US20140239374A1 - Embedded sonos based memory cells - Google Patents

Embedded sonos based memory cells Download PDF

Info

Publication number
US20140239374A1
US20140239374A1 US14/018,026 US201314018026A US2014239374A1 US 20140239374 A1 US20140239374 A1 US 20140239374A1 US 201314018026 A US201314018026 A US 201314018026A US 2014239374 A1 US2014239374 A1 US 2014239374A1
Authority
US
United States
Prior art keywords
layer
charge
substrate
transistor
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/018,026
Other versions
US8796098B1 (en
Inventor
Krishnaswamy Ramkumar
Igor G. Kouznetsov
Venkatraman Prabhakar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longitude Flash Memory Solutions Ltd
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/018,026 priority Critical patent/US8796098B1/en
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Assigned to CYPRESS SEMICONDUCTOR CORPORATION reassignment CYPRESS SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOUZNETSOV, IGOR G., PRABHAKAR, VENKATRAMAN, RAMKUMAR, KRISHNASWAMY
Priority to TW107120393A priority patent/TWI661541B/en
Priority to TW103105582A priority patent/TWI630703B/en
Priority to CN201410064510.5A priority patent/CN104009005B/en
Priority to CN201910654614.4A priority patent/CN110349963B/en
Priority to US14/451,341 priority patent/US9356035B2/en
Application granted granted Critical
Publication of US8796098B1 publication Critical patent/US8796098B1/en
Publication of US20140239374A1 publication Critical patent/US20140239374A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC
Priority to US15/146,753 priority patent/US9620516B2/en
Priority to US15/451,093 priority patent/US9922988B2/en
Assigned to LONGITUDE FLASH MEMORY SOLUTIONS LTD. reassignment LONGITUDE FLASH MEMORY SOLUTIONS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION
Assigned to CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC reassignment CYPRESS SEMICONDUCTOR CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTERST. Assignors: CYPRESS SEMICONDUCTOR CORPORATION, SPANSION LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • H01L29/42344Gate electrodes for transistors with charge trapping gate insulator with at least one additional gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • H01L29/42348Gate electrodes for transistors with charge trapping gate insulator with trapping site formed by at least two separated sites, e.g. multi-particles trapping site
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Definitions

  • the present disclosure relates generally to semiconductor devices, and more particularly to memory cells including embedded or integrally formed SONOS based non-volatile memory (NVM) transistors and metal-oxide-semiconductor (MOS) transistors and methods for fabricating the same.
  • NVM non-volatile memory
  • MOS metal-oxide-semiconductor
  • MOS transistors are typically fabricated using a standard or baseline complimentary-metal-oxide-semiconductor (CMOS) process flows, involving the formation and patterning of conducting, semiconducting and dielectric materials.
  • CMOS complimentary-metal-oxide-semiconductor
  • the composition of these materials, as well as the composition and concentration of processing reagents, and temperature used in such a CMOS process flow are stringently controlled for each operation to ensure the resultant MOS transistors will function properly.
  • Non-volatile memory devices include non-volatile memory transistors, silicon-oxide-nitride-oxide-semiconductor (SONOS) based transistors, including charge-trapping gate stacks in which a stored or trapped charge changes a threshold voltage of the non-volatile memory transistor to store information as a logic 1 or 0.
  • Charge-trapping gate stack formation involves the formation of a nitride or oxynitride charge-trapping layer sandwiched between two dielectric or oxide layers typically fabricated using materials and processes that differ significantly from those of the baseline CMOS process flow, and which can detrimentally impact or be impacted by the fabrication of the MOS transistors.
  • forming a gate oxide or dielectric of a MOS transistor can significantly degrade performance of a previously formed charge-trapping gate stack by altering a thickness or composition of the charge-trapping layer.
  • this integration can seriously impact the baseline CMOS process flow, and generally requires a substantial number of mask sets and process steps, which add to the expense of fabricating the devices and can reduce yield of working devices.
  • FIG. 1 is a flowchart illustrating an embodiment of a method for fabricating a memory cell including an embedded silicon-oxide-nitride-oxide-semiconductor (SONOS) based non-volatile memory (NVM) transistor and metal-oxide-semiconductor (MOS) transistors;
  • SONOS silicon-oxide-nitride-oxide-semiconductor
  • NVM non-volatile memory
  • MOS metal-oxide-semiconductor
  • FIGS. 2A-2M are block diagrams illustrating cross-sectional views of a portion of a memory cell during fabrication of the memory cell according to the method of FIG. 1 ;
  • FIG. 2N is a block diagram illustrating a cross-sectional view of a portion of a finished memory cell including an embedded SONOS based NVM transistor and MOS transistors fabricated according to the method of FIGS. 1 and 2 A- 2 M;
  • FIGS. 3A and 3B are graphs illustrating improvements in threshold voltage (V T ) uniformity of an NVM transistor including an indium channel according to an embodiment of the present disclosure.
  • FIGS. 4A-4C are graphs illustrating basic program erase characteristics and showing improvements in endurance data retention for a memory device including an embedded SONOS based NVM transistor fabricated according to an embodiment of the present disclosure.
  • Embodiments of a memory cell including an embedded non-volatile memory (NVM) transistor and a metal-oxide-semiconductor (MOS) transistor and methods of fabricating the same are described herein with reference to figures. However, particular embodiments may be practiced without one or more of these specific details, or in combination with other known methods, materials, and apparatuses. In the following description, numerous specific details are set forth, such as specific materials, dimensions and processes parameters etc. to provide a thorough understanding of the present invention. In other instances, well-known semiconductor design and fabrication techniques have not been described in particular detail to avoid unnecessarily obscuring the present invention.
  • the terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one layer with respect to other layers.
  • one layer deposited or disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers.
  • one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers.
  • a first layer “on” a second layer is in contact with that second layer.
  • the relative position of one layer with respect to other layers is provided assuming operations deposit, modify and remove films relative to a starting substrate without consideration of the absolute orientation of the substrate.
  • the NVM transistor may include memory transistors or devices implemented using Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) or floating gate technology.
  • SONOS Silicon-Oxide-Nitride-Oxide-Silicon
  • FIG. 1 is a flowchart illustrating an embodiment of a method or process flow for fabricating the memory cell.
  • FIGS. 2A-2L are block diagrams illustrating cross-sectional views of a portion of a memory cell during fabrication of the memory cell according to the method of FIG. 1
  • FIG. 2M is a block diagram illustrating a cross-sectional view of a portion of an embodiment of the finished memory cell.
  • the process begins with forming a number of isolation structures 202 in a wafer or substrate 204 (step 102 ).
  • the isolation structures 202 isolate the memory cell being formed from memory cells formed in adjoining areas (not shown) of the substrate 204 and/or isolate the NVM transistor being formed in a first region 206 of the substrate from one or more of the MOS transistors transistor being formed in a second region 208 .
  • the isolation structures 202 include a dielectric material, such as an oxide or nitride, and may be formed by any conventional technique, including but not limited to shallow trench isolation (STI) or local oxidation of silicon (LOCOS).
  • STI shallow trench isolation
  • LOC local oxidation of silicon
  • the substrate 204 may be a bulk wafer composed of any single crystal material suitable for semiconductor device fabrication, or may include a top epitaxial layer of a suitable material formed on a substrate. Suitable materials include, but are not limited to, silicon, germanium, silicon-germanium or a III-V compound semiconductor material.
  • a pad oxide 209 is formed over a surface 216 of the substrate 204 in both the first region 206 and the second region 208 .
  • the pad oxide 209 can be silicon dioxide (SiO 2 ) having a thickness of from about 10 nanometers (nm) to about 20 nm and can be grown by a thermal oxidation process or in-situ steam generation (ISSG).
  • dopants are then implanted into substrate 204 through the pad oxide 209 to form wells in which the NVM transistor and/or the MOS transistors will be formed, and channels for the MOS transistors (step 104 ).
  • the dopants implanted may be of any type and concentration, and may be implanted at any energy, including energies necessary to form wells or deep wells for the NVM transistor and/or the MOS transistors, and to form channels for the MOS transistors. In a particular embodiment illustrated in FIG.
  • dopants of an appropriate ion species are implanted to form a deep N-well 210 in the second region 208 over or in which a high-voltage (HV) MOS transistor 214 , such as a MOS input/output (I/O) transistor, will be formed.
  • HV high-voltage
  • MOS transistor 214 such as a MOS input/output
  • the wells or deep wells can also be formed for the NVM transistor and/or a standard or low-voltage (LV) MOS transistor, such as a MOS transistor 212 .
  • the wells are formed by depositing and patterning a mask layer, such as a photoresist layer above the surface 216 of the substrate 204 , and implanting an appropriate ion species at an appropriate energy to an appropriate concentration.
  • Channels 218 for one or more of the MOS transistors 214 , 212 are formed in the second region 208 of the substrate 204 .
  • the channels 218 are formed by depositing and patterning a mask layer, such as a photoresist layer above the surface 216 of the substrate 204 , and implanting an appropriate ion species at an appropriate energy to an appropriate concentration.
  • a mask layer such as a photoresist layer above the surface 216 of the substrate 204
  • implanting an appropriate ion species at an appropriate energy to an appropriate concentration.
  • BF 2 can be implanted at an energy of from about 10 to about 100 kilo-electron volts (keV), and a dose of from about 1 e12 cm ⁇ 2 to about 1 e14 cm ⁇ 2 to form an N-type MOS (NMOS) transistor.
  • keV kilo-electron volts
  • a P-type MOS (PMOS) transistor may likewise be formed by implantation of Arsenic or Phosphorous ions at any suitable dose and energy. It is to be appreciated that implantation can be used to form channels 218 , in both of the MOS transistors 214 , 212 , at the same time, or at separate times using standard lithographic techniques, including a patterned photoresist layer to mask one of the channels for the MOS transistors.
  • a patterned tunnel mask 220 is formed on or overlying the pad oxide 209 , ions (represented by arrows 222 ) of an appropriate, energy and concentration are implanted through a window or opening in the tunnel mask to form a channel 224 for a NVM transistor 226 , and the tunnel mask and the pad oxide in at least the second region 208 removed (step 106 ).
  • the tunnel mask can include a photoresist layer, or a hard mask formed, from a patterned nitride or silicon-nitride layer.
  • the channel 224 for the NVM transistor 226 is an Indium doped channel implanted with Indium (In) at an energy of from about 50 to about 500 kilo-electron volts (keV), and a dose of from about 5 e11 m ⁇ 2 to about 5 e12 cm ⁇ 2 to form a n-channel NVM transistor.
  • In Indium
  • keV kilo-electron volts
  • implanting Indium to form the channel 224 of the NVM transistor 226 improves the threshold voltage (V T ) uniformity of the NVM transistor from a sigma of V T from about 150 millivolts (mV) to from about 70 to 80 mV.
  • BF 2 can be implanted to form an n-channel NVM transistor, or Arsenic or Phosphorous implanted to form a p-channel NVM transistor.
  • a photoresist tunnel mask 220 can be ashed or stripped using oxygen plasma.
  • a hard mask can be removed using a wet or dry etch process.
  • the pad oxide 209 is removed, for example in a wet clean process using a 10:1 buffered oxide etch (BOE) containing a surfactant.
  • BOE buffered oxide etch
  • the wet clean process can be performed using a 20:1 BOE wet etch, a 50:1 hydrofluoric (HF) wet etch, a pad etch, or any other similar hydrofluoric-based wet etching chemistry.
  • the surface 204 of the substrate 204 is cleaned or precleaned, a number of dielectric layers, such as oxide-nitride-oxide or ONO layers, formed or deposited, a mask formed on or overlying the dielectric layers, and the dielectric layers etched to form a dielectric gate stack 236 in the first region 206 (step 108 ).
  • the preclean can be a wet or dry process and in this embodiment is wet process using HF or standard cleans (SC1) and SC2, and is highly selective to the material of the substrate 204 .
  • SC 1 is typically performed using a 1:1:5 solution of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ) and water (H 2 O) at 50 to 80° C. for about 10 minutes.
  • SC2 is a short immersion in a 1:1:10 solution of HCl, H2O2 and H 2 O at about 50 to 80° C.
  • the dielectric or ONO deposition begins with the formation of a tunnel dielectric 228 over at least the channel 224 of the NVM transistor 226 in the first region 206 of the substrate 204 .
  • the tunnel dielectric 228 may be any material and have any thickness suitable to allow charge carriers to tunnel into an overlying charge-trapping layer under an applied gate bias while maintaining a suitable barrier to leakage when the NVM transistor is unbiased.
  • tunnel dielectric 228 is silicon dioxide, silicon oxy-nitride, or a combination thereof and can be grown by a thermal oxidation process, using ISSG or radical oxidation.
  • a silicon dioxide tunnel dielectric 228 may be thermally grown in a thermal oxidation process.
  • a layer of silicon dioxide may be grown utilizing dry oxidation at 750 degrees centigrade (° C.)-800° C. in an oxygen containing gas or atmosphere, such as oxygen (O 2 ) gas.
  • the thermal oxidation process is carried out for a duration approximately in the range of 50 to 150 minutes to effect growth of a tunnel dielectric 228 having a thickness of from about 1.0 nanometers (nm) to about 3.0 nm by oxidation and consumption of the exposed surface of substrate.
  • a silicon dioxide tunnel dielectric 228 may be grown in a radical oxidation process involving flowing hydrogen (H 2 ) and oxygen (O 2 ) gas into a processing chamber at a ratio to one another of approximately 1:1 without an ignition event, such as forming of a plasma, which would otherwise typically be used to pyrolyze the H 2 and O 2 to form steam.
  • the H 2 and O 2 are permitted to react at a temperature approximately in the range of about 900° C. to about 1000° C. at a pressure approximately in the range of about 0.5 to about 5 Torr to form radicals, such as, an OH radical, an HO 2 radical or an O diradical, at the surface of substrate.
  • the radical oxidation process is carried out for a duration approximately in the range of about 1 to about 10 minutes to effect growth of a tunnel dielectric 228 having a thickness of from about 1.0 nanometers (nm) to about 4.0 nm by oxidation and consumption of the exposed surface of substrate. It will be understood that in this and in subsequent figures the thickness of tunnel dielectric 228 is exaggerated relative to the pad oxide 209 , which is approximately 7 times thicker, for the purposes of clarity.
  • a tunnel dielectric 228 grown in a radical oxidation process is both denser and is composed of substantially fewer hydrogen atoms/cm 3 than a tunnel dielectric formed by wet oxidation techniques, even at a reduced thickness.
  • the radical oxidation process is carried out in a batch-processing chamber or furnace capable of processing multiple substrates to provide a high quality tunnel dielectric 228 without impacting the throughput (wafers/hr.) requirements that a fabrication facility may require.
  • tunnel dielectric layer 228 is deposited by chemical vapor deposition (CVD) or atomic layer deposition and is composed of a dielectric layer which may include, but is not limited to silicon dioxide, silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • CVD chemical vapor deposition
  • atomic layer deposition is composed of a dielectric layer which may include, but is not limited to silicon dioxide, silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • tunnel dielectric 228 is a bi-layer dielectric region including a bottom layer of a material such as, but not limited to, silicon dioxide or silicon oxy-nitride and a top layer of a material which may include, but is not limited to silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • a material such as, but not limited to, silicon dioxide or silicon oxy-nitride
  • a top layer of a material which may include, but is not limited to silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • a charge-trapping layer is formed on or overlying the tunnel dielectric 228 .
  • the charge-trapping layer is a multi-layer charge-trapping layer comprising multiple layers including at least a lower or first charge-trapping layer 230 a closer to the tunnel dielectric 228 , and an upper or second charge-trapping layer 230 b that is oxygen-lean relative to the first charge-trapping layer and comprises a majority of a charge traps distributed in multi-layer charge-trapping layer.
  • the first charge-trapping layer 230 a of a multi-layer charge-trapping layer 230 can include a silicon nitride (Si 3 N 4 ), silicon-rich silicon nitride or a silicon oxy-nitride (SiO x N y (HO).
  • the first charge-trapping layer 230 a can include a silicon oxynitride layer having a thickness of between about 2.0 nm and about 4.0 nm formed by a CVD process using dichlorosilane (DCS)/ammonia (NH 3 ) and nitrous oxide (N 2 O)/NH 3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer.
  • the second charge-trapping layer 230 b of the multi-layer charge-trapping layer is then formed over the first charge-trapping layer 230 a .
  • the second charge-trapping layer 230 b can include a silicon nitride and silicon oxy-nitride layer having a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the first charge-trapping layer 230 a .
  • the second charge-trapping layer 230 b can include a silicon oxynitride layer having a thickness of between about 2.0 nm and about 5.0 nm, and may be formed or deposited by a CVD process using a process gas including DCS/NH 3 and N 2 O/NH 3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich, oxygen-lean top nitride layer.
  • oxygen-rich and “silicon-rich” are relative to a stoichiometric silicon nitride, or “nitride,” commonly employed in the art having a composition of (Si 3 N 4 ) and with a refractive index (RI) of approximately 2.0.
  • nitride commonly employed in the art having a composition of (Si 3 N 4 ) and with a refractive index (RI) of approximately 2.0.
  • RI refractive index
  • films described herein as “silicon-rich” entail a shift from stoichiometric silicon nitride toward a higher wt. % of silicon with less oxygen than an “oxygen-rich” film.
  • a silicon-rich silicon oxynitride film is therefore more like silicon and the RI is increased toward the 3.5 RI of pure silicon.
  • the number of dielectric layers further includes a cap layer 232 that is formed on or overlying the charge-trapping layer 230 .
  • the cap layer 232 includes a silicon nitride all or part of which is subsequently oxidized to form a blocking oxide overlying the charge-trapping layer 230 .
  • the cap layer 232 can be a single layer of nitride (not shown) having a homogeneous composition, a single layer of nitride having a gradient in stoichiometric composition, or, as in the embodiment shown, can be a multi-layer cap layer including at least a lower or first cap layer 232 a overlying the second charge-trapping layer 230 b , and a second cap layer 232 b overlying the first cap layer 232 a.
  • the first cap layer 232 a can include a silicon nitride, a silicon-rich silicon nitride or a silicon-rich silicon oxynitride layer having a thickness of between 2.0 nm and 4.0 nm formed by a CVD process using N 2 O/NH 3 and DCS/NH 3 gas mixtures.
  • the second cap layer 232 b can also include a silicon nitride, a silicon-rich silicon nitride or a silicon-rich silicon oxynitride layer having a thickness of between 2.0 nm and 4.0 nm formed by a CVD process using N 2 O/NH 3 and DCS/NH 3 gas mixtures.
  • the first cap layer 232 a and second cap layer 232 b can comprise different stoichiometries.
  • the second cap layer 232 b can comprise a silicon or oxygen rich composition relative to the first cap layer 232 a to facilitate removal of the second cap layer in a dry or wet clean process prior to oxidizing the first cap layer.
  • the first cap layer 232 a can comprise a silicon or oxygen rich composition relative to the second cap layer 232 b to facilitate oxidation of the first cap layer.
  • a sacrificial oxide layer 234 is formed on or overlying the second cap layer 232 b .
  • the sacrificial oxide layer 234 can include a silicon dioxide layer grown by a thermal oxidation process, in-situ steam generation (ISSG), or radical oxidation, and having a thickness of between 2.0 nm and 4.0 nm.
  • the sacrificial oxide layer 234 can be formed or deposited by a chemical vapor deposition process in a low pressure chemical vapor deposition (LPCVD) chamber.
  • LPCVD low pressure chemical vapor deposition
  • the sacrificial oxide layer 234 can be deposited by a CVD process using a process gas including gas mixtures of silane or DCS and an oxygen containing gas, such as O 2 or N 2 O, in ratios and at flow rates tailored to provide a silicon dioxide (SiO 2 ) sacrificial oxide layer.
  • a process gas including gas mixtures of silane or DCS and an oxygen containing gas, such as O 2 or N 2 O, in ratios and at flow rates tailored to provide a silicon dioxide (SiO 2 ) sacrificial oxide layer.
  • a patterned mask layer (not shown) is formed on or overlying the sacrificial oxide layer 234 , and the sacrificial oxide, cap layer 232 , and the charge-trapping layer 230 etched or patterned to form a gate stack 236 overlying the channel 224 of the NVM transistor and to remove the sacrificial oxide, cap layer, and the charge trapping layers 230 from the second region 208 of the substrate 204 .
  • the patterned mask layer can include a photoresist layer patterned using standard lithographic techniques, and the sacrificial oxide layer 234 , cap layer 232 , and the charge trapping layers 230 from can be etched or removed using a dry etch process including one or more separate steps to stop on the surface 216 of the substrate 204 .
  • a gate oxide or GOX preclean is performed, gate oxides for both MOS transistors 214 , 212 formed, and a gate layer is deposited and patterned to form gates for the NVM transistor 226 , and both MOS transistors (step 110 ).
  • the GOX preclean removes the sacrificial oxide layer 234 and a portion of the cap layer 232 or substantially of all of a top most layer in a multi-layer cap layer are removed from the gate stack 236 in a highly selective cleaning process.
  • This cleaning process simultaneously or concurrently further removes any oxide, such as an oxide tunnel dielectric 228 and pad oxide 209 , remaining in the first region 206 outside the gate stack 236 and in the second region 208 to prepare the substrate 204 in that region for gate oxide growth.
  • the thickness of the cap layer 232 is adjusted to allow a portion or substantially all of the second cap layer 232 b to be consumed by the GOX preclean.
  • the sacrificial oxide layer 234 and the second cap layer 232 b are removed in a wet clean process using a 10:1 buffered oxide etch (BOE) containing a surfactant.
  • BOE buffered oxide etch
  • the wet clean process can be performed using a 20:1 BOE wet etch, a 50:1 hydrofluoric (HF) wet etch, a pad etch, or any other similar hydrofluoric-based wet etching chemistry.
  • a 20:1 BOE wet etch a 50:1 hydrofluoric (HF) wet etch
  • a pad etch or any other similar hydrofluoric-based wet etching chemistry.
  • This embodiment of the GOX preclean is advantageous in that it substantially does not affect the baseline CMOS process—either in the preclean step (step 110 ) or a subsequent oxidation step (step 112 ), but rather uses it for the integration of the NVM transistor fabrication.
  • an oxidation process is performed to oxidize the remaining portion of the cap layer 232 or the first cap layer 232 a of a multi-layer cap layer, and a portion of the second charge-trapping layer 230 b to form a blocking oxide layer 238 overlying the second charge-trapping layer.
  • the oxidation process is adapted to oxidize the first cap layer 232 a to form the blocking oxide layer 238 while simultaneously or concurrently oxidizing at least a portion of the surface 216 of the substrate 204 in the second region 208 to form a first gate oxide 240 overlying at least the channel 218 of at least one MOS transistor.
  • the oxidation process can include in-situ-steam-generation (ISSG), CVD, or radical oxidation performed in a batch or single substrate processing chamber with or without an ignition event such as plasma.
  • ISSG in-situ-steam-generation
  • the blocking oxide layer 238 and the gate oxide 240 may be grown in a radical oxidation process involving flowing hydrogen (H 2 ) and oxygen (O 2 ) gas into a processing chamber at a ratio to one another of approximately 1:1 without an ignition event, such as forming of a plasma, which would otherwise typically be used to pyrolyze the H 2 and O 2 to form steam.
  • the H 2 and O 2 are permitted to react at a temperature approximately in the range of 700-800° C.
  • radicals such as, an OH radical, an HO 2 radical or an O diradical radicals at a surface of the cap layer 232 or the first cap layer 232 a .
  • the oxidation process is carried out for a duration approximately in the range of 1-5 minutes for a single substrate using an ISSG process, or 10-15 minutes for a batch furnace process to effect growth of a blocking oxide layer 238 by oxidation and consumption of the first cap layer 232 a and a portion of the second charge-trapping layer 230 b having a thickness of from about 3 nm to about 4.5 nm, and gate oxide 240 having a thickness of from about 5 nm to about 7 nm.
  • the method further includes a dual gate oxide process flow to enable fabrication of both a LV MOS transistor 212 and a HV MOS transistor 214 .
  • a patterned mask layer 242 is formed over the first and second regions 206 , 208 of the substrate 204 .
  • the patterned mask layer 242 can be a photoresist layer patterned using standard lithographic techniques, and includes at least one opening 244 over a channel 218 in the second region 208 .
  • the thick, first gate oxide 240 is etched in the exposed regions by using a BOE etch, under conditions similar to those described above with respect to removing the sacrificial oxide layer 234 , and the patterned mask layer 242 is then removed.
  • the substrate 206 is cleaned using a wet etch that does not etch oxide in order to protect the first gate oxide 240 of the HV MOS transistor 212 , and the blocking oxide layer 238 of the gate stack 236 .
  • the substrate 206 is then subjected to a thermal oxidation process to grow a thin, second gate oxide 246 having a thickness from about 1 nm to about 3 nm.
  • the second gate oxide 246 can be overlaid with a deposited layer (not shown) such as silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • a deposited layer such as silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • a gate layer 248 of any conducting or semiconducting material suitable for accommodating a biasing of the NVM transistor 226 and operation of the MOS transistors 214 , 212 is formed over the gate stack 236 , the first gate oxide 240 of the HV MOS transistor 214 , and the second gate oxide 246 of the MOS transistor 212 .
  • the gate layer is formed by physical vapor deposition and is composed of a metal-containing material which may include, but is not limited to, metal nitrides, metal carbides, metal silicides, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, platinum, cobalt and nickel.
  • the gate layer is formed by a CVD process and is composed of a single doped polysilicon layer, which may then be patterned to form control gates of the NVM transistor 226 and MOS transistors 214 , 212 .
  • the gate layer 248 is patterned using a mask layer (not shown) and standard lithographic techniques to stop on surfaces of the blocking oxide layer 238 , the first gate oxide 240 and the second gate oxide 246 , thereby forming a gate 250 for the gate stack 236 of a NVM transistor 226 , a gate 252 for the HV MOS transistor 214 , and a gate 254 for the MOS transistor 212 .
  • a first spacer layer is deposited and etched to form first sidewall spacers 256 adjacent to the gates 252 , 254 , of the MOS transistors 212 , 214 , and the NVM transistor 226 , and one or more lightly-doped drain extensions (LDD 258 ) are implanted adjacent to and extend under sidewall spacers 256 of one or more of the MOS transistors 212 , 214 (step 112 ).
  • LDD 258 lightly-doped drain extensions
  • a SONOS LDD mask is formed over the substrate 204 and lightly-doped drain extensions (LDD 260 ) are implanted, adjacent to the NVM transistor 226 .
  • LDD 260 lightly-doped drain extensions
  • a second spacer layer is deposited and etched to form second sidewall spacers 262 adjacent to the gate stack 236 , of the NVM transistor 226 (step 114 ).
  • source and drain implants are performed to form source and drain regions 264 for all transistors and a silicide process performed (step 116 ).
  • silicide regions 266 may be formed on the exposed gates 250 , 252 and 254 and exposed source and drain regions 264 .
  • the silicide process may be any commonly employed in the art, typically including a pre-clean etch, cobalt or nickel metal deposition, anneal and wet strip.
  • the method of fabricating memory cells including an embedded or integrally formed SONOS based NVM transistor and MOS transistors further includes the step of forming a stress inducing layer or structure 268 , such as a stress inducing nitride layer, over the gate stack 236 of the NVM transistor 226 to increase data retention and/or to improve programming time and efficiency (step 118 ).
  • a stress inducing layer or structure 268 such as a stress inducing nitride layer
  • a stress inducing structure 268 in or on the surface 216 of the substrate 204 proximal to, and preferably surrounding, a region of the substrate in which the channel 224 of NVM transistor 226 is formed will reduce the band gap, and, depending on the type of strain, increases carrier mobility. For example, tensile strain, in which inter-atomic distances in the crystal lattice of the substrate 204 are stretched, increases the mobility of electrons, making N-type transistors faster. Compressive strain, in which those distances are shortened, produces a similar effect in P-type transistors by increasing the mobility of holes. Both of these strain induced factors, i.e., reduced band gap and increased carrier mobility, will result in faster and more efficient programming of NVM transistor 226 .
  • the strain inducing structure 268 can include a pre-metal dielectric (PMD) layer formed using a High Aspect Ratio Process (HARPTM) oxidation process, a compressive or tensile nitride layer formed using a plasma enhanced chemical vapor deposition (PECVD) or a Bis-TertiaryButylAmino Silane (BTBAS) nitride layer.
  • PMD pre-metal dielectric
  • HTPTM High Aspect Ratio Process
  • PECVD plasma enhanced chemical vapor deposition
  • BBAS Bis-TertiaryButylAmino Silane
  • the stress inducing structure 268 may also be formed over one or more of the MOS transistors to induce strain in the channel of the MOS transistor.
  • FIG. 2N is a block diagram illustrating a cross-sectional view of a portion of a finished memory cell including an embedded SONOS based NVM transistor and MOS transistors fabricated according to the method of FIGS. 1 and 2 A- 2 M.
  • FIGS. 3A and 3B are graphs illustrating improvements in threshold voltage (V T ) uniformity of an NVM transistor including an indium channel according to an embodiment of the present disclosure.
  • V T threshold voltage
  • the heavier Indium atom does not move or diffuse as much as a light Boron atoms used in prior n-channel SONOS based NVM transistors, in the subsequent high temperature steps and hence the random dopant effects are reduced, significantly improving the V T uniformity from a sigma of V T from ⁇ 150 mV to ⁇ 70 to 80 mV.
  • FIGS. 4A-4C are graphs illustrating basic program erase characteristics and showing improvements in endurance and data retention for a memory device including an embedded SONOS based NVM transistor fabricated according to an embodiment of the present disclosure.
  • FIG. 4A shows subthreshold characteristics of the SONOS based NVM transistor in both the programmed and erased states. This figure shows a good subthreshold slope of about 135 mV is achieved using Indium implant which is one of the embodiments of the present disclosure.
  • FIG. 4B shows the cycling endurance of the SONOS NVM transistor fabricated according to an embodiment of the process described previously. It can be seen from FIG. 4B that there is no significant change in threshold voltage (V T ) on either program or erase after 100 thousand program and erase (P/E) cycles.
  • V T threshold voltage
  • FIG. 4C shows the data retention charge loss for SONOS based NVM transistor fabricated according to an embodiment of the present disclosure.
  • the V T window i.e., a difference between the threshold voltage in programmed and erased states, is seen to be greater than 1V, which gives sufficient margin for error-free read even after 10 years or 3 E8 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Memory cells including embedded SONOS based non-volatile memory (NVM) and MOS transistors and methods of forming the same are described. Generally, the method includes: forming a dielectric stack on a substrate, the dielectric stack including a tunneling dielectric on the substrate and a charge-trapping layer on the tunneling dielectric; patterning the dielectric stack to form a gate stack of a NVM transistor of a memory device in a first region of the substrate while concurrently removing the dielectric stack from a second region of the substrate; and performing a gate oxidation process of a baseline CMOS process flow to thermally grow a gate oxide of a MOS transistor overlying the substrate in the second region while concurrently growing a blocking oxide overlying the charge-trapping layer. In one embodiment, Indium is implanted to form a channel of the NVM transistor.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 61/769,693, filed Feb. 26, 2013, and to U.S. Provisional Patent Application Ser. No. 61/825,196, filed May 20, 2013, both of which are incorporated by reference herein.
  • TECHNICAL FIELD
  • The present disclosure relates generally to semiconductor devices, and more particularly to memory cells including embedded or integrally formed SONOS based non-volatile memory (NVM) transistors and metal-oxide-semiconductor (MOS) transistors and methods for fabricating the same.
  • BACKGROUND
  • For many applications, such as system-on-chip, it is desirable to integrate logic devices and interface circuits based upon metal-oxide-semiconductor (MOS) field-effect transistors and non-volatile memory (NVM) transistors on a single chip or substrate. This integration can seriously impact both the MOS transistor and NVM transistor fabrication processes. MOS transistors are typically fabricated using a standard or baseline complimentary-metal-oxide-semiconductor (CMOS) process flows, involving the formation and patterning of conducting, semiconducting and dielectric materials. The composition of these materials, as well as the composition and concentration of processing reagents, and temperature used in such a CMOS process flow are stringently controlled for each operation to ensure the resultant MOS transistors will function properly.
  • Non-volatile memory devices include non-volatile memory transistors, silicon-oxide-nitride-oxide-semiconductor (SONOS) based transistors, including charge-trapping gate stacks in which a stored or trapped charge changes a threshold voltage of the non-volatile memory transistor to store information as a logic 1 or 0. Charge-trapping gate stack formation involves the formation of a nitride or oxynitride charge-trapping layer sandwiched between two dielectric or oxide layers typically fabricated using materials and processes that differ significantly from those of the baseline CMOS process flow, and which can detrimentally impact or be impacted by the fabrication of the MOS transistors. In particular, forming a gate oxide or dielectric of a MOS transistor can significantly degrade performance of a previously formed charge-trapping gate stack by altering a thickness or composition of the charge-trapping layer. In addition, this integration can seriously impact the baseline CMOS process flow, and generally requires a substantial number of mask sets and process steps, which add to the expense of fabricating the devices and can reduce yield of working devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood more fully from the detailed description that follows and from the accompanying drawings and the appended claims provided below, where:
  • FIG. 1 is a flowchart illustrating an embodiment of a method for fabricating a memory cell including an embedded silicon-oxide-nitride-oxide-semiconductor (SONOS) based non-volatile memory (NVM) transistor and metal-oxide-semiconductor (MOS) transistors;
  • FIGS. 2A-2M are block diagrams illustrating cross-sectional views of a portion of a memory cell during fabrication of the memory cell according to the method of FIG. 1;
  • FIG. 2N is a block diagram illustrating a cross-sectional view of a portion of a finished memory cell including an embedded SONOS based NVM transistor and MOS transistors fabricated according to the method of FIGS. 1 and 2A-2M;
  • FIGS. 3A and 3B are graphs illustrating improvements in threshold voltage (VT) uniformity of an NVM transistor including an indium channel according to an embodiment of the present disclosure; and
  • FIGS. 4A-4C are graphs illustrating basic program erase characteristics and showing improvements in endurance data retention for a memory device including an embedded SONOS based NVM transistor fabricated according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • Embodiments of a memory cell including an embedded non-volatile memory (NVM) transistor and a metal-oxide-semiconductor (MOS) transistor and methods of fabricating the same are described herein with reference to figures. However, particular embodiments may be practiced without one or more of these specific details, or in combination with other known methods, materials, and apparatuses. In the following description, numerous specific details are set forth, such as specific materials, dimensions and processes parameters etc. to provide a thorough understanding of the present invention. In other instances, well-known semiconductor design and fabrication techniques have not been described in particular detail to avoid unnecessarily obscuring the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
  • The terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one layer with respect to other layers. As such, for example, one layer deposited or disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers. In contrast, a first layer “on” a second layer is in contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations deposit, modify and remove films relative to a starting substrate without consideration of the absolute orientation of the substrate.
  • The NVM transistor may include memory transistors or devices implemented using Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) or floating gate technology.
  • An embodiment of a method for integrating or embedding a NVM transistor into a standard or baseline CMOS process flow for fabricating one or more MOS transistors will now be described in detail with reference to FIG. 1 and FIGS. 2A through 2M. FIG. 1 is a flowchart illustrating an embodiment of a method or process flow for fabricating the memory cell. FIGS. 2A-2L are block diagrams illustrating cross-sectional views of a portion of a memory cell during fabrication of the memory cell according to the method of FIG. 1, and FIG. 2M is a block diagram illustrating a cross-sectional view of a portion of an embodiment of the finished memory cell.
  • Referring to FIG. 1 and FIG. 2A, the process begins with forming a number of isolation structures 202 in a wafer or substrate 204 (step 102). The isolation structures 202 isolate the memory cell being formed from memory cells formed in adjoining areas (not shown) of the substrate 204 and/or isolate the NVM transistor being formed in a first region 206 of the substrate from one or more of the MOS transistors transistor being formed in a second region 208. The isolation structures 202 include a dielectric material, such as an oxide or nitride, and may be formed by any conventional technique, including but not limited to shallow trench isolation (STI) or local oxidation of silicon (LOCOS). The substrate 204 may be a bulk wafer composed of any single crystal material suitable for semiconductor device fabrication, or may include a top epitaxial layer of a suitable material formed on a substrate. Suitable materials include, but are not limited to, silicon, germanium, silicon-germanium or a III-V compound semiconductor material.
  • Generally, as in the embodiment shown, a pad oxide 209 is formed over a surface 216 of the substrate 204 in both the first region 206 and the second region 208. The pad oxide 209 can be silicon dioxide (SiO2) having a thickness of from about 10 nanometers (nm) to about 20 nm and can be grown by a thermal oxidation process or in-situ steam generation (ISSG).
  • Referring to FIG. 1 and FIG. 2B, dopants are then implanted into substrate 204 through the pad oxide 209 to form wells in which the NVM transistor and/or the MOS transistors will be formed, and channels for the MOS transistors (step 104). The dopants implanted may be of any type and concentration, and may be implanted at any energy, including energies necessary to form wells or deep wells for the NVM transistor and/or the MOS transistors, and to form channels for the MOS transistors. In a particular embodiment illustrated in FIG. 2B, dopants of an appropriate ion species are implanted to form a deep N-well 210 in the second region 208 over or in which a high-voltage (HV) MOS transistor 214, such as a MOS input/output (I/O) transistor, will be formed. Although not shown, it is to be appreciated that the wells or deep wells can also be formed for the NVM transistor and/or a standard or low-voltage (LV) MOS transistor, such as a MOS transistor 212. It is further to be appreciated that the wells are formed by depositing and patterning a mask layer, such as a photoresist layer above the surface 216 of the substrate 204, and implanting an appropriate ion species at an appropriate energy to an appropriate concentration.
  • Channels 218 for one or more of the MOS transistors 214, 212, are formed in the second region 208 of the substrate 204. As with the well implant the channels 218 are formed by depositing and patterning a mask layer, such as a photoresist layer above the surface 216 of the substrate 204, and implanting an appropriate ion species at an appropriate energy to an appropriate concentration. For example, BF2 can be implanted at an energy of from about 10 to about 100 kilo-electron volts (keV), and a dose of from about 1 e12 cm−2 to about 1 e14 cm−2 to form an N-type MOS (NMOS) transistor. A P-type MOS (PMOS) transistor may likewise be formed by implantation of Arsenic or Phosphorous ions at any suitable dose and energy. It is to be appreciated that implantation can be used to form channels 218, in both of the MOS transistors 214, 212, at the same time, or at separate times using standard lithographic techniques, including a patterned photoresist layer to mask one of the channels for the MOS transistors.
  • Next, referring to FIG. 1 and FIG. 2C a patterned tunnel mask 220 is formed on or overlying the pad oxide 209, ions (represented by arrows 222) of an appropriate, energy and concentration are implanted through a window or opening in the tunnel mask to form a channel 224 for a NVM transistor 226, and the tunnel mask and the pad oxide in at least the second region 208 removed (step 106). The tunnel mask can include a photoresist layer, or a hard mask formed, from a patterned nitride or silicon-nitride layer.
  • In one embodiment, the channel 224 for the NVM transistor 226 is an Indium doped channel implanted with Indium (In) at an energy of from about 50 to about 500 kilo-electron volts (keV), and a dose of from about 5 e11 m−2 to about 5 e12 cm−2 to form a n-channel NVM transistor. As explained in greater detail below, implanting Indium to form the channel 224 of the NVM transistor 226 improves the threshold voltage (VT) uniformity of the NVM transistor from a sigma of VT from about 150 millivolts (mV) to from about 70 to 80 mV. Alternatively, BF2 can be implanted to form an n-channel NVM transistor, or Arsenic or Phosphorous implanted to form a p-channel NVM transistor.
  • A photoresist tunnel mask 220 can be ashed or stripped using oxygen plasma. A hard mask can be removed using a wet or dry etch process. The pad oxide 209 is removed, for example in a wet clean process using a 10:1 buffered oxide etch (BOE) containing a surfactant. Alternatively, the wet clean process can be performed using a 20:1 BOE wet etch, a 50:1 hydrofluoric (HF) wet etch, a pad etch, or any other similar hydrofluoric-based wet etching chemistry.
  • Referring to FIG. 1 and FIGS. 2D-2F, the surface 204 of the substrate 204 is cleaned or precleaned, a number of dielectric layers, such as oxide-nitride-oxide or ONO layers, formed or deposited, a mask formed on or overlying the dielectric layers, and the dielectric layers etched to form a dielectric gate stack 236 in the first region 206 (step 108). The preclean can be a wet or dry process and in this embodiment is wet process using HF or standard cleans (SC1) and SC2, and is highly selective to the material of the substrate 204. SC 1 is typically performed using a 1:1:5 solution of ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2) and water (H2O) at 50 to 80° C. for about 10 minutes. SC2 is a short immersion in a 1:1:10 solution of HCl, H2O2 and H2O at about 50 to 80° C.
  • Referring to FIG. 2D, the dielectric or ONO deposition begins with the formation of a tunnel dielectric 228 over at least the channel 224 of the NVM transistor 226 in the first region 206 of the substrate 204. The tunnel dielectric 228 may be any material and have any thickness suitable to allow charge carriers to tunnel into an overlying charge-trapping layer under an applied gate bias while maintaining a suitable barrier to leakage when the NVM transistor is unbiased. In certain embodiments, tunnel dielectric 228 is silicon dioxide, silicon oxy-nitride, or a combination thereof and can be grown by a thermal oxidation process, using ISSG or radical oxidation.
  • In one embodiment a silicon dioxide tunnel dielectric 228 may be thermally grown in a thermal oxidation process. For example, a layer of silicon dioxide may be grown utilizing dry oxidation at 750 degrees centigrade (° C.)-800° C. in an oxygen containing gas or atmosphere, such as oxygen (O2) gas. The thermal oxidation process is carried out for a duration approximately in the range of 50 to 150 minutes to effect growth of a tunnel dielectric 228 having a thickness of from about 1.0 nanometers (nm) to about 3.0 nm by oxidation and consumption of the exposed surface of substrate.
  • In another embodiment a silicon dioxide tunnel dielectric 228 may be grown in a radical oxidation process involving flowing hydrogen (H2) and oxygen (O2) gas into a processing chamber at a ratio to one another of approximately 1:1 without an ignition event, such as forming of a plasma, which would otherwise typically be used to pyrolyze the H2 and O2 to form steam. Instead, the H2 and O2 are permitted to react at a temperature approximately in the range of about 900° C. to about 1000° C. at a pressure approximately in the range of about 0.5 to about 5 Torr to form radicals, such as, an OH radical, an HO2 radical or an O diradical, at the surface of substrate. The radical oxidation process is carried out for a duration approximately in the range of about 1 to about 10 minutes to effect growth of a tunnel dielectric 228 having a thickness of from about 1.0 nanometers (nm) to about 4.0 nm by oxidation and consumption of the exposed surface of substrate. It will be understood that in this and in subsequent figures the thickness of tunnel dielectric 228 is exaggerated relative to the pad oxide 209, which is approximately 7 times thicker, for the purposes of clarity. A tunnel dielectric 228 grown in a radical oxidation process is both denser and is composed of substantially fewer hydrogen atoms/cm3 than a tunnel dielectric formed by wet oxidation techniques, even at a reduced thickness. In certain embodiments, the radical oxidation process is carried out in a batch-processing chamber or furnace capable of processing multiple substrates to provide a high quality tunnel dielectric 228 without impacting the throughput (wafers/hr.) requirements that a fabrication facility may require.
  • In another embodiment, tunnel dielectric layer 228 is deposited by chemical vapor deposition (CVD) or atomic layer deposition and is composed of a dielectric layer which may include, but is not limited to silicon dioxide, silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide. In another embodiment, tunnel dielectric 228 is a bi-layer dielectric region including a bottom layer of a material such as, but not limited to, silicon dioxide or silicon oxy-nitride and a top layer of a material which may include, but is not limited to silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • Referring again to FIG. 2D, a charge-trapping layer is formed on or overlying the tunnel dielectric 228. Generally, as in the embodiment shown, the charge-trapping layer is a multi-layer charge-trapping layer comprising multiple layers including at least a lower or first charge-trapping layer 230 a closer to the tunnel dielectric 228, and an upper or second charge-trapping layer 230 b that is oxygen-lean relative to the first charge-trapping layer and comprises a majority of a charge traps distributed in multi-layer charge-trapping layer.
  • The first charge-trapping layer 230 a of a multi-layer charge-trapping layer 230 can include a silicon nitride (Si3N4), silicon-rich silicon nitride or a silicon oxy-nitride (SiOxNy (HO). For example, the first charge-trapping layer 230 a can include a silicon oxynitride layer having a thickness of between about 2.0 nm and about 4.0 nm formed by a CVD process using dichlorosilane (DCS)/ammonia (NH3) and nitrous oxide (N2O)/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer.
  • The second charge-trapping layer 230 b of the multi-layer charge-trapping layer is then formed over the first charge-trapping layer 230 a. The second charge-trapping layer 230 b can include a silicon nitride and silicon oxy-nitride layer having a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the first charge-trapping layer 230 a. The second charge-trapping layer 230 b can include a silicon oxynitride layer having a thickness of between about 2.0 nm and about 5.0 nm, and may be formed or deposited by a CVD process using a process gas including DCS/NH3 and N2O/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich, oxygen-lean top nitride layer.
  • As used herein, the terms “oxygen-rich” and “silicon-rich” are relative to a stoichiometric silicon nitride, or “nitride,” commonly employed in the art having a composition of (Si3N4) and with a refractive index (RI) of approximately 2.0. Thus, “oxygen-rich” silicon oxynitride entails a shift from stoichiometric silicon nitride toward a higher wt. % of silicon and oxygen (i.e. reduction of nitrogen). An oxygen rich silicon oxynitride film is therefore more like silicon dioxide and the RI is reduced toward the 1.45 RI of pure silicon dioxide. Similarly, films described herein as “silicon-rich” entail a shift from stoichiometric silicon nitride toward a higher wt. % of silicon with less oxygen than an “oxygen-rich” film. A silicon-rich silicon oxynitride film is therefore more like silicon and the RI is increased toward the 3.5 RI of pure silicon.
  • Referring again to FIG. 2D, the number of dielectric layers further includes a cap layer 232 that is formed on or overlying the charge-trapping layer 230. In one embodiment, the cap layer 232 includes a silicon nitride all or part of which is subsequently oxidized to form a blocking oxide overlying the charge-trapping layer 230. The cap layer 232 can be a single layer of nitride (not shown) having a homogeneous composition, a single layer of nitride having a gradient in stoichiometric composition, or, as in the embodiment shown, can be a multi-layer cap layer including at least a lower or first cap layer 232 a overlying the second charge-trapping layer 230 b, and a second cap layer 232 b overlying the first cap layer 232 a.
  • In one embodiment, the first cap layer 232 a can include a silicon nitride, a silicon-rich silicon nitride or a silicon-rich silicon oxynitride layer having a thickness of between 2.0 nm and 4.0 nm formed by a CVD process using N2O/NH3 and DCS/NH3 gas mixtures. Similarly, the second cap layer 232 b can also include a silicon nitride, a silicon-rich silicon nitride or a silicon-rich silicon oxynitride layer having a thickness of between 2.0 nm and 4.0 nm formed by a CVD process using N2O/NH3 and DCS/NH3 gas mixtures. Optionally, the first cap layer 232 a and second cap layer 232 b can comprise different stoichiometries. For example, the second cap layer 232 b can comprise a silicon or oxygen rich composition relative to the first cap layer 232 a to facilitate removal of the second cap layer in a dry or wet clean process prior to oxidizing the first cap layer. Alternatively, the first cap layer 232 a can comprise a silicon or oxygen rich composition relative to the second cap layer 232 b to facilitate oxidation of the first cap layer.
  • Referring to FIG. 2E, a sacrificial oxide layer 234 is formed on or overlying the second cap layer 232 b. In one embodiment, the sacrificial oxide layer 234 can include a silicon dioxide layer grown by a thermal oxidation process, in-situ steam generation (ISSG), or radical oxidation, and having a thickness of between 2.0 nm and 4.0 nm. In another embodiment, the sacrificial oxide layer 234 can be formed or deposited by a chemical vapor deposition process in a low pressure chemical vapor deposition (LPCVD) chamber. For example, the sacrificial oxide layer 234 can be deposited by a CVD process using a process gas including gas mixtures of silane or DCS and an oxygen containing gas, such as O2 or N2O, in ratios and at flow rates tailored to provide a silicon dioxide (SiO2) sacrificial oxide layer.
  • Next, referring to FIG. 2F, a patterned mask layer (not shown) is formed on or overlying the sacrificial oxide layer 234, and the sacrificial oxide, cap layer 232, and the charge-trapping layer 230 etched or patterned to form a gate stack 236 overlying the channel 224 of the NVM transistor and to remove the sacrificial oxide, cap layer, and the charge trapping layers 230 from the second region 208 of the substrate 204. The patterned mask layer can include a photoresist layer patterned using standard lithographic techniques, and the sacrificial oxide layer 234, cap layer 232, and the charge trapping layers 230 from can be etched or removed using a dry etch process including one or more separate steps to stop on the surface 216 of the substrate 204.
  • Referring to FIG. 1, a gate oxide or GOX preclean is performed, gate oxides for both MOS transistors 214, 212 formed, and a gate layer is deposited and patterned to form gates for the NVM transistor 226, and both MOS transistors (step 110). Referring to FIG. 2G, the GOX preclean removes the sacrificial oxide layer 234 and a portion of the cap layer 232 or substantially of all of a top most layer in a multi-layer cap layer are removed from the gate stack 236 in a highly selective cleaning process. This cleaning process simultaneously or concurrently further removes any oxide, such as an oxide tunnel dielectric 228 and pad oxide 209, remaining in the first region 206 outside the gate stack 236 and in the second region 208 to prepare the substrate 204 in that region for gate oxide growth. The thickness of the cap layer 232 is adjusted to allow a portion or substantially all of the second cap layer 232 b to be consumed by the GOX preclean. In one exemplary implementation the sacrificial oxide layer 234 and the second cap layer 232 b are removed in a wet clean process using a 10:1 buffered oxide etch (BOE) containing a surfactant. Alternatively, the wet clean process can be performed using a 20:1 BOE wet etch, a 50:1 hydrofluoric (HF) wet etch, a pad etch, or any other similar hydrofluoric-based wet etching chemistry.
  • This embodiment of the GOX preclean is advantageous in that it substantially does not affect the baseline CMOS process—either in the preclean step (step 110) or a subsequent oxidation step (step 112), but rather uses it for the integration of the NVM transistor fabrication.
  • Next, referring to FIG. 2H, an oxidation process is performed to oxidize the remaining portion of the cap layer 232 or the first cap layer 232 a of a multi-layer cap layer, and a portion of the second charge-trapping layer 230 b to form a blocking oxide layer 238 overlying the second charge-trapping layer. In one embodiment, the oxidation process is adapted to oxidize the first cap layer 232 a to form the blocking oxide layer 238 while simultaneously or concurrently oxidizing at least a portion of the surface 216 of the substrate 204 in the second region 208 to form a first gate oxide 240 overlying at least the channel 218 of at least one MOS transistor. The oxidation process can include in-situ-steam-generation (ISSG), CVD, or radical oxidation performed in a batch or single substrate processing chamber with or without an ignition event such as plasma. For example, in one embodiment the blocking oxide layer 238 and the gate oxide 240 may be grown in a radical oxidation process involving flowing hydrogen (H2) and oxygen (O2) gas into a processing chamber at a ratio to one another of approximately 1:1 without an ignition event, such as forming of a plasma, which would otherwise typically be used to pyrolyze the H2 and O2 to form steam. Instead, the H2 and O2 are permitted to react at a temperature approximately in the range of 700-800° C. at a pressure approximately in the range of 0.5-5 Torr to form radicals, such as, an OH radical, an HO2 radical or an O diradical radicals at a surface of the cap layer 232 or the first cap layer 232 a. The oxidation process is carried out for a duration approximately in the range of 1-5 minutes for a single substrate using an ISSG process, or 10-15 minutes for a batch furnace process to effect growth of a blocking oxide layer 238 by oxidation and consumption of the first cap layer 232 a and a portion of the second charge-trapping layer 230 b having a thickness of from about 3 nm to about 4.5 nm, and gate oxide 240 having a thickness of from about 5 nm to about 7 nm.
  • In some embodiments, such as that shown in FIGS. 2I to 2L, the method further includes a dual gate oxide process flow to enable fabrication of both a LV MOS transistor 212 and a HV MOS transistor 214. Referring to FIG. 2I, a patterned mask layer 242 is formed over the first and second regions 206, 208 of the substrate 204. The patterned mask layer 242 can be a photoresist layer patterned using standard lithographic techniques, and includes at least one opening 244 over a channel 218 in the second region 208. The thick, first gate oxide 240 is etched in the exposed regions by using a BOE etch, under conditions similar to those described above with respect to removing the sacrificial oxide layer 234, and the patterned mask layer 242 is then removed.
  • Referring to FIG. 2J, the substrate 206 is cleaned using a wet etch that does not etch oxide in order to protect the first gate oxide 240 of the HV MOS transistor 212, and the blocking oxide layer 238 of the gate stack 236. The substrate 206 is then subjected to a thermal oxidation process to grow a thin, second gate oxide 246 having a thickness from about 1 nm to about 3 nm. In some embodiments, the second gate oxide 246 can be overlaid with a deposited layer (not shown) such as silicon oxy-nitride, silicon nitride, aluminum oxide, hafnium oxide, zirconium oxide, hafnium silicate, zirconium silicate, hafnium oxy-nitride, hafnium zirconium oxide and lanthanum oxide.
  • Referring to FIG. 2K, a gate layer 248 of any conducting or semiconducting material suitable for accommodating a biasing of the NVM transistor 226 and operation of the MOS transistors 214, 212, is formed over the gate stack 236, the first gate oxide 240 of the HV MOS transistor 214, and the second gate oxide 246 of the MOS transistor 212. In one embodiment, the gate layer is formed by physical vapor deposition and is composed of a metal-containing material which may include, but is not limited to, metal nitrides, metal carbides, metal silicides, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, platinum, cobalt and nickel. In another embodiment, the gate layer is formed by a CVD process and is composed of a single doped polysilicon layer, which may then be patterned to form control gates of the NVM transistor 226 and MOS transistors 214, 212.
  • Referring to FIG. 2L, the gate layer 248 is patterned using a mask layer (not shown) and standard lithographic techniques to stop on surfaces of the blocking oxide layer 238, the first gate oxide 240 and the second gate oxide 246, thereby forming a gate 250 for the gate stack 236 of a NVM transistor 226, a gate 252 for the HV MOS transistor 214, and a gate 254 for the MOS transistor 212.
  • Referring to FIG. 1 and FIG. 2M, a first spacer layer is deposited and etched to form first sidewall spacers 256 adjacent to the gates 252, 254, of the MOS transistors 212, 214, and the NVM transistor 226, and one or more lightly-doped drain extensions (LDD 258) are implanted adjacent to and extend under sidewall spacers 256 of one or more of the MOS transistors 212, 214 (step 112).
  • Next, a SONOS LDD mask is formed over the substrate 204 and lightly-doped drain extensions (LDD 260) are implanted, adjacent to the NVM transistor 226. Finally, a second spacer layer is deposited and etched to form second sidewall spacers 262 adjacent to the gate stack 236, of the NVM transistor 226 (step 114).
  • Referring to FIGS. 1 and 2N, with the NVM transistor 226, HV MOS transistor 214 and MOS transistor 212 substantially complete, source and drain implants are performed to form source and drain regions 264 for all transistors and a silicide process performed (step 116). As depicted, silicide regions 266 may be formed on the exposed gates 250, 252 and 254 and exposed source and drain regions 264. The silicide process may be any commonly employed in the art, typically including a pre-clean etch, cobalt or nickel metal deposition, anneal and wet strip.
  • Referring FIG. 1 and FIG. 2N, optionally the method of fabricating memory cells including an embedded or integrally formed SONOS based NVM transistor and MOS transistors further includes the step of forming a stress inducing layer or structure 268, such as a stress inducing nitride layer, over the gate stack 236 of the NVM transistor 226 to increase data retention and/or to improve programming time and efficiency (step 118). In particular, inducing stress into the charge-trapping layer 230 of the NVM transistor 226 changes energy levels of charge traps formed therein, thereby increasing charge retention of the charge-trapping layer. In addition, forming a stress inducing structure 268, in or on the surface 216 of the substrate 204 proximal to, and preferably surrounding, a region of the substrate in which the channel 224 of NVM transistor 226 is formed will reduce the band gap, and, depending on the type of strain, increases carrier mobility. For example, tensile strain, in which inter-atomic distances in the crystal lattice of the substrate 204 are stretched, increases the mobility of electrons, making N-type transistors faster. Compressive strain, in which those distances are shortened, produces a similar effect in P-type transistors by increasing the mobility of holes. Both of these strain induced factors, i.e., reduced band gap and increased carrier mobility, will result in faster and more efficient programming of NVM transistor 226.
  • The strain inducing structure 268 can include a pre-metal dielectric (PMD) layer formed using a High Aspect Ratio Process (HARP™) oxidation process, a compressive or tensile nitride layer formed using a plasma enhanced chemical vapor deposition (PECVD) or a Bis-TertiaryButylAmino Silane (BTBAS) nitride layer.
  • In certain embodiments, such as that shown in FIG. 2N, the stress inducing structure 268 may also be formed over one or more of the MOS transistors to induce strain in the channel of the MOS transistor.
  • Finally, the standard or baseline CMOS process flow is continued to substantially complete the front end device fabrication (step 120), yielding the structure shown in FIG. 2N. FIG. 2N is a block diagram illustrating a cross-sectional view of a portion of a finished memory cell including an embedded SONOS based NVM transistor and MOS transistors fabricated according to the method of FIGS. 1 and 2A-2M.
  • FIGS. 3A and 3B are graphs illustrating improvements in threshold voltage (VT) uniformity of an NVM transistor including an indium channel according to an embodiment of the present disclosure. Referring FIGS. 3A and 3B it is noted that the heavier Indium atom does not move or diffuse as much as a light Boron atoms used in prior n-channel SONOS based NVM transistors, in the subsequent high temperature steps and hence the random dopant effects are reduced, significantly improving the VT uniformity from a sigma of VT from ˜150 mV to ˜70 to 80 mV.
  • FIGS. 4A-4C are graphs illustrating basic program erase characteristics and showing improvements in endurance and data retention for a memory device including an embedded SONOS based NVM transistor fabricated according to an embodiment of the present disclosure. In particular, FIG. 4A shows subthreshold characteristics of the SONOS based NVM transistor in both the programmed and erased states. This figure shows a good subthreshold slope of about 135 mV is achieved using Indium implant which is one of the embodiments of the present disclosure.
  • FIG. 4B shows the cycling endurance of the SONOS NVM transistor fabricated according to an embodiment of the process described previously. It can be seen from FIG. 4B that there is no significant change in threshold voltage (VT) on either program or erase after 100 thousand program and erase (P/E) cycles.
  • FIG. 4C shows the data retention charge loss for SONOS based NVM transistor fabricated according to an embodiment of the present disclosure. Referring to FIG. 4C, the VT window, i.e., a difference between the threshold voltage in programmed and erased states, is seen to be greater than 1V, which gives sufficient margin for error-free read even after 10 years or 3 E8 seconds.
  • Thus, embodiments of memory cells including embedded or integrally formed SONOS based NVM transistor and MOS transistors and methods of fabricating the same have been described. Although the present disclosure has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
  • The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of one or more embodiments of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
  • Reference in the description to one embodiment or an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the circuit or method. The appearances of the phrase one embodiment in various places in the specification do not necessarily all refer to the same embodiment.

Claims (23)

1. A method comprising:
forming a dielectric stack on a substrate, the dielectric stack including a tunneling dielectric on the substrate, a charge-trapping layer on the tunneling dielectric, a cap layer on the charge-trapping layer and a sacrificial oxide on the cap layer;
patterning the dielectric stack to form a gate stack of a non-volatile memory (NVM) transistor of a memory device in a first region of the substrate while concurrently removing the dielectric stack from a second region of the substrate;
performing a gate oxidation (GOX) preclean to remove the sacrificial oxide and at least a top portion of the cap layer from the gate stack of the NVM transistor while concurrently removing a pad oxide from the second region of the substrate, wherein the top portion of the cap layer comprises an oxygen rich composition relative to a bottom portion of the cap layer to facilitate removal of the top portion of the cap layer; and
performing a gate oxidation process to form a gate oxide of a metal-oxide-semiconductor (MOS) transistor overlying the substrate in the second region while concurrently oxidizing the bottom portion of the cap layer to form a blocking oxide overlying the charge-trapping layer.
2. (canceled)
3. The method of claim 1 further comprising forming a source and drain adjacent to the gate stack of the NVM transistor, wherein forming the source and drain comprises performing one or more of a lightly-doped drain (LDD) implants.
4. The method of claim 3 further comprising forming from a single patterned polysilicon layer a control gate for the NVM transistor and a gate for the MOS transistor.
5. The method of claim 1 further comprising prior to forming the dielectric stack on the substrate, implanting Indium in the first region of the substrate to form a channel of the NVM transistor.
6. The method of claim 5 wherein implanting Indium to form the channel of the NVM transistor comprises implanting Indium to a concentration selected to improve a threshold voltage (VT) uniformity of the NVM transistor from a sigma of VT from about 150 millivolts (mV) to from about 70 to 80 mV.
7. The method of claim 1 further comprising forming a stress inducing nitride layer over the gate stack of the NVM transistor to change energy levels of charge traps formed in the charge-trapping layer to increase charge retention of the charge-trapping layer.
8. The method of claim 7 wherein forming the stress inducing nitride layer over the gate stack of the NVM transistor further comprises forming the stress inducing nitride layer over the MOS transistor to induce stress in a channel of the MOS transistor.
9. The method of claim 1 wherein the charge-trapping layer comprises multiple layers including a lower charge-trapping layer closer to the tunneling dielectric comprising a nitride, and an upper charge-trapping layer overlying the lower charge-trapping layer that comprises a nitride and is oxygen-lean relative to the lower charge-trapping layer.
10-11. (canceled)
12. A method comprising:
implanting Indium in a first region of a substrate to form a channel of a non-volatile memory (NVM) transistor of a memory device;
forming a dielectric stack on the substrate overlying the channel, the dielectric stack including a tunneling dielectric on the substrate and a charge-trapping layer on the tunneling dielectric, a multi-layer cap layer including a first cap layer comprising silicon-nitride overlying the charge-trapping layer, and a second cap layer comprising silicon-nitride overlying the first cap layer, wherein the second cap layer is oxygen rich relative to the first cap layer; and
patterning the dielectric stack to form a gate stack of the NVM transistor in the first region of the substrate and to remove the dielectric stack from a second region of the substrate.
13. The method of claim 12 wherein implanting Indium to form the channel of the NVM transistor comprises implanting Indium to a concentration selected to improve a threshold voltage (VT) uniformity of the NVM transistor from a sigma of VT from about 150 millivolts (mV) to from about 70 to 80 mV.
14. The method of claim 22 further comprising performing an oxidation process to form a gate oxide of a metal-oxide-semiconductor (MOS) transistor overlying the substrate in the second region while concurrently forming a blocking oxide overlying the charge-trapping layer, wherein forming the blocking oxide comprises oxidizing the first cap layer.
15. The method of claim 14 further comprising forming a stress inducing nitride layer over the gate stack of the NVM transistor to change energy levels of charge traps formed in the charge-trapping layer to increase charge retention of the charge-trapping layer.
16. The method of claim 15 wherein forming a stress inducing nitride layer over the gate stack of the NVM transistor further comprises forming the stress inducing nitride layer over the MOS transistor to induce stress in a channel of the MOS transistor.
17. The method of claim 14 further comprising forming from a single patterned polysilicon layer a control gate for the NVM transistor and a gate for the MOS transistor.
18. The method of claim 12 wherein the charge-trapping layer comprises multiple layers including a lower charge-trapping layer closer to the tunneling dielectric comprising a nitride, and an upper charge-trapping layer overlying the lower charge-trapping layer that comprises a nitride and is oxygen-lean relative to the lower charge-trapping layer.
19-20. (canceled)
21. The method of claim 1, wherein the cap layer comprises a single layer of nitride having a gradient in stoichiometric composition to form the top portion of the cap layer and the bottom portion of the cap layer.
22. The method of claim 12, further comprising performing a gate oxidation (GOX) preclean to remove the second cap layer from the gate stack of the NVM transistor while concurrently removing a pad oxide from the second region of the substrate, wherein the oxygen rich composition of the second cap layer facilitates removal of the second cap layer.
23. A method comprising:
forming a dielectric stack on a substrate, the dielectric stack including a tunneling dielectric on the substrate, a charge-trapping layer on the tunneling dielectric, a multi-layer, silicon-nitride cap layer including a first cap layer overlying the charge-trapping layer, and a second cap layer overlying the first cap layer, and a sacrificial oxide on the second cap layer;
patterning the dielectric stack to form a gate stack of a non-volatile memory (NVM) transistor of a memory device in a first region of the substrate while concurrently removing the dielectric stack from a second region of the substrate; and
performing a gate oxidation (GOX) preclean to remove the sacrificial oxide and second cap layer from the gate stack of the NVM transistor while concurrently removing a pad oxide from the second region of the substrate, wherein the second cap layer is oxygen rich relative to the first cap layer to facilitate removal of the second cap layer.
24. The method of claim 23, further comprising performing a gate oxidation process to form a gate oxide of a metal-oxide-semiconductor (MOS) transistor overlying the substrate in the second region while concurrently forming a blocking oxide overlying the charge-trapping layer, wherein forming the blocking oxide comprises oxidizing the first cap layer.
25. The method of claim 23, wherein the charge-trapping layer comprises a multi-layer charge-trapping layer including a on the tunneling dielectric, a first charge-trapping layer formed on the tunneling dielectric, and a second charge-trapping layer that is oxygen-lean relative to the first charge-trapping layer and comprises a majority of a charge traps distributed in multi-layer charge-trapping layer formed on the first charge-trapping layer.
US14/018,026 2013-02-26 2013-09-04 Embedded SONOS based memory cells Active US8796098B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/018,026 US8796098B1 (en) 2013-02-26 2013-09-04 Embedded SONOS based memory cells
TW107120393A TWI661541B (en) 2013-02-26 2014-02-20 Embedded sonos based memory cells
TW103105582A TWI630703B (en) 2013-02-26 2014-02-20 Embedded sonos based memory cells
CN201410064510.5A CN104009005B (en) 2013-02-26 2014-02-25 The storage unit based on SONOS of insertion
CN201910654614.4A CN110349963B (en) 2013-02-26 2014-02-25 Embedded SONOS-based memory cell
US14/451,341 US9356035B2 (en) 2013-02-26 2014-08-04 Embedded SONOS based memory cells
US15/146,753 US9620516B2 (en) 2013-02-26 2016-05-04 Embedded SONOS based memory cells
US15/451,093 US9922988B2 (en) 2013-02-26 2017-03-06 Embedded SONOS based memory cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361769693P 2013-02-26 2013-02-26
US201361825196P 2013-05-20 2013-05-20
US14/018,026 US8796098B1 (en) 2013-02-26 2013-09-04 Embedded SONOS based memory cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/451,341 Continuation US9356035B2 (en) 2013-02-26 2014-08-04 Embedded SONOS based memory cells

Publications (2)

Publication Number Publication Date
US8796098B1 US8796098B1 (en) 2014-08-05
US20140239374A1 true US20140239374A1 (en) 2014-08-28

Family

ID=51229009

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/018,026 Active US8796098B1 (en) 2013-02-26 2013-09-04 Embedded SONOS based memory cells
US14/451,341 Active US9356035B2 (en) 2013-02-26 2014-08-04 Embedded SONOS based memory cells
US15/146,753 Active US9620516B2 (en) 2013-02-26 2016-05-04 Embedded SONOS based memory cells
US15/451,093 Active US9922988B2 (en) 2013-02-26 2017-03-06 Embedded SONOS based memory cells

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/451,341 Active US9356035B2 (en) 2013-02-26 2014-08-04 Embedded SONOS based memory cells
US15/146,753 Active US9620516B2 (en) 2013-02-26 2016-05-04 Embedded SONOS based memory cells
US15/451,093 Active US9922988B2 (en) 2013-02-26 2017-03-06 Embedded SONOS based memory cells

Country Status (3)

Country Link
US (4) US8796098B1 (en)
CN (2) CN110349963B (en)
TW (2) TWI630703B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041881A1 (en) * 2013-02-26 2015-02-12 Cypress Semiconductor Corporation Embedded SONOS Based Memory Cells
KR20160142027A (en) * 2015-06-02 2016-12-12 에스케이하이닉스 주식회사 Method of fabricating an electronic device having charge trap memory device
GB2545645A (en) * 2015-12-16 2017-06-28 X-Fab Semiconductor Foundries Ag A semiconductor device and methods of manufacture thereof
KR20170134812A (en) * 2016-05-26 2017-12-07 세메스 주식회사 Apparatus and method for treating substrate
CN109461739A (en) * 2018-10-18 2019-03-12 上海华力微电子有限公司 A method of improving the polysilicon membrane deposition characteristics of SONOS memory
US20190088487A1 (en) * 2017-06-14 2019-03-21 Cypress Semiconductor Corporation Embedded sonos with triple gate oxide and manufacturing method of the same
TWI683354B (en) * 2016-09-27 2020-01-21 愛爾蘭商經度閃存解決方案有限公司 Method of fabricating a memory cell and method of integration of ono stack formation into thick gate oxide cmos baseline process and process flow
US10720444B2 (en) 2018-08-20 2020-07-21 Sandisk Technologies Llc Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
US10998019B2 (en) 2015-08-31 2021-05-04 Longitude Flash Memory Solutions, Ltd. Low standby power with fast turn on method for non-volatile memory devices

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916432B1 (en) * 2014-01-21 2014-12-23 Cypress Semiconductor Corporation Methods to integrate SONOS into CMOS flow
CN104332443A (en) * 2014-10-30 2015-02-04 上海华虹宏力半导体制造有限公司 Technical method of SONOS (Silicon Oxide Nitride Oxide Semiconductor) device
US9218978B1 (en) 2015-03-09 2015-12-22 Cypress Semiconductor Corporation Method of ONO stack formation
CN106298671A (en) * 2015-05-11 2017-01-04 联华电子股份有限公司 The manufacture method of the non-volatility memorizer of tool SONOS memory cell
US9767407B2 (en) * 2015-09-18 2017-09-19 Samsung Electronics Co., Ltd. Weighting device, neural network, and operating method of the weighting device
US9633734B1 (en) * 2016-07-14 2017-04-25 Ememory Technology Inc. Driving circuit for non-volatile memory
US10424374B2 (en) 2017-04-28 2019-09-24 Micron Technology, Inc. Programming enhancement in self-selecting memory
US20190103414A1 (en) * 2017-10-04 2019-04-04 Cypress Semiconductor Corporation Embedded sonos with a high-k metal gate and manufacturing methods of the same
JP2019079845A (en) * 2017-10-20 2019-05-23 ルネサスエレクトロニクス株式会社 Method for manufacturing semiconductor device
JP7110223B2 (en) 2017-11-02 2022-08-01 株式会社半導体エネルギー研究所 Power supply device and method of operation thereof
US10312219B2 (en) 2017-11-08 2019-06-04 Micron Technology, Inc. Semiconductor device assemblies including multiple shingled stacks of semiconductor dies
CN109801919B (en) * 2017-11-17 2021-06-04 旺宏电子股份有限公司 Method for fabricating three-dimensional stacked semiconductor structure and structure fabricated thereby
JP2019102520A (en) * 2017-11-29 2019-06-24 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method
US10541364B2 (en) 2018-02-09 2020-01-21 Micron Technology, Inc. Memory cells with asymmetrical electrode interfaces
US10424730B2 (en) 2018-02-09 2019-09-24 Micron Technology, Inc. Tapered memory cell profiles
US10693065B2 (en) 2018-02-09 2020-06-23 Micron Technology, Inc. Tapered cell profile and fabrication
US10854813B2 (en) 2018-02-09 2020-12-01 Micron Technology, Inc. Dopant-modulated etching for memory devices
CN110416221B (en) * 2019-07-31 2022-02-22 上海华力微电子有限公司 Method for forming semiconductor device
US11017851B1 (en) 2019-11-26 2021-05-25 Cypress Semiconductor Corporation Silicon-oxide-nitride-oxide-silicon based multi level non-volatile memory device and methods of operation thereof
TWI748661B (en) * 2020-09-24 2021-12-01 華邦電子股份有限公司 Memory device and method of forming the same
CN116454088B (en) * 2023-06-12 2023-09-15 成都锐成芯微科技股份有限公司 System-on-chip and preparation method thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251744B1 (en) * 1999-07-19 2001-06-26 Taiwan Semiconductor Manufacturing Company Implant method to improve characteristics of high voltage isolation and high voltage breakdown
US6949787B2 (en) * 2001-08-10 2005-09-27 Spinnaker Semiconductor, Inc. Transistor having high dielectric constant gate insulating layer and source and drain forming Schottky contact with substrate
US6303479B1 (en) * 1999-12-16 2001-10-16 Spinnaker Semiconductor, Inc. Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts
US6756619B2 (en) * 2002-08-26 2004-06-29 Micron Technology, Inc. Semiconductor constructions
JP2004193178A (en) * 2002-12-06 2004-07-08 Fasl Japan 株式会社 Semiconductor storage device and its manufacturing method
KR100728173B1 (en) * 2003-03-07 2007-06-13 앰버웨이브 시스템즈 코포레이션 shallow trench isolation process
US7390718B2 (en) * 2004-02-20 2008-06-24 Tower Semiconductor Ltd. SONOS embedded memory with CVD dielectric
US7001844B2 (en) * 2004-04-30 2006-02-21 International Business Machines Corporation Material for contact etch layer to enhance device performance
US6946349B1 (en) * 2004-08-09 2005-09-20 Chartered Semiconductor Manufacturing Ltd. Method for integrating a SONOS gate oxide transistor into a logic/analog integrated circuit having several gate oxide thicknesses
US7666703B2 (en) * 2005-01-14 2010-02-23 Omnivision Technologies, Inc. Image sensor pixel having a lateral doping profile formed with indium doping
US7816728B2 (en) 2005-04-12 2010-10-19 International Business Machines Corporation Structure and method of fabricating high-density trench-based non-volatile random access SONOS memory cells for SOC applications
CN101563783A (en) * 2005-09-23 2009-10-21 Nxp股份有限公司 Memory device with improved performance and method of manufacturing such a memory device
US20070087503A1 (en) * 2005-10-17 2007-04-19 Saifun Semiconductors, Ltd. Improving NROM device characteristics using adjusted gate work function
US7514323B2 (en) 2005-11-28 2009-04-07 International Business Machines Corporation Vertical SOI trench SONOS cell
US7678662B2 (en) * 2005-12-13 2010-03-16 Applied Materials, Inc. Memory cell having stressed layers
US7651915B2 (en) * 2006-10-12 2010-01-26 Infineon Technologies Ag Strained semiconductor device and method of making same
US7811887B2 (en) 2006-11-02 2010-10-12 Saifun Semiconductors Ltd. Forming silicon trench isolation (STI) in semiconductor devices self-aligned to diffusion
US20080150009A1 (en) * 2006-12-20 2008-06-26 Nanosys, Inc. Electron Blocking Layers for Electronic Devices
US8063434B1 (en) * 2007-05-25 2011-11-22 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US8093128B2 (en) * 2007-05-25 2012-01-10 Cypress Semiconductor Corporation Integration of non-volatile charge trap memory devices and logic CMOS devices
US8871595B2 (en) * 2007-05-25 2014-10-28 Cypress Semiconductor Corporation Integration of non-volatile charge trap memory devices and logic CMOS devices
US8614124B2 (en) * 2007-05-25 2013-12-24 Cypress Semiconductor Corporation SONOS ONO stack scaling
DE102007025342B4 (en) * 2007-05-31 2011-07-28 Globalfoundries Inc. Higher transistor performance of N-channel transistors and P-channel transistors by using an additional layer over a double-stress layer
US20090032880A1 (en) * 2007-08-03 2009-02-05 Applied Materials, Inc. Method and apparatus for tunable isotropic recess etching of silicon materials
US20090086548A1 (en) 2007-10-02 2009-04-02 Eon Silicon Solution, Inc. Flash memory
KR100880228B1 (en) * 2007-10-17 2009-01-28 주식회사 동부하이텍 Manufacturing method of sonos semiconductor device
US8120095B2 (en) 2007-12-13 2012-02-21 International Business Machines Corporation High-density, trench-based non-volatile random access SONOS memory SOC applications
US7939863B2 (en) * 2008-08-07 2011-05-10 Texas Instruments Incorporated Area efficient 3D integration of low noise JFET and MOS in linear bipolar CMOS process
US8071453B1 (en) * 2009-04-24 2011-12-06 Cypress Semiconductor Corporation Method of ONO integration into MOS flow
US8236709B2 (en) * 2009-07-29 2012-08-07 International Business Machines Corporation Method of fabricating a device using low temperature anneal processes, a device and design structure
KR101669470B1 (en) * 2009-10-14 2016-10-26 삼성전자주식회사 Semiconductor device including metal silicide layer
US8258027B2 (en) * 2010-11-08 2012-09-04 Northrop Grumman Systems Corporation Method for integrating SONOS non-volatile memory into a standard CMOS foundry process flow
US8409950B1 (en) * 2010-11-08 2013-04-02 Northrop Grumman Systems Corporation Method for integrating SONOS non-volatile memory into a sub-90 nm standard CMOS foundry process flow
US8853021B2 (en) * 2011-10-13 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded transistor
US8861271B1 (en) * 2012-03-16 2014-10-14 Cypress Semiconductor Corporation High reliability non-volatile static random access memory devices, methods and systems
US8796098B1 (en) * 2013-02-26 2014-08-05 Cypress Semiconductor Corporation Embedded SONOS based memory cells

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356035B2 (en) * 2013-02-26 2016-05-31 Cypress Semiconductor Corporation Embedded SONOS based memory cells
US20160260730A1 (en) * 2013-02-26 2016-09-08 Cypress Semiconductor Corporation Embedded SONOS Based Memory Cells
US9620516B2 (en) * 2013-02-26 2017-04-11 Cypress Semiconductor Corporation Embedded SONOS based memory cells
US20150041881A1 (en) * 2013-02-26 2015-02-12 Cypress Semiconductor Corporation Embedded SONOS Based Memory Cells
US9922988B2 (en) * 2013-02-26 2018-03-20 Cypress Semiconductor Corporation Embedded SONOS based memory cells
KR20160142027A (en) * 2015-06-02 2016-12-12 에스케이하이닉스 주식회사 Method of fabricating an electronic device having charge trap memory device
KR102282984B1 (en) 2015-06-02 2021-07-29 에스케이하이닉스 주식회사 Method of fabricating an electronic device having charge trap memory device
US12014800B2 (en) 2015-08-31 2024-06-18 Longitude Flash Memory Solutions Ltd Low standby power with fast turn on method for non-volatile memory devices
US10998019B2 (en) 2015-08-31 2021-05-04 Longitude Flash Memory Solutions, Ltd. Low standby power with fast turn on method for non-volatile memory devices
US11581029B2 (en) 2015-08-31 2023-02-14 Longitude Elash Memory Solutions Ltd Low standby power with fast turn on method for non-volatile memory devices
US10014314B2 (en) 2015-12-16 2018-07-03 X-Fab Semiconductor Foundries Ag Semiconductor device and methods of manufacture thereof
DE102016124264B4 (en) 2015-12-16 2023-03-30 X-Fab Semiconductor Foundries Gmbh Method for use in forming a semiconductor device and a device made by the method
GB2545645B (en) * 2015-12-16 2019-08-21 X Fab Semiconductor Foundries Gmbh A semiconductor device and methods of manufacture thereof
GB2545645A (en) * 2015-12-16 2017-06-28 X-Fab Semiconductor Foundries Ag A semiconductor device and methods of manufacture thereof
KR101895931B1 (en) 2016-05-26 2018-09-10 세메스 주식회사 Apparatus and method for treating substrate
KR20170134812A (en) * 2016-05-26 2017-12-07 세메스 주식회사 Apparatus and method for treating substrate
TWI683354B (en) * 2016-09-27 2020-01-21 愛爾蘭商經度閃存解決方案有限公司 Method of fabricating a memory cell and method of integration of ono stack formation into thick gate oxide cmos baseline process and process flow
US10784356B2 (en) * 2017-06-14 2020-09-22 Longitude Flash Memory Solutions Ltd. Embedded sonos with triple gate oxide and manufacturing method of the same
US20190088487A1 (en) * 2017-06-14 2019-03-21 Cypress Semiconductor Corporation Embedded sonos with triple gate oxide and manufacturing method of the same
US10720444B2 (en) 2018-08-20 2020-07-21 Sandisk Technologies Llc Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
US11631691B2 (en) 2018-08-20 2023-04-18 Sandisk Technologies Llc Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
CN109461739A (en) * 2018-10-18 2019-03-12 上海华力微电子有限公司 A method of improving the polysilicon membrane deposition characteristics of SONOS memory

Also Published As

Publication number Publication date
US9356035B2 (en) 2016-05-31
CN104009005A (en) 2014-08-27
CN110349963A (en) 2019-10-18
US9620516B2 (en) 2017-04-11
US20150041881A1 (en) 2015-02-12
TWI630703B (en) 2018-07-21
TW201836126A (en) 2018-10-01
US20160260730A1 (en) 2016-09-08
CN104009005B (en) 2019-08-16
CN110349963B (en) 2023-08-08
US9922988B2 (en) 2018-03-20
TW201440178A (en) 2014-10-16
US8796098B1 (en) 2014-08-05
TWI661541B (en) 2019-06-01
US20170263622A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US9922988B2 (en) Embedded SONOS based memory cells
US10418373B2 (en) Method of ONO stack formation
US9911613B2 (en) Method of fabricating a charge-trapping gate stack using a CMOS process flow
US9721962B1 (en) Integration of a memory transistor into high-k, metal gate CMOS process flow
KR102631491B1 (en) Embedded SONOS with high-K metal gate and manufacturing method thereof
US20210074821A1 (en) Embedded sonos with triple gate oxide and manufacturing method of the same
US9824895B1 (en) Method of integration of ONO stack formation into thick gate oxide CMOS flow

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMKUMAR, KRISHNASWAMY;KOUZNETSOV, IGOR G.;PRABHAKAR, VENKATRAMAN;SIGNING DATES FROM 20130830 TO 20130903;REEL/FRAME:031137/0175

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:CYPRESS SEMICONDUCTOR CORPORATION;SPANSION LLC;REEL/FRAME:035240/0429

Effective date: 20150312

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

AS Assignment

Owner name: LONGITUDE FLASH MEMORY SOLUTIONS LTD., IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:049086/0803

Effective date: 20190503

AS Assignment

Owner name: SPANSION LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:049109/0573

Effective date: 20190503

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:049109/0573

Effective date: 20190503

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTERST;ASSIGNORS:CYPRESS SEMICONDUCTOR CORPORATION;SPANSION LLC;REEL/FRAME:058002/0470

Effective date: 20150312

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8