US20140260429A1 - Annealing apparatus and method for float glass - Google Patents
Annealing apparatus and method for float glass Download PDFInfo
- Publication number
- US20140260429A1 US20140260429A1 US14/290,222 US201414290222A US2014260429A1 US 20140260429 A1 US20140260429 A1 US 20140260429A1 US 201414290222 A US201414290222 A US 201414290222A US 2014260429 A1 US2014260429 A1 US 2014260429A1
- Authority
- US
- United States
- Prior art keywords
- lehr
- glass ribbon
- housing
- annealing
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000137 annealing Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 27
- 239000005329 float glass Substances 0.000 title abstract description 21
- 239000011521 glass Substances 0.000 claims abstract description 40
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 230000007547 defect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 29
- 239000002184 metal Substances 0.000 description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 14
- 239000006060 molten glass Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000005347 annealed glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
- C03B35/14—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
- C03B35/16—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
- C03B35/165—Supports or couplings for roller ends, e.g. trunions, gudgeons
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B25/00—Annealing glass products
- C03B25/04—Annealing glass products in a continuous way
- C03B25/06—Annealing glass products in a continuous way with horizontal displacement of the glass products
- C03B25/08—Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B25/00—Annealing glass products
- C03B25/04—Annealing glass products in a continuous way
- C03B25/06—Annealing glass products in a continuous way with horizontal displacement of the glass products
- C03B25/08—Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
- C03B25/093—Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets being in a horizontal position on a fluid support, e.g. a gas or molten metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B35/00—Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
- C03B35/14—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
- C03B35/16—Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
- C03B35/168—Means for cleaning the rollers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- Exemplary embodiments relate to an annealing apparatus and method for a float glass, and more particularly, to an annealing apparatus and method for a float glass in which a sealing structure of lehr rolls of an annealing lehr which anneals a glass ribbon continuously produced by a floating process.
- a float glass manufacturing system continuously supplies molten glass onto a molten metal (e.g., a molten tin) stored in a float bath, molds a strip-shaped (or, ribbon-shaped) glass ribbon with consistent width and thickness while carrying the molten glass to float on the molten metal, and pulls the glass ribbon toward an annealing lehr adjacent to the outlet of the float bath to produce a glass plate.
- a molten metal e.g., a molten tin
- the molten metal may be for example a molten tin or a molten tin alloy and has a greater specific weight than the molten glass.
- the molten metal is received in a float chamber filled with reducing hydrogen (H 2 ) and/or nitrogen (N 2 ).
- the float bath receiving the molten metal is elongated in a length direction and includes special fireproof material. The molten glass moves from an upstream side of the float bath to a downstream side and is molded into a glass ribbon on the surface of the molten metal.
- the glass ribbon is lifted up away from the molten metal by lift-out rollers installed to a dross box, and the lifted glass ribbon is delivered through the dross box toward an annealing lehr for the next process. Meanwhile, a successive glass ribbon with a predetermined width is cut into several sheets with a predetermined size, which are called “glass sheets”.
- the gas containing volatile tin and contained in the float bath flows toward the downstream side of the float bath, namely toward the dross box, due to a positive pressure in the float bath.
- the gas flowing toward the dross box as mentioned above creates inferiorities at the surface of the molten tin or the surface of the glass which is carried after being condensed near the dross box and at a low-temperature region in the float bath at the downstream side (generally, dross is generated at 780° C. or below).
- the tin-containing gas mentioned above may flow toward the downstream side of the float bath through the dross box.
- oxygen contained in an external air may react with the volatile tin in the float bath at the relatively low-temperature region, and if the gas is condensed in this state, a tin-based floating impurity may be generated at the surface of the tin.
- the tin-based floating impurity adhered to the surface of the molten tin is moved and drawn together with the bottom surface of the glass ribbon. This tin-based floating impurity may contaminate the dross box and the surface of rollers used in the annealing process.
- the tin-based floating impurity may be a potential factor of an impurity forming at the bottom surface. Therefore, the tin-based floating impurity may deteriorate the safety of the annealing work and deteriorate the process stability and the quality of the glass products.
- sulfurous acid gas is supplied into the annealing lehr.
- the sulfurous acid gas reduces the friction between the bottom of the glass ribbon and the lehr rolls to prevent any defect of a glass product.
- the sulfurous acid gas may leak to the space and give harm to the human body.
- the exemplary embodiments are designed to solve the problems of the prior art, and therefore the exemplary embodiments are directed to providing an annealing apparatus and method for a float glass in which a sealing structure of a lehr housing of an annealing lehr is improved.
- the exemplary embodiment provides an annealing apparatus for a float glass, which continuously anneals a glass ribbon molded in a float bath, the annealing apparatus including: a lehr housing having an inlet and an outlet for the glass ribbon; a plurality of lehr rolls rotatably installed to the lehr housing in a width direction of the lehr housing; and labyrinth seals installed between the lehr rolls and sidewalls of the lehr housing, respectively, to prevent sulfurous acid gas supplied into the lehr housing from discharging out.
