supply including same
DE20012131U1 (en) 2000-07-13 2001-02-22 Paetz Werner Solar generator
JP2002034179A (en) 2000-07-14 2002-01-31 Toshiba Corp Power controller
US6519168B2 (en) 2000-07-24 2003-02-11 Chippower.Com, Inc. High frequency DC to AC inverter
EP1433239B1 (en) 2000-07-28 2016-03-30 International Power Systems,Inc. Dc to dc converter and power management system
US6369461B1 (en) 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US6489755B1 (en) 2000-09-18 2002-12-03 Adtran, Inc. Active ripple and noise filter for telecommunication equipment powering
JP3725015B2 (en) 2000-09-22 2005-12-07 山洋電気株式会社 Uninterruptible power system
JP2002112459A (en) 2000-09-29 2002-04-12 Canon Inc Solar battery module and power generation device
JP2002204531A (en) 2000-10-31 2002-07-19 Canon Inc Ac-interconnecting device and control method thereof
JP2002141540A (en) 2000-10-31 2002-05-17 Canon Inc Solar cell module integrated with power converter
US6727602B2 (en) 2001-01-29 2004-04-27 Broadcom Corporation Power supply for controlled parallel charging and discharging of batteries
AT411946B (en) 2001-03-09 2004-07-26 Fronius Schweissmasch Prod METHOD FOR REGULATING A INVERTER SYSTEM
US6765315B2 (en) 2001-03-14 2004-07-20 International Power Systems, Inc. Bi-directional regulator/converter with buck/boost by fuzzy logic control
US20020138333A1 (en) 2001-03-22 2002-09-26 Decotiis Allen R. System, method and article of manufacture for a weighted model to conduct propensity studies
JP2002354678A (en) 2001-05-29 2002-12-06 Canon Inc Power generating device, and its control method
JP2003052185A (en) 2001-05-30 2003-02-21 Canon Inc Power converter, and photovoltaic element module using the same and power generator
JP4523738B2 (en) 2001-06-07 2010-08-11 パナソニック株式会社 Secondary battery remaining capacity control method and apparatus
US6770984B2 (en) 2001-08-28 2004-08-03 Delta Electronics Inc. Electronic voltage regulator with switching control device and control method for stabilizing output voltage
US6657321B2 (en) 2001-10-02 2003-12-02 General Electric Company Direct current uninterruptible power supply method and system
US6750391B2 (en) 2001-10-25 2004-06-15 Sandia Corporation Aternating current photovoltaic building block
US6614132B2 (en) 2001-11-30 2003-09-02 Beacon Power Corporation Multiple flywheel energy storage system
US6881509B2 (en) 2001-12-19 2005-04-19 Abb Research Ltd. Fuel cell system power control method and system
AU2002252481A1 (en) 2002-02-22 2003-09-09 Xantrex Technology Inc. Modular ac voltage supply and algorithm for controlling the same
EP1525656A1 (en) 2002-06-23 2005-04-27 Powerlynx A/S Power converter
US7031176B2 (en) 2002-07-15 2006-04-18 Koninklijke Philips Electronics N.V. Inverter
US6847196B2 (en) 2002-08-28 2005-01-25 Xantrex Technology Inc. Method and apparatus for reducing switching losses in a switching circuit
NL1021582C2 (en) 2002-10-04 2004-04-06 Stichting Energie Modular photovoltaic device has frame formed by electrically insulated and conducting supports connected to modules via two contact points
NL1021591C2 (en) 2002-10-05 2004-04-06 Energieonderzoek Ct Petten Ecn Photovoltaic device has photovoltaic modules secured to frame acting as conductor for current generated
US20040128387A1 (en) 2002-12-27 2004-07-01 Kwan Wu Chin Broadcasting information in ad-hoc network clusters between pseudo-random time intervals
US7342171B2 (en) 2003-01-23 2008-03-11 Solar Intergrated Technologies, Inc. Integrated photovoltaic roofing component and panel
BR0300173A (en) 2003-01-31 2004-10-26 Engetron Engenharia Eletronica Single-phase or multi-phase inverter power supply system
US7463500B2 (en) 2003-02-21 2008-12-09 Xantrex Technology, Inc. Monopolar DC to bipolar DC to AC converter
US7099169B2 (en) 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
DE202004021675U1 (en) 2003-05-06 2010-05-12 Enecsys Ltd., Cambridge Power supply circuits
US7102251B2 (en) 2003-08-22 2006-09-05 Distributed Power, Inc. Bi-directional multi-port inverter with high frequency link transformer
US7091707B2 (en) 2003-09-29 2006-08-15 Xantrex Technology, Inc. Method and apparatus for controlling power drawn from an energy converter
AT501424B1 (en) 2003-10-31 2008-08-15 Fronius Int Gmbh METHOD FOR AN INVERTER AND INVERTER, ESPECIALLY SOLAR CHANGEARK
US20050180175A1 (en) 2004-02-12 2005-08-18 Torrey David A. Inverter topology for utility-interactive distributed generation sources
US7297866B2 (en) 2004-03-15 2007-11-20 Sunpower Corporation Ventilated photovoltaic module frame
JP4217644B2 (en) 2004-03-23 2009-02-04 キヤノン株式会社 Power generation system, power generation system management apparatus and management method
US7406800B2 (en) 2004-05-18 2008-08-05 Andalay Solar, Inc. Mounting system for a solar panel
ATE528846T1 (en) 2004-06-21 2011-10-15 Xantrex Technology Inc OUTPUT POWER FACTOR CONTROL OF A PULSE WIDTH MODULATED INVERTER
US7405494B2 (en) 2004-07-07 2008-07-29 Eaton Corporation AC power supply apparatus, methods and computer program products using PWM synchronization
EP1766490A4 (en) 2004-07-13 2007-12-05 Univ Central Queensland A device for distributed maximum power tracking for solar arrays
ATE511213T1 (en) 2004-09-03 2011-06-15 Cambridge Semiconductor Ltd SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT
US8053783B2 (en) 2004-09-10 2011-11-08 Element Six Limited Switching device
US7477675B2 (en) 2004-09-30 2009-01-13 Kyocera Corporation Data communication apparatus
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
GB2419968B (en) 2004-11-08 2010-02-03 Enecsys Ltd Power supply circuits
GB2421847B (en) 2004-11-08 2006-12-27 Enecsys Ltd Integrated circuits
US8077437B2 (en) 2004-11-08 2011-12-13 Enecsys Limited Integrated circuits and power supplies
DE102004053942A1 (en) 2004-11-09 2006-05-11 Solarwatt Solar-Systeme Gmbh Connection unit for photovoltaic solar modules
US7289341B2 (en) 2004-12-14 2007-10-30 Advanced Energy Industries, Inc. Power supply adaptive feedforward control circuit
AT501542B1 (en) 2004-12-16 2009-03-15 Fronius Int Gmbh METHOD FOR DETECTING THE LOAD OF AN ISLE CHANGE AND ISOLATOR INVERTER
US7193872B2 (en) 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
JP2006352700A (en) 2005-06-17 2006-12-28 Sony Corp System, apparatus, method, and program for communication
US7388348B2 (en) 2005-07-15 2008-06-17 Mattichak Alan D Portable solar energy system
US7233130B1 (en) 2005-08-05 2007-06-19 Rf Micro Devices, Inc. Active ripple reduction switched mode power supplies
US7319313B2 (en) 2005-08-10 2008-01-15 Xantrex Technology, Inc. Photovoltaic DC-to-AC power converter and control method
US7365998B2 (en) 2005-09-30 2008-04-29 Intel Corporation Unregulated isolated DC/DC converter with ripple control
US7592789B2 (en) 2005-10-31 2009-09-22 Chil Semiconductor Corporation Power supply and related circuits
US7609040B1 (en) 2005-10-31 2009-10-27 Chil Semiconductor Corporation Power supply and related circuits
US7638899B2 (en) 2006-03-10 2009-12-29 Eaton Corporation Nested redundant uninterruptible power supply apparatus and methods
WO2007111868A1 (en) 2006-03-23 2007-10-04 Enphase Energy, Inc. Method and apparatus for converting direct current to alternating current
GB2438463A (en) 2006-05-23 2007-11-28 Cambridge Semiconductor Ltd Regulating the output of a switch mode power supply
US7710752B2 (en) 2006-05-23 2010-05-04 Xantrex Technology Inc. Transformerless utility-grid-interactive inverter
US7626834B2 (en) 2006-06-29 2009-12-01 Enecsys Limited Double ended converter with output synchronous rectifier and auxiliary input regulator
GB0612859D0 (en) 2006-06-29 2006-08-09 Enecsys Ltd A DC to AC power converter
US7502697B2 (en) 2006-09-28 2009-03-10 Programmable Division Of Xantrex Technology, Inc. AC output power supply with digital feedback loop
US7893346B2 (en) 2006-09-28 2011-02-22 Jack Nachamkin Integrated voltaic energy system
US7387537B1 (en) 2007-01-03 2008-06-17 Tyco Electronics Corporation Connector system for solar cell roofing tiles
US7681090B2 (en) 2007-01-25 2010-03-16 Solarbridge Technologies, Inc. Ripple correlation control based on limited sampling
US7667610B2 (en) 2007-05-04 2010-02-23 Xantrex Technology Inc. Producing an indication of solar panel condition based on age and actual power output
US20090000654A1 (en) 2007-05-17 2009-01-01 Larankelo, Inc. Distributed inverter and intelligent gateway
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
EP2162978B1 (en) 2007-06-06 2018-04-04 ABB Schweiz AG Delivery of electric power by means of a plurality of parallel inverters and control method based on maximum power point tracking (mppt)
US7787270B2 (en) 2007-06-06 2010-08-31 General Electric Company DC-DC and DC-AC power conversion system
WO2009011877A2 (en) 2007-07-16 2009-01-22 Enphase Energy, Inc. Method and apparatus for anti-islanding of distributed power generation systems
US20090020151A1 (en) 2007-07-16 2009-01-22 Pvi Solutions, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US7531993B2 (en) 2007-08-29 2009-05-12 Cambridge Semiconductor Limited Half bridge circuit and method of operating a half bridge circuit
US9048693B2 (en) 2007-09-06 2015-06-02 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
CA2699941A1 (en) 2007-09-18 2009-03-26 Flyback Energy, Inc. Current waveform construction to generate ac power with low harmonic distortion from localized energy sources
ES2328774B1 (en) 2007-09-24 2011-03-10 Petra Inventum SOLAR ENERGY COLLECTOR ARCHITECTURAL CLOSING PANEL, AND TRANSITABLE SOLAR ENERGY COLLECTOR COVER.
GB2452991B (en) 2007-09-24 2012-12-26 Plextek Ltd Data ackmowledgement apparatus and method1
US7986539B2 (en) 2007-09-26 2011-07-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
US7986122B2 (en) 2007-09-26 2011-07-26 Enphase Energy, Inc. Method and apparatus for power conversion with maximum power point tracking and burst mode capability
JP2009099971A (en) 2007-09-28 2009-05-07 Enphase Energy Inc General interface for photovoltaic module
US8537572B2 (en) 2007-09-28 2013-09-17 Enphase Energy, Inc. Method and apparatus for providing power conversion using an interleaved flyback converter with automatic balancing
US7755916B2 (en) 2007-10-11 2010-07-13 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
WO2009081205A2 (en) 2007-12-20 2009-07-02 Enecsys Limited Grid synchronisation
GB2455755B (en) 2007-12-20 2010-10-20 Enecsys Ltd Grid synchronisation
GB2455753B (en) 2007-12-20 2011-02-16 Enecsys Ltd Solar blinds
BRPI0906511A2 (en) 2008-01-09 2017-06-13 Petra Solar Inc photovoltaic, power conversion and connector mounts, and docking station.
US20090184695A1 (en) 2008-01-18 2009-07-23 Programmable Division Of Xantrex Technology, Inc. Method and system for rms computation on digitized samples
CA2715340C (en) 2008-02-12 2015-08-04 Enphase Energy, Inc. Method and apparatus for distributed var compensation
FR2927733B1 (en) 2008-02-19 2011-05-06 Photowatt Internat INSTALLATION OF REMOTE CONTROLLED PHOTOVOLTAIC MODULES
US7916505B2 (en) 2008-03-06 2011-03-29 Enphase Energy, Inc. Method and apparatus for a leakage energy recovery circuit
US7855473B2 (en) 2008-03-11 2010-12-21 Enphase Energy, Inc. Apparatus for phase rotation for a three-phase AC circuit
JP5654982B2 (en) 2008-03-26 2015-01-14 エンフェイズ エナジー インコーポレイテッド Method and apparatus for extending the range of zero voltage switching in a DC / DC converter
EP2269079A4 (en) 2008-03-26 2014-05-21 Enphase Energy Inc Method and apparatus for measuring ac voltages
US7817450B2 (en) 2008-03-26 2010-10-19 Enphase Energy, Inc. Method and apparatus for resetting a silicon controlled rectifier bridge
US20090244939A1 (en) 2008-03-26 2009-10-01 Enphase Energy, Inc. Method and apparatus for resetting silicon controlled rectifiers in a hybrid bridge
US8383943B2 (en) 2008-03-28 2013-02-26 Greenray, Inc. Electrical cable harness and assembly for transmitting AC electrical power
TW201010239A (en) 2008-04-22 2010-03-01 Array Converter Inc High voltage array converter
US9077262B2 (en) 2008-04-29 2015-07-07 Cirrus Logic, Inc. Cascaded switching power converter for coupling a photovoltaic energy source to power mains
US8023266B2 (en) 2008-05-20 2011-09-20 Greenray Inc. AC photovoltaic module and inverter assembly
US7646116B2 (en) 2008-05-22 2010-01-12 Petra Solar Inc. Method and system for balancing power distribution in DC to DC power conversion
US7777587B2 (en) 2008-08-06 2010-08-17 International Rectifier Corporation Minimum pulse width for pulse width modulation control
US8155902B2 (en) 2008-10-08 2012-04-10 Xantrex Technology Inc. Contactor status detection in power inverters
US8183852B2 (en) 2008-10-08 2012-05-22 Enphase Energy, Inc. Method and apparatus for determining AC voltage waveform anomalies
US7768155B2 (en) 2008-10-10 2010-08-03 Enphase Energy, Inc. Method and apparatus for improved burst mode during power conversion
WO2010045566A2 (en) 2008-10-16 2010-04-22 Enphase Energy, Inc. Method and apparatus for determining an operating voltage for preventing photovoltaic cell reverse breakdown during power conversion
US8189789B2 (en) 2008-11-03 2012-05-29 Telcordia Technologies, Inc. Intrusion-tolerant group management for mobile ad-hoc networks
AU2009322282B2 (en) 2008-12-04 2014-12-04 Enphase Energy, Inc. Mounting rail and power distribution system for use in a photovoltaic system
US20100162256A1 (en) 2008-12-18 2010-06-24 Alexander Branover Optimization of application power consumption and performance in an integrated system on a chip
US8461820B2 (en) 2009-01-15 2013-06-11 Schneider Electric USA, Inc. Perturb voltage as a decreasing non-linear function of converter power
US7944083B2 (en) 2009-01-21 2011-05-17 Enphase Energy, Inc. Method and apparatus for characterizing a circuit coupled to an AC line
CA2751254A1 (en) 2009-02-05 2010-08-12 Enphase Energy, Inc. Method and apparatus for determining a corrected monitoring voltage
CA2655007C (en) 2009-02-20 2017-06-27 Queen's University At Kingston Photovoltaic cell inverter
US8435056B2 (en) 2009-04-16 2013-05-07 Enphase Energy, Inc. Apparatus for coupling power generated by a photovoltaic module to an output
US8179147B2 (en) 2009-07-23 2012-05-15 Enphase Energy, Inc. Method and apparatus for detection and control of dc arc faults
US8482947B2 (en) 2009-07-31 2013-07-09 Solarbridge Technologies, Inc. Apparatus and method for controlling DC-AC power conversion
US8099197B2 (en) 2009-08-18 2012-01-17 Enphase Energy, Inc. Method and system for distributed energy generator message aggregation
US8159178B2 (en) 2009-08-21 2012-04-17 Xantrex Technology Inc. AC connected modules with line frequency or voltage variation pattern for energy control
KR101664274B1 (en) 2009-08-28 2016-10-10 엔페이즈 에너지, 인코포레이티드 Power line communications apparatus
CN102598455B (en) 2009-09-18 2017-06-20 金斯顿女王大学 distributed power generation interface
US8462518B2 (en) 2009-10-12 2013-06-11 Solarbridge Technologies, Inc. Power inverter docking system for photovoltaic modules
US7913181B2 (en) 2009-10-26 2011-03-22 General Electric Company Method and apparatus for monitoring a power system
US7855906B2 (en) 2009-10-26 2010-12-21 General Electric Company DC bus voltage control for two stage solar converter
US9160408B2 (en) 2010-10-11 2015-10-13 Sunpower Corporation System and method for establishing communication with an array of inverters
US8503200B2 (en) 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion
US8508964B2 (en) 2010-12-03 2013-08-13 Solarbridge Technologies, Inc. Variable duty cycle switching with imposed delay
US9276635B2 (en) 2012-06-29 2016-03-01 Sunpower Corporation Device, system, and method for communicating with a power inverter using power line communications

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064580A (en) * 1998-03-09 2000-05-16 Shindengen Electric Manufacturing Co., Ltd. Switching power supply
US6862195B2 (en) * 1999-03-01 2005-03-01 Delta Energy Systems (Switzerland) Ag Soft transition converter
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
US20070051712A1 (en) * 2004-07-13 2007-03-08 Lincoln Global, Inc. Three stage power source for electric arc welding
US7746669B2 (en) * 2005-05-20 2010-06-29 SMP Solar Technology AG Bidirectional battery power inverter
US20100214808A1 (en) * 2006-01-13 2010-08-26 Cuauhtemoc Rodriguez Power conditioning unit
US20090167285A1 (en) * 2007-12-28 2009-07-02 Industrial Technology Research Institute Resonance circuit for use in h-bridge dc-dc converter
US20110051467A1 (en) * 2009-08-26 2011-03-03 Sanken Electric Co., Ltd. Resonant switching power supply device
US20120112547A1 (en) * 2010-11-05 2012-05-10 American Power Conversion Corporation System and method for bidirectional dc-ac power conversion
US20120112702A1 (en) * 2010-11-05 2012-05-10 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
US20120153729A1 (en) * 2010-12-17 2012-06-21 Korea Institute Of Energy Research Multi-input bidirectional dc-dc converter
US20120063177A1 (en) * 2011-03-22 2012-03-15 Paul Garrity Solar Photovoltaic Power Conditioning Units
US20120262953A1 (en) * 2011-04-12 2012-10-18 Flextronics Ap, Llc Multi-phase resonant converter
US20120300502A1 (en) * 2011-05-26 2012-11-29 Hitachi Computer Peripherals Co. Ltd. Power supply apparatus
US20130076135A1 (en) * 2011-09-28 2013-03-28 General Electric Company High-Power Boost Converter
US20140198542A1 (en) * 2013-01-14 2014-07-17 Yaskawa America, Inc. Single-phase active front end rectifier system for use with three-phase variable frequency drives

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236617A1 (en) * 2014-02-14 2015-08-20 Majid Pahlevaninezhad Zvs voltage source inverter with reduced output current ripple
US9590531B2 (en) * 2014-02-14 2017-03-07 Majid Pahlevaninezhad ZVS voltage source inverter with reduced output current ripple
US10027130B2 (en) * 2014-10-20 2018-07-17 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting power wirelessly
US20160111888A1 (en) * 2014-10-20 2016-04-21 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting power wirelessly
US20180301910A1 (en) * 2014-10-20 2018-10-18 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting power wirelessly
US10790675B2 (en) * 2014-10-20 2020-09-29 Wits Co., Ltd. Apparatus for transmitting power wirelessly
CN106160247A (en) * 2014-10-20 2016-11-23 三星电机株式会社 For wirelessly sending the equipment of electric power
CN104716863A (en) * 2015-02-12 2015-06-17 中国科学院长春光学精密机械与物理研究所 Resonant charging type triggering device for rotary spark switch
US9960712B2 (en) * 2015-03-25 2018-05-01 Sunpower Corporation Converter topologies and control
US20160285390A1 (en) * 2015-03-25 2016-09-29 Sunpower Corporation Converter topologies for common mode voltage reduction
US10530276B2 (en) 2015-03-25 2020-01-07 Enphase Energy, Inc. Converter topologies and control
US20160285387A1 (en) * 2015-03-25 2016-09-29 Sunpower Corporation Converter topologies and control
US9825556B2 (en) * 2015-03-25 2017-11-21 Sunpower Corporation Converter topologies for common mode voltage reduction
US11720135B2 (en) * 2015-05-22 2023-08-08 Tigo Energy, Inc. Systems and methods for quick dissipation of stored energy from input capacitors of power inverters
US20220382313A1 (en) * 2015-05-22 2022-12-01 Tigo Energy, Inc. Systems and methods for quick dissipation of stored energy from input capacitors of power inverters
CN105743351A (en) * 2016-03-25 2016-07-06 华为技术有限公司 Switching power supply circuit and method for prolonging power-off protection time
US9954462B2 (en) 2016-06-30 2018-04-24 Sunpower Corporation Converter topologies and control
US9966876B2 (en) 2016-08-02 2018-05-08 Omron Automotive Electronics Co., Ltd. Voltage conversion device
DE102017213418A1 (en) 2016-08-02 2018-02-08 Omron Automotive Electronics Co., Ltd. TENSION DEVICE IMPLEMENTATION
US9973073B2 (en) 2016-08-24 2018-05-15 Omron Automotive Electronics Co., Ltd. Voltage conversion device that ensures supply of power to a controller even if the input voltage decreases
DE102017214721A1 (en) 2016-08-24 2018-03-01 Omron Automotive Electronics Co., Ltd. POWER CONVERSION DEVICE
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US10046657B2 (en) * 2016-11-25 2018-08-14 Toyota Jidosha Kabushiki Kaisha Driving device
KR102497985B1 (en) 2016-11-29 2023-02-10 주식회사 위츠 Wireless power transmitter
KR20180103036A (en) * 2016-11-29 2018-09-18 삼성전기주식회사 Wireless power transmitter
KR101901703B1 (en) * 2016-11-29 2018-11-22 삼성전기 주식회사 Wireless power transmitter
US10418857B2 (en) 2016-11-29 2019-09-17 Wits Co., Ltd. Wireless power transmitter
US10715054B2 (en) * 2017-02-28 2020-07-14 Lg Electronics Inc. Power conversion device and photovoltaic module including the same
US10361641B2 (en) 2017-02-28 2019-07-23 Lg Electronics Inc. Power conversion device and photovoltaic module including the same
EP3367553A1 (en) * 2017-02-28 2018-08-29 LG Electronics Inc. Power conversion device and photovoltaic module including the same
KR102615960B1 (en) * 2017-02-28 2023-12-19 엘지전자 주식회사 Power converting device and and photovoltaic module including the same
JP2018143090A (en) * 2017-02-28 2018-09-13 エルジー エレクトロニクス インコーポレイティド Power conversion device and solar module with the same
KR20180099245A (en) * 2017-02-28 2018-09-05 엘지전자 주식회사 Power converting device and and photovoltaic module including the same
JP2018179716A (en) * 2017-04-11 2018-11-15 新電元工業株式会社 Switching loss evaluation device
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD853625S1 (en) 2017-08-09 2019-07-09 Flex Ltd Lighting module heatsink
USD885615S1 (en) 2017-08-09 2020-05-26 Flex Ltd. Lighting module LED light board
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD1010915S1 (en) 2017-08-09 2024-01-09 Linmore Labs Led, Inc. Lighting module
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD905325S1 (en) 2017-08-09 2020-12-15 Flex Ltd Lighting module
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD853629S1 (en) 2017-08-09 2019-07-09 Flex Ltd Lighting module locking mechanism
USD853627S1 (en) 2017-08-09 2019-07-09 Flex Ltd Lighting module locking endcap
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD853628S1 (en) 2017-08-18 2019-07-09 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
US20190149030A1 (en) * 2017-11-14 2019-05-16 Chengdu Monolithic Power Systems Co., Ltd. Isolated power supply circuit and associated control method
US10622880B2 (en) * 2017-11-14 2020-04-14 Chengdu Monolithic Power Systems Co., Ltd. Isolated power supply circuit and associated control method
CN108011395A (en) * 2017-12-11 2018-05-08 江苏辉伦太阳能科技有限公司 The control method of charging and discharging circuit automatic optimal in a kind of mixing inverter
US10700612B2 (en) * 2018-04-24 2020-06-30 Shanghai Tuituo Technology Co. Ltd. Control method for combination power supply of boost and bridge type DC-DC
US20190326824A1 (en) * 2018-04-24 2019-10-24 Shanghai Tuituo Technology Co., Ltd. Control method for combination power supply of boost and bridge type dc-dc
US11411502B2 (en) 2019-06-20 2022-08-09 Abb Power Electronics Inc. Single-stage isolated DC-DC converters
US10819244B1 (en) 2019-06-20 2020-10-27 Abb Power Electronics Inc. Single-stage isolated DC-DC converters with interleaved arms
TWI743862B (en) * 2020-07-01 2021-10-21 國立虎尾科技大學 Tri-port power converter
US20220103058A1 (en) * 2020-09-30 2022-03-31 Solaredge Technologies Ltd. Method and Apparatus for Power Conversion
US11770063B2 (en) * 2020-09-30 2023-09-26 Solaredge Technologies Ltd. Power inverter with voltage control circuitry
WO2022208644A1 (en) * 2021-03-30 2022-10-06 Tdk株式会社 Power conversion device and power conversion system
US20230318470A1 (en) * 2022-03-31 2023-10-05 Lear Corporation Wide-Range Input DC/DC Converter
US20230396174A1 (en) * 2022-06-03 2023-12-07 Infineon Technologies Austria Ag Voltage converter with switch control circuitry
CN116632984A (en) * 2023-07-24 2023-08-22 鹏元晟高科技股份有限公司 Charging and discharging circuit of mobile power supply

Also Published As

Publication number Publication date
US9584044B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
US9584044B2 (en) Technologies for converter topologies
US7333348B2 (en) DC-DC converter
US10476398B1 (en) Power conversion circuit for photovoltaic power generation with high efficiency over wide input voltage range
Xiao et al. A ZVS bidirectional DC–DC converter with phase-shift plus PWM control scheme
US9948204B2 (en) Method and apparatus for controlling resonant converter output power
US9887627B2 (en) Low profile power conversion system for rooftop photovoltaic power systems
Yu et al. High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications
US9444367B2 (en) Method and apparatus for generating single-phase power from a three-phase resonant power converter
US8493753B2 (en) Photovoltaic powered system
EP2571154B1 (en) PV inverter with input parallel output series connected flyback converters feeding a fullbridge grid converter
US9444355B2 (en) Method and apparatus for determining a bridge mode for power conversion
US20120042588A1 (en) Integrated photovoltaic module
US20130214607A1 (en) Electromagnetic interference cancelling during power conversion
US8755202B2 (en) Electric generating system with a controller controlling a snubber device
US20090086520A1 (en) Grid-Connected Power Conditioner and Grid-Connected Power Supply System
US20140211529A1 (en) Methods and systems for operating a bi-directional micro inverter
US20120155139A1 (en) Electrical Energy Conversion Circuit Device
Li et al. A method of power decoupling for long life micro-inverter
Yu et al. Inductorless forward-flyback soft-switching converter with dual constant on-time modulation for photovoltaic applications
Kang et al. Active clamp flyback inverter considering leakage inductance of transformer for photovoltaic AC modules
KR101034263B1 (en) DC-DC Convert for the Photovoltaic System
KR100999228B1 (en) Boost converter with high voltage gain
KR101018188B1 (en) Boost converter with soft switching
Sukesh et al. Novel scheme for zero voltage switching of single stage photovoltaic micro-inverter
KR20180067933A (en) Photovoltaic inverter system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUNPOWER CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOLARBRIDGE TECHNOLOGIES, INC.;REEL/FRAME:034687/0232

Effective date: 20141218

AS Assignment

Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SOLARBRIDGE TECHNOLOGIES, INC.;REEL/FRAME:038842/0262

Effective date: 20160506

Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SOLARBRIDGE TECHNOLOGIES, INC.;REEL/FRAME:038842/0300

Effective date: 20160506

AS Assignment

Owner name: SOLARBRIDGE TECHNOLOGIES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, YAN;ZHANG, HAIYU;REEL/FRAME:038630/0552

Effective date: 20140604

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ENPHASE ENERGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNPOWER CORPORATION;REEL/FRAME:046964/0203

Effective date: 20180809

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4