US20140253528A1 - Method of driving display apparatus and driving circuit for display apparatus using the same - Google Patents

Method of driving display apparatus and driving circuit for display apparatus using the same Download PDF

Info

Publication number
US20140253528A1
US20140253528A1 US14/284,073 US201414284073A US2014253528A1 US 20140253528 A1 US20140253528 A1 US 20140253528A1 US 201414284073 A US201414284073 A US 201414284073A US 2014253528 A1 US2014253528 A1 US 2014253528A1
Authority
US
United States
Prior art keywords
image signal
signal
image
film
original image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/284,073
Inventor
Byung-Hyuk Shin
Min-Kyu Park
Seon-Ki Kim
Jae-Ho OH
Kyung-Woo Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US14/284,073 priority Critical patent/US20140253528A1/en
Publication of US20140253528A1 publication Critical patent/US20140253528A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0112Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard
    • H04N7/0115Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard with details on the detection of a particular field or frame pattern in the incoming video signal, e.g. 3:2 pull-down pattern
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0127Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
    • H04N7/0132Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter the field or frame frequency of the incoming video signal being multiplied by a positive integer, e.g. for flicker reduction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed

Definitions

  • a display apparatus receives image signals from an external system and displays images corresponding to the image signals on a screen.
  • FIG. 1 is a block diagram showing an exemplary embodiment of a driving circuit for a display apparatus according to the present invention
  • FIG. 2 is a representation useful in explaining a driving method of the driving circuit shown in FIG. 1 ;
  • FIGS. 4 to 6 are representations showing states in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz;
  • FIG. 7A is a view showing an image of an n-th frame
  • FIG. 7B is a histogram showing the brightness distribution of the image shown in FIG. 7A ;
  • FIG. 8B is a histogram showing the brightness distribution of the image shown in FIG. 8A ;
  • FIG. 9 is a histogram showing a brightness difference between the n-th frame and the (n+1)-th frame
  • FIG. 11A is a view showing an image of an (n+1)-th frame
  • FIG. 11B is a histogram showing the brightness distribution of the image shown in FIG. 11A ;
  • FIG. 13 is a flow chart illustrating an operation process of an image signal discriminator shown in FIG. 1 .
  • FIG. 1 is a block diagram showing an exemplary embodiment of a driving circuit for a display apparatus according to the present invention
  • FIG. 2 is a representation useful in explaining a driving method of the driving circuit shown in FIG. 1 .
  • the image signal discriminator 110 receives an image signal from an external system (not shown) and discriminates whether the image signal is a normal image signal used to display a normal video image or a film image signal used to display a film image.
  • the normal image is defined as an image presented through a normal broadcasting service
  • the film image is defined as an image of a moving picture reproduced by using a film.
  • the normal image signal may be provided to the driving circuit 100 at a frequency of 60 Hz, however, because the film image signal is recorded onto a film at a frequency of 24 Hz, the film image signal of 24 Hz may be provided to the driving circuit 100 after being converted to an image signal of 60 Hz by the external system (not shown).
  • the external system receives 24 frame data per second (24 Hz) and outputs 60 frame data per second (60 Hz). To this end, the external system repeatedly outputs odd-numbered frame data of the 24 frame data three times and repeatedly outputs even-numbered frame data of the 24 frame data two times, so that the external system may output the 60 frame data using the 24 frame data. Accordingly, the film image signal F 2 -data converted to have the frequency of 60 Hz by the external system is sequentially applied to the image signal discriminator 110 .
  • the image signal discriminator 110 receives the image signal F 2 -data from the external system (not shown) and discriminates whether the image signal is the normal image signal or the film image signal. If the image signal is the film image signal, the image signal discriminator 110 provides the film image signal F 2 -data and a discrimination signal S 1 indicating that the image signal is the film image signal F 2 -data to the original image signal extractor 120 .
  • the original image signal extractor 120 is operated in response to the discrimination signal S 1 .
  • the original image signal extractor 120 converts the film image signal F 2 -data of 60 Hz into the film image signal F 1 -data of 24 Hz, and extracts original image signal from the converted film image signal of 24 Hz. That is, the original image signal extractor 120 extracts 24 original image signals (24 Hz) from 60 film image signals (60 Hz) sequentially applied from the image signal discriminator 110 . Then, the 24 original image signals extracted by the original image signal extractor 120 are sequentially stored into the memory 130 .
  • the original image signal extractor 120 reads out from the memory 130 first and second original image signals A 1 and A 2 corresponding to two successive frames of the 24 original image signals, and provides the first and second original image signals A 1 and A 2 to the image signal converter 140 .
  • the image signal converter 140 generates first and second compensation image signals A 11 and A 12 using motion vectors generated based on the first and second original image signal A 1 and A 2 . More specifically, each of the first and second compensation image signals A 11 and A 12 serves as a signal that displays a respective one of several intermediate images existing between a first original image corresponding to the first original image signal A 1 and a second original image corresponding to the second original image signal A 2 .
  • the first original image signal A 1 is used to display a star located at a first position
  • the second original image signal A 2 is used to display the star located at a second position.
  • a motion vector of the star is calculated using the first and second original image signals A 1 and A 2 .
  • the image signal converter 140 generates the first and second compensation image signals A 11 and A 12 to display stars located on a moving path of the star between the first original image signal A 1 and the second original image signal A 2 .
  • the first original image signal A 1 , the first compensation image signal A 11 , and the second compensation image signal A 12 are provided to the data outputter 150 from the image signal converter 140 .
  • the data outputter 150 receives a driving signal DRS having a frequency of 72 Hz from the frequency modulator 160 .
  • the frequency modulator 160 receives a synchronizing signal of 60 Hz from the external system (not shown), modulates the frequency of the synchronizing signal, and outputs the driving signal DRS of 72 Hz to the data outputter 150 .
  • the data outputter 150 sequentially outputs the first original image signal A 1 , the first compensation image signal A 11 , and the second compensation image signal A 12 as F 3 -data in response to the driving signal DRS having the frequency of 72 Hz.
  • the second original image signal A 2 , the third compensation image signal A 21 , and the fourth compensation image signal A 22 are provided to the data outputter 150 .
  • the data outputter 150 sequentially outputs the second original image signal A 2 , the third compensation image signal A 21 , and the fourth compensation image signal A 22 in response to the driving signal DRS of 72 Hz.
  • the data outputter 150 sequentially outputs the first original image signal A 1 , the first compensation image signal A 11 and the second compensation image signal A 12 during 3/72 seconds, which corresponds to a 1/24 of a second, and sequentially outputs the second original image signal A 2 , the third compensation image signal A 21 and the fourth compensation image signal A 22 during a next 3/72 seconds, which corresponds to a 1/24 of a second.
  • the driving circuit 100 for the display apparatus may convert the film image signal F 2 -data of 60 Hz into the film image signal F 3 -data of 72 Hz, thereby applying the film image signal F 3 -data to a display panel (not shown).
  • FIG. 3 is a representation showing a state in which a film image signal of 60 Hz is converted into a film image signal of 96 Hz.
  • a driving circuit used to convert the film image signal F 2 -data of 60 Hz into the film image signal F 4 -data of 96 Hz has the same circuit configuration as that of the driving circuit 100 of FIG. 1 , however, the frequency modulator 160 modulates the synchronizing signal Sync into a driving signal DRS having a frequency of 96 Hz and the driving signal DRS of 96 Hz is applied to the data outputter 150 . Accordingly, the process that converts the film image signal F 2 -data of 60 Hz into the film image signal F 4 -data of 96 Hz will be described with reference to FIGS. 1 and 3 .
  • the image signal converter 140 generates a first compensation image signal A 12 based on the first and second original image signals A 1 and A 2 .
  • the first original image signal A 1 and the second compensation image signal A 12 shown in FIG. 3 are provided to the data outputter 150 .
  • the frequency modulator 160 receives the synchronizing signal Sync of 60 Hz from the external system and modulates the frequency of the synchronizing signal Sync to output the driving signal DRS having the frequency of 96 Hz to the data outputter 150 .
  • the data outputter 150 outputs the first original image signal A 1 and the second compensation image signal A 12 in response to the driving signal DRS having the frequency of 96 Hz.
  • the data outputter 150 outputs the first original image signal A 1 two times, and then outputs the second compensation image signal A 12 two times during the 4/96 seconds, which again is a 1/24 of a second.
  • the second original image signal A 2 and a fifth compensation image signal A 23 are provided to the data outputter 150 . Accordingly, the data outputter 150 outputs the second original image signal A 2 and the fifth compensation image signal A 23 two times during next 4/96 seconds.
  • the driving circuit 100 for the display apparatus may convert the film image signal F 2 -data of 60 Hz into the film image signal F 4 -data of 96 Hz, thereby applying the film image signal F 4 -data to a display panel (not shown).
  • each original image signal is repeatedly displayed two times, thereby preventing the trembling phenomena of the displayed image.
  • the compensation image signal is inserted between the original image signals, interruption of the displayed image may be prevented.
  • FIG. 4 is a view showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz.
  • FIG. 4 a further description of the same processes as those described in relation to FIGS. 1 to 3 will be omitted in order to avoid redundancy.
  • the driving circuit 100 for the display apparatus may convert the film image signal F 2 -data of 60 Hz into the film image signal F 5 -data of 120 Hz, thereby applying the film image signal F 5 -data to a display panel (not shown).
  • each original image signal is repeatedly displayed three times, thereby preventing the trembling phenomena of the displayed image present in previously proposed systems.
  • the compensation image signal is inserted between the original image signals, interruption of the displayed image is prevented.
  • FIG. 5 is a representation showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz.
  • the data outputter 150 outputs the first original image signal A 1 five times during 5/120 seconds, and outputs the second original image signal A 2 five times during next 5/120 seconds.
  • the driving circuit 100 for the display apparatus may convert the film image signal F 2 -data of 60 Hz into the film image signal F 6 -data of 120 Hz, thereby applying the film image signal F 6 -data to a display panel (not shown).
  • each original image signal is repeatedly displayed five times, thereby preventing the trembling phenomena of the displayed image.
  • FIG. 6 is view showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz.
  • the data outputter 150 outputs the first original image signal A 1 five times and then outputs one second compensation image signal A 12 .
  • the second compensation image signal A 12 serves as a signal that displays one of intermediate images existing between the first original image corresponding to the first original image signal A 1 and the second original image corresponding to the second original image signal A 2 .
  • the data outputter 150 outputs the second original image signal A 2 three times and then outputs the fifth compensation image signal A 23 .
  • the fifth compensation image signal A 23 serves as a signal that displays one of the intermediate images existing between the second original image corresponding to the second original image signal A 2 and the third original image corresponding to the third original image signal A 3 .
  • the driving circuit 100 for the display apparatus may convert the film image signal F 2 -data of 60 Hz into the film image signal F 7 -data of 120 Hz, thereby applying the film image signal F 7 -data to a display panel (not shown).
  • the film image signal F 2 -data of 60 Hz is converted into the film image signal F 6 -data of 120 Hz, and the compensation image signal is inserted between the original image signals at least one time, so that interruption of the displayed image, which is caused by an abrupt motion variation, may be prevented.
  • FIG. 7A is a view showing an image of an n-th frame
  • FIG. 7B is a histogram showing the brightness distribution of the image shown in FIG. 7A
  • FIG. 8A is a view showing an image of an (n+1)-th frame
  • FIG. 8B is a histogram showing the brightness distribution of the image shown in FIG. 8A
  • an x-axis represents a gray scale
  • a y-axis represents a number of pixels.
  • FIGS. 7A and 8A Comparing FIGS. 7A and 8A , it is seen that there is no movement between an image of the n-th frame and an image of the (n+1)-th. In this case, as shown in FIGS. 7B and 8B , the n-th frame and the (n+1)-th frame have the same brightness distribution.
  • FIG. 9 is a histogram showing a brightness difference between an n-th frame and an (n+1)-th frame.
  • the difference of the brightness histograms between the n-th frame and the (n+1)-frame has been observed as zero. That is, because the brightness difference between the n-th frame and the (n+1)-th frame is zero, the n-th frame and the (n+1)-th frame display the same image, which corresponds to FIGS. 7A and 8A .
  • FIG. 10A is a view showing an image of an n-th frame and FIG. 10B is a histogram showing the brightness distribution of the image shown in FIG. 10A .
  • FIG. 11A is a view showing an image of an (n+1)-th frame and FIG. 11B is a histogram showing the brightness distribution of the image shown in FIG. 11A .
  • an x-axis indicates a gray scale and a y-axis indicates a number of pixels.
  • FIGS. 10A and 11A when comparing the n-th frame with the (n+1)-th frame, it is seen that the image of the (n+1)-th frame has been moved toward a left side.
  • the n-th frame and the (n+1)-th frame have a respective brightness different from each other.
  • the difference of brightness histograms between the n-th frame and the (n+1)-frame has been observed.
  • a state may be observed, in which the n-th frame and the (n+1)-th frame display different images from each other or the image of the (n+1)-th frame moves relative to the n-th frame.
  • the image signal discriminator 110 shown in FIG. 1 compares the brightness histograms with each other to discriminate whether the image signal applied from the external system is the normal video image signal or the film image signal. That is, because the film image signal of 60 Hz is repeatedly applied three times or two times from the external system, if the brightness difference does not occur during the three times or two times, the image signal is considered as the film image signal.
  • FIG. 13 is a flow chart illustrating an operation process of the image signal discriminator 110 shown in FIG. 1 .
  • the image signal discriminator 110 receives the image signal corresponding to the n-th frame through a low-voltage differential signaling (LVDS) (S 201 ).
  • the image signal discriminator 110 calculates brightness data L(n) of the image signal of the n-th frame based on the input image signal (S 202 a ).
  • the calculated brightness L(n) is stored in first and second frame memories (S 202 b and S 202 c ).
  • the first and second frame memories sequentially store brightness data for every frame.
  • the difference of the brightness histogram between two adjacent frames is obtained (S 203 ).
  • the first brightness difference value DIF_LH(n) is compared with a predetermined reference value REF to discriminate whether the first brightness difference value DIF_LH(n) is smaller than the predetermined reference value REF (S 204 ). If the first brightness difference value DIF_LH(n) is smaller than the reference value REF, the second brightness difference value DIF_LH(n ⁇ 1) is compared with the reference value REF (S 205 ). If the first brightness difference value DIF_LH(n) is equal to or greater than the reference value REF, a signal indicating that the input image signal is the normal image signal is output (S 209 d ).
  • the third brightness difference value DIF_LH(n+1) is compared with the reference value REF (S 206 ). If the second brightness difference value DIF LH(n ⁇ 1) is equal to or greater than the reference value REF, the fourth brightness difference value DIF_LH(n+2) is compared with the reference value REF (S 207 ).
  • the fourth brightness difference value DIF_LH(n+2) is compared with the reference value REF (S 208 ).
  • step S 208 if the fourth brightness difference value DIF_LH(n+2) is smaller than the reference value REF, a signal is output indicating that the input image signal is the film image signal to which a 3:2 pull-down scheme, for example, a 60 Hz driving scheme, is applied (S 209 b ). If the fourth brightness difference value DIF_LH(n+2) is equal to or greater than the reference value REF, the signal is output indicating the input image signal is the normal image signal (S 209 d ).
  • step S 207 if the fourth brightness difference value DIF_LH(n+2) is smaller than the reference value REF, a signal is output indicating that the input image signal is the film image signal to which a 2:2 pull-down scheme, for example, a 60 Hz driving scheme is applied (S 209 c ). If the fourth brightness difference value DIF_LH(n+2) is equal to or greater than the reference value REF, the signal is output indicating the input image signal is the normal image signal is output (S 209 d ).
  • the input image signal may be easily discriminated as to whether the input image signal is the film image signal or the normal image signal.
  • the original image signal is extracted from the film image signal
  • the compensation image signal is generated based on the extracted original image signal
  • the original image signal and the compensation image signal are set to have a frequency higher than a frequency of the film image signal.

Abstract

In a driving method of a display apparatus using a driving circuit, when an image signal is a film image signal, first, second, and third original image signals are extracted based on the film image signal. Then, a first compensation image signal is generated based on first and second original image signals, and a second compensation image signal is generated based on second and third original image signals. The first original image signal, the first compensation image signal, the second original image signal, and the second compensation image signal are sequentially output to have a driving frequency higher than an input frequency. In addition, the first original image signal, the first compensation image signal, the second original image signal, and the second compensation image signal are output i, k, j, and k times, respectively. Thus, a trembling phenomenon perceived by a viewer of a film image may be prevented.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Divisional Application of U.S. patent application Ser. No. 12/356,584, filed on Jan. 21, 2009, and claims priority to and the benefit of Korean Patent Application No. 2008-80064 filed on Aug. 14, 2008, the entire contents of both of which are incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field The present disclosure relates to a method of driving a display apparatus and a driving circuit for a display apparatus using the driving method, which are capable of preventing a trembling phenomenon of a film image.
  • 2. Discussion of Related Art
  • In general, a display apparatus receives image signals from an external system and displays images corresponding to the image signals on a screen.
  • The display apparatus, recently, has been applied to various fields, and thus the display apparatus displays not only a normal video image but also a film image that was recorded in photographic film.
  • Because the film image is recorded in the photographic film at 24 frames per second and the display apparatus is operated at 60 Hz, however, the external system applies the film image signal to the display apparatus after converting the film image signal recorded at 24 frames per second into an image signal at 60 frames per second.
  • In order to convert the film image recorded at 24 frames per second into an image at 60 frames per second for display, odd-numbered frames among the 24 frames are repeated three times and even-numbered frames among the 24 frames are repeated two times, thereby expanding the film image recorded at 24 frames per second into film image at 60 frames per second.
  • When applying the above-described method, however, the human eye recognizes a trembling phenomena of the images displayed on the display apparatus because the odd-numbered frames have different display intervals from the display intervals of the even-numbered frames. As a result, when displaying the expanded film image on the display apparatus, display characteristics of the display apparatus are degraded.
  • SUMMARY
  • An exemplary embodiment of the present invention provides a method of driving a display apparatus capable of preventing a trembling phenomenon of a converted film image.
  • An exemplary embodiment of the present invention also provides a driving circuit for a display apparatus using the driving method.
  • In an exemplary embodiment of the present invention, a method of driving a liquid crystal display apparatus includes receiving an image signal in response to a synchronizing signal having a first frequency; discriminating whether the image signal is a signal corresponding to a film image or a signal corresponding to a video image; converting the synchronizing signal into a driving signal having a second frequency higher than the first frequency; extracting, when the image signal is the film image signal corresponding to the film image, first, second and third original image signals based on the film image signal, which are successive; generating a first compensation image signal based on the first original image signal and the second original image signal and generating a second compensation image signal based on the second original image signal and the third original image signal; and sequentially outputting the first original image signal, the first compensation image signal, the second original image signal, and the second compensation image signal in response to the driving signal. The first original image signal, the first compensation image signal, the second original image signal, and the second compensation image signal are output i times, k times, j times, and k times, respectively.
  • In an exemplary embodiment of the present invention, a method of driving a display apparatus includes receiving an image signal in response to a synchronizing signal having a first frequency; discriminating whether the received image signal is a signal corresponding to a film image or a signal corresponding to a video image; converting the synchronizing signal into a driving signal having a second frequency higher than the first frequency; extracting, if the image signal is a film image signal corresponding to the film image, first and second original image signals based on the film image signal, which are successive; and sequentially outputting the first and second original image signals i times in response to the driving signal.
  • In an exemplary embodiment of the present invention, a driving circuit for a display apparatus receives an image signal based on a synchronizing signal having a first frequency. The driving circuit includes an image signal discriminator, an original image signal extractor, an image signal converter, a frequency modulator, and a data outputter.
  • The image signal discriminator discriminates whether the image signal is a signal corresponding to a film image or a signal corresponding to a video image, and the original image signal extractor extracts first, second and third original image signals, which are successive, based on a film image signal if the image signal is the film image signal corresponding to the film image.
  • The image signal converter generates first and second compensation image signals based on the first, second and third original image signals, and the frequency modulator converts the synchronizing signal into a driving signal having a second frequency higher than the first frequency.
  • The data outputter outputs the first original image signal i times, the second original image signal j times, the first compensation image signal k times, and the second compensation image signal k times.
  • According to the above-described exemplary embodiment, the original image signal is extracted from the film image signal, the compensation image signal is generated based on the extracted original image signal, and the original image signal and the compensation image signal have a frequency higher than a frequency of the film image signal. Thus, a trembling phenomenon of the film image may be prevented, and interruption of the displayed image, which is caused by an abrupt motion variation, may be prevented.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments of the present invention will be understood in more detail from the following descriptions taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a block diagram showing an exemplary embodiment of a driving circuit for a display apparatus according to the present invention;
  • FIG. 2 is a representation useful in explaining a driving method of the driving circuit shown in FIG. 1;
  • FIG. 3 is a representation showing a state in which a film image signal of 60 Hz is converted into a film image signal of 96 Hz;
  • FIGS. 4 to 6 are representations showing states in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz;
  • FIG. 7A is a view showing an image of an n-th frame;
  • FIG. 7B is a histogram showing the brightness distribution of the image shown in FIG. 7A;
  • FIG. 8A is a view showing an image of an (n+1)-th frame;
  • FIG. 8B is a histogram showing the brightness distribution of the image shown in FIG. 8A;
  • FIG. 9 is a histogram showing a brightness difference between the n-th frame and the (n+1)-th frame;
  • FIG. 10A is a view showing an image of an n-th frame;
  • FIG. 10B is a histogram showing the brightness distribution of the image shown in FIG. 10A;
  • FIG. 11A is a view showing an image of an (n+1)-th frame;
  • FIG. 11B is a histogram showing the brightness distribution of the image shown in FIG. 11A;
  • FIG. 12 is a histogram showing a brightness difference between the n-th frame and the (n+1)-th frame; and
  • FIG. 13 is a flow chart illustrating an operation process of an image signal discriminator shown in FIG. 1.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Hereinafter, exemplary embodiments of the present invention will be explained in detail with reference to the accompanying drawings.
  • FIG. 1 is a block diagram showing an exemplary embodiment of a driving circuit for a display apparatus according to the present invention, and FIG. 2 is a representation useful in explaining a driving method of the driving circuit shown in FIG. 1.
  • Referring to FIG. 1, a driving circuit 100 for a display apparatus includes an image signal discriminator 110, an original image signal extractor 120, a memory 130, an image signal converter 140, a data outputter 150, and a frequency modulator 160.
  • The image signal discriminator 110 receives an image signal from an external system (not shown) and discriminates whether the image signal is a normal image signal used to display a normal video image or a film image signal used to display a film image. On the assumption that the display apparatus is applied to a television set, the normal image is defined as an image presented through a normal broadcasting service and the film image is defined as an image of a moving picture reproduced by using a film.
  • The normal image signal may be provided to the driving circuit 100 at a frequency of 60 Hz, however, because the film image signal is recorded onto a film at a frequency of 24 Hz, the film image signal of 24 Hz may be provided to the driving circuit 100 after being converted to an image signal of 60 Hz by the external system (not shown).
  • As shown in FIG. 2, the external system receives 24 frame data per second (24 Hz) and outputs 60 frame data per second (60 Hz). To this end, the external system repeatedly outputs odd-numbered frame data of the 24 frame data three times and repeatedly outputs even-numbered frame data of the 24 frame data two times, so that the external system may output the 60 frame data using the 24 frame data. Accordingly, the film image signal F2-data converted to have the frequency of 60 Hz by the external system is sequentially applied to the image signal discriminator 110.
  • The image signal discriminator 110 receives the image signal F2-data from the external system (not shown) and discriminates whether the image signal is the normal image signal or the film image signal. If the image signal is the film image signal, the image signal discriminator 110 provides the film image signal F2-data and a discrimination signal S1 indicating that the image signal is the film image signal F2-data to the original image signal extractor 120.
  • The original image signal extractor 120 is operated in response to the discrimination signal S1. The original image signal extractor 120 converts the film image signal F2-data of 60 Hz into the film image signal F1-data of 24 Hz, and extracts original image signal from the converted film image signal of 24 Hz. That is, the original image signal extractor 120 extracts 24 original image signals (24 Hz) from 60 film image signals (60 Hz) sequentially applied from the image signal discriminator 110. Then, the 24 original image signals extracted by the original image signal extractor 120 are sequentially stored into the memory 130.
  • In addition, the original image signal extractor 120 reads out from the memory 130 first and second original image signals A1 and A2 corresponding to two successive frames of the 24 original image signals, and provides the first and second original image signals A1 and A2 to the image signal converter 140.
  • The image signal converter 140 generates first and second compensation image signals A11 and A12 using motion vectors generated based on the first and second original image signal A1 and A2. More specifically, each of the first and second compensation image signals A11 and A12 serves as a signal that displays a respective one of several intermediate images existing between a first original image corresponding to the first original image signal A1 and a second original image corresponding to the second original image signal A2.
  • As shown in FIG. 2, in the present exemplary embodiment, the first original image signal A1 is used to display a star located at a first position, and the second original image signal A2 is used to display the star located at a second position. A motion vector of the star is calculated using the first and second original image signals A1 and A2. Then, based on the motion vector, the image signal converter 140 generates the first and second compensation image signals A11 and A12 to display stars located on a moving path of the star between the first original image signal A1 and the second original image signal A2.
  • The first original image signal A1, the first compensation image signal A11, and the second compensation image signal A12 are provided to the data outputter 150 from the image signal converter 140. In addition, the data outputter 150 receives a driving signal DRS having a frequency of 72 Hz from the frequency modulator 160. The frequency modulator 160 receives a synchronizing signal of 60 Hz from the external system (not shown), modulates the frequency of the synchronizing signal, and outputs the driving signal DRS of 72 Hz to the data outputter 150. Thus, the data outputter 150 sequentially outputs the first original image signal A1, the first compensation image signal A11, and the second compensation image signal A12 as F3-data in response to the driving signal DRS having the frequency of 72 Hz.
  • Then, the original image signal extractor 120 reads out the second original image signal A2 and a third original image signal A3 shown in FIG. 2 from the memory 130 and provides the second and third original image signals A2 and A3 to the image signal converter 140. The image signal converter 140 generates third and fourth compensation image signals A21 and A22 shown in FIG. 2 using a motion vector calculated based on the second and third original image signals A2 and A3. Each of the third and fourth compensation image signals A21 and A22 serves as a signal that displays one of the intermediate images existing between the second original image corresponding to the second original image signal A2 and a third original image corresponding to the third original image signal A3.
  • The second original image signal A2, the third compensation image signal A21, and the fourth compensation image signal A22 are provided to the data outputter 150. The data outputter 150 sequentially outputs the second original image signal A2, the third compensation image signal A21, and the fourth compensation image signal A22 in response to the driving signal DRS of 72 Hz.
  • As shown in FIG. 2, the data outputter 150 sequentially outputs the first original image signal A1, the first compensation image signal A11 and the second compensation image signal A12 during 3/72 seconds, which corresponds to a 1/24 of a second, and sequentially outputs the second original image signal A2, the third compensation image signal A21 and the fourth compensation image signal A22 during a next 3/72 seconds, which corresponds to a 1/24 of a second.
  • When repeatedly performing the above-described processes, the driving circuit 100 for the display apparatus may convert the film image signal F2-data of 60 Hz into the film image signal F3-data of 72 Hz, thereby applying the film image signal F3-data to a display panel (not shown).
  • In other words, in the previously known system when odd-numbered original image signals A1 and A3 among 24 original image signals are repeated three times and even-numbered original image signals A2 and A4 among the 24 original image signals are repeated three times in order to display 24 original image signals at 60 Hz, the star is displayed at different times in each frame. As a result, it appears to the human eye that the image is trembling.
  • On the other hand, according to an exemplary embodiment of the present invention, when the 24 original image signals are converted into 72 Hz, each original image signal is repeatedly displayed, thereby preventing the trembling phenomena of the displayed image. In addition, because the compensation image signal is inserted between the original image signals at least one time, interruption of the displayed image, which is caused by an abrupt motion variation, may be prevented.
  • In FIGS. 1 and 2, a process that the film image signal F2-data of 60 Hz is converted into the film image signal F3-data of 72 Hz has been described, but the film image signal F2-data of 60 Hz may also be converted into a film image signal F4-data of 96 Hz or a film image signal F5-data of 120 Hz according to other exemplary embodiments of the present invention. Hereinafter, a process that converts the film image signal F2-data into the film image signal F4-data of 96 Hz will be described with reference to FIG. 3, and a process that converts the film image signal F2-data into the film image signal F5-data of 120 Hz will be described with reference to FIG. 4.
  • FIG. 3 is a representation showing a state in which a film image signal of 60 Hz is converted into a film image signal of 96 Hz. In the present exemplary embodiment, a driving circuit used to convert the film image signal F2-data of 60 Hz into the film image signal F4-data of 96 Hz has the same circuit configuration as that of the driving circuit 100 of FIG. 1, however, the frequency modulator 160 modulates the synchronizing signal Sync into a driving signal DRS having a frequency of 96 Hz and the driving signal DRS of 96 Hz is applied to the data outputter 150. Accordingly, the process that converts the film image signal F2-data of 60 Hz into the film image signal F4-data of 96 Hz will be described with reference to FIGS. 1 and 3.
  • Referring to FIGS. 1 and 3, the image signal discriminator 110 receives the image signal F2-data from the external system (not shown) and discriminates whether the image signal F2-data is the normal video image signal or the film image signal. If the image signal is the film image signal, the original image signal extractor 120 extracts the original image signal from the film image signal of 60 Hz. Then, the original image signal extractor 120 reads out first and second original image signals A1 and A2 adjacent each other among the extracted 24 original image signals, and provides the first and second original image signals A1 and A2 to the image signal converter 140.
  • The image signal converter 140 generates a first compensation image signal A12 based on the first and second original image signals A1 and A2. The first original image signal A1 and the second compensation image signal A12 shown in FIG. 3 are provided to the data outputter 150.
  • The frequency modulator 160 receives the synchronizing signal Sync of 60 Hz from the external system and modulates the frequency of the synchronizing signal Sync to output the driving signal DRS having the frequency of 96 Hz to the data outputter 150. Thus, the data outputter 150 outputs the first original image signal A1 and the second compensation image signal A12 in response to the driving signal DRS having the frequency of 96 Hz.
  • As shown in FIG. 3, the data outputter 150 outputs the first original image signal A1 two times, and then outputs the second compensation image signal A12 two times during the 4/96 seconds, which again is a 1/24 of a second.
  • Then, the second original image signal A2 and a fifth compensation image signal A23 are provided to the data outputter 150. Accordingly, the data outputter 150 outputs the second original image signal A2 and the fifth compensation image signal A23 two times during next 4/96 seconds.
  • When repeatedly performing the above-described processes, the driving circuit 100 for the display apparatus may convert the film image signal F2-data of 60 Hz into the film image signal F4-data of 96 Hz, thereby applying the film image signal F4-data to a display panel (not shown).
  • As described above, when the film image signal F2-data of 60 Hz is converted into the film image signal F4-data of 96 Hz, each original image signal is repeatedly displayed two times, thereby preventing the trembling phenomena of the displayed image. In addition, since the compensation image signal is inserted between the original image signals, interruption of the displayed image may be prevented.
  • FIG. 4 is a view showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz. In FIG. 4, a further description of the same processes as those described in relation to FIGS. 1 to 3 will be omitted in order to avoid redundancy.
  • Referring to FIGS. 1 and 4, during a first 5/120 seconds, the data outputter 150 outputs the first original image signal A1 three times and outputs the second compensation image signal A12 two times.
  • Then, during the next 5/120 seconds, the data outputter 150 outputs the second original image signal A2 three times and outputs the fifth compensation image signal A23 two times. When repeatedly performing the above-described processes, the driving circuit 100 for the display apparatus may convert the film image signal F2-data of 60 Hz into the film image signal F5-data of 120 Hz, thereby applying the film image signal F5-data to a display panel (not shown).
  • As described above, when the film image signal F2-data of 60 Hz is converted into the film image signal F5-data of 120 Hz, each original image signal is repeatedly displayed three times, thereby preventing the trembling phenomena of the displayed image present in previously proposed systems. In addition, because the compensation image signal is inserted between the original image signals, interruption of the displayed image is prevented.
  • FIG. 5 is a representation showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz.
  • Referring to FIG. 5, the data outputter 150 outputs the first original image signal A1 five times during 5/120 seconds, and outputs the second original image signal A2 five times during next 5/120 seconds. Thus, the driving circuit 100 for the display apparatus may convert the film image signal F2-data of 60 Hz into the film image signal F6-data of 120 Hz, thereby applying the film image signal F6-data to a display panel (not shown).
  • As described above, when the film image signal F2-data of 60 Hz is converted into the film image signal F6-data of 120 Hz, each original image signal is repeatedly displayed five times, thereby preventing the trembling phenomena of the displayed image.
  • FIG. 6 is view showing a state in which a film image signal of 60 Hz is converted into a film image signal of 120 Hz.
  • Referring to FIG. 6, during 6/120 seconds, the data outputter 150 outputs the first original image signal A1 five times and then outputs one second compensation image signal A12. In FIG. 6, the second compensation image signal A12 serves as a signal that displays one of intermediate images existing between the first original image corresponding to the first original image signal A1 and the second original image corresponding to the second original image signal A2.
  • Next, during 4/120 seconds, the data outputter 150 outputs the second original image signal A2 three times and then outputs the fifth compensation image signal A23. The fifth compensation image signal A23 serves as a signal that displays one of the intermediate images existing between the second original image corresponding to the second original image signal A2 and the third original image corresponding to the third original image signal A3.
  • When repeatedly performing the above-described processes, the driving circuit 100 for the display apparatus may convert the film image signal F2-data of 60 Hz into the film image signal F7-data of 120 Hz, thereby applying the film image signal F7-data to a display panel (not shown).
  • As described above, the film image signal F2-data of 60 Hz is converted into the film image signal F6-data of 120 Hz, and the compensation image signal is inserted between the original image signals at least one time, so that interruption of the displayed image, which is caused by an abrupt motion variation, may be prevented.
  • FIG. 7A is a view showing an image of an n-th frame, and FIG. 7B is a histogram showing the brightness distribution of the image shown in FIG. 7A. FIG. 8A is a view showing an image of an (n+1)-th frame, and FIG. 8B is a histogram showing the brightness distribution of the image shown in FIG. 8A. In FIGS. 7B and 8B, an x-axis represents a gray scale and a y-axis represents a number of pixels.
  • Comparing FIGS. 7A and 8A, it is seen that there is no movement between an image of the n-th frame and an image of the (n+1)-th. In this case, as shown in FIGS. 7B and 8B, the n-th frame and the (n+1)-th frame have the same brightness distribution.
  • FIG. 9 is a histogram showing a brightness difference between an n-th frame and an (n+1)-th frame.
  • Referring to FIG. 9, the difference of the brightness histograms between the n-th frame and the (n+1)-frame has been observed as zero. That is, because the brightness difference between the n-th frame and the (n+1)-th frame is zero, the n-th frame and the (n+1)-th frame display the same image, which corresponds to FIGS. 7A and 8A.
  • FIG. 10A is a view showing an image of an n-th frame and FIG. 10B is a histogram showing the brightness distribution of the image shown in FIG. 10A. FIG. 11A is a view showing an image of an (n+1)-th frame and FIG. 11B is a histogram showing the brightness distribution of the image shown in FIG. 11A. In FIGS. 10B and 11B, an x-axis indicates a gray scale and a y-axis indicates a number of pixels.
  • Referring to FIGS. 10A and 11A, when comparing the n-th frame with the (n+1)-th frame, it is seen that the image of the (n+1)-th frame has been moved toward a left side. In this case, as shown in FIGS. 10B and 11B, the n-th frame and the (n+1)-th frame have a respective brightness different from each other.
  • FIG. 12 is a histogram showing a brightness difference between the n-th frame and the (n+1)-th frame, wherein the X-axis represents a gray scale and the Y-axis represents the number of pixels.
  • Referring to FIG. 12, the difference of brightness histograms between the n-th frame and the (n+1)-frame has been observed. In this manner, when comparing the brightness histogram of the n-th frame and the brightness histogram of the (n+1)-th frame, a state may be observed, in which the n-th frame and the (n+1)-th frame display different images from each other or the image of the (n+1)-th frame moves relative to the n-th frame.
  • According to an exemplary embodiment of the present invention, the image signal discriminator 110 shown in FIG. 1 compares the brightness histograms with each other to discriminate whether the image signal applied from the external system is the normal video image signal or the film image signal. That is, because the film image signal of 60 Hz is repeatedly applied three times or two times from the external system, if the brightness difference does not occur during the three times or two times, the image signal is considered as the film image signal.
  • FIG. 13 is a flow chart illustrating an operation process of the image signal discriminator 110 shown in FIG. 1.
  • Referring to FIG. 13, the image signal discriminator 110 receives the image signal corresponding to the n-th frame through a low-voltage differential signaling (LVDS) (S201). The image signal discriminator 110 calculates brightness data L(n) of the image signal of the n-th frame based on the input image signal (S202 a). The calculated brightness L(n) is stored in first and second frame memories (S202 b and S202 c). The first and second frame memories sequentially store brightness data for every frame.
  • Based on the n-th brightness data L(n) of the input image signal, the (n−1)-th brightness data L(n−1) read-out from the first frame memory, and the (n−2)-th brightness data L(n−2) read-out from the second frame memory, the difference of the brightness histogram between two adjacent frames is obtained (S203). More specifically, an absolute value obtained by subtracting the (n−1)-th brightness histogram LH(n−1) from the n-th brightness histogram LH(n) is defined as a first brightness difference value DIF_LH(n), and an absolute value obtained by subtracting the (n−2)-th brightness histogram LH(n−2) from the (n−1)-th brightness histogram LH(n−1) is defined as a second brightness difference value DIF_LH(n−1) (S203).
  • In FIG. 13, only the first and second brightness difference values DIF_LH(n) and DIF_LH(n−1) have been described but, if necessary, third and fourth brightness difference values DIF_LH(n+1) and DIF_LH(n+2) may be sequentially calculated using the (n+1)-th and the (n+2)-th brightness histograms.
  • The first brightness difference value DIF_LH(n) is compared with a predetermined reference value REF to discriminate whether the first brightness difference value DIF_LH(n) is smaller than the predetermined reference value REF (S204). If the first brightness difference value DIF_LH(n) is smaller than the reference value REF, the second brightness difference value DIF_LH(n−1) is compared with the reference value REF (S205). If the first brightness difference value DIF_LH(n) is equal to or greater than the reference value REF, a signal indicating that the input image signal is the normal image signal is output (S209 d).
  • Then, if the second brightness difference value DIF_LH(n−1) is smaller than the reference value REF, the third brightness difference value DIF_LH(n+1) is compared with the reference value REF (S206). If the second brightness difference value DIF LH(n−1) is equal to or greater than the reference value REF, the fourth brightness difference value DIF_LH(n+2) is compared with the reference value REF (S207).
  • If the third brightness difference value DIF_LH(n+1) is smaller than the reference value REF, a signal indicating that the normal image signal is a still image is output (S209 a).
  • If, the third brightness difference value DIF_LH(n+1) is equal to or greater than the reference value REF, the fourth brightness difference value DIF_LH(n+2) is compared with the reference value REF (S208).
  • In the step S208, if the fourth brightness difference value DIF_LH(n+2) is smaller than the reference value REF, a signal is output indicating that the input image signal is the film image signal to which a 3:2 pull-down scheme, for example, a 60 Hz driving scheme, is applied (S209 b). If the fourth brightness difference value DIF_LH(n+2) is equal to or greater than the reference value REF, the signal is output indicating the input image signal is the normal image signal (S209 d).
  • In the step S207, if the fourth brightness difference value DIF_LH(n+2) is smaller than the reference value REF, a signal is output indicating that the input image signal is the film image signal to which a 2:2 pull-down scheme, for example, a 60 Hz driving scheme is applied (S209 c). If the fourth brightness difference value DIF_LH(n+2) is equal to or greater than the reference value REF, the signal is output indicating the input image signal is the normal image signal is output (S209 d).
  • As described above, using the brightness histogram of each frame, the input image signal may be easily discriminated as to whether the input image signal is the film image signal or the normal image signal.
  • In an exemplary embodiment, the original image signal is extracted from the film image signal, the compensation image signal is generated based on the extracted original image signal, and the original image signal and the compensation image signal are set to have a frequency higher than a frequency of the film image signal. Thus, a trembling phenomenon perceived by the viewer of the film image may be prevented, and an interruption of the displayed image, which is caused by an abrupt motion variation, may be prevented.
  • Although exemplary embodiments of the present invention have been described, it is understood that the present invention should not be limited to these exemplary embodiments and various changes and modifications can be made by one of ordinary skill in the art within the spirit and scope of the present invention as hereinafter claimed.

Claims (4)

What is claimed is:
1. A method of driving a display apparatus, comprising:
receiving an image signal in response to a synchronizing signal having a first frequency;
discriminating whether the received image signal is a signal corresponding to a film image or a signal corresponding to a video image;
converting the synchronizing signal into a driving signal having a second frequency higher than the first frequency;
extracting, if the image signal is discriminated to be a film image signal corresponding to the film image, successive first and second original image signals based on the film image signal; and
sequentially outputting the first and second original image signals i times in response to the driving signal.
2. The method of claim 1, wherein the discriminating of the received image signal comprises:
receiving the image signal as an n-th image signal, a previously-stored (n−1)-th image signal, and a previously-stored (n−2)-th image signal and calculating first, second, and third brightness values corresponding to the n-th image signal, the (n−1)-th image signal, and the (n−2)-th image signal, respectively;
calculating a first difference value corresponding to a difference between the first and second brightness values and a second difference value corresponding to a difference between the second and third brightness values; and
comparing the first and second difference values with a predetermined reference value to discriminate whether the image signal is the signal corresponding to the film image or the signal corresponding to the video image.
3. The method of claim 2, wherein the comparing of the first and second difference values with the reference value comprises:
comparing the second difference value with the reference value if the first difference value is smaller than the reference value and discriminating that the n-th image signal is the signal corresponding to the video image if the first difference value is greater than the reference value;
calculating a third difference value corresponding to a difference between the third brightness value and a fourth brightness value corresponding to an (n+1)-th image signal and calculating a fourth difference value corresponding to a difference between the fourth brightness value and a fifth brightness value corresponding to an (n+2)-th image signal; and
comparing the third difference value with the reference value if the second difference value is smaller than the reference value and comparing the fourth difference value with the reference value if the second difference value is greater than the reference value to discriminate whether the n-th image signal is the signal corresponding to a still image or the signal corresponding to the film image.
4. The method of claim 3, wherein the comparing of the third and fourth difference value with the reference value comprises:
discriminating that the n-th image signal is the signal corresponding to the still image if the third difference value is smaller than the reference value and comparing the fourth difference value with the reference value if the third difference value is greater than the reference value; and
discriminating that the n-th image signal is the signal corresponding to the film image if the fourth difference value is smaller than the reference value and that the n-th image signal is the signal corresponding to the video image if the fourth difference value is greater than the reference value.
US14/284,073 2008-08-14 2014-05-21 Method of driving display apparatus and driving circuit for display apparatus using the same Abandoned US20140253528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/284,073 US20140253528A1 (en) 2008-08-14 2014-05-21 Method of driving display apparatus and driving circuit for display apparatus using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0080064 2008-08-14
KR1020080080064A KR101625983B1 (en) 2008-08-14 2008-08-14 Method of driving display apparatus and driving cirsuit of display appratus using the same
US12/356,584 US8797308B2 (en) 2008-08-14 2009-01-21 Method of driving display apparatus and driving circuit for display apparatus using the same
US14/284,073 US20140253528A1 (en) 2008-08-14 2014-05-21 Method of driving display apparatus and driving circuit for display apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/356,584 Division US8797308B2 (en) 2008-08-14 2009-01-21 Method of driving display apparatus and driving circuit for display apparatus using the same

Publications (1)

Publication Number Publication Date
US20140253528A1 true US20140253528A1 (en) 2014-09-11

Family

ID=41673899

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/356,584 Active 2031-02-04 US8797308B2 (en) 2008-08-14 2009-01-21 Method of driving display apparatus and driving circuit for display apparatus using the same
US14/284,073 Abandoned US20140253528A1 (en) 2008-08-14 2014-05-21 Method of driving display apparatus and driving circuit for display apparatus using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/356,584 Active 2031-02-04 US8797308B2 (en) 2008-08-14 2009-01-21 Method of driving display apparatus and driving circuit for display apparatus using the same

Country Status (5)

Country Link
US (2) US8797308B2 (en)
JP (1) JP5642348B2 (en)
KR (1) KR101625983B1 (en)
CN (1) CN101651813A (en)
TW (1) TWI476755B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132555A1 (en) * 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
CN102760463A (en) * 2011-04-27 2012-10-31 佛山市南海平板显示技术中心 MEMC (Motion Estimate and Motion Compensation) device for video processing
CN102761725B (en) * 2011-04-27 2016-02-17 佛山市南海平板显示技术中心 A kind of liquid crystal display
CN102761726B (en) * 2011-04-27 2016-02-10 佛山市南海平板显示技术中心 A kind of MEMC method for Video processing
CN102761727A (en) * 2011-04-27 2012-10-31 佛山市南海平板显示技术中心 MEMC (motion estimate and motion compensation) method for video processing
TWI571844B (en) * 2014-08-06 2017-02-21 財團法人資訊工業策進會 Display system, image compensation method and computer readable storage medium thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060007A (en) * 1986-11-20 1991-10-22 Canon Kabushiki Kaisha Image blur display device
US5446497A (en) * 1992-11-17 1995-08-29 Sony United Kingdom Ltd. Method and apparatus for processing an input 60 field/second video signal generated by 3232 pulldown to produce an output video signal
US6111610A (en) * 1997-12-11 2000-08-29 Faroudja Laboratories, Inc. Displaying film-originated video on high frame rate monitors without motions discontinuities
US6151075A (en) * 1997-06-11 2000-11-21 Lg Electronics Inc. Device and method for converting frame rate
US20020075412A1 (en) * 2000-12-14 2002-06-20 Tang Che Wing Method and apparatus for eliminating motion artifacts from video
US20050243214A1 (en) * 2002-05-23 2005-11-03 Sony Corporation Signal processing apparatus, method and program
US7197075B2 (en) * 2002-08-22 2007-03-27 Hiroshi Akimoto Method and system for video sequence real-time motion compensated temporal upsampling

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398071A (en) 1993-11-02 1995-03-14 Texas Instruments Incorporated Film-to-video format detection for digital television
JP3495485B2 (en) * 1995-12-19 2004-02-09 日本放送協会 Image conversion device
JP4090764B2 (en) * 2002-03-18 2008-05-28 パイオニア株式会社 Video signal processing device
JP2004302045A (en) 2003-03-31 2004-10-28 Victor Co Of Japan Ltd Video display device
JP4483501B2 (en) * 2004-09-22 2010-06-16 株式会社ニコン Image processing apparatus, program, and method for performing preprocessing for reproducing still image as moving picture
JP2007288483A (en) 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd Image converting apparatus
KR101331709B1 (en) * 2006-12-29 2013-11-20 포항공과대학교 산학협력단 Driving circuit of liquid crystal display
JP2010011342A (en) 2008-06-30 2010-01-14 Toshiba Corp Pulldown signal processor and pulldown signal processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060007A (en) * 1986-11-20 1991-10-22 Canon Kabushiki Kaisha Image blur display device
US5446497A (en) * 1992-11-17 1995-08-29 Sony United Kingdom Ltd. Method and apparatus for processing an input 60 field/second video signal generated by 3232 pulldown to produce an output video signal
US6151075A (en) * 1997-06-11 2000-11-21 Lg Electronics Inc. Device and method for converting frame rate
US6111610A (en) * 1997-12-11 2000-08-29 Faroudja Laboratories, Inc. Displaying film-originated video on high frame rate monitors without motions discontinuities
US20020075412A1 (en) * 2000-12-14 2002-06-20 Tang Che Wing Method and apparatus for eliminating motion artifacts from video
US20050243214A1 (en) * 2002-05-23 2005-11-03 Sony Corporation Signal processing apparatus, method and program
US7197075B2 (en) * 2002-08-22 2007-03-27 Hiroshi Akimoto Method and system for video sequence real-time motion compensated temporal upsampling

Also Published As

Publication number Publication date
US20100039416A1 (en) 2010-02-18
CN101651813A (en) 2010-02-17
US8797308B2 (en) 2014-08-05
JP2010045758A (en) 2010-02-25
KR101625983B1 (en) 2016-06-14
TW201007694A (en) 2010-02-16
KR20100021251A (en) 2010-02-24
TWI476755B (en) 2015-03-11
JP5642348B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US20140253528A1 (en) Method of driving display apparatus and driving circuit for display apparatus using the same
KR100426908B1 (en) Image processing apparatus and method and image display system
US20050001929A1 (en) Video signal converting apparatus and method
US8531599B2 (en) Apparatus, method and system for frame rate conversion of partial image
EP1607934A2 (en) Blur reduction in liquid crystal displays by frame rate control
US20080239144A1 (en) Frame rate conversion device and image display apparatus
US20080131030A1 (en) Frame interpolation device, frame interpolation method and image display device
US8390709B2 (en) Camera and method for adjusting photographing time and mode
US20110261255A1 (en) Video display control device, video display device, and recording medium having video display program recorded thereon
JP5015089B2 (en) Frame rate conversion device, frame rate conversion method, television receiver, frame rate conversion program, and recording medium recording the program
JP2009135847A (en) Video processor and frame rate conversion method
EP2194704A2 (en) Video signal processing device and video signal processing method
EP1848203B1 (en) Method and system for video image aspect ratio conversion
JP2004302045A (en) Video display device
KR100385975B1 (en) Apparatus for converting video format and method thereof
US7495706B2 (en) Video signal setting device for performing output setting to a display device
US20060077291A1 (en) Image signal converter and method of converting image signal
KR20020078338A (en) Apparatus and method for synchronizing digital televison screen
JP3043198B2 (en) Scan conversion circuit
JP4181610B2 (en) Image display apparatus and method, image processing apparatus and method
JP2010213181A (en) Telecine video signal detector, video processor, method of detecting telecine video signal, and computer program
JPH10161632A (en) Image display device
JPH0937175A (en) Picture display device and picture display method
JP2010199774A (en) Telecine video signal detector, video processor, telecine video signal detection method, and computer program
KR20030067158A (en) Method for reproducing partial interlaced image and apparatus thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION