US20140257376A1 - Implantable Graft to Close a Fistula - Google Patents

Implantable Graft to Close a Fistula Download PDF

Info

Publication number
US20140257376A1
US20140257376A1 US14/282,399 US201414282399A US2014257376A1 US 20140257376 A1 US20140257376 A1 US 20140257376A1 US 201414282399 A US201414282399 A US 201414282399A US 2014257376 A1 US2014257376 A1 US 2014257376A1
Authority
US
United States
Prior art keywords
fistula
opening
plug
tract
submucosa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/282,399
Other versions
US9526484B2 (en
Inventor
David N. Armstrong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cook Medical Technologies LLC
Original Assignee
Cook Medical Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cook Medical Technologies LLC filed Critical Cook Medical Technologies LLC
Priority to US14/282,399 priority Critical patent/US9526484B2/en
Publication of US20140257376A1 publication Critical patent/US20140257376A1/en
Application granted granted Critical
Publication of US9526484B2 publication Critical patent/US9526484B2/en
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOK MEDICAL TECHNOLOGIES LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D1/00Surgical instruments for veterinary use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable or resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00641Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closing fistulae, e.g. anorectal fistulae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00654Type of implements entirely comprised between the two sides of the opening

Definitions

  • a graft for occluding a fistula is provided.
  • the graft may be pulled, tail first, into the fistula to completely occlude the fistula, thereby avoiding a surgical fistulotomy and its attendant complications.
  • Fistulae occur commonly in man. Such fistulae may be congenital or may be caused by infection, inflammatory bowel disease (Crohn's disease), irradiation, trauma, childbirth, or surgery, for example.
  • inflammatory bowel disease Crohn's disease
  • irradiation trauma, childbirth, or surgery, for example.
  • fistulae occur between the vagina and the bladder (vesico-vaginal fistulae) or between the vagina and the urethra (urethro-vaginal fistulae). These fistulae may be caused by trauma during childbirth. Traditional surgery for these types of fistulae is complex and not very successful.
  • fistulae include, but are not limited to, tracheo-esophageal fistulae, gastro-cutaneous fistulae, and anorectal fistulae.
  • anorectal fistulae may occur between the anorectum and vagina (recto-vaginal fistulae), between the anorectum and bladder (recto-vesical fistulae), between the anorectum and urethra (recto-urethral fistulae), or between the anorectum and prostate (recto-prostatic fistulae).
  • Anorectal fistulae may result from infection in the anal glands, which are located around the circumference of the distal anal canal forming an anatomic landmark known as the dentate line 1 , shown in FIGS. 1 and 2 . Approximately 20-39 such glands are found in man. Infection in an anal gland may result in an abscess, which then tracks through or around the sphincter muscles into the perianal region, where it drains either spontaneously or surgically. The resulting tract is known as a fistula.
  • the inner opening of the fistula usually located at the dentate line, is known as the primary opening 2 .
  • the outer (external) opening, located in the perianal skin, is known as the secondary opening 3 .
  • FIGS. 1 and 2 show examples of the various paths that an anorectal fistula may take. These paths vary in complexity. Fistulae that take a straight line path from the primary opening 2 to the secondary opening 3 are known as simple fistulae 4 . Fistula that contain multiple tracts ramifying from the primary opening 2 and have multiple secondary openings 3 are known as complex fistulae 5 .
  • the anatomic path that an anorectal fistula takes is classified according to its relationship to the anal sphincter muscles 6 , 7 .
  • the anal sphincter includes two concentric bands of muscle—the inner, or internal, sphincter 6 and the outer, or external, anal sphincter 7 .
  • Fistulae which pass between the two concentric anal sphincters are known as inter-sphincteric fistulae 8 .
  • Those which pass through both internal 6 and external 7 sphincters are known as trans-sphincteric fistulae 9 , and those which pass above both sphincters are called supra-sphincteric fistulae 10 .
  • Fistulae resulting from Crohn's disease usually ignore these anatomic paths, and are known as extra-anatomic fistulae.
  • fistulae Many complex fistulae contain multiple tracts, some blind-ending 11 and others leading to multiple secondary openings 3 .
  • One of the most common and complex types of fistulae are known as horseshoe fistulae 12 , as illustrated in FIG. 2 .
  • the infection starts in the anal gland (the primary opening 2 ) and two fistulae pass circumferentially around the anal canal, forming a characteristic horseshoe configuration 12 .
  • Surgical treatment of fistulae traditionally involves passing a fistula probe through the tract, in a blind manner, using only tactile sensation and experience to guide the probe. Having passed the probe through the fistula tract, the overlying tissue is surgically divided. This is known as a surgical fistulotomy. Because a variable amount of sphincter muscle is divided during the procedure, fistulotomy may result in impaired sphincter control or even incontinence.
  • the fistula tract may be surgically drained by inserting a narrow diameter rubber drain, known as a seton, through the tract. After the seton is passed through the fistula tract, it may be tied as a loop around the contained tissue and left for several weeks or months. This procedure is usually performed to drain infection from the area and to mature the fistula tract prior to a definitive closure or sealing procedure.
  • a narrow diameter rubber drain known as a seton
  • closure of a fistula using a sealant may be performed as a two-stage procedure, comprising a first-stage seton placement, followed by injection of the fibrin glue several weeks later.
  • This procedure reduces residual infection and allows the fistula tract to “mature” prior to injecting a sealant.
  • Injecting sealant or sclerosant into an unprepared or infected fistula as a one-stage procedure may cause a flare-up of the infection and even further abscess formation.
  • Alternative methods and instruments such as coring-out instruments (See, e.g., U.S. Pat. Nos. 5,628,762 and 5,643,305), simply make the fistula wider and more difficult to close.
  • An additional means of closing the primary opening is by surgically creating a flap of skin, which is drawn across the opening and sutured in place. This procedure (the endo-anal flap procedure) closes the primary opening, but is technically difficult to perform, is painful for the patient, and is associated with a high fistula recurrence rate.
  • the current invention comprises a graft that may be used to effectively plug or occlude the primary opening of the fistula tract.
  • One object of the present invention is to provide a new technique of minimally invasive fistula closure. Another object is to provide a technique that obviates the need for surgical fistulotomy and avoids surgical pain and the attendant complications of the procedure. Still another object of the invention is to provide an accurate and complete closure of a fistula, thereby preventing a recurrent or persistent fistula. Yet another object of the present invention is to provide a technique that involves no cutting of tissue, sphincter damage, or incontinence.
  • the present invention may be used in any type of fistula.
  • the claimed devices and methods may be used to plug or occlude tracheo-esophageal fistulae, gastro-cutaneous fistulae, anorectal fistulae, fistulae occurring between the vagina and the urethra or bladder, or fistulae occurring between any other two portions of the body.
  • a biocompatible graft having a curved, generally conical shape is provided.
  • the graft may be used to plug, or occlude the primary opening of the fistula.
  • the graft is approximately 5 to 10 centimeters (2 to 4 inches) long and tapers continuously from a thicker, “trumpet-like” head to a thin filamentous tail.
  • the diameter of the head is approximately 5 to 10 millimeters and tapers to a diameter of 1 to 2 millimeters at its tail.
  • the graft of the present invention may be made of any suitable biological or synthetic materials.
  • the head and the tail are one continuous piece made of the same material.
  • Suitable biological materials include, but are not limited to, cadaveric allografts from human donors or heterografts from animal tissues.
  • Suitable synthetic materials include, but are not limited to, polygalactin, polydioxanone and polyglycolic acid.
  • the biological and/or synthetic material used in the graft of the present invention elicits little immunological reaction, has some inherent resistance to infection, and promotes tissue reconstruction (rather than complete absorption of the graft into the surrounding tissue), thereby occluding the fistula.
  • the graft of the present invention may be pulled into the fistula, tail first, through the primary opening, toward the secondary opening.
  • the graft is drawn into the fistula and the trumpet-like head end of the graft is gradually “wedged” into the primary opening in a manner similar to that of inserting a plug in a hole.
  • the head and/or tail may be further secured by sutures or other suitable means, which may be formed as an integral part of the graft.
  • a trumpet-like head allows the graft to be used for any diameter of primary opening. By applying adequate force to the graft during its insertion, the head of the graft fits snugly into the primary opening and conforms to the size of the primary opening. Multiple or composite grafts may be used for multiple or complex fistulae.
  • FIG. 1 shows several possible anatomic courses taken by various forms of anorectal fistula (longitudinal plane);
  • FIG. 2 shows a perineal view of a simple anorectal fistula and a horseshoe fistula
  • FIG. 3 shows one embodiment of the graft of the present invention.
  • the graft of the present invention may be used to plug or occlude any type of fistula, such as the types of fistula illustrated in FIGS. 1 and 2 .
  • Other types of fistula that may be occluded by the present invention include, but are not limited to, tracheo-esophageal fistulae, gastro-cutaneous fistulae, or fistulae occurring between the vagina and bladder (vesico-vaginal fistulae), between the vagina and urethra (urethro-vaginal fistulae), between the anorectum and vagina (recto-vaginal fistulae), between the anorectum and bladder (recto-vesical fistulae), between the anorectum and urethra (recto-urethral fistulae), between the anorectum and prostate (recto-prostatic fistulae) or between any other two portions of the body.
  • the graft 13 of the present invention may have any suitable configuration.
  • the graft may have a convex configuration, a concave configuration, an S-shaped configuration, a generally straight configuration, or any other configuration capable of being inserted into and secured within a fistula.
  • the graft may be curved to conform to the shape of the fistula, thereby facilitating introduction of the graft, a secure fit of the graft within the fistula, and less discomfort for the patient.
  • a curved configuration makes it easier for the graft to be introduced into the primary opening and directed toward the secondary opening of a curved fistula.
  • the graft 13 is an integral unit with a curved, generally conical configuration that tapers from one end having a first diameter D 1 to an opposite end having a second diameter D 2 , where the first diameter D 1 is greater than the second diameter D 2 , as shown in FIG. 3 .
  • the graft 13 may have one end with a thicker trumpet-like head 14 and a body 16 that continuously tapers to a thin filamentous tail 15 , as shown in FIG. 3 .
  • the degree of taper may vary depending on a number of factors, including but not limited to, the diameter of each of the ends (D 1 and D 2 ) and the length L of the graft 13 .
  • the graft may have any suitable length L, diameter D 1 , and diameter D 2
  • the graft 13 has a length L of about 1 to about 15 centimeters, a first diameter D 1 of about 1 to about 20 millimeters, and a second diameter D 2 of about 0.1 to about 5 millimeters. More desirably, the graft 13 has a length L of about 3 to about 12 centimeters, a first diameter D 1 of about 2 to about 15 millimeters, and a second diameter D 2 of about 0.5 to about 3.5 millimeters.
  • the graft has a length L of about 5 to about 10 centimeters, a first diameter D 1 of about 5 to about 10 millimeters, and a second diameter D 2 of about 1 to about 2 millimeters.
  • the graft of the present invention may be used to close any diameter of primary opening up to the limits of the head diameter D 1 .
  • the head 14 of the graft 13 conforms exactly to the size of the primary opening.
  • the graft 13 of the present invention may be made of any biocompatible material suitable for implantation into a mammalian body. Desirably, the graft 13 is made of a single, non-allergenic biological or synthetic material.
  • Suitable biological materials that may be used in the present invention include, but are not limited to, tissue from the patient themselves (an autograft), tissue from a human cadaveric donor (an allograft), or tissue from an unrelated animal donor (a heterograft). Desirably, the material promotes angiogenesis and/or site-specific tissue remodeling.
  • Autograft tissue is grown from a skin biopsy of the patient. Once the fibroblasts have regenerated and formed enough new tissue, the new tissue may be injected back into the surgical site of the same patient. This process takes several weeks to complete, but avoids tissue rejection and disease transmission.
  • One such product is Isolagen (Isolagen Inc.—Houston, Tex.).
  • Suitable cadaveric materials include, but are not limited to, cadaveric fascia and cadaveric dura matar.
  • Specific suitable cadaveric allografts include, but are not limited to, AlloDerm, (LifeCell Corp.—Branchburg, N.J.), Cymetra, (LifeCell Corp.—Branchburg, N.J.), Dermaloga, Fascion (Fascia Biosystems, LLC—Beverly Hills, Calif.), and Suspend (Mentor—Irving, Tex.). These products are freeze-dried, or lyophilized, acellular dermal tissue from cadaveric donors. Some require reconstitution before implantation. Although disease transmission or antigenic reaction is possible, the risk may be minimized by an extensive screening and processing of the material.
  • Heterograft materials are taken from a donor of one species and grafted into a recipient of another species. Examples of such materials include, but are not limited to, Surgisis (Cook Surgical—Bloomington, Ind.), Permacol (TSL—Covington, Ga.), Pelvicol (Bard Inc.—Murray Hill, N.J.) and Peri-Guard, (Bio-Vascular Inc.—St Paul, Minn.).
  • an injectable heterograft such as a heterograft of small intestinal submucosa or other material having a viscosity sufficient to prevent the material from running out or being squeezed out of the fistula, is used.
  • Such biological materials may be rendered non-cellular during processing to avoid immunological rejection.
  • Suitable biological tissues may be implanted in potentially infected surgical fields and resist infection, unlike some synthetic preparations that may elicit a foreign body reaction or act as a nidus for infection.
  • a bioremodelable material is used in the devices and methods of the present invention. More desirably, a bioremodelable collagenous material is used.
  • Bioremodelable collagenous materials can be provided, for example, by collagenous materials isolated from a suitable tissue source from a warm-blooded vertebrate, and especially a mammal. Such isolated collagenous material can be processed so as to have bioremodelable properties and promote cellular invasion and ingrowth and eventual reconstruction of the host tissue itself. Bioremodelable materials may be used in this context to promote cellular growth within the site in which a medical device of the invention is implanted.
  • Suitable bioremodelable materials can be provided by collagenous extracellular matrix materials (ECMs) possessing biotropic properties.
  • ECMs extracellular matrix materials
  • suitable extracellular matrix materials for use in the invention include, for instance, submucosa (including for example small intestinal submucosa, stomach submucosa, urinary bladder submucosa, or uterine submucosa, each of these isolated from juvenile or adult animals), renal capsule membrane, dermal collagen, amnion, dura mater, pericardium, serosa, peritoneum or basement membrane materials, including liver basement membrane or epithelial basement membrane materials. These materials may be isolated and used as intact natural forms (e.g.
  • Renal capsule membrane can also be obtained from warm-blooded vertebrates, as described more particularly in International Patent Application serial No. PCT/US02/20499 filed Jun. 28, 2002, published Jan. 9, 2003 as WO03002165.
  • submucosa or other ECMs may include one or more growth factors such as basic fibroblast growth factor (FGF-2), transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), and/or platelet derived growth factor (PDGF).
  • FGF-2 basic fibroblast growth factor
  • TGF-beta transforming growth factor beta
  • EGF epidermal growth factor
  • PDGF platelet derived growth factor
  • submucosa or other ECM when used in the invention may include other biological materials such as heparin, heparin sulfate, hyaluronic acid, fibronectin and the like.
  • the submucosa or other ECM material may include a bioactive component that induces, directly or indirectly, a cellular response such as a change in cell morphology, proliferation, growth, protein or gene expression.
  • non-native bioactive components such as those synthetically produced by recombinant technology or other methods, may be incorporated into the material used for the covering.
  • These non-native bioactive components may be naturally-derived or recombinantly produced proteins that correspond to those natively occurring in an ECM tissue, but perhaps of a different species (e.g. human proteins applied to collagenous ECMs from other animals, such as pigs).
  • the non-native bioactive components may also be drug substances.
  • one drug substance that may be incorporated into and/or onto the covering materials is an antibiotic.
  • Submucosa or other ECM tissue used in the invention is preferably highly purified, for example, as described in U.S. Pat. No. 6,206,931 to Cook et al.
  • preferred ECM material will exhibit an endotoxin level of less than about 12 endotoxin units (EU) per gram, more preferably less than about 5 EU per gram, and most preferably less than about 1 EU per gram.
  • EU endotoxin units
  • the submucosa or other ECM material may have a bioburden of less than about 1 colony forming units (CFU) per gram, more preferably less than about 0.5 CFU per gram.
  • CFU colony forming units
  • Fungus levels are desirably similarly low, for example less than about 1 CFU per gram, more preferably less than about 0.5 CFU per gram.
  • Nucleic acid levels are preferably less than about 5 ⁇ g/mg, more preferably less than about 2 ⁇ g/mg, and virus levels are preferably less than about 50 plaque forming units (PFU) per gram, more preferably less than about 5 PFU per gram.
  • PFU plaque forming units
  • Suitable synthetic materials that may be used in the present invention include, but are not limited to, polygalactin, polydioxanone, hyaluronic acid, polyglycolic acid, and polyethylene terephthalate. These materials avoid foreign body rejection and may be eventually incorporated into the host tissue.
  • the biological or synthetic material used in the present invention assists in reconstruction of the host tissues, elicits little immunological reaction, and has some inherent resistance to infection.
  • Such material allows incorporation of the graft into the fistula (rather than complete absorption of the graft into the surrounding tissue), thereby occluding the fistula.
  • a drug such as an antibiotic
  • the graft may also be used in conjunction with a sealant or sclerosing solution which may be injected into the main fistula tract and any side branches.
  • a sealant or sclerosing solution which may be injected into the main fistula tract and any side branches.
  • sealants are described in the prior art.
  • One of the more commonly used sealants is fibrin glue, known as Tisseal (Baxter Inc.).
  • the glue is prepared by mixing coagulation activation factors with fibrinogen, which react to form fibrin.
  • the fibrin forms a matrix, which acts as a scaffold for tissue ingrowth and results in the sealing of the fistula tract.
  • the graft 13 of the present invention may be inserted into the fistula by pulling the tail 15 of the graft 13 through the primary opening 2 of the fistula and towards the secondary opening 3 .
  • This may be accomplished by using, for example, a pair of surgical hemostats or a fistula probe or scope, which is passed through the secondary opening 3 and out through the primary opening 2 .
  • the tail 15 of the graft 13 may then be grasped by the hemostats, or secured to the probe or scope, and withdrawn retrograde into the fistula.
  • the head 14 of the graft 13 may be gradually “wedged” into the primary opening 2 causing the graft 13 to become lodged in place so that it does not fall out or exude, as with the fibrin glue technique.
  • the outer surface of the graft may contain protrusions 18 that interact with the fistula.
  • Anorectal fistulae pass through the cylindrical, well-defined internal sphincter muscle 6 containing an almost rigid hole, which is the narrowest point along the fistula tract.
  • the protrusions on the graft are adapted to be pulled through the hole and wedged against the distal portion of the hole to further anchor the graft.
  • either end of the graft or both ends of the graft are secured by sutures and trimmed to avoid either end from protruding excessively from the fistula tract after the procedure.
  • the suture may be formed as an integral part of the graft or as a separate component.
  • the graft is anchored within the fistula by threading a securing device having a central lumen, over the tail of the graft and securing it into position at skin level (e.g., by crimping it).
  • further anchoring of the graft is achieved by using a material such as a small intestinal submucosa heterograft (a freeze-dried material that requires rehydration before use) for the graft and inserting the graft into the tract before the graft material has been fully expanded by hydration.
  • a material such as a small intestinal submucosa heterograft (a freeze-dried material that requires rehydration before use) for the graft and inserting the graft into the tract before the graft material has been fully expanded by hydration.
  • Any other suitable means of securement such as introducing adhesive into the fistula tract, may also be used to anchor the graft within the fistula.
  • antologous fibrin glue is used in conjunction with the fistula graft to supplement the adhesive and occlusive properties of the disclosed invention.
  • the composite may be derived from a fresh sample of blood drawn from the patient at the time of surgery.
  • the blood may then be centrifuged, and the platelets, which contain growth factors such as epidermal growth factor (EGF) and transforming growth factor—beta (TGF ⁇ ), harvested. Having centrifuged the blood, retrieved the platelet “pellet” and prepared the composite, the sealant may then be injected into the fistula tract(s) to help maintain the graft in place.
  • EGF epidermal growth factor
  • TGF ⁇ transforming growth factor—beta
  • Closure of a fistula tract may be performed as a one-stage or two-stage procedure.
  • a one-stage procedure the fistula tract is closed or sealed at the same time as the initial surgery.
  • the advantage of this method is that it avoids a second operation and minimizes expense and inconvenience.
  • the main disadvantage is that immediate implantation of the graft into an “unprepared” and possibly infected fistula tract may result in secondary infection of the graft.
  • a seton is first placed through the fistula tract to allow mechanical drainage of the fistula tract. Several weeks later, the seton is removed and the graft is inserted into the fistula.
  • An alternative methodology involves preliminary endoscopic visualization (fistuloscopy) and “cleaning” of the fistula tract, as disclosed in co-pending application Ser. No. 10/945,634 (Armstrong).
  • This procedure may be performed by a very thin flexible endoscope, which is inserted into the secondary opening of the fistula tract, and advanced under direct vision through the fistula tract and out the primary opening.
  • the primary opening is accurately identified and the tracts are “cleaned out” by means of an irrigating fluid. Any inflammatory or necrotic tissue within the tract is therefore removed, prior to inserting the graft.
  • the tail of the graft may be attached to the fistuloscope, which may then be withdrawn through the fistula tract so that the graft gets wedged in place, as described above.
  • multiple grafts may be inserted until all fistula tracts have been closed.
  • a graft may be configured with one “head” component (larger diameter end), and two “tails” (smaller diameter ends).
  • head large diameter end
  • tails small diameter ends
  • accurate identification of all fistula tracts and the primary opening is facilitated by first performing fistuloscopy.
  • each tail may be pulled through the primary opening into each fistula in turn, desirably using a fistuloscope or an instrument passed through the instrument channel of a scope. Adequate force may be applied to the tail to ensure that the head of the graft is firmly secured in the primary opening.
  • the head of the graft and/or each of the tails may be further secured by any of the methods described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Reproductive Health (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

An implantable graft, which may be inserted into a fistula tract to occlude the primary opening of the fistula, is provided. The graft may have a curved, generally conical shape with a trumpet-like head end that continuously tapers to a smaller tail end. The graft may be an integral unit made of a single material, such as a heterograft material. Methods of closing single and multiple fistulae are also provided.

Description

    RELATED APPLICATIONS
  • The present patent application is a continuation of U.S. patent application Ser. No. 11/807,801, filed May 30, 2007, which is a division of U.S. patent application Ser. No. 11/040,996, filed Jan. 21, 2005 which claims the benefit of the filing date under 35 U.S.C. §119(e) of Provisional U.S. Patent Application Ser. No. 60/538,365, filed Jan. 21, 2004. The contents of the prior applications are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • A graft for occluding a fistula is provided. The graft may be pulled, tail first, into the fistula to completely occlude the fistula, thereby avoiding a surgical fistulotomy and its attendant complications.
  • BACKGROUND OF THE INVENTION
  • Fistulae occur commonly in man. Such fistulae may be congenital or may be caused by infection, inflammatory bowel disease (Crohn's disease), irradiation, trauma, childbirth, or surgery, for example.
  • Some fistulae occur between the vagina and the bladder (vesico-vaginal fistulae) or between the vagina and the urethra (urethro-vaginal fistulae). These fistulae may be caused by trauma during childbirth. Traditional surgery for these types of fistulae is complex and not very successful.
  • Other fistulae include, but are not limited to, tracheo-esophageal fistulae, gastro-cutaneous fistulae, and anorectal fistulae. For example, anorectal fistulae may occur between the anorectum and vagina (recto-vaginal fistulae), between the anorectum and bladder (recto-vesical fistulae), between the anorectum and urethra (recto-urethral fistulae), or between the anorectum and prostate (recto-prostatic fistulae). Anorectal fistulae may result from infection in the anal glands, which are located around the circumference of the distal anal canal forming an anatomic landmark known as the dentate line 1, shown in FIGS. 1 and 2. Approximately 20-39 such glands are found in man. Infection in an anal gland may result in an abscess, which then tracks through or around the sphincter muscles into the perianal region, where it drains either spontaneously or surgically. The resulting tract is known as a fistula. The inner opening of the fistula, usually located at the dentate line, is known as the primary opening 2. The outer (external) opening, located in the perianal skin, is known as the secondary opening 3.
  • FIGS. 1 and 2 show examples of the various paths that an anorectal fistula may take. These paths vary in complexity. Fistulae that take a straight line path from the primary opening 2 to the secondary opening 3 are known as simple fistulae 4. Fistula that contain multiple tracts ramifying from the primary opening 2 and have multiple secondary openings 3 are known as complex fistulae 5.
  • The anatomic path that an anorectal fistula takes is classified according to its relationship to the anal sphincter muscles 6, 7. The anal sphincter includes two concentric bands of muscle—the inner, or internal, sphincter 6 and the outer, or external, anal sphincter 7. Fistulae which pass between the two concentric anal sphincters are known as inter-sphincteric fistulae 8. Those which pass through both internal 6 and external 7 sphincters are known as trans-sphincteric fistulae 9, and those which pass above both sphincters are called supra-sphincteric fistulae 10. Fistulae resulting from Crohn's disease usually ignore these anatomic paths, and are known as extra-anatomic fistulae.
  • Many complex fistulae contain multiple tracts, some blind-ending 11 and others leading to multiple secondary openings 3. One of the most common and complex types of fistulae are known as horseshoe fistulae 12, as illustrated in FIG. 2. In this instance, the infection starts in the anal gland (the primary opening 2) and two fistulae pass circumferentially around the anal canal, forming a characteristic horseshoe configuration 12.
  • Surgical treatment of fistulae traditionally involves passing a fistula probe through the tract, in a blind manner, using only tactile sensation and experience to guide the probe. Having passed the probe through the fistula tract, the overlying tissue is surgically divided. This is known as a surgical fistulotomy. Because a variable amount of sphincter muscle is divided during the procedure, fistulotomy may result in impaired sphincter control or even incontinence.
  • Alternatively, the fistula tract may be surgically drained by inserting a narrow diameter rubber drain, known as a seton, through the tract. After the seton is passed through the fistula tract, it may be tied as a loop around the contained tissue and left for several weeks or months. This procedure is usually performed to drain infection from the area and to mature the fistula tract prior to a definitive closure or sealing procedure.
  • More recently, methods have evolved to inject sclerosant or sealant (collagen or fibrin glue) into the tract of the fistula. Such sealants are described in Rhee, U.S. Pat. No. 5,752,974, for example. The main drawback with these methods is that the glues have a liquid consistency and tend to run out of the fistula tract once the patient becomes ambulatory. In addition, failure rates of these methods are high (up to 86% failure). See Buchanan et al., Efficacy of Fibrin Sealant in the Management of Complex Anal Fistula, DIS COLON AND RECTUM Vol. 46, No. 9, 46:1167-1174 (September 2003). Usually, multiple injections of glue are required to close the fistula. In some instances, closure of a fistula using a sealant may be performed as a two-stage procedure, comprising a first-stage seton placement, followed by injection of the fibrin glue several weeks later. This procedure reduces residual infection and allows the fistula tract to “mature” prior to injecting a sealant. Injecting sealant or sclerosant into an unprepared or infected fistula as a one-stage procedure may cause a flare-up of the infection and even further abscess formation. Alternative methods and instruments, such as coring-out instruments (See, e.g., U.S. Pat. Nos. 5,628,762 and 5,643,305), simply make the fistula wider and more difficult to close.
  • An additional means of closing the primary opening is by surgically creating a flap of skin, which is drawn across the opening and sutured in place. This procedure (the endo-anal flap procedure) closes the primary opening, but is technically difficult to perform, is painful for the patient, and is associated with a high fistula recurrence rate.
  • An important step in successful closure of a fistula is accurate identification and closure of the primary opening. An accurate means of identifying the primary opening involves endoscopic visualization of the fistula tract (fistuloscopy), as disclosed in co-pending application Ser. No. 10/945,634 (Armstrong). Once the primary opening has been accurately identified, effective closure is necessary to prevent recurrence. The current invention comprises a graft that may be used to effectively plug or occlude the primary opening of the fistula tract.
  • SUMMARY OF THE INVENTION
  • One object of the present invention is to provide a new technique of minimally invasive fistula closure. Another object is to provide a technique that obviates the need for surgical fistulotomy and avoids surgical pain and the attendant complications of the procedure. Still another object of the invention is to provide an accurate and complete closure of a fistula, thereby preventing a recurrent or persistent fistula. Yet another object of the present invention is to provide a technique that involves no cutting of tissue, sphincter damage, or incontinence.
  • The present invention may be used in any type of fistula. For example, the claimed devices and methods may be used to plug or occlude tracheo-esophageal fistulae, gastro-cutaneous fistulae, anorectal fistulae, fistulae occurring between the vagina and the urethra or bladder, or fistulae occurring between any other two portions of the body.
  • In one embodiment of the present invention, a biocompatible graft having a curved, generally conical shape is provided. The graft may be used to plug, or occlude the primary opening of the fistula. Desirably, the graft is approximately 5 to 10 centimeters (2 to 4 inches) long and tapers continuously from a thicker, “trumpet-like” head to a thin filamentous tail. Desirably, the diameter of the head is approximately 5 to 10 millimeters and tapers to a diameter of 1 to 2 millimeters at its tail.
  • The graft of the present invention may be made of any suitable biological or synthetic materials. Desirably, the head and the tail are one continuous piece made of the same material. Suitable biological materials include, but are not limited to, cadaveric allografts from human donors or heterografts from animal tissues. Suitable synthetic materials include, but are not limited to, polygalactin, polydioxanone and polyglycolic acid. Desirably, the biological and/or synthetic material used in the graft of the present invention elicits little immunological reaction, has some inherent resistance to infection, and promotes tissue reconstruction (rather than complete absorption of the graft into the surrounding tissue), thereby occluding the fistula.
  • The graft of the present invention may be pulled into the fistula, tail first, through the primary opening, toward the secondary opening. In one embodiment, the graft is drawn into the fistula and the trumpet-like head end of the graft is gradually “wedged” into the primary opening in a manner similar to that of inserting a plug in a hole. The head and/or tail may be further secured by sutures or other suitable means, which may be formed as an integral part of the graft. A trumpet-like head allows the graft to be used for any diameter of primary opening. By applying adequate force to the graft during its insertion, the head of the graft fits snugly into the primary opening and conforms to the size of the primary opening. Multiple or composite grafts may be used for multiple or complex fistulae.
  • Additional features and advantages of the present invention will be apparent to one of ordinary skill in the art from the drawings and detailed description of the preferred embodiments below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows several possible anatomic courses taken by various forms of anorectal fistula (longitudinal plane);
  • FIG. 2 shows a perineal view of a simple anorectal fistula and a horseshoe fistula; and
  • FIG. 3 shows one embodiment of the graft of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The graft of the present invention may be used to plug or occlude any type of fistula, such as the types of fistula illustrated in FIGS. 1 and 2. Other types of fistula that may be occluded by the present invention include, but are not limited to, tracheo-esophageal fistulae, gastro-cutaneous fistulae, or fistulae occurring between the vagina and bladder (vesico-vaginal fistulae), between the vagina and urethra (urethro-vaginal fistulae), between the anorectum and vagina (recto-vaginal fistulae), between the anorectum and bladder (recto-vesical fistulae), between the anorectum and urethra (recto-urethral fistulae), between the anorectum and prostate (recto-prostatic fistulae) or between any other two portions of the body.
  • The graft 13 of the present invention may have any suitable configuration. For example, the graft may have a convex configuration, a concave configuration, an S-shaped configuration, a generally straight configuration, or any other configuration capable of being inserted into and secured within a fistula. The graft may be curved to conform to the shape of the fistula, thereby facilitating introduction of the graft, a secure fit of the graft within the fistula, and less discomfort for the patient. A curved configuration makes it easier for the graft to be introduced into the primary opening and directed toward the secondary opening of a curved fistula. Desirably, the graft 13 is an integral unit with a curved, generally conical configuration that tapers from one end having a first diameter D1 to an opposite end having a second diameter D2, where the first diameter D1 is greater than the second diameter D2, as shown in FIG. 3.
  • The graft 13 may have one end with a thicker trumpet-like head 14 and a body 16 that continuously tapers to a thin filamentous tail 15, as shown in FIG. 3. The degree of taper may vary depending on a number of factors, including but not limited to, the diameter of each of the ends (D1 and D2) and the length L of the graft 13.
  • Although the graft may have any suitable length L, diameter D1, and diameter D2, desirably, the graft 13 has a length L of about 1 to about 15 centimeters, a first diameter D1 of about 1 to about 20 millimeters, and a second diameter D2 of about 0.1 to about 5 millimeters. More desirably, the graft 13 has a length L of about 3 to about 12 centimeters, a first diameter D1 of about 2 to about 15 millimeters, and a second diameter D2 of about 0.5 to about 3.5 millimeters. Even more desirably, the graft has a length L of about 5 to about 10 centimeters, a first diameter D1 of about 5 to about 10 millimeters, and a second diameter D2 of about 1 to about 2 millimeters. The graft of the present invention may be used to close any diameter of primary opening up to the limits of the head diameter D1. By applying adequate force to the graft during insertion, the head 14 of the graft 13 conforms exactly to the size of the primary opening.
  • The graft 13 of the present invention may be made of any biocompatible material suitable for implantation into a mammalian body. Desirably, the graft 13 is made of a single, non-allergenic biological or synthetic material.
  • Suitable biological materials that may be used in the present invention include, but are not limited to, tissue from the patient themselves (an autograft), tissue from a human cadaveric donor (an allograft), or tissue from an unrelated animal donor (a heterograft). Desirably, the material promotes angiogenesis and/or site-specific tissue remodeling.
  • Autograft tissue is grown from a skin biopsy of the patient. Once the fibroblasts have regenerated and formed enough new tissue, the new tissue may be injected back into the surgical site of the same patient. This process takes several weeks to complete, but avoids tissue rejection and disease transmission. One such product is Isolagen (Isolagen Inc.—Houston, Tex.).
  • Suitable cadaveric materials include, but are not limited to, cadaveric fascia and cadaveric dura matar. Specific suitable cadaveric allografts include, but are not limited to, AlloDerm, (LifeCell Corp.—Branchburg, N.J.), Cymetra, (LifeCell Corp.—Branchburg, N.J.), Dermaloga, Fascion (Fascia Biosystems, LLC—Beverly Hills, Calif.), and Suspend (Mentor—Irving, Tex.). These products are freeze-dried, or lyophilized, acellular dermal tissue from cadaveric donors. Some require reconstitution before implantation. Although disease transmission or antigenic reaction is possible, the risk may be minimized by an extensive screening and processing of the material.
  • Heterograft materials are taken from a donor of one species and grafted into a recipient of another species. Examples of such materials include, but are not limited to, Surgisis (Cook Surgical—Bloomington, Ind.), Permacol (TSL—Covington, Ga.), Pelvicol (Bard Inc.—Murray Hill, N.J.) and Peri-Guard, (Bio-Vascular Inc.—St Paul, Minn.). In one embodiment of the present invention, an injectable heterograft, such as a heterograft of small intestinal submucosa or other material having a viscosity sufficient to prevent the material from running out or being squeezed out of the fistula, is used.
  • Such biological materials may be rendered non-cellular during processing to avoid immunological rejection. Suitable biological tissues may be implanted in potentially infected surgical fields and resist infection, unlike some synthetic preparations that may elicit a foreign body reaction or act as a nidus for infection.
  • Desirably, a bioremodelable material is used in the devices and methods of the present invention. More desirably, a bioremodelable collagenous material is used. Bioremodelable collagenous materials can be provided, for example, by collagenous materials isolated from a suitable tissue source from a warm-blooded vertebrate, and especially a mammal. Such isolated collagenous material can be processed so as to have bioremodelable properties and promote cellular invasion and ingrowth and eventual reconstruction of the host tissue itself. Bioremodelable materials may be used in this context to promote cellular growth within the site in which a medical device of the invention is implanted.
  • Suitable bioremodelable materials can be provided by collagenous extracellular matrix materials (ECMs) possessing biotropic properties. Illustrative suitable extracellular matrix materials for use in the invention include, for instance, submucosa (including for example small intestinal submucosa, stomach submucosa, urinary bladder submucosa, or uterine submucosa, each of these isolated from juvenile or adult animals), renal capsule membrane, dermal collagen, amnion, dura mater, pericardium, serosa, peritoneum or basement membrane materials, including liver basement membrane or epithelial basement membrane materials. These materials may be isolated and used as intact natural forms (e.g. as sheets), or reconstituted collagen layers including collagen derived from these materials and/or other collagenous materials may be used. For additional information as to submucosa materials useful in the present invention, and their isolation and treatment, reference can be made to U.S. Pat. Nos. 4,902,508, 5,554,389, 5,733,337, 5,993,844, 6,206,931, 6,099,567, and 6,331,319. Renal capsule membrane can also be obtained from warm-blooded vertebrates, as described more particularly in International Patent Application serial No. PCT/US02/20499 filed Jun. 28, 2002, published Jan. 9, 2003 as WO03002165.
  • As prepared and used, the ECM and any other collagenous material used, may optionally retain growth factors or other bioactive components native to the source tissue. For example, submucosa or other ECMs may include one or more growth factors such as basic fibroblast growth factor (FGF-2), transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), and/or platelet derived growth factor (PDGF). As well, submucosa or other ECM when used in the invention may include other biological materials such as heparin, heparin sulfate, hyaluronic acid, fibronectin and the like. Thus, generally speaking, the submucosa or other ECM material may include a bioactive component that induces, directly or indirectly, a cellular response such as a change in cell morphology, proliferation, growth, protein or gene expression.
  • Further, in addition or as an alternative to the inclusion of such native bioactive components, non-native bioactive components such as those synthetically produced by recombinant technology or other methods, may be incorporated into the material used for the covering. These non-native bioactive components may be naturally-derived or recombinantly produced proteins that correspond to those natively occurring in an ECM tissue, but perhaps of a different species (e.g. human proteins applied to collagenous ECMs from other animals, such as pigs). The non-native bioactive components may also be drug substances. For example, one drug substance that may be incorporated into and/or onto the covering materials is an antibiotic.
  • Submucosa or other ECM tissue used in the invention is preferably highly purified, for example, as described in U.S. Pat. No. 6,206,931 to Cook et al. Thus, preferred ECM material will exhibit an endotoxin level of less than about 12 endotoxin units (EU) per gram, more preferably less than about 5 EU per gram, and most preferably less than about 1 EU per gram. As additional preferences, the submucosa or other ECM material may have a bioburden of less than about 1 colony forming units (CFU) per gram, more preferably less than about 0.5 CFU per gram. Fungus levels are desirably similarly low, for example less than about 1 CFU per gram, more preferably less than about 0.5 CFU per gram. Nucleic acid levels are preferably less than about 5 μg/mg, more preferably less than about 2 μg/mg, and virus levels are preferably less than about 50 plaque forming units (PFU) per gram, more preferably less than about 5 PFU per gram. These and additional properties of submucosa or other ECM tissue taught in U.S. Pat. No. 6,206,931 may be characteristic of any ECM tissue used in the present invention.
  • Suitable synthetic materials that may be used in the present invention include, but are not limited to, polygalactin, polydioxanone, hyaluronic acid, polyglycolic acid, and polyethylene terephthalate. These materials avoid foreign body rejection and may be eventually incorporated into the host tissue.
  • Desirably, the biological or synthetic material used in the present invention assists in reconstruction of the host tissues, elicits little immunological reaction, and has some inherent resistance to infection. Such material allows incorporation of the graft into the fistula (rather than complete absorption of the graft into the surrounding tissue), thereby occluding the fistula.
  • In one embodiment of the present invention, a drug, such as an antibiotic, is incorporated into the graft of the present invention, as an extra precaution or means of treating any residual infection within the fistula. The graft may also be used in conjunction with a sealant or sclerosing solution which may be injected into the main fistula tract and any side branches. Several possible sealants are described in the prior art. One of the more commonly used sealants is fibrin glue, known as Tisseal (Baxter Inc.). The glue is prepared by mixing coagulation activation factors with fibrinogen, which react to form fibrin. The fibrin forms a matrix, which acts as a scaffold for tissue ingrowth and results in the sealing of the fistula tract.
  • The graft 13 of the present invention may be inserted into the fistula by pulling the tail 15 of the graft 13 through the primary opening 2 of the fistula and towards the secondary opening 3. This may be accomplished by using, for example, a pair of surgical hemostats or a fistula probe or scope, which is passed through the secondary opening 3 and out through the primary opening 2. The tail 15 of the graft 13 may then be grasped by the hemostats, or secured to the probe or scope, and withdrawn retrograde into the fistula. As the graft 13 is being withdrawn through the fistula, the head 14 of the graft 13 may be gradually “wedged” into the primary opening 2 causing the graft 13 to become lodged in place so that it does not fall out or exude, as with the fibrin glue technique.
  • To assist in anchoring the graft within the fistula, the outer surface of the graft may contain protrusions 18 that interact with the fistula. Anorectal fistulae pass through the cylindrical, well-defined internal sphincter muscle 6 containing an almost rigid hole, which is the narrowest point along the fistula tract. Desirably, the protrusions on the graft are adapted to be pulled through the hole and wedged against the distal portion of the hole to further anchor the graft.
  • In an alternative embodiment of the present invention, either end of the graft or both ends of the graft are secured by sutures and trimmed to avoid either end from protruding excessively from the fistula tract after the procedure. The suture may be formed as an integral part of the graft or as a separate component.
  • In another embodiment, the graft is anchored within the fistula by threading a securing device having a central lumen, over the tail of the graft and securing it into position at skin level (e.g., by crimping it). In yet another embodiment, further anchoring of the graft is achieved by using a material such as a small intestinal submucosa heterograft (a freeze-dried material that requires rehydration before use) for the graft and inserting the graft into the tract before the graft material has been fully expanded by hydration. Any other suitable means of securement, such as introducing adhesive into the fistula tract, may also be used to anchor the graft within the fistula.
  • In one embodiment, antologous fibrin glue is used in conjunction with the fistula graft to supplement the adhesive and occlusive properties of the disclosed invention. This involves the use of an autologous composite of platelets and growth factors derived from the patient's own blood. (Symphony PCS, DePuy AcroMed Inc.). The composite may be derived from a fresh sample of blood drawn from the patient at the time of surgery. The blood may then be centrifuged, and the platelets, which contain growth factors such as epidermal growth factor (EGF) and transforming growth factor—beta (TGFβ), harvested. Having centrifuged the blood, retrieved the platelet “pellet” and prepared the composite, the sealant may then be injected into the fistula tract(s) to help maintain the graft in place.
  • Closure of a fistula tract may be performed as a one-stage or two-stage procedure. As a one-stage procedure, the fistula tract is closed or sealed at the same time as the initial surgery. The advantage of this method is that it avoids a second operation and minimizes expense and inconvenience. The main disadvantage is that immediate implantation of the graft into an “unprepared” and possibly infected fistula tract may result in secondary infection of the graft. As a two-stage procedure, a seton is first placed through the fistula tract to allow mechanical drainage of the fistula tract. Several weeks later, the seton is removed and the graft is inserted into the fistula.
  • An alternative methodology involves preliminary endoscopic visualization (fistuloscopy) and “cleaning” of the fistula tract, as disclosed in co-pending application Ser. No. 10/945,634 (Armstrong). This procedure may be performed by a very thin flexible endoscope, which is inserted into the secondary opening of the fistula tract, and advanced under direct vision through the fistula tract and out the primary opening. By performing preliminary fistuloscopy of the fistula tracts, the primary opening is accurately identified and the tracts are “cleaned out” by means of an irrigating fluid. Any inflammatory or necrotic tissue within the tract is therefore removed, prior to inserting the graft. The tail of the graft may be attached to the fistuloscope, which may then be withdrawn through the fistula tract so that the graft gets wedged in place, as described above.
  • For multiple fistula, multiple grafts may be inserted until all fistula tracts have been closed. In the case of a complex fistula, for instance the horseshoe fistula, there may be one primary opening and two or more tracts leading from that opening. In this instance, a graft may be configured with one “head” component (larger diameter end), and two “tails” (smaller diameter ends). Desirably, accurate identification of all fistula tracts and the primary opening is facilitated by first performing fistuloscopy. Once the entire tract has been identified and cleaned out, each tail may be pulled through the primary opening into each fistula in turn, desirably using a fistuloscope or an instrument passed through the instrument channel of a scope. Adequate force may be applied to the tail to ensure that the head of the graft is firmly secured in the primary opening. The head of the graft and/or each of the tails may be further secured by any of the methods described above.
  • The success of the present invention was demonstrated in a clinical trial evaluating the efficacy of a biodegradable lyophilized porcine submucosa plug, as compared to the fibrin glue technique, in closing anorectal fistulae. Thirteen of fifteen patents (87%) treated with the plug had complete closure of all fistula tracts, whereas only four of ten (40%) patents treated with the fibrin glue technique had complete closure.
  • It is intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.

Claims (21)

1-20. (canceled)
21. A method of treating a fistula of a human patient, the fistula having a tract extending from a first opening in a first body lumen to a second opening, the method comprising
inserting a plug into the first opening of the tract so as to occlude said first opening,
wherein the plug comprises bioremodelable material that promotes cellular invasion and ingrowth and reconstruction of host tissue within the plug, and wherein the bioremodelable material is selected from the group consisting of a cadaveric material from a human donor and a heterograft material from a non-human donor, and
positioning the plug in the tract whereby the bioremodelable material extends along the fistula tract from the first opening to the second opening and promotes cellular invasion and ingrowth and reconstruction of host tissue within the plug.
22. The method of claim 21, wherein the fistula is selected from the group consisting of: a tracheo-esophageal fistula, a gastro-cutaneous fistula, an anorectal fistula, a recto-vaginal fistula, a recto-vesical fistula, a recto-urethral fistula, a recto-prostatic fistula, a vesico-vaginal fistula and an urethro-vaginal fistula.
23. The method of claim 21, wherein the bioremodelable material is a collagenous extracellular matrix material.
24. The method of claim 21, wherein the bioremodelable material is selected from the group consisting of submucosa, small intestinal submucosa, stomach submucosa, urinary bladder submucosa, uterine submucosa, renal capsule membrane, dermal collagen, amnion, dura mater, pericardium, serosa, peritoneum, basement membrane, liver basement membrane and epithelial basement membrane.
25. The method of claim 21, wherein the bioremodelable material is a collagenous extracellular matrix material.
26. The method of claim 21, wherein the bioremodelable material is dermal collagen.
27. The method of claim 21, wherein the bioremodelable material is submucosa.
28. The method of claim 27, wherein the submucosa is small intestinal submucosa.
29. The method of claim 21, wherein the bioremodelable material comprises an intact acellular sheet of dermal collagen or submucosa.
30. The method of claim 21, wherein the plug further comprises a non-native bioactive.
31. The method of claim 21, wherein the non-native bioactive and the bioremodelable material are derived from different species.
32. The method of claim 21, further comprising securing the plug to tissue of the patient adjacent to at least one of the first opening and the second opening.
33. The method of claim 32, wherein the securing the plug to tissue of the patient comprises suturing the plug to tissue of the patient.
34. The method of claim 21, further comprising applying a material selected from the group consisting of an adhesive and fibrin glue to the fistula track.
35. The method of claim 21, wherein the plug comprises a head and a tail, wherein the tail is thinner than the head.
36. The method of claim 21, wherein the bioremodelable material is a non-cellular bioremodelable material.
37. A method of treating a fistula of a human patient, the fistula having a tract extending from a first opening to a second opening, the method comprising
inserting a plug into the first opening of the tract so as to occlude said first opening,
wherein the plug comprises bioremodelable material that promotes cellular invasion and ingrowth and reconstruction of host tissue within the plug, and wherein the bioremodelable material is selected from the group consisting of dermal collagen and submucosa, and
positioning the plug in the tract whereby the bioremodelable material extends along the fistula tract from the first opening to the second opening and promotes cellular invasion and ingrowth and reconstruction of host tissue within the plug.
38. The method of claim 37, wherein the plug incorporates a non-native bioactive.
39. A method of treating a fistula of a human patient, the fistula having a tract extending from a first opening to a second opening, the method comprising
inserting a plug into the first opening of the tract so as to occlude said first opening,
wherein the plug comprises bioremodelable material and a non-native bioactive, and
wherein the bioremodelable material comprises a collagenous extracellular matrix material, and
positioning the plug in the tract whereby the bioremodelable material extends along the fistula tract from the first opening to the second opening and promotes cellular invasion and ingrowth and reconstruction of host tissue within the plug
40. The method of claim 39, wherein the fistula is selected from the group consisting of: a tracheo-esophageal fistula, a gastro-cutaneous fistula, an anorectal fistula, a recto-vaginal fistula, a recto-vesical fistula, a recto-urethral fistula, a recto-prostatic fistula, a vesico-vaginal fistula and an urethro-vaginal fistula.
US14/282,399 2004-01-21 2014-05-20 Implantable graft to close a fistula Active 2025-10-31 US9526484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/282,399 US9526484B2 (en) 2004-01-21 2014-05-20 Implantable graft to close a fistula

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US53836504P 2004-01-21 2004-01-21
US11/040,996 US20060074447A2 (en) 2004-01-21 2005-01-21 Implantable graft to close a fistula
US11/807,801 US8764791B2 (en) 2004-01-21 2007-05-30 Implantable graft to close a fistula
US14/282,399 US9526484B2 (en) 2004-01-21 2014-05-20 Implantable graft to close a fistula

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/807,801 Continuation US8764791B2 (en) 2004-01-21 2007-05-30 Implantable graft to close a fistula

Publications (2)

Publication Number Publication Date
US20140257376A1 true US20140257376A1 (en) 2014-09-11
US9526484B2 US9526484B2 (en) 2016-12-27

Family

ID=34807182

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/040,996 Abandoned US20060074447A2 (en) 2004-01-21 2005-01-21 Implantable graft to close a fistula
US11/807,801 Active 2027-04-24 US8764791B2 (en) 2004-01-21 2007-05-30 Implantable graft to close a fistula
US14/282,399 Active 2025-10-31 US9526484B2 (en) 2004-01-21 2014-05-20 Implantable graft to close a fistula

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/040,996 Abandoned US20060074447A2 (en) 2004-01-21 2005-01-21 Implantable graft to close a fistula
US11/807,801 Active 2027-04-24 US8764791B2 (en) 2004-01-21 2007-05-30 Implantable graft to close a fistula

Country Status (12)

Country Link
US (3) US20060074447A2 (en)
EP (2) EP2193749B1 (en)
JP (1) JP5080087B2 (en)
KR (1) KR101066769B1 (en)
CN (2) CN1909840B (en)
AT (1) ATE468815T1 (en)
AU (1) AU2005206195B2 (en)
BR (1) BRPI0507014A (en)
CA (1) CA2553275C (en)
DE (1) DE602005021454D1 (en)
MX (1) MXPA06008238A (en)
WO (1) WO2005070302A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028733B2 (en) 2015-05-28 2018-07-24 National University Of Ireland, Galway Fistula treatment device
US11452512B2 (en) 2017-06-09 2022-09-27 Signum Surgical Limited Implant for closing an opening in tissue
US11701096B2 (en) 2015-05-28 2023-07-18 National University Of Ireland, Galway Fistula treatment device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE294535T1 (en) 2001-07-26 2005-05-15 Univ Oregon Health Sciences CLOSURE DEVICE FOR A VESSEL AND ATTACHMENT DEVICE
US8465516B2 (en) 2001-07-26 2013-06-18 Oregon Health Science University Bodily lumen closure apparatus and method
US7645229B2 (en) * 2003-09-26 2010-01-12 Armstrong David N Instrument and method for endoscopic visualization and treatment of anorectal fistula
ATE468815T1 (en) 2004-01-21 2010-06-15 Cook Inc IMPLANTABLE TRANSPLANT FOR CLOSING A FISTULA
WO2006119256A2 (en) 2005-04-29 2006-11-09 Cook Biotech Incorporated Volumetric grafts for treatment of fistulae and related methods and systems
EP1874365B1 (en) 2005-04-29 2015-05-27 Cook Biotech Incorporated Fistula graft with deformable sheet-form material
AU2006262178B2 (en) * 2005-06-21 2012-07-05 Cook Biotech, Inc. Implantable graft to close a fistula
US9271817B2 (en) * 2005-07-05 2016-03-01 Cook Biotech Incorporated Tissue augmentation devices and methods
US7850985B2 (en) 2005-07-05 2010-12-14 Cook Biotech Incorporated Tissue augmentation devices and methods
EP1956986B1 (en) * 2005-12-02 2017-03-29 Cook Medical Technologies LLC Devices, systems, and methods for occluding a defect
CA2637450A1 (en) * 2006-01-31 2007-08-09 Cook Biotech Incorporated Fistula grafts and related methods and systems for treating fistulae
US8652090B2 (en) * 2006-05-18 2014-02-18 Cannuflow, Inc. Anti-extravasation surgical portal plug
WO2007149989A2 (en) * 2006-06-21 2007-12-27 Cook Incorporated Fistula grafts and related methods and systems useful for treating gastrointestinal fistulae
US20080051831A1 (en) * 2006-08-24 2008-02-28 Wilson-Cook Medical Inc. Devices And Methods For Occluding A Fistula
EP2121062B1 (en) 2007-03-07 2020-05-06 Coloplast A/S Fistula plug comprising ecm
GB2461461B (en) * 2007-04-06 2012-07-25 Cook Biotech Inc Fistula plugs having increased column strength and fistula plug delivery apparatuses and methods
CN105943208B (en) 2007-06-25 2019-02-15 微仙美国有限公司 Self-expanding prosthesis
US8535349B2 (en) * 2007-07-02 2013-09-17 Cook Biotech Incorporated Fistula grafts having a deflectable graft body portion
US9113851B2 (en) 2007-08-23 2015-08-25 Cook Biotech Incorporated Fistula plugs and apparatuses and methods for fistula plug delivery
US20090069843A1 (en) * 2007-09-10 2009-03-12 Agnew Charles W Fistula plugs including a hydration resistant component
US20090112238A1 (en) * 2007-10-26 2009-04-30 Vance Products Inc., D/B/A Cook Urological Inc. Fistula brush device
JP5547712B2 (en) * 2008-04-04 2014-07-16 クラシール,インコーポレイティド Implantable fistula closure device
US8118832B1 (en) * 2008-06-16 2012-02-21 Morris Innovative, Inc. Method and apparatus for sealing access
CA2735748C (en) 2008-09-04 2017-08-29 Curaseal Inc. Inflatable devices for enteric fistula treatment
WO2010110286A1 (en) * 2009-03-25 2010-09-30 国立大学法人京都大学 Material for therapy of fistula tract
WO2012174234A2 (en) 2011-06-14 2012-12-20 Cook Medical Technologies Llc Fistula closure devices and methods
CN103874466B (en) 2011-06-16 2016-10-05 库拉希尔公司 Device and correlation technique for fistula treatment
US9131941B2 (en) 2011-06-17 2015-09-15 Curaseal Inc. Fistula treatment devices and methods
CA2841294A1 (en) 2011-07-08 2013-01-17 C.R. Bard, Inc. Implantable prosthesis for fistula repair
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
AU2016366404A1 (en) 2015-12-11 2018-06-14 Lifecell Corporation Methods and systems for stiffening of tissue for improved processing
US9943414B2 (en) 2015-12-30 2018-04-17 Wasas, Llc. System and method for non-binding allograft subtalar joint implant
US20220054707A1 (en) * 2016-04-25 2022-02-24 Shanghai Zhuoruan Medical Technologies Co., Ltd Biological material with composite extracellular matrix components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074576A1 (en) * 1999-06-07 2000-12-14 Novomed Gmbh Fistula blocker
US20030051735A1 (en) * 2001-07-26 2003-03-20 Cook Biotech Incorporated Vessel closure member, delivery apparatus, and method of inserting the member
US20040143344A1 (en) * 2001-07-16 2004-07-22 Prasanna Malaviya Implantable tissue repair device and method
US20050182495A1 (en) * 2004-02-13 2005-08-18 Perrone Rafael C.A. Prosthesis for aero-digestive fistulae
US20080004657A1 (en) * 2005-04-29 2008-01-03 Obermiller F J Volumetric grafts for treatment of fistulae and related methods and systems

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US522840A (en) * 1894-07-10 Coal-dump
US1887526A (en) * 1931-11-02 1932-11-15 Joseph M Spielberg Medical tampon
US2127903A (en) * 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
DE2335858A1 (en) * 1973-07-14 1975-01-30 Schenk Wolfgang Dr Med DEVICE FOR TEMPORARY LOCKING OF THE ARTIST (ANUS PRAETERNATURALIS)
US3996921A (en) * 1975-04-17 1976-12-14 Pharmacia Inc. Method and apparatus for endoscopy
DE2722286C2 (en) * 1977-05-17 1986-04-17 Coloplast A/S, Espergaerde Non-magnetic tampon for closing an artificial anus and process for its production
FR2516927B1 (en) * 1981-11-26 1986-05-23 Merieux Fond PROCESS FOR THE INDUSTRIAL PREPARATION OF COLLAGENIC MATERIALS FROM HUMAN PLACENTARY TISSUES, HUMAN COLLAGENIC MATERIALS OBTAINED, THEIR APPLICATION AS BIOMATERIALS
FR2522959A1 (en) * 1982-03-15 1983-09-16 Hamou Jacques Tubular pessary for reversible pregnancy protection - has soft central tubular section with proximal and distal loop of fibrous material
US4693236A (en) * 1983-06-09 1987-09-15 Leonardo Leprevost Closure appliance for use in connection with surgical ostomy
US4578076A (en) * 1984-03-20 1986-03-25 The Population Council, Inc. Medicated intracervical and intrauterine devices
US4563404A (en) 1984-06-18 1986-01-07 Duracell Inc. Cell gelling agent
DK153122C (en) * 1985-01-15 1988-11-14 Coloplast As CLOSURE FOR SINGLE USE FOR AN ARTIFICIAL OR INCONTINENT NATURAL TREATMENT
USRE34866E (en) * 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4956178A (en) * 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
US4902508A (en) * 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US5374261A (en) * 1990-07-24 1994-12-20 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods-therefor
US5053047A (en) * 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5620461A (en) * 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
SU1718837A1 (en) 1989-11-13 1992-03-15 Днепропетровский Научно-Исследовательский Институт Восстановления И Экспертизы Трудоспособности Инвалидов Method for obturation of large intestine fistulae
US5171270A (en) * 1990-03-29 1992-12-15 Herrick Robert S Canalicular implant having a collapsible flared section and method
US5860978A (en) * 1990-09-25 1999-01-19 Innovasive Devices, Inc. Methods and apparatus for preventing migration of sutures through transosseous tunnels
US5281422A (en) * 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5480644A (en) 1992-02-28 1996-01-02 Jsf Consultants Ltd. Use of injectable biomaterials for the repair and augmentation of the anal sphincters
US5584827A (en) * 1992-05-18 1996-12-17 Ultracell Medical Technologies, Inc Nasal-packing article
US5275826A (en) * 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
CZ281454B6 (en) * 1992-11-23 1996-10-16 Milan Mudr. Csc. Krajíček Aid for non-surgical closing of a hole in a vessel wall
US5514158A (en) * 1992-12-28 1996-05-07 Kanesaka; Nozomu Sealing device for a percutaneous puncture
US5345948A (en) * 1993-04-08 1994-09-13 Donnell Jr Francis E O Method of performing translactrimal laser dacryocystorhinostomy
US5425757A (en) * 1993-05-21 1995-06-20 Tiefenbrun; Jonathan Aortic surgical procedure
DE9402017U1 (en) * 1994-02-08 1994-03-31 Steeb, Manfred A., 73557 Mutlangen Protective device for the uncontrolled drainage of urine
US5531759A (en) 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US6475232B1 (en) * 1996-12-10 2002-11-05 Purdue Research Foundation Stent with reduced thrombogenicity
DE19580865D2 (en) * 1994-08-17 1998-03-19 Boston Scient Corp Implant, implantation method and application device
US5643305A (en) 1994-11-18 1997-07-01 Al-Tameem; Moshin Device for excision of a fistula
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
EP0734736A1 (en) * 1995-03-31 1996-10-02 Toyo Boseki Kabushiki Kaisha Medical device and method for producing the same
US5711969A (en) * 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5554389A (en) 1995-04-07 1996-09-10 Purdue Research Foundation Urinary bladder submucosa derived tissue graft
US5713891A (en) * 1995-06-02 1998-02-03 Children's Medical Center Corporation Modified solder for delivery of bioactive substances and methods of use thereof
WO1996039917A1 (en) * 1995-06-07 1996-12-19 Chilcoat Robert T Articulated endospcope with specific advantages for laryngoscopy
US5707389A (en) * 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5752974A (en) 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5755791A (en) * 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
AU3186897A (en) 1996-05-08 1997-11-26 Salviac Limited An occluder device
US5792478A (en) 1996-07-08 1998-08-11 Advanced Uro Science Tissue injectable composition and method of use
EP1378257B1 (en) 1996-08-23 2008-05-14 Cook Biotech, Inc. Collagen-based graft prosthesis
US6666892B2 (en) * 1996-08-23 2003-12-23 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
ES2263185T3 (en) 1996-12-10 2006-12-01 Purdue Research Foundation BIOMATERIAL DERIVED FROM VERPABRADO HEPATIC FABRIC.
DE69734218T2 (en) 1996-12-10 2006-07-06 Purdue Research Foundation, West Lafayette Tissue graft from the stomach submucosa
US5993844A (en) 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US6149581A (en) * 1997-06-12 2000-11-21 Klingenstein; Ralph James Device and method for access to the colon and small bowel of a patient
EP0894474A1 (en) 1997-07-28 1999-02-03 Thomas Prof. Dr. Ischinger Tension holder e.g. for vascular suture or plug device
US6090996A (en) * 1997-08-04 2000-07-18 Collagen Matrix, Inc. Implant matrix
JP2001515706A (en) * 1997-09-11 2001-09-25 パーデュー・リサーチ・ファウンデーション Galactosidase-modified submucosal tissue
US6464999B1 (en) * 1998-06-17 2002-10-15 Galt Incorporated Bioadhesive medical devices
US6080183A (en) * 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
DK173680B1 (en) * 1999-02-10 2001-06-11 Coloplast As ostomy Prop
US6203563B1 (en) * 1999-05-26 2001-03-20 Ernesto Ramos Fernandez Healing device applied to persistent wounds, fistulas, pancreatitis, varicose ulcers, and other medical or veterinary pathologies of a patient
RU2180529C2 (en) 1999-08-02 2002-03-20 Областная клиническая больница № 1 Свердловской области Method for extraperitoneally closing formed intestinal fistulae
WO2001008717A1 (en) * 1999-08-03 2001-02-08 Smith & Nephew, Inc. Controlled release implantable devices
US20010031974A1 (en) * 2000-01-31 2001-10-18 Hadlock Theresa A. Neural regeneration conduit
US6800056B2 (en) * 2000-04-03 2004-10-05 Neoguide Systems, Inc. Endoscope with guiding apparatus
US6638312B2 (en) * 2000-08-04 2003-10-28 Depuy Orthopaedics, Inc. Reinforced small intestinal submucosa (SIS)
US6623509B2 (en) 2000-12-14 2003-09-23 Core Medical, Inc. Apparatus and methods for sealing vascular punctures
AU2002242280A1 (en) * 2001-03-19 2002-10-03 C. Mauli Agrawal Methods and devices for occluding myocardial holes
US7033348B2 (en) * 2001-04-10 2006-04-25 The Research Foundation Of The City University Of New York Gelatin based on Power-gel™ as solders for Cr4+laser tissue welding and sealing of lung air leak and fistulas in organs
US6688312B2 (en) * 2001-05-23 2004-02-10 Sarkis Yeretsian Closed bloodless hemorrhoidectomy method
CA2452033C (en) * 2001-06-28 2011-11-08 Cook Biotech Incorporated Graft prosthesis devices containing renal capsule collagen
WO2003002168A1 (en) * 2001-06-29 2003-01-09 Cook Biotech Incorporated Porous sponge matrix medical devices and methods
US8465516B2 (en) * 2001-07-26 2013-06-18 Oregon Health Science University Bodily lumen closure apparatus and method
DK200101428A (en) * 2001-09-28 2003-03-29 Coloplast As An ostomy appliance
FR2840796B1 (en) * 2002-06-13 2004-09-10 Novatech Inc BRONCHICAL SHUTTER
US7022103B2 (en) * 2002-07-23 2006-04-04 Gerard Cappiello Apparatus and method of identifying rectovaginal fistulas
TR200202198A2 (en) * 2002-09-13 2004-04-21 Zafer Malazgirt Patch-plug used to repair large trocar holes after laparoscopic surgery
US20040069312A1 (en) * 2002-10-10 2004-04-15 Yoshihiro Ohmi Method of operating for anal fistula
ATE515981T1 (en) 2003-05-15 2011-07-15 Cook Biotech Inc CLOSURE FOR BODY OPENINGS
DE112004001553T5 (en) 2003-08-25 2006-08-10 Cook Biotech, Inc., West Lafayette Transplanting materials containing bioactive substances and methods for their production
NL1024218C2 (en) 2003-09-03 2005-03-07 Stichting Sint Annadal Device for treating fistulas.
US7645229B2 (en) 2003-09-26 2010-01-12 Armstrong David N Instrument and method for endoscopic visualization and treatment of anorectal fistula
WO2005053617A2 (en) 2003-11-28 2005-06-16 Alternative Sourced Collagen, Llc Compositions and methods comprising collagen
ATE468815T1 (en) * 2004-01-21 2010-06-15 Cook Inc IMPLANTABLE TRANSPLANT FOR CLOSING A FISTULA
WO2005070489A1 (en) 2004-01-23 2005-08-04 Cook Critical Care Incorporated Endobronchial blocking device
US7258661B2 (en) * 2004-09-13 2007-08-21 Bristol-Myers Squibb Company Stoma plug
US9788821B2 (en) * 2005-04-29 2017-10-17 Cook Biotech Incorporated Physically modified extracellular matrix materials and uses thereof
EP1956986B1 (en) * 2005-12-02 2017-03-29 Cook Medical Technologies LLC Devices, systems, and methods for occluding a defect
US20080051831A1 (en) * 2006-08-24 2008-02-28 Wilson-Cook Medical Inc. Devices And Methods For Occluding A Fistula
US8535349B2 (en) * 2007-07-02 2013-09-17 Cook Biotech Incorporated Fistula grafts having a deflectable graft body portion
US9113851B2 (en) * 2007-08-23 2015-08-25 Cook Biotech Incorporated Fistula plugs and apparatuses and methods for fistula plug delivery
US9492149B2 (en) * 2007-11-13 2016-11-15 Cook Biotech Incorporated Fistula grafts and related methods and systems useful for treating gastrointestinal and other fistulae
US7765006B2 (en) * 2007-12-13 2010-07-27 Leto Medical, Llc Method and apparatus for providing continence to a gastrointestinal ostomy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074576A1 (en) * 1999-06-07 2000-12-14 Novomed Gmbh Fistula blocker
US20040143344A1 (en) * 2001-07-16 2004-07-22 Prasanna Malaviya Implantable tissue repair device and method
US20030051735A1 (en) * 2001-07-26 2003-03-20 Cook Biotech Incorporated Vessel closure member, delivery apparatus, and method of inserting the member
US20050182495A1 (en) * 2004-02-13 2005-08-18 Perrone Rafael C.A. Prosthesis for aero-digestive fistulae
US20080004657A1 (en) * 2005-04-29 2008-01-03 Obermiller F J Volumetric grafts for treatment of fistulae and related methods and systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028733B2 (en) 2015-05-28 2018-07-24 National University Of Ireland, Galway Fistula treatment device
US11166704B2 (en) 2015-05-28 2021-11-09 National University Of Ireland, Galway Fistula treatment device
US11701096B2 (en) 2015-05-28 2023-07-18 National University Of Ireland, Galway Fistula treatment device
US11452512B2 (en) 2017-06-09 2022-09-27 Signum Surgical Limited Implant for closing an opening in tissue

Also Published As

Publication number Publication date
CN102551814B (en) 2015-09-09
DE602005021454D1 (en) 2010-07-08
US20060074447A2 (en) 2006-04-06
EP2193749A1 (en) 2010-06-09
BRPI0507014A (en) 2007-06-05
US8764791B2 (en) 2014-07-01
ATE468815T1 (en) 2010-06-15
JP2007534369A (en) 2007-11-29
US9526484B2 (en) 2016-12-27
CN1909840B (en) 2012-03-21
US20050159776A1 (en) 2005-07-21
EP2193749B1 (en) 2017-03-01
CN102551814A (en) 2012-07-11
KR20070034454A (en) 2007-03-28
CN1909840A (en) 2007-02-07
EP1706040A1 (en) 2006-10-04
EP1706040B1 (en) 2010-05-26
JP5080087B2 (en) 2012-11-21
WO2005070302A1 (en) 2005-08-04
CA2553275C (en) 2012-03-13
AU2005206195B2 (en) 2011-05-26
MXPA06008238A (en) 2007-02-21
KR101066769B1 (en) 2011-09-21
US20070233278A1 (en) 2007-10-04
AU2005206195A1 (en) 2005-08-04
CA2553275A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US9526484B2 (en) Implantable graft to close a fistula
AU2006320507B2 (en) Devices, systems, and methods for occluding a defect
AU2007286657B2 (en) Devices and methods for occluding a fistula
US10470749B2 (en) Fistula grafts and related methods and systems useful for treating gastrointestinal and other fistulae
US11696749B2 (en) Fistula grafts and related methods and systems for treating fistulae
US8936616B2 (en) Expandable plugs and related delivery apparatuses and methods
US20110060362A1 (en) Devices and methods for treating rectovaginal and other fistulae

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:COOK MEDICAL TECHNOLOGIES LLC;REEL/FRAME:066700/0277

Effective date: 20240227

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8