- the annealing apparatus may further include collecting nozzles installed to the labyrinth seals for collecting sulfurous acid gas discharged through the labyrinth seals.
- the exemplary embodiment provides an annealing method for a float glass, which continuously anneals a glass ribbon, molded in a float bath, in a lehr housing to which lehr rolls are installed, the annealing method including: supplying sulfurous acid gas into the lehr housing to reduce a friction between a bottom of the glass ribbon and lehr rollers and to reduce a defect occurring at a surface of the glass ribbon; and sealing gaps between the lehr housing and the lehr rolls by means of labyrinth seals installed at outer peripheries of the lehr rolls so that the sulfurous acid gas supplied into the lehr housing is not discharged through the gaps.
- the annealing method may further include collecting the sulfurous acid gas sealed by the labyrinth seals.
- the annealing apparatus and method for a float glass applies labyrinth seals between the lehr rollers and the casing to construct a configuration for collecting a leaking gas so that the sulfurous acid gas in the lehr casing does not substantially leak to a work place, thereby decreasing an absolute amount of sulfurous acid gas used and preventing environmental pollutions.
- FIG. 1 is a side view schematically showing an annealing apparatus for a float glass according to an exemplary embodiment
- FIG. 2 is a sectional view schematically showing the annealing apparatus for a float glass of FIG. 1 .
- FIG. 1 is a side view schematically showing an annealing apparatus for a float glass according to an exemplary embodiment
- FIG. 2 is a sectional view schematically showing the annealing apparatus for a float glass of FIG. 1 .
- an annealing apparatus 100 for a float glass includes a lehr housing 130 which is installed adjacent to a dross box 120 for drawing a glass ribbon G molded by a float bath 110 .
- a plurality of lehr rollers 132 are installed to the lehr housing 130 .
- the float bath 110 stores molten metal M such as molten tin, molten tin alloy, or the like.
- the molten metal M is supplied from an upstream side (a left portion in the figures) of the float bath 110 and moves to a downstream side (a right portion in the figures). In this process, a glass ribbon is molded.
- the molten metal M floats from the upstream side of the float bath 110 , which is kept at a relatively high temperature due to the temperature gradient in the float bath 110 , to the downstream side and also floats from the center of the float bath 110 to both sides thereof.
- the molten glass G moves from the upstream side to the downstream side. After that, at a take-off point TO, the molten glass G is pulled toward the ceiling of a float chamber away from the bath surface of the molten metal M and is also drawn toward the dross box 120 for the next process.
- the float bath 110 is composed of a mixed gas of nitrogen and oxygen.
- the mixed gas is kept at a pressure slightly higher than the atmospheric pressure.
- the molten metal M and the ribbon-shaped molten glass G are kept at about 800 to 1,300° C. by an electric heater (not shown).
- the molten glass G is a non-alkali glass, a soda lime glass, or the like.
- the principle or structure of generating a flow of the molten metal M in the float bath 110 and the process of putting, molding into a ribbon shape, moving or discharging the molten glass G are already well known in the art as a floating process, and they are not described in detail here.
- the dross box 120 is disposed adjacent to the downstream end of the float bath 110 .
- the dross box 120 has three lift-out rollers 122 arranged therein.
- the lift-out rollers 122 lift the molten glass G, which is supplied from the upstream side of the float bath 110 and moved onto the surface of the molten metal M toward the downstream side of the float bath 110 , at a separating location set at the downstream side from the molten metal so that the molten glass G is supplied to the lehr housing 130 disposed at the outlet of the dross box 120 .
- the lift-out rollers 122 respectively rotate at a predetermined speed by a motor (not shown) and are spaced apart from each other at different horizontal locations so that the molten glass G may be easily drawn.
- the lehr housing 130 anneals the glass ribbon G molded in the float bath 110 which is continuously supplied from the float bath 110 .
- the lehr housing 130 has an inlet 131 through which the glass ribbon G is supplied and an outlet 133 through which the annealed glass ribbon G is discharged.
- the inside of the lehr housing 130 is sealed.
- the plurality of lehr rollers 132 are installed in a width direction of the lehr housing 130 .
- sulfurous acid gas is filled in the lehr housing 130 through a sulfurous acid gas supply member 140 which may be a type of pipe or hose.
- a rotary shaft 136 of each lehr roller 132 is formed through sidewalls 134 of the lehr housing 130 so that both ends of the rotary shaft 136 may rotate while being supported on a frame (not shown) by bearings 135 .
- the lehr roller 132 may rotate by a driving source such as a motor, not shown.
- a labyrinth seal 150 is installed between the sidewall 134 of the lehr housing 130 and the rotary shaft 136 of the lehr roller 132 .
- the labyrinth seal 150 prevents the sulfurous acid gas supplied into the lehr housing 130 from discharging out of the lehr housing 130 .
- the labyrinth seal 150 extends the fluid moving path in an elaborate and complicated pattern to prevent the fluid from directly leaking.
- a labyrinth-type channel 152 having an uneven structure and arranged in parallel with the rotary shaft 136 of the lehr roller 132 is used as the labyrinth seal 150 .
- the labyrinth seal 150 has a first surface 154 adjacent to the sidewall 134 of the lehr housing 130 , and a first O-ring 155 may be installed to the first surface 154 .
- the labyrinth seal 150 also has a second surface 156 which faces the rotary shaft 136 of the lehr roller 132 , and a second O-ring 157 may be installed to the second surface 156 .
- the lehr housing 130 means an “annealing lehr” used in a general float process, unless otherwise noted.
- the channel 152 formed in the labyrinth seal 150 may adopt any channel formed through a seal body 151 , and any labyrinth channel structure which is already known or will be known in the art may be used as apparent to those of ordinary skill in the art.
- the labyrinth seal 150 further includes a collecting nozzle 160 for collecting sulfurous acid gas which may leak through an opening of the sidewall 134 of the lehr housing 130 , by forcing the sulfurous acid gas to leak slower or to stop by means of the channel 152 of the labyrinth seal 150 so that the collected sulfurous acid gas is stored in a separate storage (not shown).
- the collecting nozzle 160 may be installed together with a stopper (not shown) which communicates with the channel 152 of the labyrinth seal 150 and is selectively opened or closed, or the collecting nozzle 160 may connect with the storage through a separate path (not shown). Though only one side of the lehr housing 130 is shown in FIG.
- the labyrinth seals 150 are installed at both ends of the lehr roller 132 , as apparent to those of ordinary skill in the art. Therefore, the labyrinth seal 150 has a connection channel 153 which communicates the collecting nozzle 160 with the channel 152 across the seal body 151 .
- the float glass ribbon G molded in the float bath 110 is moved to the lehr housing 130 to which the lehr rollers 132 are installed.
- sulfurous acid gas is supplied through the sulfurous acid gas supply member 140 installed to the lower portion of the lehr housing 130 .
- the sulfurous acid gas reduces the friction between the bottom of the float glass ribbon G and the lehr rollers 132 and reduces the defects that are creating at the surface of the float glass ribbon G.
- the sulfurous acid gas supplied into the lehr housing 130 may discharge through a gap between the lehr rollers 132 and the sidewall 134 of the lehr housing 130 .
- the labyrinth seals 150 installed at the outer peripheral surface of the lehr rollers 132 seal the gap and prevent the sulfurous acid gas from freely discharging.
- the sulfurous acid gas sealed by the labyrinth seal 150 and leaking through the channel 152 of the seal body 151 may be collected through the collecting nozzle 160 and carried to a storage (not shown).
- the labyrinth seal 150 may also be installed between the lift-out roller 122 installed to the dross box 120 and the outer wall of the dross box, as apparent to those of ordinary skill in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
An annealing apparatus for a float glass continuously anneals a glass ribbon molded in a float bath. The annealing apparatus includes a lehr housing having an inlet and an outlet for the glass ribbon, a plurality of lehr rolls rotatably installed to the lehr housing in a width direction of the lehr housing, and labyrinth seals installed between the lehr rolls and sidewalls of the lehr housing, respectively, to prevent sulfurous acid gas supplied into the lehr housing from discharging out.
Description
- This application claims priority under 35 U.S.C. §119(a) to Korean Patent Application No. 10-2010-0050872 filed at the Korean Intellectual Property Office on May 31, 2010, the entire contents of which are incorporated herein by reference.
- 1. Field
- Exemplary embodiments relate to an annealing apparatus and method for a float glass, and more particularly, to an annealing apparatus and method for a float glass in which a sealing structure of lehr rolls of an annealing lehr which anneals a glass ribbon continuously produced by a floating process.
- 2. Description of the Related Art
- Generally, a float glass manufacturing system continuously supplies molten glass onto a molten metal (e.g., a molten tin) stored in a float bath, molds a strip-shaped (or, ribbon-shaped) glass ribbon with consistent width and thickness while carrying the molten glass to float on the molten metal, and pulls the glass ribbon toward an annealing lehr adjacent to the outlet of the float bath to produce a glass plate.
- Here, the molten metal may be for example a molten tin or a molten tin alloy and has a greater specific weight than the molten glass. The molten metal is received in a float chamber filled with reducing hydrogen (H2) and/or nitrogen (N2). In addition, the float bath receiving the molten metal is elongated in a length direction and includes special fireproof material. The molten glass moves from an upstream side of the float bath to a downstream side and is molded into a glass ribbon on the surface of the molten metal. Then, at a separating location (hereinafter, referred to as a “take-off point”) set at the downstream side of the float bath, the glass ribbon is lifted up away from the molten metal by lift-out rollers installed to a dross box, and the lifted glass ribbon is delivered through the dross box toward an annealing lehr for the next process. Meanwhile, a successive glass ribbon with a predetermined width is cut into several sheets with a predetermined size, which are called “glass sheets”.
- The gas containing volatile tin and contained in the float bath flows toward the downstream side of the float bath, namely toward the dross box, due to a positive pressure in the float bath. The gas flowing toward the dross box as mentioned above creates inferiorities at the surface of the molten tin or the surface of the glass which is carried after being condensed near the dross box and at a low-temperature region in the float bath at the downstream side (generally, dross is generated at 780° C. or below). In addition, even though the inside of the float bath is kept with a positive pressure, the tin-containing gas mentioned above may flow toward the downstream side of the float bath through the dross box. In this process, oxygen contained in an external air may react with the volatile tin in the float bath at the relatively low-temperature region, and if the gas is condensed in this state, a tin-based floating impurity may be generated at the surface of the tin. In this case, while the ribbon-shaped glass is lifted up by the lift-out rollers and drawn out of the float bath, the tin-based floating impurity adhered to the surface of the molten tin is moved and drawn together with the bottom surface of the glass ribbon. This tin-based floating impurity may contaminate the dross box and the surface of rollers used in the annealing process. In addition, in a case where the glass moves by the float bath or is annealed, the tin-based floating impurity may be a potential factor of an impurity forming at the bottom surface. Therefore, the tin-based floating impurity may deteriorate the safety of the annealing work and deteriorate the process stability and the quality of the glass products.
- In addition, in the conventional float glass manufacturing apparatus, sulfurous acid gas is supplied into the annealing lehr. The sulfurous acid gas reduces the friction between the bottom of the glass ribbon and the lehr rolls to prevent any defect of a glass product. However, since the space between the lehr rolls and a casing of the annealing lehr to which the lehr rolls are installed is very wide, the sulfurous acid gas may leak to the space and give harm to the human body.
- The exemplary embodiments are designed to solve the problems of the prior art, and therefore the exemplary embodiments are directed to providing an annealing apparatus and method for a float glass in which a sealing structure of a lehr housing of an annealing lehr is improved.
- In one aspect, the exemplary embodiment provides an annealing apparatus for a float glass, which continuously anneals a glass ribbon molded in a float bath, the annealing apparatus including: a lehr housing having an inlet and an outlet for the glass ribbon; a plurality of lehr rolls rotatably installed to the lehr housing in a width direction of the lehr housing; and labyrinth seals installed between the lehr rolls and sidewalls of the lehr housing, respectively, to prevent sulfurous acid gas supplied into the lehr housing from discharging out.
- The annealing apparatus may further include collecting nozzles installed to the labyrinth seals for collecting sulfurous acid gas discharged through the labyrinth seals.
- In another aspect, the exemplary embodiment provides an annealing method for a float glass, which continuously anneals a glass ribbon, molded in a float bath, in a lehr housing to which lehr rolls are installed, the annealing method including: supplying sulfurous acid gas into the lehr housing to reduce a friction between a bottom of the glass ribbon and lehr rollers and to reduce a defect occurring at a surface of the glass ribbon; and sealing gaps between the lehr housing and the lehr rolls by means of labyrinth seals installed at outer peripheries of the lehr rolls so that the sulfurous acid gas supplied into the lehr housing is not discharged through the gaps.
- The annealing method may further include collecting the sulfurous acid gas sealed by the labyrinth seals.
- The annealing apparatus and method for a float glass according to the exemplary embodiment applies labyrinth seals between the lehr rollers and the casing to construct a configuration for collecting a leaking gas so that the sulfurous acid gas in the lehr casing does not substantially leak to a work place, thereby decreasing an absolute amount of sulfurous acid gas used and preventing environmental pollutions.
- Other objects and aspects of the present invention will become apparent from the following descriptions of the embodiments with reference to the accompanying drawings in which:
-
FIG. 1 is a side view schematically showing an annealing apparatus for a float glass according to an exemplary embodiment; and -
FIG. 2 is a sectional view schematically showing the annealing apparatus for a float glass ofFIG. 1 . - Hereinafter, an annealing apparatus and method for a float glass according to exemplary embodiments will be described in detail with reference to the accompanying drawings.
- Prior to the description, it should be understood that the terms used in the specification and the appended claims should not be construed as limited to general and dictionary meanings, but interpreted based on the meanings and concepts corresponding to technical aspects of the present invention on the basis of the principle that the inventor is allowed to define terms appropriately for the best explanation. Therefore, the description proposed herein is just a preferable example for the purpose of illustrations only, not intended to limit the scope of the invention, so it should be understood that other equivalents and modifications could be made thereto without departing from the spirit and scope of the invention.
-
FIG. 1 is a side view schematically showing an annealing apparatus for a float glass according to an exemplary embodiment, andFIG. 2 is a sectional view schematically showing the annealing apparatus for a float glass ofFIG. 1 . - Referring to
FIGS. 1 and 2 , anannealing apparatus 100 for a float glass according to this embodiment includes alehr housing 130 which is installed adjacent to adross box 120 for drawing a glass ribbon G molded by afloat bath 110. A plurality oflehr rollers 132 are installed to thelehr housing 130. - The
float bath 110 stores molten metal M such as molten tin, molten tin alloy, or the like. The molten metal M is supplied from an upstream side (a left portion in the figures) of thefloat bath 110 and moves to a downstream side (a right portion in the figures). In this process, a glass ribbon is molded. In addition, the molten metal M floats from the upstream side of thefloat bath 110, which is kept at a relatively high temperature due to the temperature gradient in thefloat bath 110, to the downstream side and also floats from the center of thefloat bath 110 to both sides thereof. The molten glass G moves from the upstream side to the downstream side. After that, at a take-off point TO, the molten glass G is pulled toward the ceiling of a float chamber away from the bath surface of the molten metal M and is also drawn toward thedross box 120 for the next process. - The
float bath 110 is composed of a mixed gas of nitrogen and oxygen. The mixed gas is kept at a pressure slightly higher than the atmospheric pressure. The molten metal M and the ribbon-shaped molten glass G are kept at about 800 to 1,300° C. by an electric heater (not shown). The molten glass G is a non-alkali glass, a soda lime glass, or the like. The principle or structure of generating a flow of the molten metal M in thefloat bath 110 and the process of putting, molding into a ribbon shape, moving or discharging the molten glass G are already well known in the art as a floating process, and they are not described in detail here. - The
dross box 120 is disposed adjacent to the downstream end of thefloat bath 110. Thedross box 120 has three lift-outrollers 122 arranged therein. The lift-outrollers 122 lift the molten glass G, which is supplied from the upstream side of thefloat bath 110 and moved onto the surface of the molten metal M toward the downstream side of thefloat bath 110, at a separating location set at the downstream side from the molten metal so that the molten glass G is supplied to thelehr housing 130 disposed at the outlet of thedross box 120. The lift-outrollers 122 respectively rotate at a predetermined speed by a motor (not shown) and are spaced apart from each other at different horizontal locations so that the molten glass G may be easily drawn. - The
lehr housing 130 anneals the glass ribbon G molded in thefloat bath 110 which is continuously supplied from thefloat bath 110. Thelehr housing 130 has aninlet 131 through which the glass ribbon G is supplied and anoutlet 133 through which the annealed glass ribbon G is discharged. The inside of thelehr housing 130 is sealed. The plurality oflehr rollers 132 are installed in a width direction of thelehr housing 130. In addition, sulfurous acid gas is filled in thelehr housing 130 through a sulfurous acidgas supply member 140 which may be a type of pipe or hose. Arotary shaft 136 of eachlehr roller 132 is formed throughsidewalls 134 of thelehr housing 130 so that both ends of therotary shaft 136 may rotate while being supported on a frame (not shown) bybearings 135. Here, thelehr roller 132 may rotate by a driving source such as a motor, not shown. - A
labyrinth seal 150 is installed between thesidewall 134 of thelehr housing 130 and therotary shaft 136 of thelehr roller 132. Thelabyrinth seal 150 prevents the sulfurous acid gas supplied into thelehr housing 130 from discharging out of thelehr housing 130. Thelabyrinth seal 150 extends the fluid moving path in an elaborate and complicated pattern to prevent the fluid from directly leaking. In this embodiment, a labyrinth-type channel 152 having an uneven structure and arranged in parallel with therotary shaft 136 of thelehr roller 132 is used as thelabyrinth seal 150. Thelabyrinth seal 150 has afirst surface 154 adjacent to thesidewall 134 of thelehr housing 130, and a first O-ring 155 may be installed to thefirst surface 154. Thelabyrinth seal 150 also has asecond surface 156 which faces therotary shaft 136 of thelehr roller 132, and a second O-ring 157 may be installed to thesecond surface 156. Meanwhile, thelehr housing 130 means an “annealing lehr” used in a general float process, unless otherwise noted. - In a modified embodiment, the
channel 152 formed in thelabyrinth seal 150 may adopt any channel formed through aseal body 151, and any labyrinth channel structure which is already known or will be known in the art may be used as apparent to those of ordinary skill in the art. - In the
annealing apparatus 100 for a float glass according to the exemplary embodiment, thelabyrinth seal 150 further includes a collectingnozzle 160 for collecting sulfurous acid gas which may leak through an opening of thesidewall 134 of thelehr housing 130, by forcing the sulfurous acid gas to leak slower or to stop by means of thechannel 152 of thelabyrinth seal 150 so that the collected sulfurous acid gas is stored in a separate storage (not shown). The collectingnozzle 160 may be installed together with a stopper (not shown) which communicates with thechannel 152 of thelabyrinth seal 150 and is selectively opened or closed, or the collectingnozzle 160 may connect with the storage through a separate path (not shown). Though only one side of thelehr housing 130 is shown in FIG. 2, the labyrinth seals 150 are installed at both ends of thelehr roller 132, as apparent to those of ordinary skill in the art. Therefore, thelabyrinth seal 150 has aconnection channel 153 which communicates the collectingnozzle 160 with thechannel 152 across theseal body 151. - Hereinafter, an annealing method for a float glass according to an exemplary embodiment will be described.
- First, the float glass ribbon G molded in the
float bath 110 is moved to thelehr housing 130 to which thelehr rollers 132 are installed. In this process, sulfurous acid gas is supplied through the sulfurous acidgas supply member 140 installed to the lower portion of thelehr housing 130. The sulfurous acid gas reduces the friction between the bottom of the float glass ribbon G and thelehr rollers 132 and reduces the defects that are creating at the surface of the float glass ribbon G. - After that, the sulfurous acid gas supplied into the
lehr housing 130 may discharge through a gap between thelehr rollers 132 and thesidewall 134 of thelehr housing 130. However, the labyrinth seals 150 installed at the outer peripheral surface of thelehr rollers 132 seal the gap and prevent the sulfurous acid gas from freely discharging. - In addition, the sulfurous acid gas sealed by the
labyrinth seal 150 and leaking through thechannel 152 of theseal body 151 may be collected through the collectingnozzle 160 and carried to a storage (not shown). - According to a modified embodiment, the
labyrinth seal 150 may also be installed between the lift-outroller 122 installed to thedross box 120 and the outer wall of the dross box, as apparent to those of ordinary skill in the art. - The present invention has been described in detail. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
Claims (8)
1-6. (canceled)
7. A method of annealing a glass ribbon molded in a float bath, comprising the steps of:
providing a lehr housing which comprises an inlet and an outlet for the glass ribbon;
rotatably installing a plurality of lehr rollers, each of which has a rotary shaft, to both side walls of the lehr housing in a width direction such that two ends of the rotary shaft are outwardly protruded in a predetermined length through the side walls;
installing labyrinth seals around the two ends of the each rotary shaft outside of the side walls, thereby sealing gaps between the lehr housing and the lehr rollers;
continuously introducing the glass ribbon into the inlet of the lehr housing; and
supplying sulfurous acid gas into the lehr housing, thereby reducing a friction between a bottom of the glass ribbon and the lehr rollers and a defect occurring at a surface of the glass ribbon while preventing the sulfurous acid gas from being discharging out of the lehr housing by using the labyrinth seals.
8. The method of annealing a glass ribbon according to claim 7 , further comprising:
installing collecting nozzles to the labyrinth seals; and
collecting the sulfurous acid gas leaked through gaps between the lehr rollers and the labyrinth seals through the collecting nozzles.
9. The method of annealing a glass ribbon according to claim 8 , further comprising:
storing the collected sulfurous acid gas in a separate storage.
10. The method of annealing a glass ribbon according to claim 7 , further comprising:
discharging the glass ribbon annealed inside the lehr housing through the outlet of the lehr housing.
11. The method of annealing a glass ribbon according to claim 7 , wherein each of the labyrinth seals comprises an uneven structure to which the two ends of the corresponding rotary shaft is contacted.
12. The method of annealing a glass ribbon according to claim 7 , further comprising:
installing a first O-ring between the side walls of the lehr housing and a vertical surface of the labyrinth seals faced with the side walls.
13. The method of annealing a glass ribbon according to claim 7 , further comprising:
installing a second O-ring between each of the labyrinth seals and the two ends of the corresponding rotary shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/290,222 US20140260429A1 (en) | 2010-05-31 | 2014-05-29 | Annealing apparatus and method for float glass |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100050872A KR101377540B1 (en) | 2010-05-31 | 2010-05-31 | Annealing apparatus and method for float glass ribbon |
KR10-2010-0050872 | 2010-05-31 | ||
US13/149,032 US8769994B2 (en) | 2010-05-31 | 2011-05-31 | Annealing apparatus and method for float glass |
US14/290,222 US20140260429A1 (en) | 2010-05-31 | 2014-05-29 | Annealing apparatus and method for float glass |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/149,032 Division US8769994B2 (en) | 2010-05-31 | 2011-05-31 | Annealing apparatus and method for float glass |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140260429A1 true US20140260429A1 (en) | 2014-09-18 |
Family
ID=45006912
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/149,032 Active 2032-03-22 US8769994B2 (en) | 2010-05-31 | 2011-05-31 | Annealing apparatus and method for float glass |
US14/290,222 Abandoned US20140260429A1 (en) | 2010-05-31 | 2014-05-29 | Annealing apparatus and method for float glass |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/149,032 Active 2032-03-22 US8769994B2 (en) | 2010-05-31 | 2011-05-31 | Annealing apparatus and method for float glass |
Country Status (5)
Country | Link |
---|---|
US (2) | US8769994B2 (en) |
JP (1) | JP5483117B2 (en) |
KR (1) | KR101377540B1 (en) |
CN (1) | CN102260038B (en) |
TW (1) | TWI457296B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112119044A (en) * | 2018-05-17 | 2020-12-22 | Agc株式会社 | Float glass manufacturing apparatus and float glass manufacturing method |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101383603B1 (en) * | 2010-06-03 | 2014-04-11 | 주식회사 엘지화학 | Apparatus and method for manufacturing float glass |
JP5827827B2 (en) * | 2010-06-29 | 2015-12-02 | エーエスエムエル ネザーランズ ビー.ブイ. | Actuator |
WO2014077371A1 (en) | 2012-11-16 | 2014-05-22 | 旭硝子株式会社 | Glass production method and glass production apparatus |
DE102013202138A1 (en) * | 2013-02-08 | 2014-08-14 | Gebr. Schmid Gmbh | Device for substrate wet treatment and use |
CN103204618B (en) * | 2013-03-06 | 2015-12-09 | 蚌埠凯盛工程技术有限公司 | The tightness system of rolling press and transition roller table in a kind of rolled glass production line |
CN104250061A (en) * | 2014-09-17 | 2014-12-31 | 中国南玻集团股份有限公司 | Float glass manufacturing device and nozzle thereof |
CN104261656A (en) * | 2014-09-19 | 2015-01-07 | 中国南玻集团股份有限公司 | Manufacturing device for float glass and protective layer forming device |
CN104310770A (en) * | 2014-09-19 | 2015-01-28 | 蚌埠凯盛工程技术有限公司 | Shaft end sealing structure of gearbox in annealing kiln roller way driving terminal |
CN104496160A (en) * | 2014-12-25 | 2015-04-08 | 中国建材国际工程集团有限公司 | Method for protecting graphite ring roller of annealing furnace |
JP6587140B2 (en) * | 2015-12-22 | 2019-10-09 | 日本電気硝子株式会社 | Glass plate manufacturing equipment |
KR102166471B1 (en) * | 2017-09-20 | 2020-10-16 | 주식회사 엘지화학 | Apparatus and Method for manufacturing glass substrate |
CN107721143B (en) * | 2017-10-30 | 2024-03-12 | 山东省药用玻璃股份有限公司 | Double-circulation sulfur frosting annealing furnace |
CN111662002A (en) * | 2020-06-08 | 2020-09-15 | 蚌埠中光电科技有限公司 | Roller way sealing device of float electronic glass annealing kiln |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1744377A (en) * | 1926-01-02 | 1930-01-21 | Libbey Owens Glass Co | Process and apparatus for annealing glass |
US2588122A (en) * | 1948-04-21 | 1952-03-04 | Carrier Corp | Arrangement for collecting and utilizing natural gas leakage from a centrifugal compressor employed on a pipe line |
US3199966A (en) * | 1961-07-31 | 1965-08-10 | Libbey Owens Ford Glass Co | Method and apparatus for treating sheet glass |
US3649237A (en) * | 1967-12-04 | 1972-03-14 | Floatglas Gmbh | Float glass apparatus with adjustable cooling means |
US3994711A (en) * | 1975-09-15 | 1976-11-30 | Mcmaster Harold | Glass tempering system including oscillating roller furnace |
US4620864A (en) * | 1984-07-23 | 1986-11-04 | Glasstech, Inc. | Glass sheet tempering utilizing heating and quenching performed in ambient at superatmospheric pressure |
US4725300A (en) * | 1987-02-11 | 1988-02-16 | Glasstech, Inc. | Glass sheet heating system including cradled roll conveyor |
US5085680A (en) * | 1990-09-04 | 1992-02-04 | Ppg Industries, Inc. | Deformable side seal for furnaces and method for using |
US20040237591A1 (en) * | 2003-05-28 | 2004-12-02 | Glasstech, Inc. | Furnace and method using electric resistance and forced convection for heating glass sheets |
US7396017B2 (en) * | 2002-06-21 | 2008-07-08 | Isotech Of Illinois, Inc. | Shaft seal assembly |
US7427070B2 (en) * | 2002-09-30 | 2008-09-23 | Garlock Sealing Technologies Llc | Unitizing element and method for assembling a seal |
WO2009148141A1 (en) * | 2008-06-06 | 2009-12-10 | 旭硝子株式会社 | Apparatus and method for producing plate glass |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754880A (en) * | 1971-09-09 | 1973-08-28 | Ppg Industries Inc | Changing lift out rolls supporting a continuous ribbon og glass |
US5772715A (en) * | 1997-01-17 | 1998-06-30 | Solar Cells, Inc. | System and method for processing sheet glass |
AU2002227157A1 (en) * | 2000-12-14 | 2002-06-24 | Corning Incorporated | Method and apparatus for continuously manufacturing optical preform and fiber |
WO2002051767A1 (en) * | 2000-12-26 | 2002-07-04 | Nippon Sheet Glass Co.,Ltd. | Plate glass with protective film and method of manufacturing the plate glass |
DE102005007469A1 (en) * | 2004-07-15 | 2006-02-16 | Schott Ag | Apparatus for the production of flat glass by the float process and sealing arrangement for the outlet end of a float bath |
JP2006307700A (en) | 2005-04-27 | 2006-11-09 | Toyota Industries Corp | Compressor |
JP5113369B2 (en) * | 2006-11-16 | 2013-01-09 | 株式会社日立製作所 | Labyrinth seal |
JP5104512B2 (en) * | 2008-04-18 | 2012-12-19 | 株式会社ジェイテクト | Spindle device |
-
2010
- 2010-05-31 KR KR1020100050872A patent/KR101377540B1/en active Active
-
2011
- 2011-05-31 US US13/149,032 patent/US8769994B2/en active Active
- 2011-05-31 CN CN201110145347.1A patent/CN102260038B/en active Active
- 2011-05-31 JP JP2011122340A patent/JP5483117B2/en active Active
- 2011-05-31 TW TW100119106A patent/TWI457296B/en active
-
2014
- 2014-05-29 US US14/290,222 patent/US20140260429A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1744377A (en) * | 1926-01-02 | 1930-01-21 | Libbey Owens Glass Co | Process and apparatus for annealing glass |
US2588122A (en) * | 1948-04-21 | 1952-03-04 | Carrier Corp | Arrangement for collecting and utilizing natural gas leakage from a centrifugal compressor employed on a pipe line |
US3199966A (en) * | 1961-07-31 | 1965-08-10 | Libbey Owens Ford Glass Co | Method and apparatus for treating sheet glass |
US3649237A (en) * | 1967-12-04 | 1972-03-14 | Floatglas Gmbh | Float glass apparatus with adjustable cooling means |
US3994711B1 (en) * | 1975-09-15 | 1990-07-03 | Glasstech Inc | |
US3994711A (en) * | 1975-09-15 | 1976-11-30 | Mcmaster Harold | Glass tempering system including oscillating roller furnace |
US4620864A (en) * | 1984-07-23 | 1986-11-04 | Glasstech, Inc. | Glass sheet tempering utilizing heating and quenching performed in ambient at superatmospheric pressure |
US4725300A (en) * | 1987-02-11 | 1988-02-16 | Glasstech, Inc. | Glass sheet heating system including cradled roll conveyor |
US5085680A (en) * | 1990-09-04 | 1992-02-04 | Ppg Industries, Inc. | Deformable side seal for furnaces and method for using |
US7396017B2 (en) * | 2002-06-21 | 2008-07-08 | Isotech Of Illinois, Inc. | Shaft seal assembly |
US7427070B2 (en) * | 2002-09-30 | 2008-09-23 | Garlock Sealing Technologies Llc | Unitizing element and method for assembling a seal |
US20040237591A1 (en) * | 2003-05-28 | 2004-12-02 | Glasstech, Inc. | Furnace and method using electric resistance and forced convection for heating glass sheets |
WO2009148141A1 (en) * | 2008-06-06 | 2009-12-10 | 旭硝子株式会社 | Apparatus and method for producing plate glass |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112119044A (en) * | 2018-05-17 | 2020-12-22 | Agc株式会社 | Float glass manufacturing apparatus and float glass manufacturing method |
US20210061697A1 (en) * | 2018-05-17 | 2021-03-04 | AGC Inc. | Float glass production device and float glass production method |
EP3795544A4 (en) * | 2018-05-17 | 2022-03-02 | Agc Inc. | Float glass production device and float glass production method |
US11760679B2 (en) * | 2018-05-17 | 2023-09-19 | AGC Inc. | Float glass production device and float glass production method |
Also Published As
Publication number | Publication date |
---|---|
KR20110131432A (en) | 2011-12-07 |
CN102260038A (en) | 2011-11-30 |
US20110294644A1 (en) | 2011-12-01 |
TWI457296B (en) | 2014-10-21 |
JP5483117B2 (en) | 2014-05-07 |
US8769994B2 (en) | 2014-07-08 |
CN102260038B (en) | 2015-05-27 |
TW201204654A (en) | 2012-02-01 |
KR101377540B1 (en) | 2014-03-26 |
JP2011251893A (en) | 2011-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8769994B2 (en) | Annealing apparatus and method for float glass | |
CN104768884B (en) | The manufacture method and manufacture device of float glass | |
US8056367B2 (en) | Process for producing glass sheet and glass sheet producing equipment | |
TWI501928B (en) | Apparatus and method for manufacturing float glass | |
KR101382826B1 (en) | Method and apparatus for producing float glass | |
WO2009148141A1 (en) | Apparatus and method for producing plate glass | |
US20100206009A1 (en) | Apparatus for manufacturing float glass | |
TWI527775B (en) | Manufacture of floating flat glass and manufacturing method of floating flat glass | |
WO2014077286A1 (en) | Device for manufacturing float plate glass and method for manufacturing float plate glass | |
CN107531541B (en) | Manufacturing method of float glass | |
US20100206011A1 (en) | Apparatus for manufacturing float glass | |
KR102678868B1 (en) | System for manufacturing glass plate | |
KR101379689B1 (en) | Forming roller, method and apparatus for manufacturing glass utilizing the same | |
CN207451926U (en) | gas blowing device | |
WO2024049727A1 (en) | Methods and apparatus for manufacturing a ribbon | |
CN104640818A (en) | Device and method for producing float glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, WOO-HYUN;NA, SANG-OEB;KIM, YANG-HAN;AND OTHERS;REEL/FRAME:032989/0176 Effective date: 20110525 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |