US20140231173A1 - Saw Horse System and Apparatus - Google Patents

Saw Horse System and Apparatus Download PDF

Info

Publication number
US20140231173A1
US20140231173A1 US13/770,228 US201313770228A US2014231173A1 US 20140231173 A1 US20140231173 A1 US 20140231173A1 US 201313770228 A US201313770228 A US 201313770228A US 2014231173 A1 US2014231173 A1 US 2014231173A1
Authority
US
United States
Prior art keywords
leg
cross member
component
peg
disposed inside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/770,228
Inventor
Ronald Carter
Benjamin A. Balser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/770,228 priority Critical patent/US20140231173A1/en
Assigned to CARTER, RONALD reassignment CARTER, RONALD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALSER, Benjamin A.
Publication of US20140231173A1 publication Critical patent/US20140231173A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G1/00Scaffolds primarily resting on the ground
    • E04G1/34Scaffold constructions able to be folded in prismatic or flat parts or able to be turned down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/0021Stands, supports or guiding devices for positioning portable tools or for securing them to the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/06Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby of trestle type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/14Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby with provision for adjusting the bench top

Definitions

  • the present disclosure is generally related to construction and, more particularly, is related to an improved saw horse apparatus.
  • a saw horse is a general purpose support device used in construction trades.
  • a typical sawhorse includes two pairs of legs with a cross beam mounted between the pairs, each pair of legs describing a generally triangular shape with the ground.
  • the portability, versatility, and economical construction of saw horses provide great utility.
  • Saw horses can be bulky and may require a fair amount of storage space. Attempts have been made to design a saw horse that requires a minimum of storage space. There are heretofore unaddressed needs with previous solutions.
  • Example embodiments of the present disclosure provide a saw horse apparatus.
  • a first component comprising a first leg, a second leg, and a first cross member, the first leg substantially parallel to the second leg and substantially perpendicular to the first cross member; and a second component comprising a third leg, a fourth leg, and a second cross member, the third leg substantially parallel to the fourth leg and substantially perpendicular to the second cross member, the third leg rotatably connected to a first end of the first cross member and the fourth leg rotatably connected to a second end of the first cross member, the second end on the opposite end of the first cross member from the first end].
  • Embodiments of the present disclosure can also be viewed as providing a saw horse system.
  • a first component comprising a first leg, a second leg, and a first cross member
  • a second component comprising a third leg, a fourth leg and a second cross member, the top of the third leg and the top of the fourth leg rotatably connecting to the first cross member through an opening in the circumference of the top of the third leg and in the circumference of the top of the fourth leg.
  • FIG. 1 is a system diagram of an example embodiment of a saw horse apparatus.
  • FIG. 2 is an exploded system diagram of an example embodiment of a rotatable connection of the saw horse apparatus of FIG. 1 .
  • FIG. 3 is an exploded system diagram of an example embodiment of a rotatable connection of the saw horse apparatus of FIG. 1 .
  • FIG. 4A is a system diagram of an example embodiment of a peg stopper of the saw horse apparatus of FIG. 1 .
  • FIG. 4B is an exploded system diagram of an example embodiment of the peg stopper of the saw horse apparatus of FIG. 4A .
  • FIG. 5 is a system diagram of an example embodiment of a peg stopper of the saw horse apparatus of FIG. 4A without a cross member.
  • FIG. 6 is a system diagram of an example embodiment of a saw horse system.
  • FIG. 7 is a system diagram of an example embodiment of a saw horse system with a tray.
  • Example embodiments of the saw horse apparatus include only two moving parts, resulting in less items that may wear down and break.
  • each leg is independently hinged on a bolt, a rod or shaft and are not as sturdy.
  • Example embodiments of the disclosed apparatus are sturdier than those in the prior art.
  • FIG. 1 provides an example embodiment of the disclosed saw horse apparatus.
  • the saw horse comprises first component 110 and second component 120 .
  • First component 110 comprises first leg 115 , second leg 117 , and first cross member 116 .
  • Second component 120 comprises third leg 123 , fourth leg 125 and second cross member 127 . Further stabilization may be provided by third cross member 118 .
  • End of third leg 185 and end of fourth leg 165 are rotatably connected to first cross member 116 .
  • first leg 115 and second leg 117 are substantially parallel to each other and substantially perpendicular to first cross member 116 . Additionally, first leg 115 and second leg 117 are substantially coplanar.
  • First cross member 116 may or may not be coplanar with the plane containing first leg 115 and second leg 117 .
  • third leg 123 and fourth leg 125 are substantially parallel to each other and substantially perpendicular to second cross member 127 . Additionally, third leg 123 and fourth leg 125 are substantially coplanar.
  • Second cross member 127 may or may not be coplanar with the plane containing third leg 123 and fourth leg 125 .
  • Connecting means 130 may be connected from second cross member 127 to third cross member 118 .
  • Non-limiting examples of connecting means 130 include a chain, cable, and rope among others.
  • An example embodiment of support means 140 may be used to support fourth cross member 150 .
  • Support means 140 is shown in FIG. 1 as two brackets, but could comprise any other means to support fourth cross member 150 .
  • Non-limiting examples of fourth cross member 150 include a wooden board, an aluminum member, and a steel member among others.
  • a hook may extend from at least one of components 110 and 120 to attach various tools, for example a saw by its blade guard.
  • the ends of legs 123 and 125 may be rotatably connected to first cross member 116 in a number of ways.
  • the insertion ends of ends 165 (not shown in FIG. 2) and 185 may be configured to be smaller than the rest of end 185 such that the insertion ends fits snugly within the open end of first cross member 116 while allowing the insertion end to rotate within the open end of cross member 116 .
  • first cross member 116 may be configured to be smaller than the rest of cross member 116 such that the insertion ends fits snugly within the open end of ends 165 and 185 (not shown in FIG. 3 ) of legs 125 and 123 respectively, while allowing the insertion end to rotate within the open end of ends 165 and 185 .
  • the ends of either or both of ends 165 or 185 may be configured as insertion ends to fit within open ends of first cross member 116 .
  • either or both of the ends of cross member 116 may be configured to be inserted into open ends of ends 165 and/or 185 .
  • connection means 130 was disclosed to limit the distance between second cross member 127 and third cross member 118 .
  • Connection means 130 defines the maximum angle between the legs of components 110 and 120 .
  • An alternative embodiment, as provided in FIG. 4A eliminates the connection means and uses at least one pair of pegs 460 , 470 to define the maximum angle between the legs of components 110 and 120 .
  • a second set of pegs 480 and 490 may be used to support more weight on first cross member 416 .
  • pegs 460 and 470 and of pegs 480 and 490 ) may be moveable around end 485 and/or first cross member 416 (and around end 465 and/or first cross member 416 ).
  • the maximum angle can be changed, thereby changing the height of the saw horse.
  • square holes to inhibit twisting of the pegs
  • an L-shaped peg may be inserted in the desired hole to define a desired maximum angle.
  • FIG. 4B provides an exploded view of the alternative embodiment of FIG. 4A .
  • First peg 470 is attached or formed onto end 485 and second peg 460 is attached or formed onto first cross member 460 .
  • the insertion end is shown on end 485 , the insertion end could also be configured on first cross member 416 .
  • FIG. 5 provides an additional alternative embodiment in which first cross member 418 from FIG. 4A is removed. If the stability of first cross member 418 is not useful, it may be removed to make the saw horse lighter. This is applicable in embodiments that use at least one of peg pairs 460 , 470 and/or 480 , 490 .
  • FIG. 6 provides an example embodiment that adds additional stability.
  • First component 610 comprises first leg 611 , second leg 613 , third leg 615 , fourth leg 617 , first cross member 616 .
  • Second component 620 comprises fifth leg 623 , sixth leg 625 , and second cross member 627 . Further stabilization may be provided by third cross member 618 .
  • first leg 611 , second leg 613 , third leg 615 , and fourth leg 617 are substantially parallel to each other and substantially perpendicular to first cross member 116 . Additionally, first leg 611 , second leg 613 , third leg 615 , and fourth leg 617 are substantially coplanar.
  • First cross member 616 may or may not be coplanar with the plane containing first leg 611 , second leg 613 , third leg 615 , and fourth leg 617 .
  • fifth leg 623 and sixth leg 625 are substantially parallel to each other and substantially perpendicular to second cross member 627 .
  • fifth leg 623 and sixth leg 625 are substantially coplanar.
  • Second cross member 627 may or may not be coplanar with the plane containing fifth leg 623 and sixth leg 625 .
  • first top end 685 of fifth leg 623 connects to first cross member 616 between second top end 680 and third top end 690 .
  • An opening in first top end 685 is configured to fit around first cross member 616 such that first top end 685 rotates around first cross member 616 .
  • fourth top end 665 of sixth leg 625 connects to first cross member 616 between fifth top end 660 and sixth top end 670 .
  • An opening in second top end 665 is configured to fit around first cross member 616 such that second top end 665 rotates around first cross member 616 .
  • Connecting means 630 limits the angle between first component 610 and second component 620 .
  • the pegs of FIG. 4A may be used.
  • either the pair of first leg 611 and second leg 613 or of third leg 615 and fourth leg 617 may be removed in the design. If the pair of third leg 615 and fourth leg 617 are not used, third cross member 618 may be extended between first leg 611 and second leg 613 . If the peg implementation of defining the maximum angle is used, third cross member 618 may be removed from the design altogether.
  • second top end 680 , third top end 690 , fifth top end 660 , and sixth top end 670 are illustrated as having a larger diameter than first cross member 616 , they may be substantially the same diameter as first cross member 616 .
  • the section of first cross member that first top end 685 and second end 665 fits over may be larger, smaller, or substantially equal to the circumference of first cross member 616 .
  • FIG. 7 provides an alternative embodiment that includes detachable tray 799 that connects between leg 715 of first component 710 and leg 723 of second component 720 , typically on the same end of the saw horse.
  • Tray 799 may conform to the desired maximum angle between legs 715 and 723 .
  • the distance between legs 715 , and 723 and the desired angle between the legs of first component 710 and second component 720 determines the angles of the connectors and the placement of tray 799 along the legs of the horse.
  • tray 799 will keep the legs from spreading apart or folding in.
  • Legs 715 and 723 are at an angle when the components are folded out (opened up).
  • the connectors of tray 799 conform to a leg of each of the modules.
  • Each of the connectors of tray 799 may connect to one of the legs and tray 799 may also act as a stop for the saw horse, defining the maximum angle between first component 710 and second component 720 in an open position.
  • one connector is at the front of one side of tray 799 and another connector is at the rear of the opposite side of tray 799 .
  • One connector connects to a leg of first component 710 and another connector connects to a leg of second component 720 such that there is an offset between the two connectors to meet up properly with the legs.
  • the connectors are rotated to the left on one side and to the right on the other.
  • the connectors may be configured to curl around one leg in one direction and curl around the other leg in the other direction to meet the offset of the legs.
  • Tray 799 may project out to the side of the sawhourse, depending on the size of the tray that is selected.
  • the connectors may move and/or be rotatable and tray 799 may be expandable so that tray 799 can be positioned in any way up and down the legs of the saw horse.
  • tray 799 is shown connected to legs 715 and 723 , a tray may also be connected to legs 717 and 725 in a similar manner. Additionally, tray 799 may be configured with various dimensions depending on a particular design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

A saw horse apparatus is disclosed that includes a first component and a second component. The first component comprises a first leg, a second leg, and a first cross member. The second component comprises a third leg, a fourth leg, and a second cross member. Further stabilization may be provided by a third cross member. The end of third leg and the end of the fourth leg are rotatably connected to the first cross member.

Description

    TECHNICAL FIELD
  • The present disclosure is generally related to construction and, more particularly, is related to an improved saw horse apparatus.
  • BACKGROUND
  • A saw horse is a general purpose support device used in construction trades. A typical sawhorse includes two pairs of legs with a cross beam mounted between the pairs, each pair of legs describing a generally triangular shape with the ground. The portability, versatility, and economical construction of saw horses provide great utility.
  • Saw horses can be bulky and may require a fair amount of storage space. Attempts have been made to design a saw horse that requires a minimum of storage space. There are heretofore unaddressed needs with previous solutions.
  • SUMMARY
  • Example embodiments of the present disclosure provide a saw horse apparatus. Briefly described, in architecture, one example embodiment of the apparatus, among others, can be implemented as follows: a first component comprising a first leg, a second leg, and a first cross member, the first leg substantially parallel to the second leg and substantially perpendicular to the first cross member; and a second component comprising a third leg, a fourth leg, and a second cross member, the third leg substantially parallel to the fourth leg and substantially perpendicular to the second cross member, the third leg rotatably connected to a first end of the first cross member and the fourth leg rotatably connected to a second end of the first cross member, the second end on the opposite end of the first cross member from the first end].
  • Embodiments of the present disclosure can also be viewed as providing a saw horse system. In this regard, one embodiment of such a system, among others, can be broadly summarized by the following elements: a first component comprising a first leg, a second leg, and a first cross member; and a second component comprising a third leg, a fourth leg and a second cross member, the top of the third leg and the top of the fourth leg rotatably connecting to the first cross member through an opening in the circumference of the top of the third leg and in the circumference of the top of the fourth leg.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a system diagram of an example embodiment of a saw horse apparatus.
  • FIG. 2 is an exploded system diagram of an example embodiment of a rotatable connection of the saw horse apparatus of FIG. 1.
  • FIG. 3 is an exploded system diagram of an example embodiment of a rotatable connection of the saw horse apparatus of FIG. 1.
  • FIG. 4A is a system diagram of an example embodiment of a peg stopper of the saw horse apparatus of FIG. 1.
  • FIG. 4B is an exploded system diagram of an example embodiment of the peg stopper of the saw horse apparatus of FIG. 4A.
  • FIG. 5 is a system diagram of an example embodiment of a peg stopper of the saw horse apparatus of FIG. 4A without a cross member.
  • FIG. 6 is a system diagram of an example embodiment of a saw horse system.
  • FIG. 7 is a system diagram of an example embodiment of a saw horse system with a tray.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure will be described more fully hereinafter with reference to the accompanying drawings in which like numerals represent like elements throughout the several figures, and in which example embodiments are shown. Embodiments of the claims may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. The examples set forth herein are non-limiting examples and are merely examples among other possible examples.
  • Example embodiments of the saw horse apparatus include only two moving parts, resulting in less items that may wear down and break. In a commercially available previous apparatus, each leg is independently hinged on a bolt, a rod or shaft and are not as sturdy. Example embodiments of the disclosed apparatus are sturdier than those in the prior art.
  • FIG. 1 provides an example embodiment of the disclosed saw horse apparatus. The saw horse comprises first component 110 and second component 120. First component 110 comprises first leg 115, second leg 117, and first cross member 116. Second component 120 comprises third leg 123, fourth leg 125 and second cross member 127. Further stabilization may be provided by third cross member 118. End of third leg 185 and end of fourth leg 165 are rotatably connected to first cross member 116. In an example embodiment, first leg 115 and second leg 117 are substantially parallel to each other and substantially perpendicular to first cross member 116. Additionally, first leg 115 and second leg 117 are substantially coplanar. First cross member 116 may or may not be coplanar with the plane containing first leg 115 and second leg 117. In an example embodiment, third leg 123 and fourth leg 125 are substantially parallel to each other and substantially perpendicular to second cross member 127. Additionally, third leg 123 and fourth leg 125 are substantially coplanar. Second cross member 127 may or may not be coplanar with the plane containing third leg 123 and fourth leg 125.
  • Connecting means 130 may be connected from second cross member 127 to third cross member 118. Non-limiting examples of connecting means 130 include a chain, cable, and rope among others. An example embodiment of support means 140 may be used to support fourth cross member 150. Support means 140 is shown in FIG. 1 as two brackets, but could comprise any other means to support fourth cross member 150. Non-limiting examples of fourth cross member 150 include a wooden board, an aluminum member, and a steel member among others. In an example embodiment, a hook may extend from at least one of components 110 and 120 to attach various tools, for example a saw by its blade guard.
  • The ends of legs 123 and 125 may be rotatably connected to first cross member 116 in a number of ways. As provided in FIG. 2, the insertion ends of ends 165 (not shown in FIG. 2) and 185 may be configured to be smaller than the rest of end 185 such that the insertion ends fits snugly within the open end of first cross member 116 while allowing the insertion end to rotate within the open end of cross member 116.
  • In an alternative embodiment, as provided in FIG. 3, the insertion ends of first cross member 116 may be configured to be smaller than the rest of cross member 116 such that the insertion ends fits snugly within the open end of ends 165 and 185 (not shown in FIG. 3) of legs 125 and 123 respectively, while allowing the insertion end to rotate within the open end of ends 165 and 185. The ends of either or both of ends 165 or 185 may be configured as insertion ends to fit within open ends of first cross member 116. Alternatively, either or both of the ends of cross member 116 may be configured to be inserted into open ends of ends 165 and/or 185.
  • In a previously described embodiment, connection means 130 was disclosed to limit the distance between second cross member 127 and third cross member 118. Connection means 130 defines the maximum angle between the legs of components 110 and 120. An alternative embodiment, as provided in FIG. 4A, eliminates the connection means and uses at least one pair of pegs 460, 470 to define the maximum angle between the legs of components 110 and 120. A second set of pegs 480 and 490 may be used to support more weight on first cross member 416. One or both of pegs 460 and 470 (and of pegs 480 and 490) may be moveable around end 485 and/or first cross member 416 (and around end 465 and/or first cross member 416). By moving a peg around one or both of the components, the maximum angle can be changed, thereby changing the height of the saw horse. In an example implementation, square holes (to inhibit twisting of the pegs) may be fabricated around the circumference and an L-shaped peg may be inserted in the desired hole to define a desired maximum angle.
  • FIG. 4B provides an exploded view of the alternative embodiment of FIG. 4A. First peg 470 is attached or formed onto end 485 and second peg 460 is attached or formed onto first cross member 460. Although the insertion end is shown on end 485, the insertion end could also be configured on first cross member 416. When leg 120 is rotated in respect to leg 110, peg 470 will meet peg 460 at some point, thereby defining the maximum angle between legs 110 and 120.
  • FIG. 5 provides an additional alternative embodiment in which first cross member 418 from FIG. 4A is removed. If the stability of first cross member 418 is not useful, it may be removed to make the saw horse lighter. This is applicable in embodiments that use at least one of peg pairs 460, 470 and/or 480, 490.
  • FIG. 6 provides an example embodiment that adds additional stability. First component 610 comprises first leg 611, second leg 613, third leg 615, fourth leg 617, first cross member 616. Second component 620 comprises fifth leg 623, sixth leg 625, and second cross member 627. Further stabilization may be provided by third cross member 618. In an example embodiment, first leg 611, second leg 613, third leg 615, and fourth leg 617 are substantially parallel to each other and substantially perpendicular to first cross member 116. Additionally, first leg 611, second leg 613, third leg 615, and fourth leg 617 are substantially coplanar. First cross member 616 may or may not be coplanar with the plane containing first leg 611, second leg 613, third leg 615, and fourth leg 617. In an example embodiment, fifth leg 623 and sixth leg 625 are substantially parallel to each other and substantially perpendicular to second cross member 627. Additionally, fifth leg 623 and sixth leg 625 are substantially coplanar. Second cross member 627 may or may not be coplanar with the plane containing fifth leg 623 and sixth leg 625.
  • In an example embodiment, first top end 685 of fifth leg 623 connects to first cross member 616 between second top end 680 and third top end 690. An opening in first top end 685 is configured to fit around first cross member 616 such that first top end 685 rotates around first cross member 616. Likewise, fourth top end 665 of sixth leg 625 connects to first cross member 616 between fifth top end 660 and sixth top end 670. An opening in second top end 665 is configured to fit around first cross member 616 such that second top end 665 rotates around first cross member 616. Connecting means 630 limits the angle between first component 610 and second component 620. Alternatively, the pegs of FIG. 4A may be used.
  • In an alternative embodiment of the apparatus of FIG. 6, either the pair of first leg 611 and second leg 613 or of third leg 615 and fourth leg 617 may be removed in the design. If the pair of third leg 615 and fourth leg 617 are not used, third cross member 618 may be extended between first leg 611 and second leg 613. If the peg implementation of defining the maximum angle is used, third cross member 618 may be removed from the design altogether. Although second top end 680, third top end 690, fifth top end 660, and sixth top end 670 are illustrated as having a larger diameter than first cross member 616, they may be substantially the same diameter as first cross member 616. The section of first cross member that first top end 685 and second end 665 fits over may be larger, smaller, or substantially equal to the circumference of first cross member 616.
  • FIG. 7 provides an alternative embodiment that includes detachable tray 799 that connects between leg 715 of first component 710 and leg 723 of second component 720, typically on the same end of the saw horse. Tray 799 may conform to the desired maximum angle between legs 715 and 723. The distance between legs 715, and 723 and the desired angle between the legs of first component 710 and second component 720 determines the angles of the connectors and the placement of tray 799 along the legs of the horse. In an example embodiment, tray 799 will keep the legs from spreading apart or folding in. Legs 715 and 723 are at an angle when the components are folded out (opened up). The connectors of tray 799 conform to a leg of each of the modules. Each of the connectors of tray 799 may connect to one of the legs and tray 799 may also act as a stop for the saw horse, defining the maximum angle between first component 710 and second component 720 in an open position.
  • In an example embodiment, one connector is at the front of one side of tray 799 and another connector is at the rear of the opposite side of tray 799. One connector connects to a leg of first component 710 and another connector connects to a leg of second component 720 such that there is an offset between the two connectors to meet up properly with the legs. In an example embodiment, the connectors are rotated to the left on one side and to the right on the other. The connectors may be configured to curl around one leg in one direction and curl around the other leg in the other direction to meet the offset of the legs. Tray 799 may project out to the side of the sawhourse, depending on the size of the tray that is selected. In an alternative embodiment, the connectors may move and/or be rotatable and tray 799 may be expandable so that tray 799 can be positioned in any way up and down the legs of the saw horse. Although tray 799 is shown connected to legs 715 and 723, a tray may also be connected to legs 717 and 725 in a similar manner. Additionally, tray 799 may be configured with various dimensions depending on a particular design.
  • Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made thereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (20)

Therefore, at least the following is claimed:
1. A saw horse apparatus comprising:
a first component comprising a first leg, a second leg, and a first cross member, the first leg substantially parallel to the second leg and substantially perpendicular to the first cross member; and
a second component comprising a third leg, a fourth leg, and a second cross member, the third leg substantially parallel to the fourth leg and substantially perpendicular to the second cross member, the third leg rotatably connected to a first end of the first cross member and the fourth leg rotatably connected to a second end of the first cross member, the second end on the opposite end of the first cross member from the first end.
2. The apparatus of claim 1, wherein the first component further comprises a third cross member substantially parallel to the first cross member and substantially parallel to the first leg and the second leg.
3. The apparatus of claim 2, further comprising a connecting means attached between the second cross member and the third cross member configured to limit the distance between the second cross member and the third cross member.
4. The apparatus of claim 3, wherein the connecting means is at least one of a chain, a cable, and a rope.
5. The apparatus of claim 1, further comprising a support means connected to the first cross member, the support means configured to support a fourth cross member.
6. The apparatus of claim 5, wherein the fourth cross member comprises at least one of a wooden member, an aluminum member, and a steel member.
7. The apparatus of claim 1, further comprising a first peg attached to the first cross member and a second peg attached to one of the third leg and fourth leg, the second leg attached such that the first peg stops the rotation of the third and fourth legs when the second peg meets the first peg.
8. The apparatus of claim 7, further comprising a third peg on the opposing end of the first cross member and a fourth peg on the other of the third and fourth leg, such that the fourth peg stops the rotation of the third and fourth legs when the fourth peg meets the third peg.
9. The apparatus of claim 1, wherein the first end of the first cross member is rotatably disposed inside the third leg and an end of the fourth leg is rotatably disposed inside the second end of the first cross member.
10. The apparatus of claim 1, wherein the first end of the first cross member is rotatably disposed inside the third leg and the second end of the first cross member is rotatably disposed inside an end of the fourth leg.
11. The apparatus of claim 1, wherein an end of the third leg is rotatably disposed inside a first end of the first cross member and an end of the fourth leg is rotatably disposed inside a second end of the first cross member.
12. The apparatus of claim 1, further comprising a tray connected to a leg of the first component and a leg of the second component.
13. A saw horse system comprising:
a first component comprising a first leg, a second leg, and a first cross member; and
a second component comprising a third leg, a fourth leg and a second cross member, the top of the third leg and the top of the fourth leg rotatably connecting to the first cross member through an opening in the circumference of the top of the third leg and in the circumference of the top of the fourth leg.
14. The system of claim 13, wherein the first component further comprises a fifth leg and a sixth leg, the first leg configured inside the third leg, the second leg configured inside the fourth leg, the fifth leg configured outside the first leg, and the sixth leg outside the second leg.
15. The system of claim 13, wherein the first component further comprises a third cross member configured between the first leg and the second leg and substantially perpendicular to both the first leg and the second leg.
16. The system of claim 15, further comprising a connecting means connected between the second cross member and the third cross member, the length of the connecting means defining the maximum angle between the first component and the second component.
17. The system of claim 13, further comprising a first peg attached to the first component and a second peg attached to the second component such that the first peg stops the rotation of the second component when the second peg meets the first peg.
18. The system of claim 17, further comprising a third peg on the opposing end of the first component and a fourth peg on the opposing end of the second component such that the fourth peg stops the rotation of the second component when the fourth peg meets the third peg.
19. The system of claim 13, further comprising a tray connected to a leg of the first component and a leg of the second component.
20. The system of claim 19, wherein the tray defines the maximum angle between the first component and the second component.
US13/770,228 2013-02-19 2013-02-19 Saw Horse System and Apparatus Abandoned US20140231173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/770,228 US20140231173A1 (en) 2013-02-19 2013-02-19 Saw Horse System and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/770,228 US20140231173A1 (en) 2013-02-19 2013-02-19 Saw Horse System and Apparatus

Publications (1)

Publication Number Publication Date
US20140231173A1 true US20140231173A1 (en) 2014-08-21

Family

ID=51350354

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/770,228 Abandoned US20140231173A1 (en) 2013-02-19 2013-02-19 Saw Horse System and Apparatus

Country Status (1)

Country Link
US (1) US20140231173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002202A1 (en) * 2021-07-02 2023-01-05 Wilson Eashoian Folding jack stand

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US812344A (en) * 1904-07-09 1906-02-13 Benjamin H Howser Adjustable support.
US1567800A (en) * 1925-07-10 1925-12-29 Herbert C Getman Adjustable support
US2793916A (en) * 1954-07-12 1957-05-28 Albert C Woods Scaffold trestle
US3148746A (en) * 1963-02-06 1964-09-15 Marvel Equipment Corp Foldable horse
US3734235A (en) * 1971-04-16 1973-05-22 Lanier Enterprises Inc Collapsible sawhorse
US3763958A (en) * 1972-03-09 1973-10-09 C Hanson Collapsible sawhorse
US4111470A (en) * 1976-02-25 1978-09-05 Welcker F Releasable coupling and method for making such coupling
US4298096A (en) * 1980-09-15 1981-11-03 Prior Herbert E Convertible trestle leg assembly
US4433753A (en) * 1982-08-11 1984-02-28 Marshall Watson Work supporting apparatus
US4502563A (en) * 1983-11-21 1985-03-05 Pershon Jacob A Collapsible horse
US5351785A (en) * 1992-11-16 1994-10-04 Storehorse, Inc. Folding sawhorse with locking shelf
US5467842A (en) * 1994-12-29 1995-11-21 Meloy; John Collapsible saw horse
US5839540A (en) * 1995-04-28 1998-11-24 Russell; Douglass L. Collapsible folding sawhorse
US6059071A (en) * 1999-06-03 2000-05-09 Appezzato; Marc Sawhorse
US6161807A (en) * 1995-09-27 2000-12-19 Steiner; Michael Portable optometric support stand
US6422343B1 (en) * 2001-05-14 2002-07-23 Berg Manufacturing & Sales Corp. Collapsible sawhorse
US20020125072A1 (en) * 2002-03-01 2002-09-12 Roni Levy Height adjustable sawhorse
US6640930B1 (en) * 2002-05-21 2003-11-04 Larry W. Peters Locking-collapsible saw horse
US20050023083A1 (en) * 2003-07-31 2005-02-03 Reimer Dale Robert Support assembly for a horizontally-extending member
US20050230188A1 (en) * 2004-04-19 2005-10-20 Berg Joel J Saw horse with adjustable height and length top rail
US20060124396A1 (en) * 2004-12-09 2006-06-15 Deornellas Leo A Handy horse
US7458615B2 (en) * 2003-10-03 2008-12-02 Fisher & Paykel Healthcare Limited Connector
US8231119B2 (en) * 2008-07-02 2012-07-31 Black & Decker Inc. Workbench with saw horse
USD688388S1 (en) * 2012-06-06 2013-08-20 Steven J. Ardoin Collapsible sawhorse

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US812344A (en) * 1904-07-09 1906-02-13 Benjamin H Howser Adjustable support.
US1567800A (en) * 1925-07-10 1925-12-29 Herbert C Getman Adjustable support
US2793916A (en) * 1954-07-12 1957-05-28 Albert C Woods Scaffold trestle
US3148746A (en) * 1963-02-06 1964-09-15 Marvel Equipment Corp Foldable horse
US3734235A (en) * 1971-04-16 1973-05-22 Lanier Enterprises Inc Collapsible sawhorse
US3763958A (en) * 1972-03-09 1973-10-09 C Hanson Collapsible sawhorse
US4111470A (en) * 1976-02-25 1978-09-05 Welcker F Releasable coupling and method for making such coupling
US4298096A (en) * 1980-09-15 1981-11-03 Prior Herbert E Convertible trestle leg assembly
US4433753A (en) * 1982-08-11 1984-02-28 Marshall Watson Work supporting apparatus
US4502563A (en) * 1983-11-21 1985-03-05 Pershon Jacob A Collapsible horse
US5351785A (en) * 1992-11-16 1994-10-04 Storehorse, Inc. Folding sawhorse with locking shelf
US5467842A (en) * 1994-12-29 1995-11-21 Meloy; John Collapsible saw horse
US5839540A (en) * 1995-04-28 1998-11-24 Russell; Douglass L. Collapsible folding sawhorse
US6161807A (en) * 1995-09-27 2000-12-19 Steiner; Michael Portable optometric support stand
US6059071A (en) * 1999-06-03 2000-05-09 Appezzato; Marc Sawhorse
US6422343B1 (en) * 2001-05-14 2002-07-23 Berg Manufacturing & Sales Corp. Collapsible sawhorse
US20020125072A1 (en) * 2002-03-01 2002-09-12 Roni Levy Height adjustable sawhorse
US6640930B1 (en) * 2002-05-21 2003-11-04 Larry W. Peters Locking-collapsible saw horse
US20050023083A1 (en) * 2003-07-31 2005-02-03 Reimer Dale Robert Support assembly for a horizontally-extending member
US7458615B2 (en) * 2003-10-03 2008-12-02 Fisher & Paykel Healthcare Limited Connector
US20050230188A1 (en) * 2004-04-19 2005-10-20 Berg Joel J Saw horse with adjustable height and length top rail
US20060124396A1 (en) * 2004-12-09 2006-06-15 Deornellas Leo A Handy horse
US8231119B2 (en) * 2008-07-02 2012-07-31 Black & Decker Inc. Workbench with saw horse
USD688388S1 (en) * 2012-06-06 2013-08-20 Steven J. Ardoin Collapsible sawhorse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002202A1 (en) * 2021-07-02 2023-01-05 Wilson Eashoian Folding jack stand

Similar Documents

Publication Publication Date Title
US9706749B2 (en) Collapsible animal enclosure
US20220151378A1 (en) Modular Cabinet Assembly
US10058171B2 (en) Folding shelf
US9215923B1 (en) Portable table apparatus
US10895171B2 (en) Thrust reverser cowl rack
US9770096B1 (en) Portable table
US20120227217A1 (en) Hinge device for rotatable members
US9915096B2 (en) Garage door ladder storage devices and methods thereof
EP2949542A3 (en) Hinge assembly for folding stroller
US20110272213A1 (en) Collapsible Saw Horse
EP2668429B1 (en) Device for fastening elongate objects
EP3199404A3 (en) Cover device, storage compartment with cover device and tool for mounting
CA2658999A1 (en) A stool with telescopic legs
US20140231173A1 (en) Saw Horse System and Apparatus
US10183415B2 (en) Table saw
JP2021102919A (en) Portable working platform
US20110185541A1 (en) Strap adjustment device
US2706661A (en) Collapsible support
US9055816B2 (en) Collapsible easel
CN203483045U (en) Foldable suspension desk
CN106305501B (en) For moving the load bee device of beehive
US20190178035A1 (en) Device for a ladder
DE202014008993U1 (en) Tool case with a stacking function
CN203531739U (en) Joint structure and multifunctional ladder with same
KR200447229Y1 (en) Handle of mobile rack

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARTER, RONALD, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BALSER, BENJAMIN A.;REEL/FRAME:029830/0435

Effective date: 20130213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION