US20140255501A1 - Novel Preparation Of An Enteric Release System - Google Patents
Novel Preparation Of An Enteric Release System Download PDFInfo
- Publication number
- US20140255501A1 US20140255501A1 US14/285,108 US201414285108A US2014255501A1 US 20140255501 A1 US20140255501 A1 US 20140255501A1 US 201414285108 A US201414285108 A US 201414285108A US 2014255501 A1 US2014255501 A1 US 2014255501A1
- Authority
- US
- United States
- Prior art keywords
- percent
- composition
- hydrophobic liquid
- enteric
- zein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/11—Encapsulated compositions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
- A23P10/35—Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/01—Hydrocarbons
- A61K31/015—Hydrocarbons carbocyclic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/28—Compounds containing heavy metals
- A61K31/305—Mercury compounds
- A61K31/31—Mercury compounds containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/64—Proteins; Peptides; Derivatives or degradation products thereof
- A61K8/645—Proteins of vegetable origin; Derivatives or degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/92—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
- A61K8/927—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of insects, e.g. shellac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0095—Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5015—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5052—Proteins, e.g. albumin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5063—Compounds of unknown constitution, e.g. material from plants or animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q13/00—Formulations or additives for perfume preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/412—Microsized, i.e. having sizes between 0.1 and 100 microns
Definitions
- the present application relates to methods for microencapsulating a hydrophobic liquid with an enteric matrix without use of organic solvents. More particularly, the hydrophobic liquid is microencapsulated in an aqueous environment.
- Enteric delivery of active materials in food delivery applications has been limited. Enteric delivery systems are commonly utilized when the active materials or medicants are known to be sensitive to low pH or have undesirable flavor and/or taste characteristics which cannot be effectively masked by other methods. Generally, enteric delivery is accomplished using tablets and gel capsules. However, those particular delivery methods are not well suited for food applications. In particular, neither tablets nor capsules are sized to be integrated into most existing food products.
- microencapsulation is generally performed using specialized equipment or in an environment including organic solvents. These methods require additional capital expenditures and the use of additional materials, such as the organic solvents, which may or may not be usable in subsequent microencapsulation cycles. As a result, the process of microencapsulation requires investments in both equipment and organic solvent procurement and disposal.
- a method for microencapsulating an active ingredient with an enteric matrix includes agitating or mixing a combination of water, an enteric matrix material, and an emulsifier, at a pH that maintains complete dissolution of the enteric polymers being utilized, the combination being substantially free of organic solvents.
- a hydrophobic liquid is then added to the combination.
- the hydrophobic liquid and combination is then agitated to create a coarse emulsion, followed by homogenization to create a fine and stable emulsion.
- the emulsion can then be acid titrated under controlled mixing conditions in an amount and a rate effective to form a particulate precipitate. Further, the particulate precipitate can be filtered, washed and dried to form a powder. In one embodiment a surface oil remover can be added to the precipitate after filtering to remove surface oil from the microencapsulated material.
- composition which includes a hydrophobic liquid and a cross-linked enteric matrix.
- FIG. 1 illustrates a method for microencapsulating a hydrophobic liquid
- FIG. 2 is an analysis of the products of Examples 2, 4 and 5;
- FIGS. 3-5 illustrate release rates of the hydrophobic liquid using various enteric matrix materials as discussed in Example 6;
- FIG. 6 illustrates the release rate of the hydrophobic liquid including esters therein as discussed in Example 7.
- FIG. 1 A method for microencapsulating a hydrophobic liquid is generally described in FIG. 1 .
- water, an enteric matrix material and an emulsifier are subjected to agitation until the enteric matrix material and emulsifier are fully dispersed in the water 100 .
- the emulsifier and enteric matrix material can be added to the water together or separately, with either being added first.
- the pH of the dispersion is generally between about 7.2 and 9.0.
- a base such as sodium, ammonium or potassium hydroxide, can be added to the dispersion to raise the pH to a range from about 7.1 to about 12.0 to guarantee and maintain complete dissolution of the enteric polymers without the use of organic solvents
- agitation refers to the use of a top entering mixer with impeller or a rotor/stator mixing device operating at a speed of less than 10,000 RPM.
- substantially free of organic solvent refers to an amount of added organic solvent, such as isopropanol or ethanol or any other organic solvent less than the amount required to enable solubility of the enteric material under the processing conditions.
- the amount of added organic solvent is less than about 0.1 percent by weight of the combination of water, emulsifier and enteric material.
- the water is deionized water.
- the enteric matrix material used herein is any food grade enteric polymer, of a combination or two or more food grade enteric polymers.
- the enteric matrix material is either shellac or zein or a combination thereof.
- the ratio of shellac to zein can be predetermined to achieve the desired release rate after ingestion, with a decreased release rate corresponding with an increased ratio of shellac to zein.
- the shellac can commercially be provided as an alakaline (pH>7) aqueous solution, such as a water-based solution having a solid content of about 25 percent by weight or it can be prepared from commercially available refined, bleached and dewaxed shellac powder.
- the shellac dilution is substantially free of organic solvent, although it may contain trace amounts of organic solvents, such as isopropyl alcohol (such as can be included in commercial products), to act as a carrier for other ingredients in the shellac solution, such as methyl and propyl parabens.
- organic solvents such as isopropyl alcohol (such as can be included in commercial products)
- the prepared shellac solution does not contain any organic solvents.
- the enteric matrix material comprises a combination of shellac and zein, with zein comprising at least about 5.0 percent of the enteric matrix material by dry weight. Due to differences in hydration and solubility of zein and shellac, particularly the solubility at varying pHs and rates of hydration and solubility, different ratios of shellac to zein provide different enteric dissolution properties as well as differing degrees of core material protection in the final product, such as beverages.
- the emulsifier described herein is any food grade emulsifier.
- the emulsifier is polysorbate, polyglycerol ester, sucrose stearate, sucrose esters, proteins, lecithins or combinations thereof.
- water comprises about 50.0 percent to about 95.0 percent of the dispersion by weight and preferably from about 70.0 to about 95.0 percent, and more preferably from about 80.0 to about 90.0 percent.
- the emulsifier generally comprises less than about 5.0 percent of the dispersion by weight, preferably from about 0.01 to about 1.0 percent by weight, and more preferably about 0.01 to about 0.1 percent by weight of the dispersion.
- the zein, shellac or combinations thereof ranges from about 1.0 percent to about 10.0 percent by weight, preferably from about 4.0 to about 9.0 percent, and more preferably from about 5.0 percent to about 8.0 percent by weight of the dispersion.
- a hydrophobic liquid is added 200 and agitated to provide a coarse emulsion having a droplet size of more than about 10 micrometers.
- the coarse emulsion is subjected to homogenization to create a fine, stable emulsion 300 .
- the fine, stable emulsion has a droplet size of less than about 10 micrometers.
- the hydrophobic liquid is homogeneously dispersed in the form of fine droplets throughout.
- the hydrophobic liquid is added in amount ranging from about 2.0 to about 7.0 percent of the emulsion by weight. More preferably, the hydrophobic liquid is added in an amount ranging from about 3.0 to about 6.0 percent of the emulsion by weight.
- the emulsion includes from about 60.0 to about 95.0 percent water.
- homogenization refers to the use of a rotor/stator mixing device operating at a speed greater than 10,000 RPM or a valve homogenizer operating at a pressure of 500-10,000 psi.
- the hydrophobic liquid can comprise any mixture of hydrophobic liquids and solids, such as solids mixed or combined therewith or dissolved or solubilized therein.
- hydrophobic liquid can be selected to include materials which are desired to be released in the small intestine rather than the stomach due to pH sensitivity.
- the hydrophobic liquid can include compositions described in U.S. Patent Publication No. 2008/0145462 to Enan.
- the hydrophobic liquid includes 25-35% by weight para-cymene, 1-10% by weight linalool, 1-10% by weight alpha-pinene, 35-45% by weight thymol, and 20-30% by weight soybean oil.
- the hydrophobic liquid described herein can include an essential oil blend which possesses anti-parasitic properties.
- organic compounds are blended with food grade oil, i.e. soybean oil.
- the organic compounds can include thymol and linalool.
- the organic compounds further include alpha-pinene and para-cymene.
- one exemplary blend includes, by weight, about 17.5 percent soybean oil, about 8 percent alpha-pinene (liquid), about 44 percent para-cymene (liquid), about 5 percent linalool (liquid) and about 25.5 percent Thymol (crystal).
- the hydrophobic liquid includes esters, such as esters of linalool and thymol, as described in co-pending Application Serial No. (Attorney Docket No. 94198), filed the same day as this application and which is incorporated herein by reference.
- hydrophobic liquid examples include unsaturated and polyunsaturated OMEGA 3, other unsaturated and polyunsatured lipids or fatty acids and triglycerides thereof, beta-carotene, and oil soluble vitamins, stomach irritants, or any other hydrophobic materials that are either sensitive to acidic pH conditions or impart strong undesirable taste.
- the emulsion is then acid titrated 400 .
- the emulsion can be subjected to agitation or homogenization (not high pressure homogenization), preferably agitation.
- Acid is titrated in an amount effective to decrease the pH below the isoelectric point, such as a pH of about 7.0, causing phase separation and inducing precipitation of the enteric matrix out of solution with the hydrophobic liquid being microencapsulated therein, thus creating a slurry of an aqueous solution and precipitate.
- the slurry includes a particulate precipitate having a particle size from about 1.0 to about 1000.0 micrometers, preferably about 10.0 to about 500.0 micrometers, and more preferably from about 75.0 to about 250.0 micrometers. More preferably, precipitation occurs at a pH ranging from about 3.0 to about 6.5, and preferably from about 3.0 to about 5.0.
- both the shellac and zein particles may cross-link to like particles or to one another to form a matrix, the hydrophobic liquid being microencapsulated within the matrix.
- the hydrophobic liquid is homogeneously dispersed throughout the matrix.
- the matrix further provides a seal for the hydrophobic liquid.
- the acid can be any food grade acid. More preferably, the acid is a weak food grade acid. Further, in a preferred embodiment the acid is citric acid.
- the composition of the enteric matrix material affects the dissolution rate and the protection provided by the enteric matrix. As a result, the rate and amount of acid addition varies based on the enteric matrix materials used.
- the slurry is filtered 500 , washed 600 and dried 700 .
- the slurry is filtered, the resultant slurry cake is then washed and refiltered prior to drying.
- the surface oil on the outer surface of the particulate precipitate is less than about 1.0 percent by weight of the final product.
- a surface oil remover is added after filtering to aid in removing residual surface oil from the precipitate, as described in co-pending application Ser. No. ______, [ATTORNEY DOCKET 94196], filed the same day as this application and which is incorporated herein by reference. Further, the surface oil remover can also be added prior to the refiltering step.
- the precipitate After the precipitate has been filtered and washed, the precipitate is dried to form a powder. Drying can be conducted at room temperature such that the powder has a moisture content of less than about 10.0 percent, more preferably to a moisture content of about 5.0 to about 6.0 percent.
- the powder can be pulverized using known methods to reduce the particle size of the powder precipitate, and then further dried to a moisture content of less than about 5.0 percent by known methods, such as with a fluidized bed dryer.
- the resultant particles have a particle size ranging from about 1.0 to about 1000.0 micrometers, preferably from about 10.0 to about 500.0 micrometers, and more preferably from about 75.0 to about 250.0 micrometers.
- the temperature should be maintained between about 25 C to about 70 C, preferably 35 C to about 60 C, and more preferably between 35 C and 45 C. During other processing steps, it is preferable to maintain the temperature between about 4 C to about 40 C, more preferably 4 C to 30 C, and further preferable from about 15 C to about 28 C.
- the resultant powder can be further processed, such as applying a coating of enteric material around the enteric matrix.
- the enteric coating material can include any food grade enteric polymer.
- An essential oil blend was prepared by blending 8 percent alpha-pinene (liquid), 44 percent para-cymene (liquid), 5 percent linalool (liquid), 25.5 percent Thymol (crystal), and 17.5 percent soybean oil. Mixing in a glass beaker with stirring bar was typically carried out until all of the Thymol crystals are dissolved.
- the emulsion was then subjected to agitation and, while mixing, 2.0 percent citric acid solution was titrated in at slow rate while monitoring the resultant change in pH. Titration continued until the pH reached 4.4, after which SiO2 (AB-D from Pittsburgh Plate Glass Industries) was added (5 g SiO2, in 200 g water, and the slurry was mixed for 15-20 minutes.
- SiO2 ABS-D from Pittsburgh Plate Glass Industries
- the slurry was then filtered by pouring the slurry over a 200 mesh screen with 75 micrometer holes.
- the particulates on the top of the screen were resuspended in 1000 g water with 3.5 g SiO2.
- the slurry was mixed for 30-60 seconds and then re-filtered. The washing was repeated one more time as above, the filtrate was collected, spread on tray and allowed to dry at room temperature for overnight (to a moisture content of between about 5.0 to about 6.0 percent).
- Example 12 kg of water was added to a mixing tank, then 3 kg of 25 percent shellac solution was added and mixed with the water, the whole mixture was adjusted to a pH of about 8.0 by adding 10.0 percent sodium hydroxide solution.
- 5 g of sucrose stearate was added and mixed for 1-2 minutes, and then 400 g of essential oil blend (as described in Example 1) was added slowly.
- the mixture was homogenized as in Example 1 to prepare a stable emulsion.
- the emulsion was then titrated with 2 percent citric acid solution until pH reached 4.4, and then 75 g of SiO2 was added and mixed in for about 20 minutes.
- the slurry was then filtered using a 200 mesh (75 micrometer) screen.
- the filter cake was re-suspended in 20 lb of water with 50 g SiO2, mixed for about 5 minutes, and then re-filtered on a 200 mesh screen.
- the washing was repeated one more time, and the final filter cake was spread on a large tray for overnight drying at room temperature.
- the product was pulverized in a warring blender, and then fluid bed dried at 40 C. Collected powder was sifted through a 35 mesh (500 micrometer) screen. (See FIG. 2 for the compositional analysis).
- zein F4000 from Freeman Industries
- DI water 75 g of zein (F4000 from Freeman Industries) powder and 1200 g of DI water was combined in a large beaker, the zein then dispersed in the water with agitation. Once the zein powder was completely dispersed, 10 percent sodium hydroxide solution was slowly titrated until the pH reached 11.3. At this pH, the zein powder was completely solubilized. Next, 0.7 g of polysorbate 85 was added, agitated for 1-2 minutes, and then 30 g of essential oil blend (as in Example 1) was added. The mixture was homogenized as in Example 1. The emulsion was then titrated with 2 percent citric acid solution (as in Example 1) until pH reached 4.6. The slurry was mixed for 15-20 minutes.
- zein F4000 from Freeman Industries
- Example 1 In a large mixing tank with propeller overhead mixer, kg of water was added in to the tank, and then 10 g of sucrose ester (S-1570 from Mitsubishi Kagaku Corporation, Tokyo, Japan) was dispersed in the tank. 750 g of zein powder was dispersed in, and then 10 percent sodium hydroxide solution was metered in while mixing until pH reached 11.3. The dispersion was mixed until the zein powder was completely dissolved. Next, 400 g of essential oil blend (as in Example 1) was slowly added. Once all the oil was dispersed, the mixture was homogenized for 5 minutes to create an emulsion as in Example 1.
- sucrose ester S-1570 from Mitsubishi Kagaku Corporation, Tokyo, Japan
- the emulsion was then titrated with 2 percent citric acid solution under agitation until pH reached 3.8. The slurry was allowed to mix for an extra 10 minutes. The mixture was transferred into separate containers, allowed to stand for a few minutes so the precipitated particulates could settle at the bottom.
- the supernatant was decanted onto a large 200 mesh screen followed by screening the remaining particulates.
- the filtrate on top of the screen was re-suspended in 9 kg of acidified water (pH 3.5), containing 20 g SiO2, mixed for a few minutes and then decanted and filtered. This washing step was repeated one more time, the rinse water containing 20 g SiO2, after filtering the filter cake was collected, spread thin on a tray and allowed to dry overnight at room temperature.
- the semi-dry powder was pulverized and then fluid bed dried at 40° C to target moisture (less than 5 percent). Final product was sifted through a 35 mesh (500 micrometer) screen. See compositional analysis in FIG. 2 .
- This example is intended to show the release rate and profile of actives from the matrix of the microcapsules from Examples 2, 4, and 5. Release from enteric microcapsule samples was evaluated by sequential simulation in Stomach Simulation Solution (10 mg/ml pepsin, 2 mg/ml NaCl, pH 2.0) for 30 min followed by Small Intestinal Simulation Solution (10 mg/ml pancreatin, 2.4 mg/ml bile salt, pH 6.8) for up to hr at 37 C. Samples were taken at pre-determined time intervals and analyzed for release of individual actives.
- the release profile is different for the three compositions.
- the release continued to have a gradual increase but never reached complete release even after 12 hrs.
- the release can be characterized as having a quicker release rate and higher total release when the matrix is made up of 100 percent zein (about 80 percent of the total pay load is released at the first hour in the intestinal conditions) (see FIG. 4 ).
- the combination of the shellac and zein show a higher rate than 100 percent shellac, but lower than 100 percent zein, and the release seem to be sustained at a slow rate with a maximum after 6 hours.
- the emulsion was then titrated with 3.0 percent citric acid solution to pH 4. Then, 280 g of 10 percent sodium chloride solution was added in, and 15 g Si02 was added and allowed to mix for 30 minutes. The slurry was then filtered and washed similar to that described in example #1. The washed filter cake was spread on a tray to dry overnight, and then further dried in a fluid bed dryer at 40 C, powder was sifted and product passing through 35 mesh (500 micrometers) size was collected. Final moisture was 4.7 percent.
- the release rate is shown in FIG. 6 .
- the initial release through 1 hour was lower than the compositions illustrated in FIGS. 3-5 .
- Linalool acetate 1.2 percent
- White cream filling was prepared by mixing in a Hobart mixer, pre-melted 750 g of San-Trans fat plus 0.5 g of liquid soy lecithin, with confectionary sugar (powder sugar), until smooth and homogeneous. Filling was transferred into a container and cooled down for later use.
- Wafer cracker sheets were purchased from local grocery store. 97.8 g of cream filling was softened by warming up in a microwave oven. To filling, the following was added: 1.46 g of microencapsulated material, 0.15 g citric acid, 0.5 g Lemon oil flavor, one drop of beta-carotene for yellow color. The filling was spread on the cracker sheet (1-2 mm thick), and then another sheet was applied onto the top. The cracker sheet sandwich was then cooled in a refrigerator for about 30 minutes, and then it was cut to different sizes (cracker size). A similar formulation, double and triple layer crackers were also prepared. Other flavor varieties were also evaluated including chocolate and fruit flavors.
- a cracker sandwich with microencapsulated powder incorporated into the filling was prepared as follows:
- Fat portion In a glass beaker, 2000 g of Shortening San-Trans 39 was melted in microwave oven for about 3 minutes until it became a clear liquid, 0.8 g of soy lecithin was added.
- Solid blend portion In a Hobart mixer, the following was dry blended: 100 g lactose, 10 g salt, and 249.4 g Maltodextrin (5 D.E.).
- the melted fat was poured onto the dry blend in the Hobart Mixer, and allowed to mix for at least 5 minutes (to form a homogeneous mix).
- the filling was transferred into a container and used as a stock filling.
- Cracker sandwich 100 g of cheese filling was warmed up in a microwave oven for 30 seconds and to the softened filling, 1.4 g of the microencapsulated material was mixed in, and also various seasoning and flavor blends. 18 g of the filling was sandwiched between two crackers, and allowed to cool down. Different flavor varieties of cracker sandwiches were evaluated including, nacho, taco, Italian herb, and oriental seasoning. Filling was also evaluated with different type of crackers, including Saltine, Ritz and others. When evaluated, the crackers containing microencapsulated essential oil were pleasantly acceptable.
- the emulsion was then titrated with 3% citric acid solution until the pH reached 3.8. Then, 15 g SiO2 (Flo Guard FF, average size of 18 micrometers) was added in and allowed to mix for 30 minutes. The slurry was then filtered by pouring over a filter cloth with ⁇ 5 micrometers holes. The particulates on the filter cloth were then resuspended into 2000 g water containing 0.5 g citric acid, 0.5 g sucrose stearate (S-1570), and 7.5 g SiO2 (Flo Guard FF). The slurry was mixed for 15 minutes and then re-filtered. The washing was repeated one more time as above, then filter cake was collected. The filter cake was then pressed by placing in a 30 micrometers filter bag in a press box and squeezing in a cheese press at 20 psi for 20 minutes to remove more of the water. The press cake moisture was 18.8%.
- the press cake was mixed with 50 g SiO2 (Flo Guard FF) in a 5 quart Hobart mixer with a whip at speed set at 1 for 5 minutes.
- the material from the Hobart mixer was ground in a Fitz Mill Model DA SO6 Comminutor with hammers forward at the highest speed using a 1532-0020 perforated plate.
- the ground material was tumbled using jar tumblers for 60 minutes.
- the batch was then dried in a Uni-Glatt Fluid Bed Dryer at 40° C. for 20 minutes. The dried batch was screened and only particles between 75-250 micrometers were collected.
- Powdered soft drinks such as fruit based type are ideal for the delivery of enteric active compounds for several reasons: 1) The powdered drink can easily be dry blended with microencapsulated material, and provide shelf stability for extended period of time, 2) when reconstituted, the beverage has an acidic pH (similar to stomach pH), no early release, and, therefore, no adverse effect on taste, 3) Beverages are typically consumed within a very short period of time.
- the orange type powdered beverage was sweetened with sugar and artificial sweetener and was dry blended with the microencapsulated essential oil from example #10.
- 0.35 g of Carboxy methyl celluolose (CMC 7HXF) was added to the dry blend to provide extra viscosity and better suspendability.
- the dry blend was reconstituted into 200 ml of cold water.
- the beverage was tasted after 5 & 60 minutes after reconstitution by an informal sensory panel. Testing by a sensory panel demonstrated successful masking of the essential oil blend in the orange type beverage.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Birds (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Zoology (AREA)
- Botany (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymers & Plastics (AREA)
- Insects & Arthropods (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Alternative & Traditional Medicine (AREA)
- General Preparation And Processing Of Foods (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Hydrophobic liquids are microencapsulated by an enteric matrix in an environment substantially free of organic solvents, the process including forming an emulsion of the enteric material and hydrophobic liquid in water, the emulsion titrated with an acid to form a particulate precipitate of the microencapsulated hydrophobic liquid in an enteric matrix.
Description
- The present application relates to methods for microencapsulating a hydrophobic liquid with an enteric matrix without use of organic solvents. More particularly, the hydrophobic liquid is microencapsulated in an aqueous environment.
- Enteric delivery of active materials in food delivery applications has been limited. Enteric delivery systems are commonly utilized when the active materials or medicants are known to be sensitive to low pH or have undesirable flavor and/or taste characteristics which cannot be effectively masked by other methods. Generally, enteric delivery is accomplished using tablets and gel capsules. However, those particular delivery methods are not well suited for food applications. In particular, neither tablets nor capsules are sized to be integrated into most existing food products.
- An alternative process for enteric delivery is microencapsulation. Microencapsulation is generally performed using specialized equipment or in an environment including organic solvents. These methods require additional capital expenditures and the use of additional materials, such as the organic solvents, which may or may not be usable in subsequent microencapsulation cycles. As a result, the process of microencapsulation requires investments in both equipment and organic solvent procurement and disposal.
- A method is provided for microencapsulating an active ingredient within an enteric matrix in an aqueous environment and without the use of organic solvents. Microencapsulating in an aqueous environment allows for easier working conditions and reduced organic waste.
- A method is provided for microencapsulating an active ingredient with an enteric matrix. The method includes agitating or mixing a combination of water, an enteric matrix material, and an emulsifier, at a pH that maintains complete dissolution of the enteric polymers being utilized, the combination being substantially free of organic solvents. A hydrophobic liquid is then added to the combination. The hydrophobic liquid and combination is then agitated to create a coarse emulsion, followed by homogenization to create a fine and stable emulsion.
- The emulsion can then be acid titrated under controlled mixing conditions in an amount and a rate effective to form a particulate precipitate. Further, the particulate precipitate can be filtered, washed and dried to form a powder. In one embodiment a surface oil remover can be added to the precipitate after filtering to remove surface oil from the microencapsulated material.
- Further, a composition is provided which includes a hydrophobic liquid and a cross-linked enteric matrix.
-
FIG. 1 illustrates a method for microencapsulating a hydrophobic liquid; -
FIG. 2 is an analysis of the products of Examples 2, 4 and 5; -
FIGS. 3-5 illustrate release rates of the hydrophobic liquid using various enteric matrix materials as discussed in Example 6; and -
FIG. 6 illustrates the release rate of the hydrophobic liquid including esters therein as discussed in Example 7. - A method for microencapsulating a hydrophobic liquid is generally described in
FIG. 1 . - As shown in
FIG. 1 , water, an enteric matrix material and an emulsifier are subjected to agitation until the enteric matrix material and emulsifier are fully dispersed in thewater 100. Generally, the emulsifier and enteric matrix material can be added to the water together or separately, with either being added first. The pH of the dispersion is generally between about 7.2 and 9.0. In some embodiments, a base, such as sodium, ammonium or potassium hydroxide, can be added to the dispersion to raise the pH to a range from about 7.1 to about 12.0 to guarantee and maintain complete dissolution of the enteric polymers without the use of organic solvents - As used herein, “agitation” or “agitated” refers to the use of a top entering mixer with impeller or a rotor/stator mixing device operating at a speed of less than 10,000 RPM.
- As used herein, “substantially free of organic solvent” refers to an amount of added organic solvent, such as isopropanol or ethanol or any other organic solvent less than the amount required to enable solubility of the enteric material under the processing conditions. Preferably, the amount of added organic solvent is less than about 0.1 percent by weight of the combination of water, emulsifier and enteric material.
- In one embodiment, the water is deionized water.
- The enteric matrix material used herein is any food grade enteric polymer, of a combination or two or more food grade enteric polymers. Preferably, the enteric matrix material is either shellac or zein or a combination thereof. As discussed below, the ratio of shellac to zein can be predetermined to achieve the desired release rate after ingestion, with a decreased release rate corresponding with an increased ratio of shellac to zein. The shellac can commercially be provided as an alakaline (pH>7) aqueous solution, such as a water-based solution having a solid content of about 25 percent by weight or it can be prepared from commercially available refined, bleached and dewaxed shellac powder. The shellac dilution is substantially free of organic solvent, although it may contain trace amounts of organic solvents, such as isopropyl alcohol (such as can be included in commercial products), to act as a carrier for other ingredients in the shellac solution, such as methyl and propyl parabens. Preferably, the prepared shellac solution does not contain any organic solvents.
- Preferably, the enteric matrix material comprises a combination of shellac and zein, with zein comprising at least about 5.0 percent of the enteric matrix material by dry weight. Due to differences in hydration and solubility of zein and shellac, particularly the solubility at varying pHs and rates of hydration and solubility, different ratios of shellac to zein provide different enteric dissolution properties as well as differing degrees of core material protection in the final product, such as beverages.
- The emulsifier described herein is any food grade emulsifier. In preferred embodiments, the emulsifier is polysorbate, polyglycerol ester, sucrose stearate, sucrose esters, proteins, lecithins or combinations thereof.
- Generally, water comprises about 50.0 percent to about 95.0 percent of the dispersion by weight and preferably from about 70.0 to about 95.0 percent, and more preferably from about 80.0 to about 90.0 percent. The emulsifier generally comprises less than about 5.0 percent of the dispersion by weight, preferably from about 0.01 to about 1.0 percent by weight, and more preferably about 0.01 to about 0.1 percent by weight of the dispersion. The zein, shellac or combinations thereof ranges from about 1.0 percent to about 10.0 percent by weight, preferably from about 4.0 to about 9.0 percent, and more preferably from about 5.0 percent to about 8.0 percent by weight of the dispersion.
- Upon forming the dispersion, a hydrophobic liquid is added 200 and agitated to provide a coarse emulsion having a droplet size of more than about 10 micrometers. After the coarse emulsion is formed, the coarse emulsion is subjected to homogenization to create a fine,
stable emulsion 300. The fine, stable emulsion has a droplet size of less than about 10 micrometers. Within the fine emulsion, the hydrophobic liquid is homogeneously dispersed in the form of fine droplets throughout. Preferably, the hydrophobic liquid is added in amount ranging from about 2.0 to about 7.0 percent of the emulsion by weight. More preferably, the hydrophobic liquid is added in an amount ranging from about 3.0 to about 6.0 percent of the emulsion by weight. The emulsion includes from about 60.0 to about 95.0 percent water. - As used herein, “homogenization” or “homogenized” refers to the use of a rotor/stator mixing device operating at a speed greater than 10,000 RPM or a valve homogenizer operating at a pressure of 500-10,000 psi.
- The hydrophobic liquid can comprise any mixture of hydrophobic liquids and solids, such as solids mixed or combined therewith or dissolved or solubilized therein. As an example, hydrophobic liquid can be selected to include materials which are desired to be released in the small intestine rather than the stomach due to pH sensitivity. As an example, the hydrophobic liquid can include compositions described in U.S. Patent Publication No. 2008/0145462 to Enan. For example, the hydrophobic liquid includes 25-35% by weight para-cymene, 1-10% by weight linalool, 1-10% by weight alpha-pinene, 35-45% by weight thymol, and 20-30% by weight soybean oil.
- In particular, the hydrophobic liquid described herein can include an essential oil blend which possesses anti-parasitic properties. In one preferred embodiment, organic compounds are blended with food grade oil, i.e. soybean oil. Further, the organic compounds can include thymol and linalool. In a further preferred embodiment, the organic compounds further include alpha-pinene and para-cymene. As discussed in the examples below, one exemplary blend includes, by weight, about 17.5 percent soybean oil, about 8 percent alpha-pinene (liquid), about 44 percent para-cymene (liquid), about 5 percent linalool (liquid) and about 25.5 percent Thymol (crystal). In an alternative embodiment, the hydrophobic liquid includes esters, such as esters of linalool and thymol, as described in co-pending Application Serial No. (Attorney Docket No. 94198), filed the same day as this application and which is incorporated herein by reference.
- Other suitable examples of a hydrophobic liquid include unsaturated and
polyunsaturated OMEGA 3, other unsaturated and polyunsatured lipids or fatty acids and triglycerides thereof, beta-carotene, and oil soluble vitamins, stomach irritants, or any other hydrophobic materials that are either sensitive to acidic pH conditions or impart strong undesirable taste. - The emulsion is then acid titrated 400. During acid titration the emulsion can be subjected to agitation or homogenization (not high pressure homogenization), preferably agitation. Acid is titrated in an amount effective to decrease the pH below the isoelectric point, such as a pH of about 7.0, causing phase separation and inducing precipitation of the enteric matrix out of solution with the hydrophobic liquid being microencapsulated therein, thus creating a slurry of an aqueous solution and precipitate. The slurry includes a particulate precipitate having a particle size from about 1.0 to about 1000.0 micrometers, preferably about 10.0 to about 500.0 micrometers, and more preferably from about 75.0 to about 250.0 micrometers. More preferably, precipitation occurs at a pH ranging from about 3.0 to about 6.5, and preferably from about 3.0 to about 5.0.
- While not wishing to be limited by theory, it is believed that as the pH of the emulsion drops below the isoelectric point, both the shellac and zein particles may cross-link to like particles or to one another to form a matrix, the hydrophobic liquid being microencapsulated within the matrix. As a result of the cross-linking, the hydrophobic liquid is homogeneously dispersed throughout the matrix. The matrix further provides a seal for the hydrophobic liquid. As a result, the impact of the hydrophobic liquid on the organoleptic qualities of the finished powder is correlated to any hydrophobic liquid remaining adhered to the outer surface of the enteric matrix.
- The acid can be any food grade acid. More preferably, the acid is a weak food grade acid. Further, in a preferred embodiment the acid is citric acid.
- As noted above, the composition of the enteric matrix material affects the dissolution rate and the protection provided by the enteric matrix. As a result, the rate and amount of acid addition varies based on the enteric matrix materials used.
- To reclaim the precipitate, the slurry is filtered 500, washed 600 and dried 700. In one embodiment, the slurry is filtered, the resultant slurry cake is then washed and refiltered prior to drying. Preferably, the surface oil on the outer surface of the particulate precipitate is less than about 1.0 percent by weight of the final product.
- In a preferable embodiment, a surface oil remover is added after filtering to aid in removing residual surface oil from the precipitate, as described in co-pending application Ser. No. ______, [ATTORNEY DOCKET 94196], filed the same day as this application and which is incorporated herein by reference. Further, the surface oil remover can also be added prior to the refiltering step.
- After the precipitate has been filtered and washed, the precipitate is dried to form a powder. Drying can be conducted at room temperature such that the powder has a moisture content of less than about 10.0 percent, more preferably to a moisture content of about 5.0 to about 6.0 percent.
- Further, the powder can be pulverized using known methods to reduce the particle size of the powder precipitate, and then further dried to a moisture content of less than about 5.0 percent by known methods, such as with a fluidized bed dryer. The resultant particles have a particle size ranging from about 1.0 to about 1000.0 micrometers, preferably from about 10.0 to about 500.0 micrometers, and more preferably from about 75.0 to about 250.0 micrometers.
- When drying the powder, the temperature should be maintained between about 25 C to about 70 C, preferably 35 C to about 60 C, and more preferably between 35 C and 45 C. During other processing steps, it is preferable to maintain the temperature between about 4 C to about 40 C, more preferably 4 C to 30 C, and further preferable from about 15 C to about 28 C.
- The resultant powder can be further processed, such as applying a coating of enteric material around the enteric matrix. The enteric coating material can include any food grade enteric polymer.
-
EXAMPLE # 1 - An essential oil blend was prepared by blending 8 percent alpha-pinene (liquid), 44 percent para-cymene (liquid), 5 percent linalool (liquid), 25.5 percent Thymol (crystal), and 17.5 percent soybean oil. Mixing in a glass beaker with stirring bar was typically carried out until all of the Thymol crystals are dissolved.
- In a large beaker the following steps were carried out in the order specified: 1200 g of deionized (DI) water was added to the beaker, and then 300 g of the stock solution of percent shellac (MarCoat solution from Emerson Resources Inc.) was mixed in under agitated conditions such that the pH of solution ranges from about 7.2 to about 9.0. While agitating, 0.8 g of polysorbate 85 was added and mixed for 1-2 minutes for full dispersion. Next, 35 g of essential oil blend was slowly added under agitated conditions to form a coarse emulsion. Once the whole amount of oil was dispersed, the mix was homogenized at 12500 rpm for 5 minutes using Fisher Scientific PowerGen 700D Homogenizing System with 200 mm×25 mm Generator.
- The emulsion was then subjected to agitation and, while mixing, 2.0 percent citric acid solution was titrated in at slow rate while monitoring the resultant change in pH. Titration continued until the pH reached 4.4, after which SiO2 (AB-D from Pittsburgh Plate Glass Industries) was added (5 g SiO2, in 200 g water, and the slurry was mixed for 15-20 minutes.
- The slurry was then filtered by pouring the slurry over a 200 mesh screen with 75 micrometer holes. The particulates on the top of the screen were resuspended in 1000 g water with 3.5 g SiO2. The slurry was mixed for 30-60 seconds and then re-filtered. The washing was repeated one more time as above, the filtrate was collected, spread on tray and allowed to dry at room temperature for overnight (to a moisture content of between about 5.0 to about 6.0 percent).
- A sample was analyzed for percent Payload of each component and total.
- Results: Total payload=17.5 percent
- Alpha-pinene=0.7 percent
- Para-cymene=3.2 percent
- Linalool=1.0 percent
- Thymol=7.0 percent
- Soybean oil=5.6 percent
- 12 kg of water was added to a mixing tank, then 3 kg of 25 percent shellac solution was added and mixed with the water, the whole mixture was adjusted to a pH of about 8.0 by adding 10.0 percent sodium hydroxide solution. 5 g of sucrose stearate was added and mixed for 1-2 minutes, and then 400 g of essential oil blend (as described in Example 1) was added slowly. The mixture was homogenized as in Example 1 to prepare a stable emulsion.
- The emulsion was then titrated with 2 percent citric acid solution until pH reached 4.4, and then 75 g of SiO2 was added and mixed in for about 20 minutes. The slurry was then filtered using a 200 mesh (75 micrometer) screen. The filter cake was re-suspended in 20 lb of water with 50 g SiO2, mixed for about 5 minutes, and then re-filtered on a 200 mesh screen. The washing was repeated one more time, and the final filter cake was spread on a large tray for overnight drying at room temperature. The next day, the product was pulverized in a warring blender, and then fluid bed dried at 40 C. Collected powder was sifted through a 35 mesh (500 micrometer) screen. (See
FIG. 2 for the compositional analysis). - 75 g of zein (F4000 from Freeman Industries) powder and 1200 g of DI water was combined in a large beaker, the zein then dispersed in the water with agitation. Once the zein powder was completely dispersed, 10 percent sodium hydroxide solution was slowly titrated until the pH reached 11.3. At this pH, the zein powder was completely solubilized. Next, 0.7 g of polysorbate 85 was added, agitated for 1-2 minutes, and then 30 g of essential oil blend (as in Example 1) was added. The mixture was homogenized as in Example 1. The emulsion was then titrated with 2 percent citric acid solution (as in Example 1) until pH reached 4.6. The slurry was mixed for 15-20 minutes.
- Filtering and washing was conducted as in
example # 1, except no SiO2 added. Filtrate was collected and dried on a tray at room temperature for overnight. Sample was analyzed for percent payload of each component and total. - Results: Total payload=19 percent
- Alpha-pinene=0.9 percent
- Para-cymene=4.1 percent
- Linalool=0.9 percent
- Thymol=6.5 percent
- Soybean oil=6.7 percent
- In a large mixing tank with propeller overhead mixer, kg of water was added in to the tank, and then 10 g of sucrose ester (S-1570 from Mitsubishi Kagaku Corporation, Tokyo, Japan) was dispersed in the tank. 750 g of zein powder was dispersed in, and then 10 percent sodium hydroxide solution was metered in while mixing until pH reached 11.3. The dispersion was mixed until the zein powder was completely dissolved. Next, 400 g of essential oil blend (as in Example 1) was slowly added. Once all the oil was dispersed, the mixture was homogenized for 5 minutes to create an emulsion as in Example 1.
- The emulsion was then titrated with 2 percent citric acid solution under agitation until pH reached 3.8. The slurry was allowed to mix for an extra 10 minutes. The mixture was transferred into separate containers, allowed to stand for a few minutes so the precipitated particulates could settle at the bottom.
- The supernatant was decanted onto a large 200 mesh screen followed by screening the remaining particulates. The filtrate on top of the screen was re-suspended in 9 kg of acidified water (pH 3.5), containing 20 g SiO2, mixed for a few minutes and then decanted and filtered. This washing step was repeated one more time, the rinse water containing 20 g SiO2, after filtering the filter cake was collected, spread thin on a tray and allowed to dry overnight at room temperature. The semi-dry powder was pulverized and then fluid bed dried at 40° C to target moisture (less than 5 percent). Final product was sifted through a 35 mesh (500 micrometer) screen. See compositional analysis in
FIG. 2 . - Similar to example 4, 12 kg of water was added to a mixing tank, 7.5 g of sucrose stearate (S-1570) was added and mixed for 1-2 minutes. Then 2.25 kg of 25 percent shellac solution was added, followed by 187.5 g zein powder. 10 percent sodium hydroxide was metered in until pH reached 11.3 (to solubilize zein). Once the zein powder was completely in solution, 400 g of essential oil blend (as described in Example 1) was added. The mixture was homogenized as in Example 1, and then the emulsion was titrated to pH 3.9 with citric acid solution. 75 g of SiO2 (Flow Guard AB-D) was added and mixed for about 20-30 minutes. Filtering, washing, and drying processes were carried out in a similar fashion as described in example 4. Final powder was sifted through 35 mesh (500 micrometer) screen. See
FIG. 2 for compositional analysis. - This example is intended to show the release rate and profile of actives from the matrix of the microcapsules from Examples 2, 4, and 5. Release from enteric microcapsule samples was evaluated by sequential simulation in Stomach Simulation Solution (10 mg/ml pepsin, 2 mg/ml NaCl, pH 2.0) for 30 min followed by Small Intestinal Simulation Solution (10 mg/ml pancreatin, 2.4 mg/ml bile salt, pH 6.8) for up to hr at 37 C. Samples were taken at pre-determined time intervals and analyzed for release of individual actives.
- The release profile is different for the three compositions. When the matrix was made up of 100 percent shellac (as seen in
FIG. 3 ), the release continued to have a gradual increase but never reached complete release even after 12 hrs. On the other hand, the release can be characterized as having a quicker release rate and higher total release when the matrix is made up of 100 percent zein (about 80 percent of the total pay load is released at the first hour in the intestinal conditions) (seeFIG. 4 ). The combination of the shellac and zein (SeeFIG. 5 ) show a higher rate than 100 percent shellac, but lower than 100 percent zein, and the release seem to be sustained at a slow rate with a maximum after 6 hours. - In a beaker, 2400 g of water was added and then, with agitated mixing, 7.5 g of zein powder was dispersed in the water. 10 percent sodium hydroxide solution was metered into the dispersion until pH reached 11.3 (to solubilize the zein powder). Next, 570 g of 25 percent shellac solution and 1.0 g sucrose stearate (S-1570) were added, followed by 70 g essential oil blend (18.8 percent canola oil, 8.6 percent alpha-pinene, 39.8 percent para-cymene, 5.4 percent Linalool acetate, 27.4 percent Thymol acetate), which was added slowly to the mix. The emulsion was then homogenized (as in Example 1) using a Fisher Scientific PowerGen 700D Homogenizing System with 200 mm×25 mm Generator at 15000 rpm for 4 minutes, then at 20000 rpm for 1 minute.
- The emulsion was then titrated with 3.0 percent citric acid solution to
pH 4. Then, 280 g of 10 percent sodium chloride solution was added in, and 15 g Si02 was added and allowed to mix for 30 minutes. The slurry was then filtered and washed similar to that described inexample # 1. The washed filter cake was spread on a tray to dry overnight, and then further dried in a fluid bed dryer at 40 C, powder was sifted and product passing through 35 mesh (500 micrometers) size was collected. Final moisture was 4.7 percent. - The release rate is shown in
FIG. 6 . In particular, while the overall release of the essential oil composition was not as high as inFIGS. 3-5 , the initial release (through 1 hour) was lower than the compositions illustrated inFIGS. 3-5 . - Analysis:
- Total payload=18.3 percent
- Alpha-pinene=0.9 percent
- Para-cymene=3.8 percent
- Linalool acetate=1.2 percent
- Thymol acetate=6.6 percent
- Canola oil=5.8 percent
- White cream filling was prepared by mixing in a Hobart mixer, pre-melted 750 g of San-Trans fat plus 0.5 g of liquid soy lecithin, with confectionary sugar (powder sugar), until smooth and homogeneous. Filling was transferred into a container and cooled down for later use.
- Wafer cracker sheets were purchased from local grocery store. 97.8 g of cream filling was softened by warming up in a microwave oven. To filling, the following was added: 1.46 g of microencapsulated material, 0.15 g citric acid, 0.5 g Lemon oil flavor, one drop of beta-carotene for yellow color. The filling was spread on the cracker sheet (1-2 mm thick), and then another sheet was applied onto the top. The cracker sheet sandwich was then cooled in a refrigerator for about 30 minutes, and then it was cut to different sizes (cracker size). A similar formulation, double and triple layer crackers were also prepared. Other flavor varieties were also evaluated including chocolate and fruit flavors.
- A cracker sandwich with microencapsulated powder incorporated into the filling was prepared as follows:
- Filling:
- 1) Fat portion: In a glass beaker, 2000 g of Shortening San-Trans 39 was melted in microwave oven for about 3 minutes until it became a clear liquid, 0.8 g of soy lecithin was added.
- 2) Solid blend portion: In a Hobart mixer, the following was dry blended: 100 g lactose, 10 g salt, and 249.4 g Maltodextrin (5 D.E.).
- The melted fat was poured onto the dry blend in the Hobart Mixer, and allowed to mix for at least 5 minutes (to form a homogeneous mix). The filling was transferred into a container and used as a stock filling. Cracker sandwich: 100 g of cheese filling was warmed up in a microwave oven for 30 seconds and to the softened filling, 1.4 g of the microencapsulated material was mixed in, and also various seasoning and flavor blends. 18 g of the filling was sandwiched between two crackers, and allowed to cool down. Different flavor varieties of cracker sandwiches were evaluated including, nacho, taco, Italian herb, and oriental seasoning. Filling was also evaluated with different type of crackers, including Saltine, Ritz and others. When evaluated, the crackers containing microencapsulated essential oil were pleasantly acceptable.
- In a beaker, 2400 g of water was added in and then with overhead low shear mixing, 37.5 g of zein powder was dispersed in. 10% sodium hydroxide solution was metered in until pH reached 11.3 (to solubilize the zein powder). 450 g of 25% shellac solution was added in. 1.4 g sucrose stearate (S-1570) was added in, and then 80 g essential oil blend (13% canola oil, 10% alpha-pinene, 25% Para-cymene, 12% Linalyl acetate, 40% Thymol acetate) was added slowly to the mix. The emulsion was then homogenized using an IKA Works T25 Basic Ultra Turrex with 200 mm×20 mm Generator at 17,500 rpm for 1 minute, then at 24,000 rpm for 5 minutes.
- The emulsion was then titrated with 3% citric acid solution until the pH reached 3.8. Then, 15 g SiO2 (Flo Guard FF, average size of 18 micrometers) was added in and allowed to mix for 30 minutes. The slurry was then filtered by pouring over a filter cloth with <5 micrometers holes. The particulates on the filter cloth were then resuspended into 2000 g water containing 0.5 g citric acid, 0.5 g sucrose stearate (S-1570), and 7.5 g SiO2 (Flo Guard FF). The slurry was mixed for 15 minutes and then re-filtered. The washing was repeated one more time as above, then filter cake was collected. The filter cake was then pressed by placing in a 30 micrometers filter bag in a press box and squeezing in a cheese press at 20 psi for 20 minutes to remove more of the water. The press cake moisture was 18.8%.
- The press cake was mixed with 50 g SiO2 (Flo Guard FF) in a 5 quart Hobart mixer with a whip at speed set at 1 for 5 minutes. The material from the Hobart mixer was ground in a Fitz Mill Model DA SO6 Comminutor with hammers forward at the highest speed using a 1532-0020 perforated plate. The ground material was tumbled using jar tumblers for 60 minutes. The batch was then dried in a Uni-Glatt Fluid Bed Dryer at 40° C. for 20 minutes. The dried batch was screened and only particles between 75-250 micrometers were collected.
-
% alpha- % para- % Linalyl % Thymyl Pinene Cymene acetate acetate Total Total 0.84 2.70 1.50 6.40 11.44 Loading Surface <0.001 0.007 0.003 0.021 0.031 Oils - Fruit flavored powdered beverages were purchased from a supermarket, and both orange and mango type were used to prepare a low pH powdered soft drink. Powdered soft drinks such as fruit based type are ideal for the delivery of enteric active compounds for several reasons: 1) The powdered drink can easily be dry blended with microencapsulated material, and provide shelf stability for extended period of time, 2) when reconstituted, the beverage has an acidic pH (similar to stomach pH), no early release, and, therefore, no adverse effect on taste, 3) Beverages are typically consumed within a very short period of time.
- The orange type powdered beverage was sweetened with sugar and artificial sweetener and was dry blended with the microencapsulated essential oil from
example # 10. A single serve portion, such as about 7 g of orange powder, was dry blended with 0.48 g of microencapsulated powder (active payload=11.44 percent), the amount selected to provide the desired functional benefit of the microencapsulated hydrophobic liquid. Additionally 0.35 g of Carboxy methyl celluolose (CMC 7HXF) was added to the dry blend to provide extra viscosity and better suspendability. The dry blend was reconstituted into 200 ml of cold water. The beverage was tasted after 5 & 60 minutes after reconstitution by an informal sensory panel. Testing by a sensory panel demonstrated successful masking of the essential oil blend in the orange type beverage. - A similar evaluation was made with mango type beverage with similar results.
- While the invention has been particularly described with specific reference to particular process and product embodiments, it will be appreciated that various alterations, modifications, and adaptations may be based on the present disclosure, and are intended to be within the spirit and scope of the invention as defined by the following claims.
Claims (17)
1.-30. (canceled)
31. A composition comprising:
a hydrophobic liquid; and
an enteric matrix configured to microencapsulate the hydrophobic liquid therein, wherein the hydrophobic liquid is dispersed throughout the enteric matrix.
32. The composition of claim 31 wherein the microencapsulated hydrophobic liquid comprises a dry powder.
33. The composition of claim 31 wherein the enteric matrix comprises shellac.
34. The composition of claim 31 wherein the enteric matrix comprises zein.
35. The composition of claim 31 wherein the microencapsulated hydrophobic liquid is coated with an enteric material.
36. The composition of claim 31 wherein the enteric matrix comprises a combination of shellac and zein.
37. The composition of claim 36 wherein the ratio of shellac to zein ranges from about 20:1 to 1:20.
38. The composition of claim 37 wherein the ratio is selected to provide a desired release rate.
39. The composition of claim 37 wherein ratio of shellac to zein is 3:1.
40. The composition of claim 31 wherein the hydrophobic liquid comprises at least one essential oil.
41. The composition of claim 31 having a particle size ranging from about 1.0 to about 1000.0 micrometers.
42. The composition of claim 41 wherein the particle size range from about 10.0 to about 500.0 micrometers.
43. The composition of claim 42 wherein the particle size range from about 75.0 to about 250.0 micrometers.
44. The composition of claim 31 wherein the hydrophobic liquid comprises from about 25.0 to about 35.0 percent by weight para-cymene, from about 1.0 to about 10.0 percent by weight linalool, from about 1.0 to about 10.0 percent by weight alpha-pinene, from about 35.0 to about 45.0 percent by weight thymol, and from about 20.0 to about 30.0 percent by weight soybean oil.
45. The composition of claim 31 having a payload ranging from about 5.0 to about 35.0 percent.
46. The composition of claim 31 including less than about 1.0 percent by weight surface oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/285,108 US20140255501A1 (en) | 2009-06-05 | 2014-05-22 | Novel Preparation Of An Enteric Release System |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/479,454 US20100310726A1 (en) | 2009-06-05 | 2009-06-05 | Novel Preparation of an Enteric Release System |
US13/475,645 US8765030B2 (en) | 2009-06-05 | 2012-05-18 | Preparation of an enteric release system |
US14/285,108 US20140255501A1 (en) | 2009-06-05 | 2014-05-22 | Novel Preparation Of An Enteric Release System |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/475,645 Division US8765030B2 (en) | 2009-06-05 | 2012-05-18 | Preparation of an enteric release system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140255501A1 true US20140255501A1 (en) | 2014-09-11 |
Family
ID=42668066
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/479,454 Abandoned US20100310726A1 (en) | 2009-06-05 | 2009-06-05 | Novel Preparation of an Enteric Release System |
US13/475,645 Active US8765030B2 (en) | 2009-06-05 | 2012-05-18 | Preparation of an enteric release system |
US14/285,108 Abandoned US20140255501A1 (en) | 2009-06-05 | 2014-05-22 | Novel Preparation Of An Enteric Release System |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/479,454 Abandoned US20100310726A1 (en) | 2009-06-05 | 2009-06-05 | Novel Preparation of an Enteric Release System |
US13/475,645 Active US8765030B2 (en) | 2009-06-05 | 2012-05-18 | Preparation of an enteric release system |
Country Status (14)
Country | Link |
---|---|
US (3) | US20100310726A1 (en) |
EP (1) | EP2266545B1 (en) |
JP (1) | JP2011036239A (en) |
KR (1) | KR20100131369A (en) |
CN (1) | CN101904493A (en) |
AU (1) | AU2010202292A1 (en) |
BR (1) | BRPI1004263A2 (en) |
CA (1) | CA2705629A1 (en) |
IL (1) | IL205979A0 (en) |
MX (1) | MX2010006145A (en) |
MY (1) | MY155720A (en) |
NZ (1) | NZ585725A (en) |
RU (1) | RU2534573C2 (en) |
ZA (1) | ZA201003846B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100310726A1 (en) | 2009-06-05 | 2010-12-09 | Kraft Foods Global Brands Llc | Novel Preparation of an Enteric Release System |
US9968564B2 (en) | 2009-06-05 | 2018-05-15 | Intercontinental Great Brands Llc | Delivery of functional compounds |
US8859003B2 (en) * | 2009-06-05 | 2014-10-14 | Intercontinental Great Brands Llc | Preparation of an enteric release system |
US20100307542A1 (en) * | 2009-06-05 | 2010-12-09 | Kraft Foods Global Brands Llc | Method of Reducing Surface Oil on Encapsulated Material |
JP2014501103A (en) * | 2010-12-13 | 2014-01-20 | インターコンチネンタル グレート ブランヅ リミテッド ライアビリティ カンパニー | Delivery of functional compounds |
US8859005B2 (en) | 2012-12-03 | 2014-10-14 | Intercontinental Great Brands Llc | Enteric delivery of functional ingredients suitable for hot comestible applications |
US20160192674A1 (en) * | 2013-09-12 | 2016-07-07 | Intercontinental Great Brands Llc | Chewing gum composition comprising a micro-encapsulated flavour in a matrix comprising protein |
EP3174828A4 (en) | 2014-07-31 | 2018-01-17 | Amorphical Ltd. | Non-aqueous liquid and semi-solid formulations of amorphous calcium carbonate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116206A (en) * | 1961-12-22 | 1963-12-31 | Ncr Co | Encapsulation process and its product |
US6608017B1 (en) * | 1999-07-20 | 2003-08-19 | Procter & Gamble Company | Encapsulated oil particles |
US20080145462A1 (en) * | 2006-06-27 | 2008-06-19 | Essam Enan | Compositions and methods for treating parasitic infections |
US20110020520A1 (en) * | 2005-10-31 | 2011-01-27 | General Mills Ip Holdings Ii Llc. | Encapsulation of readily oxidizable components |
Family Cites Families (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3010953A (en) | 1961-11-28 | Certification of correction | ||
US2464204A (en) | 1946-06-28 | 1949-03-15 | Baker Irvin | Method and means for removing oil and oily substances from solid or water surfaces |
US2727833A (en) | 1950-11-03 | 1955-12-20 | American Cyanamid Co | Capsule finishing process |
NL246986A (en) | 1959-01-02 | 1900-01-01 | ||
JPS5312473B1 (en) | 1971-05-24 | 1978-05-01 | ||
JPS5210427B2 (en) | 1972-07-19 | 1977-03-24 | ||
SU447163A1 (en) * | 1972-12-22 | 1974-10-25 | Институт Физической Химии Ан Ссср | Micro-insulating method of water-miscible liquids |
JPS52152876A (en) | 1976-06-15 | 1977-12-19 | Fuji Photo Film Co Ltd | Production of oil-containing microcapsule |
US4518458A (en) | 1982-09-17 | 1985-05-21 | Hanover Research Corporation | Process for removing light oil from solids |
EP0136315B1 (en) * | 1983-02-18 | 1989-07-26 | Wm. Wrigley Jr. Company | Shellac encapsulant for active ingredients in chewing gum |
US4601863A (en) | 1984-02-09 | 1986-07-22 | Kanzaki Paper Manufacturing Co., Ltd. | Process for producing powder of microcapsules |
US4702798A (en) | 1984-12-19 | 1987-10-27 | Hanover Research Corporation | Process for recovering dry solids from aqueous solids mixtures |
JPS62129141A (en) | 1985-11-29 | 1987-06-11 | Fuji Photo Film Co Ltd | Preparation of microcapsule |
FR2608456B1 (en) | 1986-12-18 | 1993-06-18 | Mero Rousselot Satia | MICROCAPSULES BASED ON GELATIN AND POLYSACCHARIDES AND PROCESS FOR OBTAINING THEM |
JPS63268777A (en) | 1987-04-25 | 1988-11-07 | Kanzaki Paper Mfg Co Ltd | Microencapsulated ink composition |
US4895725A (en) | 1987-08-24 | 1990-01-23 | Clinical Technologies Associates, Inc. | Microencapsulation of fish oil |
US5051305A (en) | 1988-12-30 | 1991-09-24 | Arcade, Inc. | Stabilized perfume-containing microcapsules and method of preparing the same |
AU642932B2 (en) * | 1989-11-06 | 1993-11-04 | Alkermes Controlled Therapeutics, Inc. | Protein microspheres and methods of using them |
JP2653255B2 (en) * | 1990-02-13 | 1997-09-17 | 武田薬品工業株式会社 | Long-term sustained release microcapsules |
MY107937A (en) | 1990-02-13 | 1996-06-29 | Takeda Chemical Industries Ltd | Prolonged release microcapsules. |
US5146758A (en) | 1991-03-04 | 1992-09-15 | Herman Norman L | Process of producing soft elastic gelatin capsules |
JPH04330934A (en) | 1991-05-02 | 1992-11-18 | Tokai Carbon Co Ltd | Carbon-based oil absorbing material and solid fuel |
JP2964181B2 (en) | 1991-07-11 | 1999-10-18 | 花王株式会社 | Bath composition |
US5164210A (en) | 1991-10-08 | 1992-11-17 | Wm. Wrigley Jr. Company | Zein/shellac encapsulation of high intensity sweeteners in chewing gum |
US5160742A (en) | 1991-12-31 | 1992-11-03 | Abbott Laboratories | System for delivering an active substance for sustained release |
US5324718A (en) | 1992-07-14 | 1994-06-28 | Thorsteinn Loftsson | Cyclodextrin/drug complexation |
US5643595A (en) | 1992-11-24 | 1997-07-01 | Alkermes Controlled Therapeutics Inc. Ii | Growth promoters for animals |
MY111234A (en) | 1993-09-06 | 1999-09-30 | Merpro Tortek Ltd | Liquid / solid separation. |
JPH0826930A (en) | 1994-07-11 | 1996-01-30 | Kanebo Ltd | Solid type makeup cosmetic |
US5601760A (en) | 1994-09-01 | 1997-02-11 | The Regents Of The University Of California, A California Corporation | Milk derived whey protein-based microencapsulating agents and a method of use |
US20050054682A1 (en) | 1996-01-04 | 2005-03-10 | Phillips Jeffrey O. | Pharmaceutical compositions comprising substituted benzimidazoles and methods of using same |
EP0827997B1 (en) | 1996-03-21 | 2003-12-03 | Nippon Shokubai Co., Ltd. | Production method of thermal storage materials |
JP3881699B2 (en) | 1996-10-09 | 2007-02-14 | ジボーダン―ルール(アンテルナシヨナル)ソシエテ アノニム | Method for producing beads as food additive |
JPH10273650A (en) | 1997-01-31 | 1998-10-13 | Kiyoueishiya:Kk | Treatment of oil to be treated and solid fuel |
US20020173522A1 (en) | 1997-03-26 | 2002-11-21 | Redmon Martin P. | Pharmaceutical compositions comprising norastemizole |
EP1721605A1 (en) | 1997-10-14 | 2006-11-15 | Boehringer Ingelheim Pharmaceuticals, Inc. | Methods of treating capsules and dry, powdered pharmaceutical formulations |
US5958388A (en) | 1997-10-29 | 1999-09-28 | Franks; James W. | Material and method for removing sebum from human skin |
US6541606B2 (en) | 1997-12-31 | 2003-04-01 | Altus Biologics Inc. | Stabilized protein crystals formulations containing them and methods of making them |
US6143170A (en) | 1998-01-27 | 2000-11-07 | Briggs; David L. | Oil recovery system |
DE19858253A1 (en) | 1998-12-17 | 2000-06-21 | Aventis Pharma Gmbh | Use of KQt1 channel inhibitors for the manufacture of a medicament for the treatment of diseases caused by helminths and ectoparasites |
US20020164397A1 (en) * | 1998-12-18 | 2002-11-07 | Subbarao V. Ponakala | N-[n-(3, 3-dimethylbutyl)-l-alpha-aspartyl]-l-phenylalanine 1-methyl ester as a sweetener in chewing gum |
US6248363B1 (en) * | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
DE19920816A1 (en) | 1999-05-05 | 2000-11-09 | Aventis Pharma Gmbh | Cephaibole, new antiparasitic drugs from Acremonium tubakii, process for their manufacture and use thereof |
EP1202716A1 (en) | 1999-08-17 | 2002-05-08 | Novartis Consumer Health S.A. | Rapidly dissolving dosage form and process for making same |
US6414036B1 (en) | 1999-09-01 | 2002-07-02 | Van Beek Global/Ninkov Llc | Composition for treatment of infections of humans and animals |
EP1112740A1 (en) | 1999-12-30 | 2001-07-04 | Greither, Peter | Use of a water-soluble composition comprising polyglycerine |
FR2814380B1 (en) | 2000-09-25 | 2002-11-08 | Serobiologiques Lab Sa | MICROCAPSULES POWDER AND PROCESS FOR OBTAINING |
GB0027047D0 (en) | 2000-11-06 | 2000-12-20 | Ici Plc | Process for reducing the concentration of undesired compounds in a composition |
JP2004513153A (en) * | 2000-11-09 | 2004-04-30 | イェルク・ペーター・シューア | Drug containing a bactericidal composition containing GRAS flavor or derivative thereof |
AU9133401A (en) | 2000-11-28 | 2002-05-30 | Rohm And Haas Company | Hydrophobic absorbing polymers and process |
DE60134421D1 (en) | 2000-12-08 | 2008-07-24 | Coley Pharmaceuticals Gmbh | CPG-ART NUCLEIC ACIDS AND METHOD FOR THEIR USE |
WO2002068335A2 (en) | 2001-02-27 | 2002-09-06 | Council Of Scientific And Industrial Research | Essential oil composition for potable water disinfection |
WO2002067874A1 (en) | 2001-02-28 | 2002-09-06 | Kao Corporation | Cosmetics |
WO2002097142A1 (en) | 2001-05-30 | 2002-12-05 | Nippon Steel Corporation | Device and method for treating oil-adhered particles |
JP2003012526A (en) * | 2001-06-27 | 2003-01-15 | Sunstar Inc | Pharmaceutical preparation including useful live bacterium |
TW200300140A (en) | 2001-11-14 | 2003-05-16 | Novartis Ag | Organic compounds |
DE10164110A1 (en) | 2001-12-24 | 2003-07-10 | Dragoco Gerberding Co Ag | Mononuclear filled microcapsules |
US20050100640A1 (en) * | 2002-02-11 | 2005-05-12 | Pearce Tony M. | Microcapsule edibles |
DE60333903D1 (en) | 2002-02-20 | 2010-10-07 | Ninkov Dusan | ANTIMICROBIAL THERAPEUTIC COMPOSITIONS AND THEIR USE |
US20030175403A1 (en) | 2002-03-14 | 2003-09-18 | Gurin Michael H. | Potentiated bioactive additives and method of use |
US20030225003A1 (en) | 2002-04-18 | 2003-12-04 | Dusan Ninkov | Antimicrobial therapeutic compositions for oral and topical use |
US20030228369A1 (en) * | 2002-05-06 | 2003-12-11 | Kuhrts Eric Hauser | Process for conversion of high viscosity fluids and compositions thereof |
JP4312423B2 (en) * | 2002-06-14 | 2009-08-12 | ピジョン株式会社 | Enteric capsule |
CA2491572C (en) * | 2002-07-05 | 2010-03-23 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US6653288B1 (en) | 2002-09-30 | 2003-11-25 | Virbac S.A. | Injectable anthelmintic compositions and methods for using same |
US7670627B2 (en) * | 2002-12-09 | 2010-03-02 | Salvona Ip Llc | pH triggered targeted controlled release systems for the delivery of pharmaceutical active ingredients |
EP1585592A1 (en) | 2002-12-18 | 2005-10-19 | Unilever N.V. | Complex coacervate encapsulate comprising lipophilic core |
US20040121003A1 (en) * | 2002-12-19 | 2004-06-24 | Acusphere, Inc. | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
US20050287276A1 (en) * | 2003-01-22 | 2005-12-29 | Durafizz, Llc | Microencapsulation for sustained delivery of carbon dioxide |
US7140567B1 (en) | 2003-03-11 | 2006-11-28 | Primet Precision Materials, Inc. | Multi-carbide material manufacture and use as grinding media |
JP2004310050A (en) | 2003-03-26 | 2004-11-04 | Daicel Chem Ind Ltd | Microcapsule and its producing method |
BRPI0410491A8 (en) | 2003-04-24 | 2017-10-24 | Univ Vanderbilt | COMPOSITIONS AND METHODS FOR INSECT CONTROL |
US7622269B2 (en) | 2004-03-19 | 2009-11-24 | Tyratech, Inc. | Methods of screening tyramine- and octopamine-expressing cells for compounds and compositions having potential insect control activity |
KR100473422B1 (en) * | 2003-06-12 | 2005-03-14 | 박원봉 | A composition for an enteric coating of natural product containing lectin |
WO2005030190A1 (en) | 2003-09-26 | 2005-04-07 | Natural Asa | Natural menaquinone 7 compositions |
EP1675571A2 (en) * | 2003-09-30 | 2006-07-05 | Spherics, Inc. | Nanoparticulate therapeutic biologically active agents |
GB0402677D0 (en) | 2003-11-06 | 2004-03-10 | Novartis Ag | Organic compounds |
NZ546974A (en) * | 2003-11-21 | 2008-06-30 | Commw Scient Ind Res Org | Gastrointestinal tract delivery systems |
EP1541121B1 (en) | 2003-12-11 | 2007-03-21 | Rohm And Haas Company | System and process for releasing encapsulated active ingredients |
CA2488981C (en) | 2003-12-15 | 2008-06-17 | Rohm And Haas Company | Oil absorbing composition and process |
IL159729A0 (en) * | 2004-01-06 | 2004-06-20 | Doron I Friedman | Non-aqueous composition for oral delivery of insoluble bioactive agents |
US20050191328A1 (en) | 2004-02-26 | 2005-09-01 | Toshiya Taniguchi | Make-up composition |
JP2007531743A (en) | 2004-04-05 | 2007-11-08 | セプラコア インコーポレーテッド | (R, R) -formoterol in combination with other drugs |
US20060147503A1 (en) | 2004-12-30 | 2006-07-06 | 3M Innovative Properties Company | Oil absorbent wipe with high crumpability |
US20060280795A1 (en) | 2005-06-08 | 2006-12-14 | Dexcel Pharma Technologies, Ltd. | Specific time-delayed burst profile delivery system |
US8074906B2 (en) * | 2005-07-07 | 2011-12-13 | Nanotherapeutics, Inc. | Process for milling and preparing powders and compositions produced thereby |
RU2311953C2 (en) * | 2005-07-21 | 2007-12-10 | Закрытое акционерное общество АМФИТ-Технология | Process of producing powdered alcohol produce |
EP1933941A2 (en) | 2005-08-25 | 2008-06-25 | Philip R. Houle | Treatment systems for delivery of sensitizer solutions |
EP1933852B1 (en) | 2005-09-27 | 2018-12-19 | TissueTech, Inc. | Amniotic membrane preparations and purified compositions and methods of use |
EP1931325A2 (en) | 2005-10-07 | 2008-06-18 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Octanol formulations and methods of treatment using the same |
EP1957113A4 (en) * | 2005-11-21 | 2011-11-09 | Medivas Llc | Polymer particles for delivery of macromolecules and methods of use |
US20070141147A1 (en) * | 2005-12-21 | 2007-06-21 | Auriga Laboratories, Inc. | Sequential release pharmaceutical formulations |
JP4959189B2 (en) | 2005-12-28 | 2012-06-20 | ライオン株式会社 | Soil release polymer-containing particles, method for producing soil release polymer-containing particles, granular detergent composition |
US7442439B2 (en) | 2005-12-28 | 2008-10-28 | Kimberly-Clark Worldwide, Inc. | Microencapsulated heat delivery vehicles |
US20070148459A1 (en) | 2005-12-28 | 2007-06-28 | Kimberly-Clark Worldwide, Inc. | Microencapsulated delivery vehicles |
US8753676B2 (en) | 2006-02-15 | 2014-06-17 | Botanocap Ltd. | Applications of microencapsulated essential oils |
KR20080106181A (en) * | 2006-02-15 | 2008-12-04 | 보타노캡 엘티디. | Applications of microencapsulated essential oils |
GB0613396D0 (en) | 2006-07-06 | 2006-08-16 | Harris Mike | Process for removing oil from particulate matter |
JP5066852B2 (en) | 2006-07-10 | 2012-11-07 | 日本化成株式会社 | Method for removing oil from solid urea containing oil |
MX2009000548A (en) | 2006-07-17 | 2009-05-28 | Tyratech Inc | Compositions and methods for controlling insects. |
TW200843802A (en) * | 2007-02-09 | 2008-11-16 | Drugtech Corp | Compositions for improving gastrointestinal nutrient and drug absorption |
US20080207766A1 (en) * | 2007-02-27 | 2008-08-28 | Agi Therapeutics Research Ltd. | Methods and compositions for treating at least one upper gastrointestinal symptom |
WO2008112826A1 (en) | 2007-03-12 | 2008-09-18 | Board Of Regents, The University Of Texas System | Method and process for the production of multi-coated recognitive and releasing systems |
EP2242498A2 (en) | 2007-12-27 | 2010-10-27 | Tyratech, Inc. | Synergistic antiparasitic compositions and screening methods |
MX2010010216A (en) | 2008-03-19 | 2011-02-22 | Tyratech Inc | Pest control using natural pest control agent blends. |
BRPI0910269B1 (en) | 2008-03-19 | 2020-10-06 | Tyratech, Inc | COMPOSITIONS AND METHODS OF PEST CONTROL |
CN101336905A (en) * | 2008-08-19 | 2009-01-07 | 山西中大科技有限公司 | Production method of alpha-linolenic acid microcapsule |
WO2010115065A2 (en) | 2009-04-03 | 2010-10-07 | Tyratech, Inc. | Methods for pest control employing microemulsion-based enhanced pest control formulations |
US20100310726A1 (en) | 2009-06-05 | 2010-12-09 | Kraft Foods Global Brands Llc | Novel Preparation of an Enteric Release System |
-
2009
- 2009-06-05 US US12/479,454 patent/US20100310726A1/en not_active Abandoned
-
2010
- 2010-05-26 IL IL205979A patent/IL205979A0/en unknown
- 2010-05-27 CA CA2705629A patent/CA2705629A1/en not_active Abandoned
- 2010-05-27 NZ NZ585725A patent/NZ585725A/en not_active IP Right Cessation
- 2010-05-28 ZA ZA2010/03846A patent/ZA201003846B/en unknown
- 2010-06-02 JP JP2010126987A patent/JP2011036239A/en active Pending
- 2010-06-02 CN CN2010102013582A patent/CN101904493A/en active Pending
- 2010-06-02 AU AU2010202292A patent/AU2010202292A1/en not_active Abandoned
- 2010-06-02 BR BRPI1004263-6A patent/BRPI1004263A2/en not_active IP Right Cessation
- 2010-06-03 MY MYPI2010002570A patent/MY155720A/en unknown
- 2010-06-04 KR KR1020100052619A patent/KR20100131369A/en not_active Application Discontinuation
- 2010-06-04 MX MX2010006145A patent/MX2010006145A/en not_active Application Discontinuation
- 2010-06-04 EP EP10251042.7A patent/EP2266545B1/en active Active
- 2010-06-04 RU RU2010122983/13A patent/RU2534573C2/en not_active IP Right Cessation
-
2012
- 2012-05-18 US US13/475,645 patent/US8765030B2/en active Active
-
2014
- 2014-05-22 US US14/285,108 patent/US20140255501A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3116206A (en) * | 1961-12-22 | 1963-12-31 | Ncr Co | Encapsulation process and its product |
US6608017B1 (en) * | 1999-07-20 | 2003-08-19 | Procter & Gamble Company | Encapsulated oil particles |
US20110020520A1 (en) * | 2005-10-31 | 2011-01-27 | General Mills Ip Holdings Ii Llc. | Encapsulation of readily oxidizable components |
US20080145462A1 (en) * | 2006-06-27 | 2008-06-19 | Essam Enan | Compositions and methods for treating parasitic infections |
Also Published As
Publication number | Publication date |
---|---|
US8765030B2 (en) | 2014-07-01 |
JP2011036239A (en) | 2011-02-24 |
US20120273982A1 (en) | 2012-11-01 |
IL205979A0 (en) | 2010-12-30 |
MY155720A (en) | 2015-11-30 |
NZ585725A (en) | 2011-10-28 |
RU2534573C2 (en) | 2014-11-27 |
AU2010202292A1 (en) | 2010-12-23 |
RU2010122983A (en) | 2011-12-10 |
US20100310726A1 (en) | 2010-12-09 |
MX2010006145A (en) | 2011-03-03 |
CN101904493A (en) | 2010-12-08 |
EP2266545A1 (en) | 2010-12-29 |
ZA201003846B (en) | 2011-04-28 |
CA2705629A1 (en) | 2010-12-05 |
BRPI1004263A2 (en) | 2012-02-14 |
KR20100131369A (en) | 2010-12-15 |
EP2266545B1 (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8765030B2 (en) | Preparation of an enteric release system | |
US8859003B2 (en) | Preparation of an enteric release system | |
CA3067232C (en) | Preparing stable liquid emulsion forms of plant extract | |
CA2822844C (en) | Stabilized edible oil-in-water emulsion comprising ground pulse seed | |
US20100159079A1 (en) | Encapsulate and Food Containing Same | |
JP5461349B2 (en) | Method for producing polyphenol-containing protein | |
US8465835B2 (en) | Capsules | |
JPWO2006054627A1 (en) | Plant sterol-containing composition and method for producing the same | |
JPH07101882A (en) | Preparation containing water-soluble hemicellulose | |
EP1335652B1 (en) | Food product comprising carotenoids | |
US20140154327A1 (en) | Enteric Delivery Of Functional Ingredients Suitable For Hot Comestible Applications | |
JPH07101883A (en) | Preparation containing water-soluble hemicellulose | |
JPH07101881A (en) | Preparation containing water-soluble hemicellulose | |
JPH07101884A (en) | Prpearation containing water-soluble hemicellulose | |
JPH0779712A (en) | Preparation containing water-soluble hemicellulose | |
CN103429231B (en) | The novel formulation of intestinal release system | |
JPH0769865A (en) | Water-soluble hemicellulose-containing preparation | |
JPH0799929A (en) | Preparation containing water-soluble hemicellulose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |