US20140262726A1 - Horizontal heat recovery coke ovens having monolith crowns - Google Patents
Horizontal heat recovery coke ovens having monolith crowns Download PDFInfo
- Publication number
- US20140262726A1 US20140262726A1 US13/829,588 US201313829588A US2014262726A1 US 20140262726 A1 US20140262726 A1 US 20140262726A1 US 201313829588 A US201313829588 A US 201313829588A US 2014262726 A1 US2014262726 A1 US 2014262726A1
- Authority
- US
- United States
- Prior art keywords
- crown
- coke oven
- monolith
- sidewall
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B15/00—Other coke ovens
- C10B15/02—Other coke ovens with floor heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B21/00—Heating of coke ovens with combustible gases
- C10B21/10—Regulating and controlling the combustion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B29/00—Other details of coke ovens
- C10B29/02—Brickwork, e.g. casings, linings, walls
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B29/00—Other details of coke ovens
- C10B29/04—Controlling or preventing expansion or contraction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B5/00—Coke ovens with horizontal chambers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- the present technology is generally directed to horizontal heat recovery coke ovens having monolith crowns.
- Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel.
- coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions.
- Coking ovens have been used for many years to convert coal into metallurgical coke.
- finely crushed coal is heated under controlled temperature conditions to devolatilize the coal and form a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
- the melting and fusion process undergone by the coal particles during the heating process is an important part of coking.
- the degree of melting and degree of assimilation of the coal particles into the molten mass determine the characteristics of the coke produced.
- the porosity and strength of the coke are important for the ore refining process and are determined by the coal source and/or method of coking.
- Coal particles or a blend of coal particles are charged into hot ovens, and the coal is heated in the ovens in order to remove volatile matter (“VM”) from the resulting coke.
- VM volatile matter
- the coking process is highly dependent on the oven design, the type of coal, and the conversion temperature used. Typically, ovens are adjusted during the coking process so that each charge of coal is coked out in approximately the same amount of time. Once the coal is “coked out” or fully coked, the coke is removed from the oven and quenched with water to cool it below its ignition temperature. Alternatively, the coke is dry quenched with an inert gas. The quenching operation must also be carefully controlled so that the coke does not absorb too much moisture. Once it is quenched, the coke is screened and loaded into rail cars or trucks for shipment.
- coal is fed into hot ovens, much of the coal feeding process is automated.
- slot-type or vertical ovens the coal is typically charged through slots or openings in the top of the ovens. Such ovens tend to be tall and narrow.
- Horizontal non-recovery or heat recovery type coking ovens are also used to produce coke.
- conveyors are used to convey the coal particles horizontally into the ovens to provide an elongate bed of coal.
- non-coking coal As the source of coal suitable for forming metallurgical coal (“coking coal”) has decreased, attempts have been made to blend weak or lower quality coals (“non-coking coal”) with coking coals to provide a suitable coal charge for the ovens.
- One way to combine non-coking and coking coals is to use compacted or stamp-charged coal.
- the coal may be compacted before or after it is in the oven.
- a mixture of non-coking and coking coals is compacted to greater than 50 pounds per cubic foot in order to use non-coking coal in the coke making process.
- higher levels of coal compaction are required (e.g., up to about 65 to 75 pounds per cubic foot).
- coal is typically compacted to about 1.15 to 1.2 specific gravity (sg) or about 70-75 pounds per cubic foot.
- HHR ovens have a unique environmental advantage over chemical byproduct ovens based upon the relative operating atmospheric pressure conditions inside HHR ovens.
- HHR ovens operate under negative pressure, whereas chemical byproduct ovens operate at a slightly positive atmospheric pressure.
- Both oven types are typically constructed of refractory bricks and other materials in which creating a substantially airtight environment can be a challenge because small cracks can form in these structures during day-to-day operation.
- Chemical byproduct ovens are kept at a positive pressure to avoid oxidizing recoverable products and overheating the ovens.
- HHR ovens are kept at a negative pressure, drawing in air from outside the oven to oxidize the coal's VM and to release the heat of combustion within the oven.
- HHR ovens have traditionally been unable to turn down their operation (e.g., their coke production) significantly below their designed capacity without potentially damaging the ovens. This restraint is linked to temperature limitations in the ovens. More specifically, traditional HHR ovens are at least partially made of silica brick. When a silica oven is built, burnable spacers are placed between the bricks in the oven crown to allow for brick expansion. Once the oven is heated, the spacers burn away and the bricks expand into adjacency. Once HHR silica brick ovens are heated, they are never allowed to drop below the silica brick thermally-volume-stable temperature, the temperature above which silica is generally volume-stable (i.e., does not expand or contract).
- FIG. 1A is an isometric, partial cut-away view of a portion of a horizontal heat recovery coke plant configured in accordance with embodiments of the present technology.
- FIG. 1B is a top view of a sole flue portion of a horizontal heat recovery coke oven configured in accordance with embodiments of the technology.
- FIG. 1C is a front view of a monolith crown for use with the sole flue shown in FIG. 1B and configured in accordance with embodiments of the technology.
- FIG. 2A is an isometric view of a coke oven having a monolith crown configured in accordance with embodiments of the technology.
- FIG. 2B is a front view of the monolith crown of FIG. 2A moving between a contracted configuration and an expanded configuration in accordance with embodiments of the technology.
- FIG. 2C is a front view of oven sidewalls for supporting a monolith crown configured in accordance with further embodiments of the technology.
- FIG. 2D is a front view of oven sidewalls for supporting a monolith crown configured in accordance with further embodiments of the technology.
- FIG. 3 is an isometric view of a coke oven having a monolith crown configured in accordance with further embodiments of the technology.
- FIG. 4A is an isometric view of a coke oven having a monolith crown configured in accordance with still further embodiments of the technology.
- FIG. 4B is a front view of the monolith crown of FIG. 4A configured in accordance with further embodiments of the technology.
- FIG. 5 is a block diagram illustrating a method of turning down a horizontal heat recovery coke oven.
- a HHR coke oven includes a monolith crown that spans the width of the oven between opposing oven sidewalls.
- the monolith expands upon heating and contracts upon cooling as a single structure.
- the crown comprises a thermally-volume-stable material.
- the monolith and thermally-volume-stable features can be used in combination or alone. These designs can allow the oven to be turned down below traditionally-feasible temperatures while maintaining the structural integrity of the crown.
- FIG. 1A is an isometric, partial cut-away view of a portion of a horizontal heat recovery (“HHR”) coke plant 100 configured in accordance with embodiments of the technology.
- the plant 100 includes a plurality of coke ovens 105 .
- Each oven 105 can include an open cavity defined by a floor 160 , a front door 165 forming substantially the entirety of one side of the oven, a rear door (not shown) opposite the front door 165 forming substantially the entirety of the side of the oven opposite the front door, two sidewalls 175 extending upwardly from the oven floor 160 intermediate the front door 165 and rear door, and a crown 180 that forms the top surface of the open cavity of an oven chamber 185 .
- a first end of the crown 180 can rest on a first sidewall 175 while a second end of the crown 180 can rest on an opposing sidewall 175 as shown.
- Adjacent ovens 105 can share a common sidewall 175 .
- volatile gases emitted from the coal positioned inside the oven chamber 185 collect in the crown 180 and are drawn downstream in the overall system into downcomer channels 112 formed in one or both sidewalls 175 .
- the downcomer channels 112 fluidly connect the oven chamber 185 with a sole flue 116 positioned beneath the oven floor 160 .
- the sole flue 116 includes a plurality of side-by-side runs 117 that form a circuitous path beneath the oven floor 160 . While the runs 117 in FIG.
- the sole flue 116 can be configured such that at least some segments of the runs 117 are generally perpendicular to the longitudinal axis of the oven 105 (i.e., perpendicular to the sidewalls 175 ). This arrangement is illustrated in FIG. 1B and is discussed in further detail below. Volatile gases emitted from the coal can be combusted in the sole flue 116 , thereby generating heat to support the reduction of coal into coke.
- the downcomer channels 112 are fluidly connected to chimneys or uptake channels 114 formed in one or both sidewalls 175 .
- Coke is produced in the ovens 105 by first loading coal into the oven chamber 185 , heating the coal in an oxygen-depleted environment, driving off the volatile fraction of coal, and then oxidizing the VM within the oven 105 to capture and utilize the heat given off.
- the coal volatiles are oxidized within the ovens 105 over an extended coking cycle and release heat to regeneratively drive the carbonization of the coal to coke.
- the coking cycle begins when the front door 165 is opened and coal is charged onto the oven floor 160 .
- the coal on the oven floor 160 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle.
- each oven 105 is operated at negative pressure so air is drawn into the oven during the reduction process due to the pressure differential between the oven 105 and the atmosphere.
- Primary air for combustion is added to the oven chamber 185 to partially oxidize the coal volatiles, but the amount of this primary air is controlled so that only a portion of the volatiles released from the coal are combusted in the oven chamber 185 , thereby releasing only a fraction of their enthalpy of combustion within the oven chamber 185 .
- the primary air is introduced into the oven chamber 185 above the coal bed.
- the partially combusted gases pass from the oven chamber 185 through the downcomer channels 112 into the sole flue 116 where secondary air is added to the partially combusted gases.
- the partially combusted gases are more fully combusted in the sole flue 116 , thereby extracting the remaining enthalpy of combustion, which is conveyed through the oven floor 160 to add heat to the oven chamber 185 .
- the fully or nearly fully combusted exhaust gases exit the sole flue 116 through the uptake channels 114 .
- the coal has coked out and has carbonized to produce coke.
- the coke can be removed from the oven 105 through the rear door utilizing a mechanical extraction system.
- the coke is quenched (e.g., wet or dry quenched) and sized before delivery to a user.
- the crown 180 comprises a monolith structure configured to span all or a portion of the distance between the sidewalls 175 .
- the crown 180 can comprise a single segment that spans between the sidewalls 175 or can comprise two, three, four, or more segments that meet between the sidewalls 175 and in combination span between the sidewalls 175 .
- the monolith structure enables the crown 180 to expand upon oven heating and retract upon cooling without allowing individual bricks to contract and fall into the oven chamber 185 , causing the crown 180 to collapse.
- the monolith crown 180 can accordingly allow the oven 105 to be shut down or turned down below traditionally feasible temperatures for a given crown material.
- a silica brick oven can be turned down below 1,200° F.
- Other materials such as alumina, have no thermally-volume-stable upper limit (i.e., remain volume-unstable), and the crown 180 allows for the use of these materials without collapse from cooling contraction.
- other materials or combinations of materials can be used for the crown, with different materials having different associated thermally-volume-stable temperatures.
- the monolith crown 180 can be quickly installed, as the whole arch can be lifted and placed as a single structure.
- the crown 180 can be built in shapes different from the traditional arch—such as a flat or straight-edged shape. Some of these designs are shown in FIGS. 3 and 4A .
- the monolith crown 180 can be pre-formed or formed on site.
- the crown 180 can have various widths (i.e., from sidewall-to-sidewall) in different embodiments. In some embodiments, the crown 180 width is about 3 feet or greater, while in particular embodiments the width is 12-15 feet.
- the crown 180 is at least partially made of a thermally-volume-stable material such that upon heating or cooling the oven chamber 185 , the crown 180 does not adjust in position.
- a crown 180 made of a thermally-volume-stable material allows the oven 105 to be shut down or turned down without individual bricks in the crown 180 contracting and collapsing into the oven chamber 185 .
- thermally-volume-stable material is used herein, this term can refer to materials that are zero-expansion, zero-contraction, near-zero-expansion, and/or near-zero-contraction, or a combination of these characteristics, upon heating and/or cooling.
- the thermally-volume-stable materials can be pre-cast or pre-fabricated into designed shapes, including as individual bricks or monolith segments. Further, in some embodiments, the thermally-volume-stable materials can be repeatedly heated and cooled without affecting the expandability characteristics of the material, while in other embodiments the material can be heated and/or cooled only once before undergoing a phase or material change that affects subsequent expandability characteristics.
- the thermally-volume-stable material is a fused silica material, zirconia, refractory material, or a ceramic material.
- other portions of the oven 105 additionally or alternately can be formed of thermally-volume-stable materials.
- the lintel for the door 165 comprises such a material.
- thermally-volume-stable materials traditional-sized bricks or a monolith structure can be used as the crown 180 .
- the monolith or thermally-volume-stable designs can be used at other points in the plant 100 , such as over the sole flue 116 , as part of the oven floor 160 or sidewalls 175 , or other portions of the oven 105 .
- the monolith or thermally-volume-stable embodiments can be used as an individual structure or as a combination of sections.
- a crown 180 or oven floor 160 can comprise multiple monolith segments and/or multiple segments made of thermally-volume-stable material.
- a monolith over the sole flue 116 comprises a plurality of side-by-side arches, each arch covering a run 117 of the sole flue 116 .
- the arches comprise a single structure, they can expand and contract as a single unit.
- the crown of the sole flue can comprise other shapes, such as a flat top.
- the sole flue crown comprises individual segments (e.g., individual arches or flat portions) that each span only one run 117 of the sole flue 116 .
- FIG. 1B is a top view of a sole flue 126 of a horizontal heat recovery coke oven configured in accordance with embodiments of the technology.
- the sole flue 126 has several features generally similar to the sole flue 116 described above with reference to FIG. 1A .
- the sole flue includes a serpentine or labyrinth pattern of runs 127 configured for communication with a coke oven (e.g., the coke oven 105 of FIG. 1A ) via the downcomer channels 112 and uptake channels 114 . Volatile gases emitted from the coal positioned inside a coke oven chamber are drawn downstream into the downcomer channels 112 and into the sole flue 126 .
- a coke oven e.g., the coke oven 105 of FIG. 1A
- Volatile gases emitted from the coal can be combusted in the sole flue 126 , thereby generating heat to support the reduction of coal into coke.
- the downcomer channels 112 are fluidly connected to chimneys or uptake channels 114 , which draw fully or nearly fully combusted exhaust gases from the sole flue 126 .
- the sole flue 126 of FIG. 1B can include a crown portion that spans individual runs 127 or a plurality of runs 127 .
- the sole flue crown can comprise a flat segment, a single arch, a plurality of adjacent arches, a combination of these shapes, or other shapes. Further, the sole flue crown can span and/or follow the turns or curves of the sole flue serpentine pathway of runs 127 .
- FIG. 1C is a front view of a monolith crown 181 for use with the sole flue 126 shown in FIG. 1B and configured in accordance with embodiments of the technology.
- the crown 181 comprises a plurality of adjacent arched portions 181 a , 181 b having a flat top 183 .
- Each portion 181 a , 181 b can be used as a crown for an individual run in the sole flue 126 .
- the flat top 183 can comprise a floor or subfloor for the oven chamber 185 described above with reference to FIG. 1A .
- a layer of bricks can be placed on top of the flat top 183 .
- the crown 181 can comprise a single monolith segment or a plurality of individual segments (e.g., the individual arched portions 181 a , 181 b ) that are separated by an optional joint 186 shown in broken line. Accordingly, a single monolith crown 181 can cover one run or a plurality of adjacent runs in the sole flue 126 . As mentioned above, in further embodiments the crown 181 can have shapes other than an arched underside with a flat top. For example, the crown 181 can be entirely flat, entirely arched or curved, or other combinations of these characteristics. While the crown 181 has been described for use with the sole flue 126 of FIG. 1B , it could similarly be used with the sole flue 116 or coking chamber 185 shown in FIG. 1A .
- FIG. 2A is an isometric view of a coke oven 205 having a monolith crown 280 configured in accordance with embodiments of the technology.
- the oven 205 is generally similar to the oven 105 described above with reference to FIG. 1 .
- the oven 205 includes the oven floor 160 and the opposing sidewalls 175 .
- the crown 280 comprises a monolith structure, wherein the crown 280 extends between the sidewalls 175 .
- the crown 280 comprises a plurality of crown segments 282 generally adjacent to one another and aligned along the length of the oven 205 between the front and back of the oven 205 . While three segments 282 are illustrated, in further embodiments there can be more or fewer segments 282 .
- the crown 280 comprises a single monolith structure extending from the front of the oven 205 to the back.
- multiple segments 282 are used to ease construction.
- the individual segments can meet joints 284 .
- the joints 284 are filled with refractory material, such as refractory blanket, mortar, or other suitable material, to prevent air in-leakage and unintentional exhaust.
- the crown 280 can comprise multiple lateral segments between the sidewalls 175 that meet or join over the oven floor 160 .
- FIG. 2B is a front view of the monolith crown 280 of FIG. 2A moving between a contracted configuration 280 a and an expanded configuration 280 b in accordance with embodiments of the technology.
- traditional crown materials expand upon oven heating and contract upon cooling. This retraction can create space between individual oven bricks and cause bricks in the crown to collapse into the oven chamber.
- the crown 280 expands and contracts as a single structure.
- the sidewalls 175 that support the crown 280 can have a width W that is sufficiently greater than the width of the crown 280 to fully support the crown 280 as the crown 280 moves laterally between the contracted 280 a and expanded 280 b configurations.
- the width W can be at least the width of the crown 280 plus the distance D of expansion. Therefore, when the crown 280 expands or is translated laterally outward upon heating, and contracts and translates laterally inward again upon cooling, the sidewalls 175 maintain support of the crown 280 .
- the crown 280 can likewise expand or translate longitudinally outward upon heating, and contract and translate longitudinally inward upon cooling.
- the front and back walls (or door frames) of the oven 205 can accordingly be sized to accommodate this shifting.
- the crown 280 can rest on a crown footing other than directly on the sidewalls 175 .
- a footing can be coupled to or an independent structure of the sidewalls 175 .
- the entire oven may be made of expanding and contracting material and can expand and contract with the crown 280 , and may not require sidewalls having a width as large as the width W shown in FIG. 2B because the crown 280 stays generally aligned with the expanding sidewalls 175 upon heating and cooling.
- both the crown 280 and sidewalls 175 are made of a thermally-volume-stable material, then the sidewalls 175 can stay generally aligned with the crown 280 upon heating and cooling, and the sidewalls 175 need not be substantially wider (or even as wide) as the crown 280 .
- the sidewalls 175 , front or back door frames, and/or crown 280 can be retained in place via a compression or tension system, such as a spring-load system.
- the compression system can include one or more buckstays on an exterior portion of the sidewalls 175 and configured to inhibit the sidewalls 175 from outward movement. In further embodiments, such a compression system is absent.
- FIG. 2C is a front view of oven sidewalls 177 for supporting a monolith crown 281 configured in accordance with further embodiments of the technology.
- the sidewalls 177 and crown 281 are generally similar to the sidewalls 175 and crown 280 shown in FIG. 2B . In the embodiment shown in FIG. 2C , however, the sidewalls 177 and crown 281 have an angled or slanted interface 287 .
- the crown 281 expands distance D upon heating (i.e., translates from position 281 a to position 281 b )
- the crown 281 translates along the slanted surface of the top of the sidewall 177 following the pattern of the interface 287 .
- FIG. 2D is a front view of oven sidewalls 179 for supporting a monolith crown 283 configured in accordance with further embodiments of the technology.
- the sidewalls 179 and crown 283 are generally similar to the sidewalls 175 and crown 280 shown in FIG. 2B . In the embodiment shown in FIG. 2D , however, the sidewalls 179 and crown 283 have a stepped or zigzag interface 289 .
- the crown 283 when the crown 283 expands distance D upon heating (i.e., translates from position 283 a to position 283 b ), the crown 283 translates along the stepped surface of the top of the sidewall 179 following the pattern of the interface 289 .
- FIG. 3 is an isometric view of a coke oven 305 having a monolith crown 380 configured in accordance with further embodiments of the technology. Because the crown 380 is preformed, it can take on shapes other than the traditional arch. In the illustrated embodiment, for example, the crown 380 comprises a generally flat surface. This design can provide for minimal material costs. In other embodiments, other crown shapes can be employed to improve gas distribution in the oven 305 , to minimize material costs, or for other efficiency factors.
- FIG. 4A is an isometric view of a coke oven 405 having a monolith crown 480 configured in accordance with other embodiments of the technology.
- the crown 405 comprises a plurality (e.g., two) monolith portions 482 that meet at a joint 486 over the oven floor 160 .
- the joint 486 can be sealed and/or insulated with any suitable refractory material if necessary. In various embodiments the joint(s) 486 can be centered on the crown 480 or can be off-center.
- the monolith portions 482 can be the same size or a variety of sizes.
- the monolith portions 482 can be generally horizontal or angled (as shown) relative to the oven floor 160 . The angle can be selected to optimize air distribution in the oven chamber. There can be more or fewer monolith portions 482 in further embodiments.
- FIG. 4B is a front view of the monolith crown 480 of FIG. 4A configured in accordance with further embodiments of the technology.
- the monolith portions 482 can include an interfacing feature at the joint 486 to better secure the monolith portions 482 to one another.
- the joint 486 comprises a pin 492 on one monolith portion 482 configured to slide into and interface with a slot 490 on the adjacent monolith portion 482 .
- the joint 486 can comprise other recesses, slots, overlapping features, interlocking features, or other types of interfaces.
- mortar is used to seal or fill the joint 486 .
- the interfacing feature is along a joint 486 that is generally parallel to the sidewalls 175
- the interfacing feature can be used at a joint that is generally perpendicular to the sidewalls 175 .
- any of the interfacing features described above could be used at the joints 284 between the crown segments 282 of FIG. 2A .
- the interfacing features can be used at any joint in the crown 480 , regardless of whether monolith portions are orientated side-to-side or front-to-back over the oven floor.
- FIG. 5 is a block diagram illustrating a method 500 of turning down a horizontal heat recovery coke oven.
- the method 500 includes forming a coke oven structure having an oven crown over an oven chamber.
- the crown is formed at least in part with a thermally-volume-stable material.
- the crown is formed as a monolith (or several monolith segments) spanning between oven sidewalls.
- the method 500 includes heating the coke oven chamber.
- the oven chamber is heated above the thermally-volume-stable temperature of a given material (e.g., above 1,200° F. in the case of a silica oven).
- the method 500 then includes turning down the coke oven below a thermally-volume-stable temperature at block 530 .
- this comprises dropping the oven temperature below this temperature (e.g., below 1,200° F. in the case of a silica oven).
- the step of turning down the coke oven below a thermally volume-stable temperature comprises turning down the oven temperature to any lesser temperature.
- turning down the coke oven comprises turning off the coke oven entirely.
- turning down the coke oven comprises turning down the coke oven to a temperature of about 1,200° F. or less.
- the coke oven is turned down to 50% or less of the maximum operating capacity.
- the method 500 further includes maintaining the coke oven structure, including the integrity of the oven crown. The oven is thus turned down without crown collapse as experienced in traditional ovens. In some embodiments, the oven is turned down without causing significant crown contraction.
- the method described above can be applied to a coking chamber, sole flue, or other portion of the oven.
- a coke oven chamber comprising:
- the coke oven chamber of example 1 wherein the monolith crown comprises a plurality of monolith portions spanning from the first sidewall to the second sidewall, wherein the plurality of monolith portions are positioned generally adjacent to one another between the front wall and the back wall.
- the coke oven chamber of example 1 wherein the monolith crown comprises at least one of a fused silica, zirconia, or refractory material.
- a coke oven chamber comprising:
- thermoly-volume-stable material comprises fused silica or zirconia.
- a method of turning down a horizontal heat recovery coke oven comprising:
- forming the coke oven structure comprises forming an oven at least partially of thermally volume-stable material.
- forming the coke oven structure comprises forming a monolith spanning at least a portion of a distance between the first sidewall and the second sidewall.
- forming the coke oven structure comprises forming a coke oven structure at least partially of silica brick, and wherein turning down the coke oven below a thermally-volume-stable temperature comprises turning down the coke oven below a temperature of 1,200° F.
- turning down the coke oven comprises turning down oven operation to 50% of operational capacity or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
- The present technology is generally directed to horizontal heat recovery coke ovens having monolith crowns.
- Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. Coking ovens have been used for many years to convert coal into metallurgical coke. During the coking process, finely crushed coal is heated under controlled temperature conditions to devolatilize the coal and form a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
- The melting and fusion process undergone by the coal particles during the heating process is an important part of coking. The degree of melting and degree of assimilation of the coal particles into the molten mass determine the characteristics of the coke produced. In order to produce the strongest coke from a particular coal or coal blend, there is an optimum ratio of reactive to inert entities in the coal. The porosity and strength of the coke are important for the ore refining process and are determined by the coal source and/or method of coking.
- Coal particles or a blend of coal particles are charged into hot ovens, and the coal is heated in the ovens in order to remove volatile matter (“VM”) from the resulting coke. The coking process is highly dependent on the oven design, the type of coal, and the conversion temperature used. Typically, ovens are adjusted during the coking process so that each charge of coal is coked out in approximately the same amount of time. Once the coal is “coked out” or fully coked, the coke is removed from the oven and quenched with water to cool it below its ignition temperature. Alternatively, the coke is dry quenched with an inert gas. The quenching operation must also be carefully controlled so that the coke does not absorb too much moisture. Once it is quenched, the coke is screened and loaded into rail cars or trucks for shipment.
- Because coal is fed into hot ovens, much of the coal feeding process is automated. In slot-type or vertical ovens, the coal is typically charged through slots or openings in the top of the ovens. Such ovens tend to be tall and narrow. Horizontal non-recovery or heat recovery type coking ovens are also used to produce coke. In the non-recovery or heat recovery type coking ovens, conveyors are used to convey the coal particles horizontally into the ovens to provide an elongate bed of coal.
- As the source of coal suitable for forming metallurgical coal (“coking coal”) has decreased, attempts have been made to blend weak or lower quality coals (“non-coking coal”) with coking coals to provide a suitable coal charge for the ovens. One way to combine non-coking and coking coals is to use compacted or stamp-charged coal. The coal may be compacted before or after it is in the oven. In some embodiments, a mixture of non-coking and coking coals is compacted to greater than 50 pounds per cubic foot in order to use non-coking coal in the coke making process. As the percentage of non-coking coal in the coal mixture is increased, higher levels of coal compaction are required (e.g., up to about 65 to 75 pounds per cubic foot). Commercially, coal is typically compacted to about 1.15 to 1.2 specific gravity (sg) or about 70-75 pounds per cubic foot.
- Horizontal Heat Recovery (“HHR”) ovens have a unique environmental advantage over chemical byproduct ovens based upon the relative operating atmospheric pressure conditions inside HHR ovens. HHR ovens operate under negative pressure, whereas chemical byproduct ovens operate at a slightly positive atmospheric pressure. Both oven types are typically constructed of refractory bricks and other materials in which creating a substantially airtight environment can be a challenge because small cracks can form in these structures during day-to-day operation. Chemical byproduct ovens are kept at a positive pressure to avoid oxidizing recoverable products and overheating the ovens. Conversely, HHR ovens are kept at a negative pressure, drawing in air from outside the oven to oxidize the coal's VM and to release the heat of combustion within the oven. It is important to minimize the loss of volatile gases to the environment, so the combination of positive atmospheric conditions and small openings or cracks in chemical byproduct ovens allow raw coke oven gas (“COG”) and hazardous pollutants to leak into the atmosphere. Conversely, the negative atmospheric conditions and small openings or cracks in the HHR ovens or locations elsewhere in the coke plant simply allow additional air to be drawn into the oven or other locations in the coke plant so that the negative atmospheric conditions resist the loss of COG to the atmosphere.
- HHR ovens have traditionally been unable to turn down their operation (e.g., their coke production) significantly below their designed capacity without potentially damaging the ovens. This restraint is linked to temperature limitations in the ovens. More specifically, traditional HHR ovens are at least partially made of silica brick. When a silica oven is built, burnable spacers are placed between the bricks in the oven crown to allow for brick expansion. Once the oven is heated, the spacers burn away and the bricks expand into adjacency. Once HHR silica brick ovens are heated, they are never allowed to drop below the silica brick thermally-volume-stable temperature, the temperature above which silica is generally volume-stable (i.e., does not expand or contract). If the bricks drop below this temperature, the bricks start to contract. Since the spacers have burned out, a traditional crown can contract up to several inches upon cooling. This is potentially enough movement for the crown bricks to start to shift and potentially collapse. Therefore, enough heat must be maintained in the ovens to keep the bricks above the thermally-volume-stable temperature. This is the reason why it has been stated that a HHR oven can never be turned off. Because the ovens cannot be significantly turned down, during periods of low steel and coke demand, coke production must be sustained. Further, it can be difficult to perform maintenance on heated HHR ovens. Other portions of the coke oven system can suffer from similar thermal and/or structural limitations. For example, the crown of a sole flue running under the oven floor can collapse or otherwise suffer from heaving of the oven floor, ground settling, thermal or structural cycling, or other fatigue. These stresses can cause bricks in the sole flue to shift and drop out.
-
FIG. 1A is an isometric, partial cut-away view of a portion of a horizontal heat recovery coke plant configured in accordance with embodiments of the present technology. -
FIG. 1B is a top view of a sole flue portion of a horizontal heat recovery coke oven configured in accordance with embodiments of the technology. -
FIG. 1C is a front view of a monolith crown for use with the sole flue shown inFIG. 1B and configured in accordance with embodiments of the technology. -
FIG. 2A is an isometric view of a coke oven having a monolith crown configured in accordance with embodiments of the technology. -
FIG. 2B is a front view of the monolith crown ofFIG. 2A moving between a contracted configuration and an expanded configuration in accordance with embodiments of the technology. -
FIG. 2C is a front view of oven sidewalls for supporting a monolith crown configured in accordance with further embodiments of the technology. -
FIG. 2D is a front view of oven sidewalls for supporting a monolith crown configured in accordance with further embodiments of the technology. -
FIG. 3 is an isometric view of a coke oven having a monolith crown configured in accordance with further embodiments of the technology. -
FIG. 4A is an isometric view of a coke oven having a monolith crown configured in accordance with still further embodiments of the technology. -
FIG. 4B is a front view of the monolith crown ofFIG. 4A configured in accordance with further embodiments of the technology. -
FIG. 5 is a block diagram illustrating a method of turning down a horizontal heat recovery coke oven. - The present technology is generally directed to horizontal heat recovery coke ovens having monolith crowns. In some embodiments, a HHR coke oven includes a monolith crown that spans the width of the oven between opposing oven sidewalls. The monolith expands upon heating and contracts upon cooling as a single structure. In further embodiments, the crown comprises a thermally-volume-stable material. In various embodiments, the monolith and thermally-volume-stable features can be used in combination or alone. These designs can allow the oven to be turned down below traditionally-feasible temperatures while maintaining the structural integrity of the crown.
- Specific details of several embodiments of the technology are described below with reference to
FIGS. 1A-5 . Other details describing well-known structures and systems often associated with coke ovens have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles, and other features shown in the Figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present technology. A person of ordinary skill in the art, therefore, will accordingly understand that the technology may have other embodiments with additional elements, or the technology may have other embodiments without several of the features shown and described below with reference toFIGS. 1A-5 . -
FIG. 1A is an isometric, partial cut-away view of a portion of a horizontal heat recovery (“HHR”)coke plant 100 configured in accordance with embodiments of the technology. Theplant 100 includes a plurality ofcoke ovens 105. Eachoven 105 can include an open cavity defined by afloor 160, afront door 165 forming substantially the entirety of one side of the oven, a rear door (not shown) opposite thefront door 165 forming substantially the entirety of the side of the oven opposite the front door, twosidewalls 175 extending upwardly from theoven floor 160 intermediate thefront door 165 and rear door, and acrown 180 that forms the top surface of the open cavity of anoven chamber 185. A first end of thecrown 180 can rest on afirst sidewall 175 while a second end of thecrown 180 can rest on an opposingsidewall 175 as shown.Adjacent ovens 105 can share acommon sidewall 175. - In operation, volatile gases emitted from the coal positioned inside the
oven chamber 185 collect in thecrown 180 and are drawn downstream in the overall system intodowncomer channels 112 formed in one or bothsidewalls 175. Thedowncomer channels 112 fluidly connect theoven chamber 185 with asole flue 116 positioned beneath theoven floor 160. Thesole flue 116 includes a plurality of side-by-side runs 117 that form a circuitous path beneath theoven floor 160. While theruns 117 inFIG. 1A are shown to be substantially parallel to a longitudinal axis of the oven 105 (i.e., parallel to the sidewalls 175), in further embodiments thesole flue 116 can be configured such that at least some segments of theruns 117 are generally perpendicular to the longitudinal axis of the oven 105 (i.e., perpendicular to the sidewalls 175). This arrangement is illustrated inFIG. 1B and is discussed in further detail below. Volatile gases emitted from the coal can be combusted in thesole flue 116, thereby generating heat to support the reduction of coal into coke. Thedowncomer channels 112 are fluidly connected to chimneys oruptake channels 114 formed in one or bothsidewalls 175. - Coke is produced in the
ovens 105 by first loading coal into theoven chamber 185, heating the coal in an oxygen-depleted environment, driving off the volatile fraction of coal, and then oxidizing the VM within theoven 105 to capture and utilize the heat given off. The coal volatiles are oxidized within theovens 105 over an extended coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when thefront door 165 is opened and coal is charged onto theoven floor 160. The coal on theoven floor 160 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame of the coal bed and theradiant oven crown 180. The remaining half of the heat is transferred to the coal bed by conduction from theoven floor 160, which is convectively heated from the volatilization of gases in thesole flue 116. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed. - Typically, each
oven 105 is operated at negative pressure so air is drawn into the oven during the reduction process due to the pressure differential between theoven 105 and the atmosphere. Primary air for combustion is added to theoven chamber 185 to partially oxidize the coal volatiles, but the amount of this primary air is controlled so that only a portion of the volatiles released from the coal are combusted in theoven chamber 185, thereby releasing only a fraction of their enthalpy of combustion within theoven chamber 185. The primary air is introduced into theoven chamber 185 above the coal bed. The partially combusted gases pass from theoven chamber 185 through thedowncomer channels 112 into thesole flue 116 where secondary air is added to the partially combusted gases. As the secondary air is introduced, the partially combusted gases are more fully combusted in thesole flue 116, thereby extracting the remaining enthalpy of combustion, which is conveyed through theoven floor 160 to add heat to theoven chamber 185. The fully or nearly fully combusted exhaust gases exit thesole flue 116 through theuptake channels 114. At the end of the coking cycle, the coal has coked out and has carbonized to produce coke. The coke can be removed from theoven 105 through the rear door utilizing a mechanical extraction system. Finally, the coke is quenched (e.g., wet or dry quenched) and sized before delivery to a user. - As will be discussed in further detail below with reference to
FIGS. 2A-5 , in several embodiments thecrown 180 comprises a monolith structure configured to span all or a portion of the distance between thesidewalls 175. For example, thecrown 180 can comprise a single segment that spans between thesidewalls 175 or can comprise two, three, four, or more segments that meet between thesidewalls 175 and in combination span between thesidewalls 175. The monolith structure enables thecrown 180 to expand upon oven heating and retract upon cooling without allowing individual bricks to contract and fall into theoven chamber 185, causing thecrown 180 to collapse. Themonolith crown 180 can accordingly allow theoven 105 to be shut down or turned down below traditionally feasible temperatures for a given crown material. As discussed above, some materials, like silica, become generally thermally-volume-stable above certain temperatures (i.e., around 1,200° F. for silica). Using acrown 180, a silica brick oven can be turned down below 1,200° F. Other materials, such as alumina, have no thermally-volume-stable upper limit (i.e., remain volume-unstable), and thecrown 180 allows for the use of these materials without collapse from cooling contraction. In other embodiments, other materials or combinations of materials can be used for the crown, with different materials having different associated thermally-volume-stable temperatures. Further, themonolith crown 180 can be quickly installed, as the whole arch can be lifted and placed as a single structure. Further, by using monolith segments instead of numerous individual bricks, thecrown 180 can be built in shapes different from the traditional arch—such as a flat or straight-edged shape. Some of these designs are shown inFIGS. 3 and 4A . In various embodiments, themonolith crown 180 can be pre-formed or formed on site. Thecrown 180 can have various widths (i.e., from sidewall-to-sidewall) in different embodiments. In some embodiments, thecrown 180 width is about 3 feet or greater, while in particular embodiments the width is 12-15 feet. - In some embodiments, the
crown 180 is at least partially made of a thermally-volume-stable material such that upon heating or cooling theoven chamber 185, thecrown 180 does not adjust in position. As with a monolith design, acrown 180 made of a thermally-volume-stable material allows theoven 105 to be shut down or turned down without individual bricks in thecrown 180 contracting and collapsing into theoven chamber 185. While the term “thermally-volume-stable material” is used herein, this term can refer to materials that are zero-expansion, zero-contraction, near-zero-expansion, and/or near-zero-contraction, or a combination of these characteristics, upon heating and/or cooling. In some embodiments, the thermally-volume-stable materials can be pre-cast or pre-fabricated into designed shapes, including as individual bricks or monolith segments. Further, in some embodiments, the thermally-volume-stable materials can be repeatedly heated and cooled without affecting the expandability characteristics of the material, while in other embodiments the material can be heated and/or cooled only once before undergoing a phase or material change that affects subsequent expandability characteristics. In a particular embodiment the thermally-volume-stable material is a fused silica material, zirconia, refractory material, or a ceramic material. In further embodiments, other portions of theoven 105 additionally or alternately can be formed of thermally-volume-stable materials. For example, in some embodiments, the lintel for thedoor 165 comprises such a material. When using thermally-volume-stable materials, traditional-sized bricks or a monolith structure can be used as thecrown 180. - In some embodiments, the monolith or thermally-volume-stable designs can be used at other points in the
plant 100, such as over thesole flue 116, as part of theoven floor 160 orsidewalls 175, or other portions of theoven 105. In any of these locations, the monolith or thermally-volume-stable embodiments can be used as an individual structure or as a combination of sections. For example, acrown 180 oroven floor 160 can comprise multiple monolith segments and/or multiple segments made of thermally-volume-stable material. In another embodiment, as shown inFIG. 1A , a monolith over thesole flue 116 comprises a plurality of side-by-side arches, each arch covering arun 117 of thesole flue 116. Since the arches comprise a single structure, they can expand and contract as a single unit. In further embodiments (as will be discussed in further detail below), the crown of the sole flue can comprise other shapes, such as a flat top. In still further embodiments, the sole flue crown comprises individual segments (e.g., individual arches or flat portions) that each span only onerun 117 of thesole flue 116. -
FIG. 1B is a top view of asole flue 126 of a horizontal heat recovery coke oven configured in accordance with embodiments of the technology. Thesole flue 126 has several features generally similar to thesole flue 116 described above with reference toFIG. 1A . For example, the sole flue includes a serpentine or labyrinth pattern ofruns 127 configured for communication with a coke oven (e.g., thecoke oven 105 ofFIG. 1A ) via thedowncomer channels 112 anduptake channels 114. Volatile gases emitted from the coal positioned inside a coke oven chamber are drawn downstream into thedowncomer channels 112 and into thesole flue 126. Volatile gases emitted from the coal can be combusted in thesole flue 126, thereby generating heat to support the reduction of coal into coke. Thedowncomer channels 112 are fluidly connected to chimneys oruptake channels 114, which draw fully or nearly fully combusted exhaust gases from thesole flue 126. - In
FIG. 1B , at least some segments of theruns 127 are generally perpendicular to the longitudinal axis of the oven 105 (i.e., perpendicular to thesidewalls 175 shown inFIG. 1A ). As with thesole flue 116 shown inFIG. 1A , thesole flue 126 ofFIG. 1B can include a crown portion that spansindividual runs 127 or a plurality of runs 127. The sole flue crown can comprise a flat segment, a single arch, a plurality of adjacent arches, a combination of these shapes, or other shapes. Further, the sole flue crown can span and/or follow the turns or curves of the sole flue serpentine pathway ofruns 127. -
FIG. 1C is a front view of amonolith crown 181 for use with thesole flue 126 shown inFIG. 1B and configured in accordance with embodiments of the technology. In the illustrated embodiment, thecrown 181 comprises a plurality of adjacentarched portions flat top 183. Eachportion sole flue 126. Further, theflat top 183 can comprise a floor or subfloor for theoven chamber 185 described above with reference toFIG. 1A . In some embodiments, a layer of bricks can be placed on top of theflat top 183. - In various embodiments, the
crown 181 can comprise a single monolith segment or a plurality of individual segments (e.g., the individualarched portions single monolith crown 181 can cover one run or a plurality of adjacent runs in thesole flue 126. As mentioned above, in further embodiments thecrown 181 can have shapes other than an arched underside with a flat top. For example, thecrown 181 can be entirely flat, entirely arched or curved, or other combinations of these characteristics. While thecrown 181 has been described for use with thesole flue 126 ofFIG. 1B , it could similarly be used with thesole flue 116 orcoking chamber 185 shown inFIG. 1A . -
FIG. 2A is an isometric view of acoke oven 205 having amonolith crown 280 configured in accordance with embodiments of the technology. Theoven 205 is generally similar to theoven 105 described above with reference toFIG. 1 . For example, theoven 205 includes theoven floor 160 and the opposingsidewalls 175. Thecrown 280 comprises a monolith structure, wherein thecrown 280 extends between thesidewalls 175. In the illustrated embodiment, thecrown 280 comprises a plurality ofcrown segments 282 generally adjacent to one another and aligned along the length of theoven 205 between the front and back of theoven 205. While threesegments 282 are illustrated, in further embodiments there can be more orfewer segments 282. In still further embodiments, thecrown 280 comprises a single monolith structure extending from the front of theoven 205 to the back. In some embodiments,multiple segments 282 are used to ease construction. The individual segments can meetjoints 284. In some embodiments, thejoints 284 are filled with refractory material, such as refractory blanket, mortar, or other suitable material, to prevent air in-leakage and unintentional exhaust. In still further embodiments, as will be discussed with reference toFIG. 4 below, thecrown 280 can comprise multiple lateral segments between thesidewalls 175 that meet or join over theoven floor 160. -
FIG. 2B is a front view of themonolith crown 280 ofFIG. 2A moving between acontracted configuration 280 a and an expandedconfiguration 280 b in accordance with embodiments of the technology. As discussed above, traditional crown materials expand upon oven heating and contract upon cooling. This retraction can create space between individual oven bricks and cause bricks in the crown to collapse into the oven chamber. Using a monolith, however, thecrown 280 expands and contracts as a single structure. - The design of the
oven 205 provides structural support for such expansion and contraction upon heating and cooling. More specifically, thesidewalls 175 that support thecrown 280 can have a width W that is sufficiently greater than the width of thecrown 280 to fully support thecrown 280 as thecrown 280 moves laterally between the contracted 280 a and expanded 280 b configurations. For example, the width W can be at least the width of thecrown 280 plus the distance D of expansion. Therefore, when thecrown 280 expands or is translated laterally outward upon heating, and contracts and translates laterally inward again upon cooling, thesidewalls 175 maintain support of thecrown 280. Thecrown 280 can likewise expand or translate longitudinally outward upon heating, and contract and translate longitudinally inward upon cooling. The front and back walls (or door frames) of theoven 205 can accordingly be sized to accommodate this shifting. - In further embodiments, the
crown 280 can rest on a crown footing other than directly on thesidewalls 175. Such a footing can be coupled to or an independent structure of thesidewalls 175. In still further embodiments, the entire oven may be made of expanding and contracting material and can expand and contract with thecrown 280, and may not require sidewalls having a width as large as the width W shown inFIG. 2B because thecrown 280 stays generally aligned with the expandingsidewalls 175 upon heating and cooling. Similarly, if both thecrown 280 andsidewalls 175 are made of a thermally-volume-stable material, then thesidewalls 175 can stay generally aligned with thecrown 280 upon heating and cooling, and thesidewalls 175 need not be substantially wider (or even as wide) as thecrown 280. In some embodiments, thesidewalls 175, front or back door frames, and/orcrown 280 can be retained in place via a compression or tension system, such as a spring-load system. In a particular embodiment, the compression system can include one or more buckstays on an exterior portion of thesidewalls 175 and configured to inhibit thesidewalls 175 from outward movement. In further embodiments, such a compression system is absent. -
FIG. 2C is a front view of oven sidewalls 177 for supporting amonolith crown 281 configured in accordance with further embodiments of the technology. Thesidewalls 177 andcrown 281 are generally similar to thesidewalls 175 andcrown 280 shown inFIG. 2B . In the embodiment shown inFIG. 2C , however, thesidewalls 177 andcrown 281 have an angled orslanted interface 287. Thus, when thecrown 281 expands distance D upon heating (i.e., translates fromposition 281 a to position 281 b), thecrown 281 translates along the slanted surface of the top of thesidewall 177 following the pattern of theinterface 287. - In other embodiments, the
crown 281 andsidewalls 177 can interface in other patterns, such as recesses, slots, overlapping portions, and/or interlocking features. For example,FIG. 2D is a front view of oven sidewalls 179 for supporting amonolith crown 283 configured in accordance with further embodiments of the technology. Thesidewalls 179 andcrown 283 are generally similar to thesidewalls 175 andcrown 280 shown inFIG. 2B . In the embodiment shown inFIG. 2D , however, thesidewalls 179 andcrown 283 have a stepped orzigzag interface 289. Thus, when thecrown 283 expands distance D upon heating (i.e., translates fromposition 283 a to position 283 b), thecrown 283 translates along the stepped surface of the top of thesidewall 179 following the pattern of theinterface 289. -
FIG. 3 is an isometric view of acoke oven 305 having amonolith crown 380 configured in accordance with further embodiments of the technology. Because thecrown 380 is preformed, it can take on shapes other than the traditional arch. In the illustrated embodiment, for example, thecrown 380 comprises a generally flat surface. This design can provide for minimal material costs. In other embodiments, other crown shapes can be employed to improve gas distribution in theoven 305, to minimize material costs, or for other efficiency factors. -
FIG. 4A is an isometric view of acoke oven 405 having amonolith crown 480 configured in accordance with other embodiments of the technology. Thecrown 405 comprises a plurality (e.g., two)monolith portions 482 that meet at a joint 486 over theoven floor 160. The joint 486 can be sealed and/or insulated with any suitable refractory material if necessary. In various embodiments the joint(s) 486 can be centered on thecrown 480 or can be off-center. Themonolith portions 482 can be the same size or a variety of sizes. Themonolith portions 482 can be generally horizontal or angled (as shown) relative to theoven floor 160. The angle can be selected to optimize air distribution in the oven chamber. There can be more orfewer monolith portions 482 in further embodiments. -
FIG. 4B is a front view of themonolith crown 480 ofFIG. 4A configured in accordance with further embodiments of the technology. As shown inFIG. 4B , themonolith portions 482 can include an interfacing feature at the joint 486 to better secure themonolith portions 482 to one another. For example, in the illustrated embodiment, the joint 486 comprises apin 492 on onemonolith portion 482 configured to slide into and interface with aslot 490 on theadjacent monolith portion 482. In further embodiments, the joint 486 can comprise other recesses, slots, overlapping features, interlocking features, or other types of interfaces. In still further embodiments, mortar is used to seal or fill the joint 486. - While the illustrated interfacing feature is along a joint 486 that is generally parallel to the
sidewalls 175, in further embodiments the interfacing feature can be used at a joint that is generally perpendicular to thesidewalls 175. For example, any of the interfacing features described above could be used at thejoints 284 between thecrown segments 282 ofFIG. 2A . Thus, the interfacing features can be used at any joint in thecrown 480, regardless of whether monolith portions are orientated side-to-side or front-to-back over the oven floor. -
FIG. 5 is a block diagram illustrating amethod 500 of turning down a horizontal heat recovery coke oven. Atblock 510, themethod 500 includes forming a coke oven structure having an oven crown over an oven chamber. In some embodiments, the crown is formed at least in part with a thermally-volume-stable material. In further embodiments, the crown is formed as a monolith (or several monolith segments) spanning between oven sidewalls. - At
block 520 themethod 500 includes heating the coke oven chamber. In some embodiments, the oven chamber is heated above the thermally-volume-stable temperature of a given material (e.g., above 1,200° F. in the case of a silica oven). Themethod 500 then includes turning down the coke oven below a thermally-volume-stable temperature atblock 530. For materials having a thermally-volume-stable temperature, like silica, this comprises dropping the oven temperature below this temperature (e.g., below 1,200° F. in the case of a silica oven). For thermally-volume-stable materials, like fused silica, or materials not having a thermally-volume-stable temperature, like alumina, the step of turning down the coke oven below a thermally volume-stable temperature comprises turning down the oven temperature to any lesser temperature. In particular embodiments, turning down the coke oven comprises turning off the coke oven entirely. In further embodiments, turning down the coke oven comprises turning down the coke oven to a temperature of about 1,200° F. or less. In some embodiments, the coke oven is turned down to 50% or less of the maximum operating capacity. Atblock 540, themethod 500 further includes maintaining the coke oven structure, including the integrity of the oven crown. The oven is thus turned down without crown collapse as experienced in traditional ovens. In some embodiments, the oven is turned down without causing significant crown contraction. The method described above can be applied to a coking chamber, sole flue, or other portion of the oven. - The following Examples are illustrative of several embodiments of the present technology.
- 1. A coke oven chamber, comprising:
-
- a floor;
- a front wall extending vertically upward from the floor and a back wall opposite the front wall;
- a first sidewall extending vertically upward from the floor between the front wall and the back wall and a second sidewall opposite the first sidewall; and
- a monolith crown positioned above the floor and spanning from the first sidewall to the second sidewall.
- 2. The coke oven chamber of example 1 wherein the monolith crown comprises a plurality of monolith portions spanning from the first sidewall to the second sidewall, wherein the plurality of monolith portions are positioned generally adjacent to one another between the front wall and the back wall.
- 3. The coke oven chamber of example 1 wherein:
-
- at least one of the monolith crown or sidewalls are configured to translate, contract, or expand by an adjustment amount upon heating or cooling the coke oven chamber;
- the monolith crown comprises a first end portion resting on the first sidewall and a second end portion opposite the first end portion and resting on the second sidewall; and
- the first sidewall and the second sidewall have an interface area greater than the adjustment amount.
- 4. The coke oven chamber of example 1 wherein the chamber comprises a coking chamber, a sole flue run, or a plurality of adjacent sole flue runs.
- 5. The coke oven chamber of example 4 wherein the chamber comprises a sole flue having a plurality of adjacent runs between the first sidewall and the second sidewall, and wherein the monolith crown extends over the plurality of the adjacent runs.
- 6. The coke oven chamber of example 5 wherein the monolith crown comprises a plurality of adjacent arches.
- 7. The coke oven chamber of example 1 wherein the monolith crown comprises a non-arch shape.
- 8. The coke oven chamber of example 1 wherein the monolith crown comprises a generally flat shape.
- 9. The coke oven chamber of example 1 wherein the monolith crown comprises a thermally-volume-stable material.
- 10. The coke oven chamber of example 1 wherein the monolith crown comprises at least one of a fused silica, zirconia, or refractory material.
- 11. The coke oven chamber of example 1 wherein the chamber comprises a horizontal heat recovery coke oven chamber.
- 12. The coke oven chamber of example 1 wherein the monolith crown has a crown width, and wherein the crown width is at least three feet.
- 13. The coke oven chamber of example 1 wherein the monolith crown meets at least one of the first sidewall or the second sidewall with an overlapping or interlocking joint.
- 14. A coke oven chamber, comprising:
-
- a chamber floor;
- a plurality of sidewalls generally orthogonal to the chamber floor; and
- a crown positioned above the chamber floor and at least partially spanning an area between at least two sidewalls, wherein the crown comprises a thermally volume-stable material.
- 15. The coke oven chamber of example 14 wherein the crown comprises at least one of bricks or a monolith.
- 16. The coke oven chamber of example 14 wherein the thermally-volume-stable material comprises fused silica or zirconia.
- 17. The coke oven chamber of example 14 wherein the crown comprises a surface parallel, arched, or angled relative to the floor.
- 18. The coke oven chamber of example 14 wherein the chamber comprises a coking chamber or a sole flue.
- 19. The coke oven chamber of example 14 wherein the crown comprises a first crown portion and a second crown portion, and wherein the first crown portion and second crown portion meet over the area between the plurality of sidewalls.
- 20. The coke oven chamber of example 14 wherein the crown comprises a monolith arch or a plurality of adjacent arches.
- 21. A method of turning down a horizontal heat recovery coke oven, the method comprising:
-
- forming a coke oven structure having a floor, a first sidewall and a second sidewall opposite the first sidewall, and an oven crown over the floor in a space at least partially between the first sidewall and the second sidewall;
- heating the coke oven;
- turning down the coke oven below a thermally-volume-stable temperature; and
- maintaining the coke oven structure.
- 22. The method of example 21 wherein forming the coke oven structure comprises forming an oven at least partially of thermally volume-stable material.
- 23. The method of example 21 wherein forming the coke oven structure comprises forming a monolith spanning at least a portion of a distance between the first sidewall and the second sidewall.
- 24. The method of example 21 wherein forming the coke oven structure comprises forming a coke oven structure at least partially of silica brick, and wherein turning down the coke oven below a thermally-volume-stable temperature comprises turning down the coke oven below a temperature of 1,200° F.
- 25. The method of example 21 wherein turning down the coke oven comprises turning down oven operation to 50% of operational capacity or less.
- 26. The method of example 21 wherein turning down the coke oven comprises turning off the oven.
- 27. The method of example 21 wherein turning down the coke oven comprises cooling the crown without causing crown contraction.
- From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. For example, while several embodiments have been described in the context of HHR ovens, in further embodiments the monolith or thermally-volume-stable designs can be used in non-HHR ovens, such as byproduct ovens. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, while certain embodiments have been discussed in the context of a crown for a coking chamber, the flat crown, monolith crown, thermally-volume-stable materials, and other features discussed above can be used in other portions of a coke oven system, such as a crown for a sole flue. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.
Claims (27)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/829,588 US9193915B2 (en) | 2013-03-14 | 2013-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
PCT/US2014/028837 WO2014153050A1 (en) | 2013-03-14 | 2014-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
EP16161750.1A EP3075818B1 (en) | 2013-03-14 | 2014-03-14 | Method of turning down a horizontal heat recovery coke oven |
CN201610146244.XA CN105778931A (en) | 2013-03-14 | 2014-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
EP14769676.9A EP2970769B1 (en) | 2013-03-14 | 2014-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
PL16161750T PL3075818T3 (en) | 2013-03-14 | 2014-03-14 | Method of turning down a horizontal heat recovery coke oven |
CN201480014799.8A CN105189704A (en) | 2013-03-14 | 2014-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
IN512KON2015 IN2015KN00512A (en) | 2013-03-14 | 2014-03-14 | |
CA2903836A CA2903836C (en) | 2013-03-14 | 2014-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
BR112015010451-7A BR112015010451B1 (en) | 2013-03-14 | 2014-03-14 | COKE OVEN CHAMBER WITH HORIZONTAL HEAT RECOVERY OWNING MONOLITHIC CROWNS AND REDUCTION METHOD OF THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/829,588 US9193915B2 (en) | 2013-03-14 | 2013-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140262726A1 true US20140262726A1 (en) | 2014-09-18 |
US9193915B2 US9193915B2 (en) | 2015-11-24 |
Family
ID=51522573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/829,588 Active 2033-09-24 US9193915B2 (en) | 2013-03-14 | 2013-03-14 | Horizontal heat recovery coke ovens having monolith crowns |
Country Status (8)
Country | Link |
---|---|
US (1) | US9193915B2 (en) |
EP (2) | EP3075818B1 (en) |
CN (2) | CN105189704A (en) |
BR (1) | BR112015010451B1 (en) |
CA (1) | CA2903836C (en) |
IN (1) | IN2015KN00512A (en) |
PL (1) | PL3075818T3 (en) |
WO (1) | WO2014153050A1 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9169439B2 (en) | 2012-08-29 | 2015-10-27 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
US9193913B2 (en) | 2012-09-21 | 2015-11-24 | Suncoke Technology And Development Llc | Reduced output rate coke oven operation with gas sharing providing extended process cycle |
US9200225B2 (en) | 2010-08-03 | 2015-12-01 | Suncoke Technology And Development Llc. | Method and apparatus for compacting coal for a coal coking process |
US9238778B2 (en) | 2012-12-28 | 2016-01-19 | Suncoke Technology And Development Llc. | Systems and methods for improving quenched coke recovery |
US9243186B2 (en) | 2012-08-17 | 2016-01-26 | Suncoke Technology And Development Llc. | Coke plant including exhaust gas sharing |
US9249357B2 (en) | 2012-08-17 | 2016-02-02 | Suncoke Technology And Development Llc. | Method and apparatus for volatile matter sharing in stamp-charged coke ovens |
US9273250B2 (en) | 2013-03-15 | 2016-03-01 | Suncoke Technology And Development Llc. | Methods and systems for improved quench tower design |
US9273249B2 (en) | 2012-12-28 | 2016-03-01 | Suncoke Technology And Development Llc. | Systems and methods for controlling air distribution in a coke oven |
DE102014221150B3 (en) * | 2014-10-17 | 2016-03-17 | Thyssenkrupp Ag | Coke oven with improved exhaust system in the secondary heating chambers and a method for coking coal and the use of the coke oven |
US9321965B2 (en) | 2009-03-17 | 2016-04-26 | Suncoke Technology And Development Llc. | Flat push coke wet quenching apparatus and process |
US9359554B2 (en) | 2012-08-17 | 2016-06-07 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US9476547B2 (en) | 2012-12-28 | 2016-10-25 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US9580656B2 (en) | 2014-08-28 | 2017-02-28 | Suncoke Technology And Development Llc | Coke oven charging system |
CN106687564A (en) * | 2014-09-15 | 2017-05-17 | 太阳焦炭科技和发展有限责任公司 | Coke ovens having monolith component construction |
US9683740B2 (en) | 2012-07-31 | 2017-06-20 | Suncoke Technology And Development Llc | Methods for handling coal processing emissions and associated systems and devices |
US10016714B2 (en) | 2012-12-28 | 2018-07-10 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US10047295B2 (en) | 2012-12-28 | 2018-08-14 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
CN110105972A (en) * | 2019-06-21 | 2019-08-09 | 马鞍山钢铁股份有限公司 | A kind of coke oven burner-seeing brick and circle and its replacing options |
US10526541B2 (en) | 2014-06-30 | 2020-01-07 | Suncoke Technology And Development Llc | Horizontal heat recovery coke ovens having monolith crowns |
US10526542B2 (en) | 2015-12-28 | 2020-01-07 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US10619101B2 (en) | 2013-12-31 | 2020-04-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US10760002B2 (en) | 2012-12-28 | 2020-09-01 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
US10851306B2 (en) | 2017-05-23 | 2020-12-01 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US10883051B2 (en) | 2012-12-28 | 2021-01-05 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US10968395B2 (en) | 2014-12-31 | 2021-04-06 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US11008518B2 (en) | 2018-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11021655B2 (en) | 2018-12-28 | 2021-06-01 | Suncoke Technology And Development Llc | Decarbonization of coke ovens and associated systems and methods |
US11060032B2 (en) | 2015-01-02 | 2021-07-13 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US11071935B2 (en) | 2018-12-28 | 2021-07-27 | Suncoke Technology And Development Llc | Particulate detection for industrial facilities, and associated systems and methods |
US11098252B2 (en) | 2018-12-28 | 2021-08-24 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11142699B2 (en) | 2012-12-28 | 2021-10-12 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US11261381B2 (en) | 2018-12-28 | 2022-03-01 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US11395989B2 (en) | 2018-12-31 | 2022-07-26 | Suncoke Technology And Development Llc | Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems |
US11486572B2 (en) | 2018-12-31 | 2022-11-01 | Suncoke Technology And Development Llc | Systems and methods for Utilizing flue gas |
US11508230B2 (en) | 2016-06-03 | 2022-11-22 | Suncoke Technology And Development Llc | Methods and systems for automatically generating a remedial action in an industrial facility |
US11760937B2 (en) | 2018-12-28 | 2023-09-19 | Suncoke Technology And Development Llc | Oven uptakes |
US11767482B2 (en) | 2020-05-03 | 2023-09-26 | Suncoke Technology And Development Llc | High-quality coke products |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016109854A1 (en) | 2015-01-02 | 2016-07-07 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
JP2024511901A (en) | 2021-11-04 | 2024-03-15 | サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー | Foundry Coke Products and Related Systems, Apparatus and Methods |
US11946108B2 (en) | 2021-11-04 | 2024-04-02 | Suncoke Technology And Development Llc | Foundry coke products and associated processing methods via cupolas |
WO2024097971A1 (en) | 2022-11-04 | 2024-05-10 | Suncoke Technology And Development Llc | Coal blends, foundry coke products, and associated systems, devices, and methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452749A (en) * | 1982-09-14 | 1984-06-05 | Modern Refractories Service Corp. | Method of repairing hot refractory brick walls |
US4941824A (en) * | 1988-05-13 | 1990-07-17 | Heinz Holter | Method of and apparatus for cooling and cleaning the roof and environs of a coke oven |
US5227106A (en) * | 1990-02-09 | 1993-07-13 | Tonawanda Coke Corporation | Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair |
US20080169578A1 (en) * | 2007-01-16 | 2008-07-17 | Vanocur Refractories. L.L.C., a limited liability corporation of Delaware | Coke oven reconstruction |
US20090283395A1 (en) * | 2006-06-06 | 2009-11-19 | Uhde Gmbh | Floor Construction for Horizontal Coke Ovens |
US20100287871A1 (en) * | 2009-05-12 | 2010-11-18 | Vanocur Refractories, L.L.C. | Corbel repairs of coke ovens |
Family Cites Families (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1486401A (en) | 1924-03-11 | van ackeren | ||
US469868A (en) | 1892-03-01 | Apparatus for quenching coke | ||
US1848818A (en) | 1932-03-08 | becker | ||
DE212176C (en) | 1908-04-10 | 1909-07-26 | ||
US1140798A (en) | 1915-01-02 | 1915-05-25 | Riterconley Mfg Company | Coal-gas-generating apparatus. |
US1424777A (en) | 1915-08-21 | 1922-08-08 | Schondeling Wilhelm | Process of and device for quenching coke in narrow containers |
US1430027A (en) | 1920-05-01 | 1922-09-26 | Plantinga Pierre | Oven-wall structure |
US1572391A (en) | 1923-09-12 | 1926-02-09 | Koppers Co Inc | Container for testing coal and method of testing |
BE336997A (en) | 1926-03-04 | |||
US1818370A (en) | 1929-04-27 | 1931-08-11 | William E Wine | Cross bearer |
US1955962A (en) | 1933-07-18 | 1934-04-24 | Carter Coal Company | Coal testing apparatus |
GB441784A (en) | 1934-08-16 | 1936-01-27 | Carves Simon Ltd | Process for improvement of quality of coke in coke ovens |
NL82280C (en) | 1942-07-07 | |||
US2394173A (en) | 1943-07-26 | 1946-02-05 | Albert B Harris | Locomotive draft arrangement |
GB606340A (en) | 1944-02-28 | 1948-08-12 | Waldemar Amalius Endter | Latch devices |
GB611524A (en) | 1945-07-21 | 1948-11-01 | Koppers Co Inc | Improvements in or relating to coke oven door handling apparatus |
GB725865A (en) | 1952-04-29 | 1955-03-09 | Koppers Gmbh Heinrich | Coke-quenching car |
US2902991A (en) | 1957-08-15 | 1959-09-08 | Howard E Whitman | Smoke generator |
US3033764A (en) | 1958-06-10 | 1962-05-08 | Koppers Co Inc | Coke quenching tower |
GB871094A (en) | 1959-04-29 | 1961-06-21 | Didier Werke Ag | Coke cooling towers |
US3462345A (en) | 1967-05-10 | 1969-08-19 | Babcock & Wilcox Co | Nuclear reactor rod controller |
US3545470A (en) | 1967-07-24 | 1970-12-08 | Hamilton Neil King Paton | Differential-pressure flow-controlling valve mechanism |
US3616408A (en) | 1968-05-29 | 1971-10-26 | Westinghouse Electric Corp | Oxygen sensor |
DE1771855A1 (en) | 1968-07-20 | 1972-02-03 | Still Fa Carl | Device for emission-free coke expression and coke extinguishing in horizontal coking furnace batteries |
US3652403A (en) | 1968-12-03 | 1972-03-28 | Still Fa Carl | Method and apparatus for the evacuation of coke from a furnace chamber |
DE1812897B2 (en) | 1968-12-05 | 1973-04-12 | Heinrich Koppers Gmbh, 4300 Essen | DEVICE FOR REMOVING THE DUST ARISING FROM COOKING CHAMBER STOVES |
US3592742A (en) * | 1970-02-06 | 1971-07-13 | Buster R Thompson | Foundation cooling system for sole flue coking ovens |
US3722182A (en) | 1970-05-14 | 1973-03-27 | J Gilbertson | Air purifying and deodorizing device for automobiles |
US3875016A (en) | 1970-10-13 | 1975-04-01 | Otto & Co Gmbh Dr C | Method and apparatus for controlling the operation of regeneratively heated coke ovens |
US3748235A (en) | 1971-06-10 | 1973-07-24 | Otto & Co Gmbh Dr C | Pollution free discharging and quenching system |
US3709794A (en) | 1971-06-24 | 1973-01-09 | Koppers Co Inc | Coke oven machinery door extractor shroud |
DE2154306A1 (en) | 1971-11-02 | 1973-05-10 | Otto & Co Gmbh Dr C | KOKSLOESCHTURM |
BE790985A (en) | 1971-12-11 | 1973-03-01 | Koppers Gmbh Heinrich | PROCEDURE FOR THE UNIFORMIZATION OF THE HEATING OF HORIZONTAL CHAMBER COKE OVENS AND INSTALLATION FOR THE PRACTICE OF |
US3912091A (en) | 1972-04-04 | 1975-10-14 | Buster Ray Thompson | Coke oven pushing and charging machine and method |
US3784034A (en) | 1972-04-04 | 1974-01-08 | B Thompson | Coke oven pushing and charging machine and method |
US3857758A (en) | 1972-07-21 | 1974-12-31 | Block A | Method and apparatus for emission free operation of by-product coke ovens |
US3917458A (en) | 1972-07-21 | 1975-11-04 | Nicoll Jr Frank S | Gas filtration system employing a filtration screen of particulate solids |
DE2245567C3 (en) | 1972-09-16 | 1981-12-03 | G. Wolff Jun. Kg, 4630 Bochum | Coking oven door with circumferential sealing edge |
DE2250636C3 (en) | 1972-10-16 | 1978-08-24 | Hartung, Kuhn & Co Maschinenfabrik Gmbh, 4000 Duesseldorf | Movable device consisting of a coke cake guide carriage and a support frame for a suction hood |
US3836161A (en) | 1973-01-08 | 1974-09-17 | Midland Ross Corp | Leveling system for vehicles with optional manual or automatic control |
DE2326825A1 (en) | 1973-05-25 | 1975-01-02 | Hartung Kuhn & Co Maschf | DEVICE FOR EXTRACTION AND CLEANING OF GAS VAPOR LEAKING FROM THE DOORS OF THE HORIZONTAL CHAMBER COOKING OVEN BATTERIES |
DE2327983B2 (en) | 1973-06-01 | 1976-08-19 | HORIZONTAL COOKING FURNACE WITH TRANSVERSAL GENERATORS | |
US3878053A (en) | 1973-09-04 | 1975-04-15 | Koppers Co Inc | Refractory shapes and jamb structure of coke oven battery heating wall |
US4067462A (en) | 1974-01-08 | 1978-01-10 | Buster Ray Thompson | Coke oven pushing and charging machine and method |
US3897312A (en) | 1974-01-17 | 1975-07-29 | Interlake Inc | Coke oven charging system |
DE2416434A1 (en) | 1974-04-04 | 1975-10-16 | Otto & Co Gmbh Dr C | COOKING OVEN |
US3930961A (en) | 1974-04-08 | 1976-01-06 | Koppers Company, Inc. | Hooded quenching wharf for coke side emission control |
JPS50148405U (en) | 1974-05-28 | 1975-12-09 | ||
US3906992A (en) | 1974-07-02 | 1975-09-23 | John Meredith Leach | Sealed, easily cleanable gate valve |
US3984289A (en) | 1974-07-12 | 1976-10-05 | Koppers Company, Inc. | Coke quencher car apparatus |
US4100033A (en) | 1974-08-21 | 1978-07-11 | Hoelter H | Extraction of charge gases from coke ovens |
US3959084A (en) | 1974-09-25 | 1976-05-25 | Dravo Corporation | Process for cooling of coke |
JPS5314242B2 (en) | 1974-10-31 | 1978-05-16 | ||
US3963582A (en) | 1974-11-26 | 1976-06-15 | Koppers Company, Inc. | Method and apparatus for suppressing the deposition of carbonaceous material in a coke oven battery |
FR2304660A1 (en) | 1975-03-19 | 1976-10-15 | Otto & Co Gmbh Dr C | PROCESS AND BRICK CONNECTION PLUGS FOR THE PARTIAL REPAIR OF HEATED WALLS OF A COKE OVEN COIL |
US4004702A (en) | 1975-04-21 | 1977-01-25 | Bethlehem Steel Corporation | Coke oven larry car coal restricting insert |
DE2524462A1 (en) | 1975-06-03 | 1976-12-16 | Still Fa Carl | COOKING OVEN FILLING TROLLEY |
US4045299A (en) | 1975-11-24 | 1977-08-30 | Pennsylvania Coke Technology, Inc. | Smokeless non-recovery type coke oven |
DE2603678C2 (en) | 1976-01-31 | 1984-02-23 | Saarbergwerke AG, 6600 Saarbrücken | Device for locking a movable ram, which closes the rammed form of a rammed coking plant on its side facing away from the furnace chambers, in its position on the furnace chamber head |
US4083753A (en) | 1976-05-04 | 1978-04-11 | Koppers Company, Inc. | One-spot coke quencher car |
US4145195A (en) | 1976-06-28 | 1979-03-20 | Firma Carl Still | Adjustable device for removing pollutants from gases and vapors evolved during coke quenching operations |
DE2712111A1 (en) | 1977-03-19 | 1978-09-28 | Otto & Co Gmbh Dr C | FOR TAKING A COOKING FIRE SERVANT, CARRIAGE OF CARRIAGE ALONG A BATTERY OF CARBON OVENS |
US4111757A (en) | 1977-05-25 | 1978-09-05 | Pennsylvania Coke Technology, Inc. | Smokeless and non-recovery type coke oven battery |
US4213828A (en) | 1977-06-07 | 1980-07-22 | Albert Calderon | Method and apparatus for quenching coke |
US4141796A (en) | 1977-08-08 | 1979-02-27 | Bethlehem Steel Corporation | Coke oven emission control method and apparatus |
US4211608A (en) | 1977-09-28 | 1980-07-08 | Bethlehem Steel Corporation | Coke pushing emission control system |
US4196053A (en) | 1977-10-04 | 1980-04-01 | Hartung, Kuhn & Co. Maschinenfabrik Gmbh | Equipment for operating coke oven service machines |
JPS5454101A (en) | 1977-10-07 | 1979-04-28 | Nippon Kokan Kk <Nkk> | Charging of raw coal for sintered coke |
DE2755108B2 (en) | 1977-12-10 | 1980-06-19 | Gewerkschaft Schalker Eisenhuette, 4650 Gelsenkirchen | Door lifting device |
US4189272A (en) | 1978-02-27 | 1980-02-19 | Gewerkschaft Schalker Eisenhutte | Method of and apparatus for charging coal into a coke oven chamber |
US4222748A (en) | 1979-02-22 | 1980-09-16 | Monsanto Company | Electrostatically augmented fiber bed and method of using |
US4147230A (en) | 1978-04-14 | 1979-04-03 | Nelson Industries, Inc. | Combination spark arrestor and aspirating muffler |
US4287024A (en) | 1978-06-22 | 1981-09-01 | Thompson Buster R | High-speed smokeless coke oven battery |
US4235830A (en) | 1978-09-05 | 1980-11-25 | Aluminum Company Of America | Flue pressure control for tunnel kilns |
US4249997A (en) | 1978-12-18 | 1981-02-10 | Bethlehem Steel Corporation | Low differential coke oven heating system |
US4213489A (en) | 1979-01-10 | 1980-07-22 | Koppers Company, Inc. | One-spot coke quench car coke distribution system |
US4285772A (en) | 1979-02-06 | 1981-08-25 | Kress Edward S | Method and apparatus for handlng and dry quenching coke |
US4289584A (en) | 1979-03-15 | 1981-09-15 | Bethlehem Steel Corporation | Coke quenching practice for one-spot cars |
US4248671A (en) | 1979-04-04 | 1981-02-03 | Envirotech Corporation | Dry coke quenching and pollution control |
DE2915330C2 (en) | 1979-04-14 | 1983-01-27 | Didier Engineering Gmbh, 4300 Essen | Process and plant for wet quenching of coke |
US4263099A (en) | 1979-05-17 | 1981-04-21 | Bethlehem Steel Corporation | Wet quenching of incandescent coke |
DE2921171C2 (en) | 1979-05-25 | 1986-04-03 | Dr. C. Otto & Co Gmbh, 4630 Bochum | Procedure for renovating the masonry of coking ovens |
DE2922571C2 (en) | 1979-06-02 | 1985-08-01 | Dr. C. Otto & Co Gmbh, 4630 Bochum | Charging trolleys for coking ovens |
US4307673A (en) | 1979-07-23 | 1981-12-29 | Forest Fuels, Inc. | Spark arresting module |
US4334963A (en) | 1979-09-26 | 1982-06-15 | Wsw Planungs-Gmbh | Exhaust hood for unloading assembly of coke-oven battery |
US4336843A (en) | 1979-10-19 | 1982-06-29 | Odeco Engineers, Inc. | Emergency well-control vessel |
JPS5918437B2 (en) | 1980-09-11 | 1984-04-27 | 新日本製鐵株式会社 | Pressure/vibration filling device for pulverized coal in a coke oven |
FR2467878B1 (en) | 1979-10-23 | 1986-06-06 | Nippon Steel Corp | METHOD AND DEVICE FOR FILLING A CARBONIZATION CHAMBER OF A COKE OVEN WITH POWDER COAL |
JPS5918436B2 (en) | 1980-09-11 | 1984-04-27 | 新日本製鐵株式会社 | Pulverized coal pressurization and vibration filling equipment in coke ovens |
US4396461A (en) | 1979-10-31 | 1983-08-02 | Bethlehem Steel Corporation | One-spot car coke quenching process |
US4446018A (en) | 1980-05-01 | 1984-05-01 | Armco Inc. | Waste treatment system having integral intrachannel clarifier |
US4303615A (en) | 1980-06-02 | 1981-12-01 | Fisher Scientific Company | Crucible with lid |
US4342195A (en) | 1980-08-15 | 1982-08-03 | Lo Ching P | Motorcycle exhaust system |
DE3037950C2 (en) | 1980-10-08 | 1985-09-12 | Dr. C. Otto & Co Gmbh, 4630 Bochum | Device for improving the flow course in the transfer channels, which are arranged between the regenerators or recuperators and the combustion chambers of technical gas firing systems, in particular of coke ovens |
JPS5783585A (en) | 1980-11-12 | 1982-05-25 | Ishikawajima Harima Heavy Ind Co Ltd | Method for charging stock coal into coke oven |
DE3043239C2 (en) | 1980-11-15 | 1985-11-28 | Balcke-Dürr AG, 4030 Ratingen | Method and device for mixing at least two fluid partial flows |
JPS5790092A (en) | 1980-11-27 | 1982-06-04 | Ishikawajima Harima Heavy Ind Co Ltd | Method for compacting coking coal |
US4340445A (en) | 1981-01-09 | 1982-07-20 | Kucher Valery N | Car for receiving incandescent coke |
US4391674A (en) | 1981-02-17 | 1983-07-05 | Republic Steel Corporation | Coke delivery apparatus and method |
DE3119973C2 (en) | 1981-05-20 | 1983-11-03 | Carl Still Gmbh & Co Kg, 4350 Recklinghausen | Heating device for regenerative coking furnace batteries |
US4330372A (en) | 1981-05-29 | 1982-05-18 | National Steel Corporation | Coke oven emission control method and apparatus |
GB2102830B (en) | 1981-08-01 | 1985-08-21 | Kurt Dix | Coke-oven door |
US4366029A (en) | 1981-08-31 | 1982-12-28 | Koppers Company, Inc. | Pivoting back one-spot coke car |
US4395269B1 (en) | 1981-09-30 | 1994-08-30 | Donaldson Co Inc | Compact dust filter assembly |
JPS5891788A (en) | 1981-11-27 | 1983-05-31 | Ishikawajima Harima Heavy Ind Co Ltd | Apparatus for charging compacted raw coal briquette into coke oven |
US4396394A (en) | 1981-12-21 | 1983-08-02 | Atlantic Richfield Company | Method for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal |
JPS58152095A (en) | 1982-03-04 | 1983-09-09 | Idemitsu Kosan Co Ltd | Modification of low-grade coal |
US4459103A (en) | 1982-03-10 | 1984-07-10 | Hazen Research, Inc. | Automatic volatile matter content analyzer |
DE3315738C2 (en) | 1982-05-03 | 1984-03-22 | WSW Planungsgesellschaft mbH, 4355 Waltrop | Process and device for dedusting coke oven emissions |
US4469446A (en) | 1982-06-24 | 1984-09-04 | Joy Manufacturing Company | Fluid handling |
JPS5951978A (en) | 1982-09-16 | 1984-03-26 | Kawasaki Heavy Ind Ltd | Self-supporting carrier case for compression-molded coal |
US4448541A (en) | 1982-09-22 | 1984-05-15 | Mediminder Development Limited Partnership | Medical timer apparatus |
JPS5953589A (en) | 1982-09-22 | 1984-03-28 | Kawasaki Steel Corp | Manufacture of compression-formed coal |
JPS5971388A (en) | 1982-10-15 | 1984-04-23 | Kawatetsu Kagaku Kk | Operating station for compression molded coal case in coke oven |
AU552638B2 (en) | 1982-10-20 | 1986-06-12 | Idemitsu Kosan Co. Ltd | Process for modification of coal |
JPS59108083A (en) | 1982-12-13 | 1984-06-22 | Kawasaki Heavy Ind Ltd | Transportation of compression molded coal and its device |
JPS59145281A (en) | 1983-02-08 | 1984-08-20 | Ishikawajima Harima Heavy Ind Co Ltd | Equipment for production of compacted cake from slack coal |
US4680167A (en) | 1983-02-09 | 1987-07-14 | Alcor, Inc. | Controlled atmosphere oven |
US4568426A (en) | 1983-02-09 | 1986-02-04 | Alcor, Inc. | Controlled atmosphere oven |
US4445977A (en) | 1983-02-28 | 1984-05-01 | Furnco Construction Corporation | Coke oven having an offset expansion joint and method of installation thereof |
US4527488A (en) | 1983-04-26 | 1985-07-09 | Koppers Company, Inc. | Coke oven charging car |
JPS604588A (en) | 1983-06-22 | 1985-01-11 | Nippon Steel Corp | Horizontal chamber coke oven and method for controlling heating of said oven |
DE3329367C1 (en) | 1983-08-13 | 1984-11-29 | Gewerkschaft Schalker Eisenhütte, 4650 Gelsenkirchen | Coking oven |
DE3339160C2 (en) | 1983-10-28 | 1986-03-20 | Carl Still Gmbh & Co Kg, 4350 Recklinghausen | Methods and devices for detecting embers and extinguishing the coke lying on the coke ramp |
US4506025A (en) * | 1984-03-22 | 1985-03-19 | Dresser Industries, Inc. | Silica castables |
US4570670A (en) | 1984-05-21 | 1986-02-18 | Johnson Charles D | Valve |
US4655193A (en) | 1984-06-05 | 1987-04-07 | Blacket Arnold M | Incinerator |
DE3436687A1 (en) | 1984-10-05 | 1986-04-10 | Krupp Polysius Ag, 4720 Beckum | DEVICE FOR HEAT TREATMENT OF FINE GOODS |
JPS61106690A (en) | 1984-10-30 | 1986-05-24 | Kawasaki Heavy Ind Ltd | Apparatus for transporting compacted coal for coke oven |
DE3443976A1 (en) | 1984-12-01 | 1986-06-12 | Krupp Koppers GmbH, 4300 Essen | METHOD FOR REDUCING THE NO (ARROW DOWN) X (ARROW DOWN) CONTENT IN THE FLUE GAS IN THE HEATING OF COCING FURNACES AND FURNISHING OVEN FOR CARRYING OUT THE PROCEDURE |
DE3521540A1 (en) | 1985-06-15 | 1986-12-18 | Dr. C. Otto & Co Gmbh, 4630 Bochum | EXTINGUISHER TROLLEY FOR COCING OVENS |
JPS6211794A (en) | 1985-07-10 | 1987-01-20 | Nippon Steel Corp | Device for vibrating and consolidating coal to be fed to coke oven |
JPH0319127Y2 (en) | 1985-09-25 | 1991-04-23 | ||
US4655804A (en) | 1985-12-11 | 1987-04-07 | Environmental Elements Corp. | Hopper gas distribution system |
JPS62285980A (en) | 1986-06-05 | 1987-12-11 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for charging coke oven with coal |
US4997527A (en) | 1988-04-22 | 1991-03-05 | Kress Corporation | Coke handling and dry quenching method |
DE3816396A1 (en) | 1987-05-21 | 1989-03-02 | Ruhrkohle Ag | Coke oven roof |
JPH0768523B2 (en) | 1987-07-21 | 1995-07-26 | 住友金属工業株式会社 | Coke oven charging material consolidation method and apparatus |
JPH01249886A (en) | 1988-03-31 | 1989-10-05 | Nkk Corp | Control of bulk density in coke oven |
DE3841630A1 (en) | 1988-12-10 | 1990-06-13 | Krupp Koppers Gmbh | METHOD FOR REDUCING THE NO (ARROW DOWN) X (ARROW DOWN) CONTENT IN THE EXHAUST GAS IN THE HEATING OF STRENGTH GAS OR MIXED COOKED OVENS AND COOKING OVEN BATTERY FOR CARRYING OUT THE PROCESS |
NL8901620A (en) | 1989-06-27 | 1991-01-16 | Hoogovens Groep Bv | CERAMIC BURNER AND A FORMAT SUITABLE FOR IT. |
CN2064363U (en) | 1989-07-10 | 1990-10-24 | 介休县第二机械厂 | Cover of coke-oven |
US5078822A (en) | 1989-11-14 | 1992-01-07 | Hodges Michael F | Method for making refractory lined duct and duct formed thereby |
JPH07119418B2 (en) | 1989-12-26 | 1995-12-20 | 住友金属工業株式会社 | Extraction method and equipment for coke oven charging |
US5114542A (en) | 1990-09-25 | 1992-05-19 | Jewell Coal And Coke Company | Nonrecovery coke oven battery and method of operation |
JPH07100794B2 (en) | 1990-10-22 | 1995-11-01 | 住友金属工業株式会社 | Extraction method and equipment for coke oven charging |
US5228955A (en) | 1992-05-22 | 1993-07-20 | Sun Coal Company | High strength coke oven wall having gas flues therein |
KR960008754Y1 (en) | 1993-09-10 | 1996-10-09 | 포항종합제철 주식회사 | Carbon scraper of cokes oven pusher |
JPH07188668A (en) | 1993-12-27 | 1995-07-25 | Nkk Corp | Dust collection in charging coke oven with coal |
JPH07216357A (en) | 1994-01-27 | 1995-08-15 | Nippon Steel Corp | Method for compacting coal for charge into coke oven and apparatus therefor |
CN1092457A (en) | 1994-02-04 | 1994-09-21 | 张胜 | Contiuum type coke furnace and coking process thereof |
JP2914198B2 (en) | 1994-10-28 | 1999-06-28 | 住友金属工業株式会社 | Coking furnace coal charging method and apparatus |
US5670025A (en) | 1995-08-24 | 1997-09-23 | Saturn Machine & Welding Co., Inc. | Coke oven door with multi-latch sealing system |
DE19545736A1 (en) | 1995-12-08 | 1997-06-12 | Thyssen Still Otto Gmbh | Method of charging coke oven with coal |
US5968320A (en) | 1997-02-07 | 1999-10-19 | Stelco, Inc. | Non-recovery coke oven gas combustion system |
TW409142B (en) | 1997-03-25 | 2000-10-21 | Kawasaki Steel Co | Method of operating coke and apparatus for implementing the method |
CN1060796C (en) * | 1997-04-09 | 2001-01-17 | 高成明 | Lid for coke oven |
US5928476A (en) | 1997-08-19 | 1999-07-27 | Sun Coal Company | Nonrecovery coke oven door |
PT903393E (en) | 1997-09-23 | 2002-05-31 | Thyssen Krupp Encoke Gmbh | CARBON LOAD WAGON FOR FILLING THE COKE OVEN CHAMBER OF A COKE OVEN BATTERY |
DE19803455C1 (en) | 1998-01-30 | 1999-08-26 | Saarberg Interplan Gmbh | Method and device for producing a coking coal cake for coking in an oven chamber |
CN1298437A (en) | 1998-03-04 | 2001-06-06 | 克雷斯公司 | Method and apparatus for handling and indirectly cooling coke |
US6059932A (en) | 1998-10-05 | 2000-05-09 | Pennsylvania Coke Technology, Inc. | Coal bed vibration compactor for non-recovery coke oven |
US6017214A (en) | 1998-10-05 | 2000-01-25 | Pennsylvania Coke Technology, Inc. | Interlocking floor brick for non-recovery coke oven |
KR100296700B1 (en) | 1998-12-24 | 2001-10-26 | 손재익 | Composite cyclone filter for solids collection at high temperature |
US6187148B1 (en) | 1999-03-01 | 2001-02-13 | Pennsylvania Coke Technology, Inc. | Downcomer valve for non-recovery coke oven |
US6189819B1 (en) | 1999-05-20 | 2001-02-20 | Wisconsin Electric Power Company (Wepco) | Mill door in coal-burning utility electrical power generation plant |
US6626984B1 (en) | 1999-10-26 | 2003-09-30 | Fsx, Inc. | High volume dust and fume collector |
CN1084782C (en) | 1999-12-09 | 2002-05-15 | 山西三佳煤化有限公司 | Integrative cokery and its coking process |
JP2001200258A (en) | 2000-01-14 | 2001-07-24 | Kawasaki Steel Corp | Method and apparatus for removing carbon in coke oven |
JP2002106941A (en) | 2000-09-29 | 2002-04-10 | Kajima Corp | Branching/joining header duct unit |
US6290494B1 (en) | 2000-10-05 | 2001-09-18 | Sun Coke Company | Method and apparatus for coal coking |
US6596128B2 (en) * | 2001-02-14 | 2003-07-22 | Sun Coke Company | Coke oven flue gas sharing |
US7611609B1 (en) | 2001-05-01 | 2009-11-03 | ArcelorMittal Investigacion y Desarrollo, S. L. | Method for producing blast furnace coke through coal compaction in a non-recovery or heat recovery type oven |
US6807973B2 (en) | 2001-05-04 | 2004-10-26 | Mark Vii Equipment Llc | Vehicle wash apparatus with an adjustable boom |
JP4757408B2 (en) | 2001-07-27 | 2011-08-24 | 新日本製鐵株式会社 | Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device |
JP2003071313A (en) | 2001-09-05 | 2003-03-11 | Asahi Glass Co Ltd | Apparatus for crushing glass |
US6699035B2 (en) | 2001-09-06 | 2004-03-02 | Enardo, Inc. | Detonation flame arrestor including a spiral wound wedge wire screen for gases having a low MESG |
US6907895B2 (en) | 2001-09-19 | 2005-06-21 | The United States Of America As Represented By The Secretary Of Commerce | Method for microfluidic flow manipulation |
DE10154785B4 (en) | 2001-11-07 | 2010-09-23 | Flsmidth Koch Gmbh | Door lock for a coking oven |
CN1358822A (en) | 2001-11-08 | 2002-07-17 | 李天瑞 | Clean type heat recovery tamping type coke oven |
CN2509188Y (en) | 2001-11-08 | 2002-09-04 | 李天瑞 | Cleaning heat recovery tamping coke oven |
US6758875B2 (en) | 2001-11-13 | 2004-07-06 | Great Lakes Air Systems, Inc. | Air cleaning system for a robotic welding chamber |
CN2528771Y (en) | 2002-02-02 | 2003-01-01 | 李天瑞 | Coal charging device of tamping type heat recovery cleaning coke oven |
US6946011B2 (en) | 2003-03-18 | 2005-09-20 | The Babcock & Wilcox Company | Intermittent mixer with low pressure drop |
US7077892B2 (en) | 2003-11-26 | 2006-07-18 | Lee David B | Air purification system and method |
WO2005084321A2 (en) | 2004-03-01 | 2005-09-15 | Novinium, Inc. | Method for treating electrical cable at sustained elevated pressure |
CN2668641Y (en) | 2004-05-19 | 2005-01-05 | 山西森特煤焦化工程集团有限公司 | Level coke-receiving coke-quenching vehicle |
US7331298B2 (en) | 2004-09-03 | 2008-02-19 | Suncoke Energy, Inc. | Coke oven rotary wedge door latch |
CA2839738C (en) | 2004-09-10 | 2015-07-21 | M-I L.L.C. | Apparatus and method for homogenizing two or more fluids of different densities |
DE102004054966A1 (en) | 2004-11-13 | 2006-05-18 | Andreas Stihl Ag & Co. Kg | exhaust silencer |
KR20070107096A (en) | 2005-02-22 | 2007-11-06 | 가부시키가이샤 야마사키 산교우 | Temperature raising furnace door for coke carbonization furnace |
US7314060B2 (en) | 2005-04-23 | 2008-01-01 | Industrial Technology Research Institute | Fluid flow conducting module |
US8398935B2 (en) | 2005-06-09 | 2013-03-19 | The United States Of America, As Represented By The Secretary Of The Navy | Sheath flow device and method |
DE602006007136D1 (en) | 2005-06-23 | 2009-07-16 | Bp Oil Int | METHOD OF EVALUATING THE COKE AND BITUMEN QUALITY OF REFINERY OUTPUT MATERIALS |
US7644711B2 (en) | 2005-08-05 | 2010-01-12 | The Big Green Egg, Inc. | Spark arrestor and airflow control assembly for a portable cooking or heating device |
DE102006005189A1 (en) | 2006-02-02 | 2007-08-09 | Uhde Gmbh | Method for producing coke with high volatile content in coking chamber of non recovery or heat recovery type coke oven, involves filling coking chamber with layer of coal, where cooling water vapor is introduced in coke oven |
US8152970B2 (en) | 2006-03-03 | 2012-04-10 | Suncoke Technology And Development Llc | Method and apparatus for producing coke |
DE102006026521A1 (en) | 2006-06-06 | 2007-12-13 | Uhde Gmbh | Horizontal oven for the production of coke, comprises a coke oven chamber, and a coke oven base that is arranged in vertical direction between the oven chamber and horizontally running flue gas channels and that has cover- and lower layer |
US7497930B2 (en) | 2006-06-16 | 2009-03-03 | Suncoke Energy, Inc. | Method and apparatus for compacting coal for a coal coking process |
MD3917C2 (en) | 2006-09-20 | 2009-12-31 | Dinano Ecotechnology Llc | Process for thermochemical processing of carboniferous raw material |
KR100797852B1 (en) | 2006-12-28 | 2008-01-24 | 주식회사 포스코 | Discharge control method of exhaust fumes |
US7736470B2 (en) | 2007-01-25 | 2010-06-15 | Exxonmobil Research And Engineering Company | Coker feed method and apparatus |
EP2033702B1 (en) | 2007-09-04 | 2011-01-19 | Evonik Energy Services GmbH | Method for removing mercury from exhaust combustion gases |
DE102007058473B4 (en) * | 2007-12-04 | 2009-11-26 | Uhde Gmbh | Method and device for closing a coke oven, which is loaded by a horizontally directed, front and rear oven opening or prepared for coking |
JP2009144121A (en) | 2007-12-18 | 2009-07-02 | Nippon Steel Corp | Coke pusher and coke extrusion method in coke oven |
DE102007061502B4 (en) | 2007-12-18 | 2012-06-06 | Uhde Gmbh | Adjustable air ducts for supplying additional combustion air into the region of the exhaust ducts of coke oven ovens |
JP2009166012A (en) | 2008-01-21 | 2009-07-30 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment system and its operation method of coal fired boiler |
US20100115912A1 (en) | 2008-11-07 | 2010-05-13 | General Electric Company | Parallel turbine arrangement and method |
DE102008064209B4 (en) | 2008-12-22 | 2010-11-18 | Uhde Gmbh | Method and apparatus for the cyclical operation of coke oven benches from "heat recovery" coke oven chambers |
US7998316B2 (en) | 2009-03-17 | 2011-08-16 | Suncoke Technology And Development Corp. | Flat push coke wet quenching apparatus and process |
DE102009031436A1 (en) | 2009-07-01 | 2011-01-05 | Uhde Gmbh | Method and device for keeping warm coke oven chambers during standstill of a waste heat boiler |
KR20110010452A (en) | 2009-07-24 | 2011-02-01 | 현대제철 주식회사 | Dust collecting device |
DE102009052282B4 (en) | 2009-11-09 | 2012-11-29 | Thyssenkrupp Uhde Gmbh | Method for compensating exhaust enthalpy losses of heat recovery coke ovens |
US8999278B2 (en) | 2010-03-11 | 2015-04-07 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants |
US8236142B2 (en) | 2010-05-19 | 2012-08-07 | Westbrook Thermal Technology, Llc | Process for transporting and quenching coke |
US9200225B2 (en) | 2010-08-03 | 2015-12-01 | Suncoke Technology And Development Llc. | Method and apparatus for compacting coal for a coal coking process |
JP5229362B2 (en) | 2010-09-01 | 2013-07-03 | Jfeスチール株式会社 | Method for producing metallurgical coke |
JP2012102302A (en) | 2010-11-15 | 2012-05-31 | Jfe Steel Corp | Kiln mouth structure of coke oven |
US9296124B2 (en) | 2010-12-30 | 2016-03-29 | United States Gypsum Company | Slurry distributor with a wiping mechanism, system, and method for using same |
DE102011009175B4 (en) | 2011-01-21 | 2016-12-29 | Thyssenkrupp Industrial Solutions Ag | Method and apparatus for breaking up a fresh and warm coke charge in a receptacle |
DE102011052785B3 (en) | 2011-08-17 | 2012-12-06 | Thyssenkrupp Uhde Gmbh | Wet extinguishing tower for the extinguishment of hot coke |
CN202226816U (en) | 2011-08-31 | 2012-05-23 | 武汉钢铁(集团)公司 | Graphite scrapping pusher ram for coke oven carbonization chamber |
KR101318388B1 (en) | 2011-11-08 | 2013-10-15 | 주식회사 포스코 | Removing apparatus of carbon in carbonizing chamber of coke oven |
CN102584294B (en) * | 2012-02-28 | 2013-06-05 | 贵阳东吉博宇耐火材料有限公司 | Composite fire-proof material with high refractoriness under load for coke ovens as well as furnace-building process and products thereof |
EP3531018B1 (en) | 2012-07-31 | 2024-03-20 | SunCoke Technology and Development LLC | System for handling coal processing emissions |
US9243186B2 (en) | 2012-08-17 | 2016-01-26 | Suncoke Technology And Development Llc. | Coke plant including exhaust gas sharing |
US9249357B2 (en) | 2012-08-17 | 2016-02-02 | Suncoke Technology And Development Llc. | Method and apparatus for volatile matter sharing in stamp-charged coke ovens |
US9359554B2 (en) | 2012-08-17 | 2016-06-07 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US9169439B2 (en) | 2012-08-29 | 2015-10-27 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
PL2898048T3 (en) | 2012-09-21 | 2020-11-16 | Suncoke Technology And Development Llc | Reduced output rate coke oven operation with gas sharing providing extended process cycle |
US9476547B2 (en) | 2012-12-28 | 2016-10-25 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US10883051B2 (en) | 2012-12-28 | 2021-01-05 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US9273249B2 (en) | 2012-12-28 | 2016-03-01 | Suncoke Technology And Development Llc. | Systems and methods for controlling air distribution in a coke oven |
US10047295B2 (en) | 2012-12-28 | 2018-08-14 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US9238778B2 (en) | 2012-12-28 | 2016-01-19 | Suncoke Technology And Development Llc. | Systems and methods for improving quenched coke recovery |
US9273250B2 (en) | 2013-03-15 | 2016-03-01 | Suncoke Technology And Development Llc. | Methods and systems for improved quench tower design |
CA2935325C (en) | 2013-12-31 | 2022-11-22 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
-
2013
- 2013-03-14 US US13/829,588 patent/US9193915B2/en active Active
-
2014
- 2014-03-14 CN CN201480014799.8A patent/CN105189704A/en active Pending
- 2014-03-14 CN CN201610146244.XA patent/CN105778931A/en active Pending
- 2014-03-14 EP EP16161750.1A patent/EP3075818B1/en active Active
- 2014-03-14 IN IN512KON2015 patent/IN2015KN00512A/en unknown
- 2014-03-14 WO PCT/US2014/028837 patent/WO2014153050A1/en active Application Filing
- 2014-03-14 EP EP14769676.9A patent/EP2970769B1/en active Active
- 2014-03-14 CA CA2903836A patent/CA2903836C/en active Active
- 2014-03-14 PL PL16161750T patent/PL3075818T3/en unknown
- 2014-03-14 BR BR112015010451-7A patent/BR112015010451B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452749A (en) * | 1982-09-14 | 1984-06-05 | Modern Refractories Service Corp. | Method of repairing hot refractory brick walls |
US4941824A (en) * | 1988-05-13 | 1990-07-17 | Heinz Holter | Method of and apparatus for cooling and cleaning the roof and environs of a coke oven |
US5227106A (en) * | 1990-02-09 | 1993-07-13 | Tonawanda Coke Corporation | Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair |
US20090283395A1 (en) * | 2006-06-06 | 2009-11-19 | Uhde Gmbh | Floor Construction for Horizontal Coke Ovens |
US20080169578A1 (en) * | 2007-01-16 | 2008-07-17 | Vanocur Refractories. L.L.C., a limited liability corporation of Delaware | Coke oven reconstruction |
US7827689B2 (en) * | 2007-01-16 | 2010-11-09 | Vanocur Refractories, L.L.C. | Coke oven reconstruction |
US20100287871A1 (en) * | 2009-05-12 | 2010-11-18 | Vanocur Refractories, L.L.C. | Corbel repairs of coke ovens |
US8266853B2 (en) * | 2009-05-12 | 2012-09-18 | Vanocur Refractories Llc | Corbel repairs of coke ovens |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9321965B2 (en) | 2009-03-17 | 2016-04-26 | Suncoke Technology And Development Llc. | Flat push coke wet quenching apparatus and process |
US9200225B2 (en) | 2010-08-03 | 2015-12-01 | Suncoke Technology And Development Llc. | Method and apparatus for compacting coal for a coal coking process |
US9683740B2 (en) | 2012-07-31 | 2017-06-20 | Suncoke Technology And Development Llc | Methods for handling coal processing emissions and associated systems and devices |
US11441077B2 (en) | 2012-08-17 | 2022-09-13 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US9243186B2 (en) | 2012-08-17 | 2016-01-26 | Suncoke Technology And Development Llc. | Coke plant including exhaust gas sharing |
US9249357B2 (en) | 2012-08-17 | 2016-02-02 | Suncoke Technology And Development Llc. | Method and apparatus for volatile matter sharing in stamp-charged coke ovens |
US10947455B2 (en) | 2012-08-17 | 2021-03-16 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US10611965B2 (en) | 2012-08-17 | 2020-04-07 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US9359554B2 (en) | 2012-08-17 | 2016-06-07 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US10041002B2 (en) | 2012-08-17 | 2018-08-07 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US9169439B2 (en) | 2012-08-29 | 2015-10-27 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
US10053627B2 (en) | 2012-08-29 | 2018-08-21 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
US9193913B2 (en) | 2012-09-21 | 2015-11-24 | Suncoke Technology And Development Llc | Reduced output rate coke oven operation with gas sharing providing extended process cycle |
US10323192B2 (en) | 2012-12-28 | 2019-06-18 | Suncoke Technology And Development Llc | Systems and methods for improving quenched coke recovery |
US9238778B2 (en) | 2012-12-28 | 2016-01-19 | Suncoke Technology And Development Llc. | Systems and methods for improving quenched coke recovery |
US11142699B2 (en) | 2012-12-28 | 2021-10-12 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US9862888B2 (en) | 2012-12-28 | 2018-01-09 | Suncoke Technology And Development Llc | Systems and methods for improving quenched coke recovery |
US11359145B2 (en) | 2012-12-28 | 2022-06-14 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
US10016714B2 (en) | 2012-12-28 | 2018-07-10 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US11008517B2 (en) | 2012-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US10047295B2 (en) | 2012-12-28 | 2018-08-14 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US9476547B2 (en) | 2012-12-28 | 2016-10-25 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US10883051B2 (en) | 2012-12-28 | 2021-01-05 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US10975309B2 (en) | 2012-12-28 | 2021-04-13 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US11117087B2 (en) | 2012-12-28 | 2021-09-14 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US11939526B2 (en) | 2012-12-28 | 2024-03-26 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US11807812B2 (en) | 2012-12-28 | 2023-11-07 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US10760002B2 (en) | 2012-12-28 | 2020-09-01 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
US11845037B2 (en) | 2012-12-28 | 2023-12-19 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US9273249B2 (en) | 2012-12-28 | 2016-03-01 | Suncoke Technology And Development Llc. | Systems and methods for controlling air distribution in a coke oven |
US10927303B2 (en) | 2013-03-15 | 2021-02-23 | Suncoke Technology And Development Llc | Methods for improved quench tower design |
US9273250B2 (en) | 2013-03-15 | 2016-03-01 | Suncoke Technology And Development Llc. | Methods and systems for improved quench tower design |
US11746296B2 (en) | 2013-03-15 | 2023-09-05 | Suncoke Technology And Development Llc | Methods and systems for improved quench tower design |
US10619101B2 (en) | 2013-12-31 | 2020-04-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US11359146B2 (en) | 2013-12-31 | 2022-06-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US10526541B2 (en) | 2014-06-30 | 2020-01-07 | Suncoke Technology And Development Llc | Horizontal heat recovery coke ovens having monolith crowns |
US9580656B2 (en) | 2014-08-28 | 2017-02-28 | Suncoke Technology And Development Llc | Coke oven charging system |
US9708542B2 (en) | 2014-08-28 | 2017-07-18 | Suncoke Technology And Development Llc | Method and system for optimizing coke plant operation and output |
US10920148B2 (en) | 2014-08-28 | 2021-02-16 | Suncoke Technology And Development Llc | Burn profiles for coke operations |
US11053444B2 (en) | 2014-08-28 | 2021-07-06 | Suncoke Technology And Development Llc | Method and system for optimizing coke plant operation and output |
US9976089B2 (en) | 2014-08-28 | 2018-05-22 | Suncoke Technology And Development Llc | Coke oven charging system |
US10308876B2 (en) | 2014-08-28 | 2019-06-04 | Suncoke Technology And Development Llc | Burn profiles for coke operations |
US10233392B2 (en) | 2014-08-28 | 2019-03-19 | Suncoke Technology And Development Llc | Method for optimizing coke plant operation and output |
US10968393B2 (en) | 2014-09-15 | 2021-04-06 | Suncoke Technology And Development Llc | Coke ovens having monolith component construction |
US11795400B2 (en) | 2014-09-15 | 2023-10-24 | Suncoke Technology And Development Llc | Coke ovens having monolith component construction |
CN106687564A (en) * | 2014-09-15 | 2017-05-17 | 太阳焦炭科技和发展有限责任公司 | Coke ovens having monolith component construction |
US10392563B2 (en) | 2014-10-17 | 2019-08-27 | Thyssenkrupp Industrial Solutions Ag | Coke oven with improved exhaust gas conduction into the secondary heating chambers |
DE102014221150B3 (en) * | 2014-10-17 | 2016-03-17 | Thyssenkrupp Ag | Coke oven with improved exhaust system in the secondary heating chambers and a method for coking coal and the use of the coke oven |
US10968395B2 (en) | 2014-12-31 | 2021-04-06 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US10975310B2 (en) | 2014-12-31 | 2021-04-13 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US10975311B2 (en) | 2014-12-31 | 2021-04-13 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US11060032B2 (en) | 2015-01-02 | 2021-07-13 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US10526542B2 (en) | 2015-12-28 | 2020-01-07 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US11214739B2 (en) | 2015-12-28 | 2022-01-04 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US11508230B2 (en) | 2016-06-03 | 2022-11-22 | Suncoke Technology And Development Llc | Methods and systems for automatically generating a remedial action in an industrial facility |
US11845898B2 (en) | 2017-05-23 | 2023-12-19 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US10851306B2 (en) | 2017-05-23 | 2020-12-01 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US11505747B2 (en) * | 2018-12-28 | 2022-11-22 | Suncoke Technology And Development Llc | Coke plant tunnel repair and anchor distribution |
US11261381B2 (en) | 2018-12-28 | 2022-03-01 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US20220325183A1 (en) * | 2018-12-28 | 2022-10-13 | Suncoke Technology And Development Llc | Coke plant tunnel repair and anchor distribution |
US12060525B2 (en) | 2018-12-28 | 2024-08-13 | Suncoke Technology And Development Llc | Systems for treating a surface of a coke plant sole flue |
US11098252B2 (en) | 2018-12-28 | 2021-08-24 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11845897B2 (en) | 2018-12-28 | 2023-12-19 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US11597881B2 (en) | 2018-12-28 | 2023-03-07 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11643602B2 (en) | 2018-12-28 | 2023-05-09 | Suncoke Technology And Development Llc | Decarbonization of coke ovens, and associated systems and methods |
US11680208B2 (en) | 2018-12-28 | 2023-06-20 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11365355B2 (en) * | 2018-12-28 | 2022-06-21 | Suncoke Technology And Development Llc | Systems and methods for treating a surface of a coke plant |
US11760937B2 (en) | 2018-12-28 | 2023-09-19 | Suncoke Technology And Development Llc | Oven uptakes |
US11071935B2 (en) | 2018-12-28 | 2021-07-27 | Suncoke Technology And Development Llc | Particulate detection for industrial facilities, and associated systems and methods |
US11021655B2 (en) | 2018-12-28 | 2021-06-01 | Suncoke Technology And Development Llc | Decarbonization of coke ovens and associated systems and methods |
US11008518B2 (en) | 2018-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11193069B2 (en) * | 2018-12-28 | 2021-12-07 | Suncoke Technology And Development Llc | Coke plant tunnel repair and anchor distribution |
US11395989B2 (en) | 2018-12-31 | 2022-07-26 | Suncoke Technology And Development Llc | Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems |
US11486572B2 (en) | 2018-12-31 | 2022-11-01 | Suncoke Technology And Development Llc | Systems and methods for Utilizing flue gas |
CN110105972A (en) * | 2019-06-21 | 2019-08-09 | 马鞍山钢铁股份有限公司 | A kind of coke oven burner-seeing brick and circle and its replacing options |
US11767482B2 (en) | 2020-05-03 | 2023-09-26 | Suncoke Technology And Development Llc | High-quality coke products |
Also Published As
Publication number | Publication date |
---|---|
CN105778931A (en) | 2016-07-20 |
WO2014153050A1 (en) | 2014-09-25 |
US9193915B2 (en) | 2015-11-24 |
EP2970769A1 (en) | 2016-01-20 |
EP3075818A1 (en) | 2016-10-05 |
CA2903836A1 (en) | 2014-09-25 |
PL3075818T3 (en) | 2018-07-31 |
BR112015010451A2 (en) | 2016-08-09 |
EP2970769A4 (en) | 2016-11-02 |
IN2015KN00512A (en) | 2015-07-17 |
CN105189704A (en) | 2015-12-23 |
CA2903836C (en) | 2017-08-22 |
EP3075818B1 (en) | 2018-03-14 |
EP2970769B1 (en) | 2022-08-10 |
BR112015010451B1 (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9193915B2 (en) | Horizontal heat recovery coke ovens having monolith crowns | |
US11795400B2 (en) | Coke ovens having monolith component construction | |
AU2019284030B2 (en) | Horizontal heat recovery coke ovens having monolith crowns | |
EP2898048B1 (en) | Reduced output rate coke oven operation with gas sharing providing extended process cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEST, GARY DEAN;QUANCI, JOHN FRANCIS;SIGNING DATES FROM 20140102 TO 20140110;REEL/FRAME:032170/0982 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC;REEL/FRAME:042552/0829 Effective date: 20170524 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC;REEL/FRAME:042552/0829 Effective date: 20170524 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC, ILLINOIS Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049967/0471 Effective date: 20190805 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NE Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC;REEL/FRAME:049967/0579 Effective date: 20190805 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC;REEL/FRAME:049967/0579 Effective date: 20190805 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, PENNSYLVANIA Free format text: SECURITY INTEREST;ASSIGNOR:SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC;REEL/FRAME:056846/0548 Effective date: 20210622 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |