US20140219952A1 - Methods of treatment using stem cell mobilizers - Google Patents

Methods of treatment using stem cell mobilizers Download PDF

Info

Publication number
US20140219952A1
US20140219952A1 US13/636,733 US201113636733A US2014219952A1 US 20140219952 A1 US20140219952 A1 US 20140219952A1 US 201113636733 A US201113636733 A US 201113636733A US 2014219952 A1 US2014219952 A1 US 2014219952A1
Authority
US
United States
Prior art keywords
plerixafor
stem cell
administered
csf
once
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/636,733
Other languages
English (en)
Inventor
Andrew MacGregor Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Priority to US13/636,733 priority Critical patent/US20140219952A1/en
Assigned to THE JOHNS HOPKINS UNIVERSITY reassignment THE JOHNS HOPKINS UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMERON, ANDREW MACGREGOR
Publication of US20140219952A1 publication Critical patent/US20140219952A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics

Definitions

  • the present invention relates to the field of stem cells. More particularly, the methods and compositions of the present invention are useful for mobilizing stem cells to treat a variety of conditions including acute liver injury, and more particularly, acute liver failure (ALF).
  • ALF acute liver failure
  • Acute liver failure affects over two thousand Americans per year and results in approximately four hundred liver transplants annually. Defined as the abrupt loss of hepatocellular function in patients with previously normal liver function, the most common etiologies are acetaminophen overexposure and acute viral hepatitis. See Stravitz et al., 6 N AT R EV . G ASTROENTEROL . H EPATOL. 542-53 (2009). In the most severe cases, patients manifest a rapidly developing coagulopathy, and encephalopathy that progresses to cerebral herniation and death without prompt liver transplantation. See Lee et al., 47 H EPATOLOGY 1401-15 (2008).
  • liver transplantation frequently represents the only option for survival; however, this limited resource may be inaccessible at the time at which it is emergently needed.
  • the decision to proceed to transplantation is not always straightforward, because some patients will spontaneously recover, but the ability to predict recovery is markedly limited.
  • Under aggressive utilization of liver transplantation can result in devastating outcomes in potentially salvageable patients, while overly aggressive utilization of transplantation both commits patients who might have spontaneously recovered to a lifetime of immunosuppression, and also unnecessarily utilizes precious grafts that could be allocated to others in need.
  • New therapies particularly those that can promote spontaneous recovery and lessen the need for liver transplantation, are badly needed.
  • the present invention is based, in part, on the discovery that the administration of at least one stem cell mobilizer can be used to treat subjects with acute liver injury.
  • the present inventors use pharmacologic mobilization of endogenous HSCs in the setting of liver injury to show that these cells can be of therapeutic benefit.
  • the present invention shows survival advantage from the treatment provided, specifically, an elevation of serum leukocytes and CD34 + cells in animals treated with plerixafor and G-CSF.
  • the present invention demonstrates the rapid appearance of CD34 + cells in the livers of only the animals who undergo injury and stem cell mobilization. These cells could differentiate into hepatocytes to directly support an animal with inadequate liver mass or perhaps supply some sort of paracrine support to mitigate injury or accelerate ongoing local repair mechanisms.
  • the present invention provides methods and compositions useful for treating subjects with acute livery injury.
  • a method for treating a subject with acute liver injury comprises administering to the subject a therapeutically effective amount of at least one stem cell mobilizer.
  • the acute liver injury can include, but is not limited to, acute liver failure and post-surgical resection.
  • the at least one stem cell mobilizer can be any stem cell mobilizer, and without limitation, can be selected from the group consisting of plerixafor, AMD3465, NIBR1816, TG-0054, G-CSF, GM-CSF, SDF-1, and SCF.
  • the subject is treated with plerixafor and G-CSF.
  • the present invention provides methods for treating a subject with acute liver failure comprising administering to the subject a therapeutically effective amount of at least one stem cell mobilizer.
  • the method for treating a subject with acute liver failure comprises administering to the subject a therapeutically effective amount of plerixafor and a therapeutically effective amount of G-CSF.
  • the present invention provides methods for treating an organ transplant recipient comprising administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • the treatment regimen can be applied to any type of organ transplant including liver, kidney, skin, heart, lung, intestine, and pancreas.
  • the treatment regimen can also be applied to composite tissue transplantation.
  • the composite tissue can be hand, face, or any other anatomical part.
  • the present invention is useful in the treatment of patients with ischemic injury and/or shock.
  • a method of treating an organ transplant recipient comprises administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • the transplanted organ can be selected from the group consisting of liver, kidney, skin, heart, lung, intestine, and pancreas.
  • the organ is liver.
  • a method of treating a liver transplant recipient comprises administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • a method of treating a kidney transplant recipient comprising administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • a method of treating a skin transplant recipient comprises administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • a method of treating a patient diagnosed with ischemic injury comprises administering to the patient a therapeutically effective amount of at least one stem cell mobilizer.
  • a method of treating a composite tissue transplant recipient comprises administering to the recipient a therapeutically effective amount of at least one stem cell mobilizer.
  • at least one stem cell mobilizer may be used to treat subjects with acute pancreatitis, myocardial infarction, and/or generally conditions involving parenchymal insufficiency.
  • the stem cell mobilizer can be any stem cell mobilizer including, but not limited to, plerixafor, AMD3465, NIBR1816, TG-0054, G-CSF, GM-CSF, SDF-1, and SCF.
  • the stem cell mobilizer is a CXCR4 antagonist.
  • the stem cell mobilizer is plerixafor.
  • the stem cell mobilizer is NIBR1816.
  • the transplant recipient is treated with plerixafor and G-CSF.
  • the transplant recipient is treated with NIBR1816 and G-CSF.
  • the transplant recipient is treated with TG-0054 and G-CSF.
  • a first stem cell mobilizer is administered in combination with a second stem cell mobilizer.
  • the first stem cell mobilizer e.g., plerixafor
  • second stem cell mobilizer e.g., G-CSF
  • the treatment regimen for a patient suffering from ALF may comprise the following: plerixafor (2 mg/kg) and G-CSF (300 ⁇ g/kg) at Day 0, 1, 2, and 3 (subcutaneous injection).
  • the dosage regimen for a patient may comprise NIBR1816 (30 mg/kg) and G-CSF (300 ⁇ g/kg).
  • plerixafor can be administered in a dose of about 10 ⁇ g to about 10 mg per kg of body weight, about 100 ⁇ g to about 5 mg per kg of body weight, about 200 ⁇ g to about 3 mg per kg of body weight, about 300 ⁇ g to about 2 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of plerixafor can be about 1 mg to about 4 mg/kg.
  • plerixafor can be administered at a dose of about 2 mg/kg of body weight.
  • CXCR4 antagonists like NIBR1816 can be administered in a dose of about 1 mg to about 60 mg per kg of body weight, about 10 mg to about 50 mg per kg of body weight, about 20 mg to about 40 mg per kg of body weight, about 25 ⁇ g to about 45 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of NIBR1816 can be about 25 mg to about 35 mg/kg.
  • NIBR1816 can be administered at a dose of about 30 mg/kg of body weight.
  • a CXCR4 antagonist like TG-0054 can be administered in a dose of about 0.1 mg to about 10 mg per kg of body weight, about 0.5 mg to about 8 mg per kg of body weight, about 1 mg to about 6 mg per kg of body weight, about 1.5 mg to about 5 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of TG-0054 can be about 2 mg to about 5 mg/kg.
  • TG-0054 can be administered at a dose of about 4 mg/kg of body weight.
  • Such doses can be administered within about 1 hour to about 96 hours following injury (e.g., acute liver injury, acute liver failure, ischemic injury, etc.), within about 1 hour to about 72 hours, within about 1 to about 48 hours, within about 1 to about 24 hours, and within about 2 hours to about 12 hours following injury.
  • a stem cell mobilizer e.g., a CXCR4 antagonist
  • a CXCR4 antagonist can be administered several days to several hours prior to surgery.
  • G-CSF can be administered in a dose of about 1 ⁇ g to about 3 mg per kg of body weight, about 5 ⁇ g to about 2 mg per kg, about 10 ⁇ g to about 1 mg per kg, about 50 ⁇ g to about 900 ⁇ g per kg, and about 100 ⁇ g to about 500 ⁇ g per kg, or any range or value of the foregoing.
  • the dose of G-CSF can be about 200 ⁇ g to about 400 ⁇ g per kg.
  • G-CSF can be administered at a dose of about 300 ⁇ g/kg of body weight.
  • Such doses can be administered within about 1 hour to about 96 hours following injury (e.g. acute liver injury, acute liver failure, ischemic injury, etc.), within about 1 hour to about 72 hours, within about 1 to about 48 hours, within about 1 to about 24 hours, and within about 2 hours to about 12 hours following injury.
  • G-CSF can be administered several days to several hours prior to surgery.
  • FIG. 1 describes mortality and hepatic injury after injection of carbon tetrachloride (CCl 4 ).
  • FIG. 1C shows hematoxalin and eosin staining of mouse livers at 24 hrs, 48 hrs, and 72 hrs after intraperitoneal injection of CCl 4 .
  • FIG. 2 displays hematopoietic stem cell mobilization response in to plerixafor and/or G-CSF administration.
  • FIG. 2A peripheral total white blood cell (WBC) count, total lymphocytes, and CD34 + cells were measured in serum by FACS analysis at 1 hr and 6 hrs after injection.
  • FIG. 2B is a graph showing increases in CD34 + cells in rodent in response to plerixafor and/or G-CSF.
  • FIG. 2C shows mobilization of CD34 + cells in human after administration of plerixafor and/or G-CSF. See Mozobil (plerixafor injection) Product Monograph 2009 (Genzyme Corporation, Cambridge, Mass.).
  • FIG. 3 demonstrates that plerixafor and G-CSF administration improves survival and lessens hepatic injury after injection of CCl 4 .
  • FIG. 3B shows representative hematoxalin and eosin stained sections of liver from CCL 4 injected mice three days after treatment with saline control, or plerixafor and G-CSF.
  • FIG. 4 shows CD34 immunostaining of rat livers 24 hours after stem cell mobilization. Representative images from control uninjured animals administered neither CCl 4 nor plerixafor/G-CSF ( FIG. 4A , panel 1). CCl 4 injected animals administered saline control ( FIG. 4A , panel 2), uninjured animals administered plerixafor/G-CSF ( FIG. 4A , panel 3), and CCl 4 injected animals administered plerixafor/G-CSF ( FIG. 4A , panel 4). FIG. 4B shows CD34 immunostaining over the first 5 days after injury in animals that were treated with stem cell-mobilizing agents versus control.
  • liver fails to use all possible recovery pathways, e.g., recruitment of endogenous marrow-derived stem cells, in these scenarios of massive insult is unclear. Augmenting the release of marrow-bound stem cells has been well studied and optimized for utilization in a very different group of patients who donate via pheresis for subsequent hematopoietic stem cell (HSC) autotransplantation after chemoablation of their lymphoma or myeloma. Meanwhile, efforts to augment liver recovery from injury with stem cells have thus far focused on provision of exogenous stem cells with success demonstrable in some animal models. See Liu et al., 15 L IVER T RANSPLANTATION 1092-1100 (2009):
  • Plerixafor was initially studied as an anti-human immunodeficiency virus (HIV) drug as it was found to be a small molecule antagonist of CXCR4, then known as an HIV coreceptor. See Uy et al. 8(1)) E XPERT O PINION ON B IOLOGIC T HERAPY 1797-1804 (20080. CXCR4 also binds stromal-derived factor 1 (SDF-1) and this interaction anchors HSCs to their niche in the bone marrow. Elevated levels of SDF elsewhere in the body, i.e., at the site of injured tissue, create a gradient that releases stem cells from the marrow, perhaps so that they may participate in tissue repair elsewhere in the body. Why this process is not more efficient in settings like massive liver injury is unclear. Plerixafor was not an effective anti-HIV agent in vivo but resulted in massive mobilization of HSCs to the periphery when given to healthy volunteers.
  • liver injury refers to liver injury of rapid onset leading to abnormal liver enzyme and/or protein levels.
  • Standard liver function tests can be used to assay liver enzymes including, but not limited to, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, and gamma glutamyl transpeptidase (GGT), as well as protein levels including, but not limited to, albumin (ALB), total bilirubin (TBIL), and direct or conjugated bilirubin.
  • ALT alanine transaminase
  • AST aspartate transaminase
  • GTT gamma glutamyl transpeptidase
  • protein levels including, but not limited to, albumin (ALB), total bilirubin (TBIL), and direct or conjugated bilirubin.
  • liver function tests include 5′ nucleotidase (5′NTD), coagulation test (e.g., international normalized ration (INR)), serum glucose (Glu), and lactate dehydrogenase (LDH)
  • 5′NTD 5′ nucleotidase
  • INR international normalized ration
  • Glu serum glucose
  • LDH lactate dehydrogenase
  • ALF acute Liver Failure
  • ALF generally refers to the abrupt loss of hepatocellular function in patients with previously normal liver function. The rapid deterioration of liver function results in coagulopathy and alteration in the mental status of a previously healthy individual. ALF often affects young people and carries a very high mortality.
  • the term ALF can be used to describe the development of coagulopathy, generally an international normalized ratio (INR) of greater than about 1.5, and optionally any degree of mental alteration (encephalopathy) in a patient without preexisting cirrhosis and with an illness of less than about 26 weeks duration.
  • ILR international normalized ratio
  • ALF encompasses both fulminant hepatic failure (FHF) and subfulminant hepatic failure (or late-onset hepatic failure).
  • FHF is generally used to describe the development of encephalopathy within 8 weeks of the onset of symptoms in a patient with a previously healthy liver.
  • Subfulminant hepatic failure is reserved for patients with liver disease for up to 26 weeks before the development of hepatic encephalopathy.
  • ALF acute liver failure
  • the following description describes embodiments in the context of subjects with acute liver injury, including ALF, it is understood that the following description encompasses the application of the present invention in other settings as well.
  • quick recovery after surgical resection or larger surgical resections could be facilitated using the methods of the present invention.
  • the methods and compositions of the present invention can be used to treat organ and composite tissue transplant recipients. Transplant applications might include the ability to use ever more extended criteria grafts, or ever small living donor grafts, which would then serve as scaffolds for endogenous repopulation by mobilized host stem cells.
  • Such a pharmacologically driven graft repopulation by recipient cells may lead to an eventual conversion of the donor graft to recipient phenotype creating a novel type of tolerance protocol. See Sun et al., 49(2) H EPATOLOGY 587-97 (2009).
  • Applications with other tissues in other injury scenarios are possible as well, including use of the present invention in subjects following myocardial infarction, acute kidney injury, and/or acute pancreatitis, generally scenarios that involve parenchymal insufficiency.
  • Agent refers to any and all materials that may be used as or in pharmaceutical compositions, including any and all materials such as small synthetic or naturally derived organic compounds, nucleic acids, polypeptides, antibodies, fragments, isoforms, variants, or other materials that may be used independently for such purposes, all in accordance with the present invention.
  • Antagonist refers to an agent that down-regulates (e.g., suppresses or inhibits) at least one bioactivity of a protein.
  • An antagonist may be an agent which inhibits or decreases the interaction between a protein and another molecule, e.g., a target peptide or enzyme substrate.
  • An antagonist may also be an agent that down-regulates expression of a gene or which reduces the amount of expressed protein present.
  • Hematopoiesis refers to the highly orchestrated process of blood cell development and homeostasis. Prenatally, hematopoiesis occurs in the yolk sack, then liver, and eventually the bone marrow. In normal adults it occurs in bone marrow and lymphatic tissues.
  • stem cells and “hematopoietic stem cells” are used interchangeably herein.
  • Stem cells are distinguished from other cell types by two important characteristics. First, stem cells are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, stem cells can be induced to become tissue- or organ-specific cells with special functions. In some organs, such as the gut and bone marrow, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide under special conditions.
  • stem cells can refer to multipotent stem cells that are capable of differentiating into all blood cells including erythrocytes, leukocytes and platelets.
  • hematopoietic stem cells or “stem cells” as used in the present invention are contained not only in bone marrow but also in umbilical cord blood derived cells.
  • a stem cell mobilizer may increase the number of hematopoietic stem cells or hematopoietic progenitor/precursor cells in the peripheral blood, thus allowing for a more accessible source of stem cells.
  • a stem cell mobilizer refers to any agent that mobilizes CD34+ stem cells. It is further understood that an agent may have stem cell mobilizing activity in addition to one or more other biological activities including, but not limited to, immunosuppression.
  • An example of such an agent is Tacrolimus (also FK-506 or Fujimycin). Tacrolimus is sold under the trade names Prograf® (given twice daily), Advagraf® (a sustained release formulation allowing once daily dosing), and Protopic® (a topical formulation).
  • a “patient,” “subject,” or “host” to be treated by the present methods refers to either a human or non-human animal, such as primates, mammals, and vertebrates. In particular, the terms refer to a human.
  • a “small molecule” refers to a composition that has a molecular weight of less than 3 about kilodaltons (kDa), less than about 1.5 kilodaltons, or less than about 1 kilodalton. Small molecules may be nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic (carbon-containing) or inorganic molecules.
  • a “small organic molecule” is an organic compound (or organic compound complexed with an inorganic compound (e.g., metal)) that has a molecular weight of less than about 3 kilodaltons, less than about 1.5 kilodaltons, or less than about 1 kDa.
  • treatment refers to obtaining a desired pharmacologic and/or physiologic effect.
  • the terms are also used in the context of the administration of a “therapeutically effective amount” of an agent, e.g., a stem cell mobilizer.
  • the effect may be prophylactic in terms of completely or partially preventing a particular outcome, disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse affect attributable to the disease.
  • Treatment covers any treatment of a disease or condition in a subject, particularly in a human, and includes: (a) preventing the disease or condition from occurring in a subject which may be predisposed to the disease or condition but has not yet been diagnosed as having it; (b) inhibiting the disease or condition, i.e., arresting its development; and (c) relieving the disease or condition, e.g., causing regression of the disease or condition, e.g., to completely or partially remove symptoms of the disease or condition.
  • the term is used in the context of treating a subject with acute liver injury.
  • the present invention relates to the treatment of subjects with acute liver injury with at least one stem cell mobilizer.
  • stem cell mobilizers include, but are not limited to, small organic molecules, polypeptides, nucleic acids, and carbohydrates.
  • the stem cell mobilizer may comprise a cytokine, a colony stimulating factor, a protease or a chemokine.
  • the cytokine can include, but is not limited to, interleukin-1 (IL-1), interleukin-3 (IL-3), interleukin-6 (IL-6), interleukin-11 (IL-11), interleukin-7 (IL-7), and interleukin-12 (IL12).
  • the stem cell mobilizer can include, but is not limited to, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor, FLT-3 ligand or a combination thereof.
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocyte-macrophage colony stimulating factor
  • M-CSF macrophage colony stimulating factor
  • stem cell factor FLT-3 ligand or a combination thereof.
  • the protease stem cell mobilizer can include, but is not limited to, metalloproteinase (like MMP2 or MMP9) a serine protease, (like cathepsin G, or elastase) a cysteine protease (like cathepsin K) and a dipeptidyl peptidase-1 (DDP-1 OR CD26).
  • MMP2 or MMP9 metalloproteinase
  • serine protease like cathepsin G, or elastase
  • cysteine protease like cathepsin K
  • DDP-1 OR CD26 dipeptidyl peptidase-1
  • the chemokine stem cell mobilizer can include, but is not limited to, CXCL12, IL-8, Mip-1 ⁇ , and Gro ⁇ .
  • the nucleic acid stem cell mobilizer is a DNA or an RNA molecule.
  • the nucleic acid can be a small interfering RNA (siRNA) molecule or an antisense molecule specific for CXCL12.
  • the stem cell mobilizer can be a sulfated carbohydrate and can include, but is not limited to, Fucoidan and sulfated dextran.
  • Fucoidan is a carbohydrate consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1.23:0.36 and can be isolated from the Pacific brown seaweed Fucus evanescens. See Bilan et al., 337(8) C ARBOHYDRATE R ESEARCH 719-30 (2002).
  • Sulfated dextrans refer to a series of polysaccharides that have variable sulfated patterns. See. e.g.
  • Stem cell mobilizers may further include, but are not limited to, AMD3100; stromal cell-derived factor (SDF-1); SDF-1 analogs (e.g., CTCE-0214 (Chemokine Therapeutics Corp.)); anti-SDF-1 antibodies; cyclophosphamide; stem cell factor (SCF); filgrastim; ancestim; Myeloid Progenitor Inhibitory Factor-1 (MPIF-1) (see U.S. Patent Publication No.
  • VLA-4 antagonists e.g., an alpha-4 integrin antagonist, such as an antibody including Natalizumab or Anti-phospho-Integrin ⁇ 4 (Ser988), clone 6.33 (Upstate Cell Signaling Solutions), or a peptide (e.g., phenylacetyl-leu-asp-phe-D-prolineamide (Cytel Corp., San Diego Calif.))).
  • the stem cell mobilizer comprises a CXCR4 antagonist.
  • the CXCR4 antagonist is TG-0054 (TaiGen Biotechnology Co., Ltd. (Taipei, Taiwan)).
  • the CXCR4 antagonist is AMD3465.
  • the CXCR4 antagonist is AMD3100.
  • AMD3100 (1,1′-[1,4-phenylenebis(methylene)]bis-1,4,8,11-tetraazacyclo-tetradecane) is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. See U.S. Pat. No. 6,835,731 and No. 6,825,351.
  • ACD or “AMD3100” is used interchangeably with plerixafor, rINN, USAN, JM3100, and its trade name, MozobilTM.
  • the CXCR4 antagonist is NIBR1816 (Novartis, Basel, Switzerland)
  • the present invention also contemplates using mimetics of AMD3100. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor have identified three acid residues: Asp 171 (AspIV:20), Asp 262 (AspVI:23), and Glu 288 as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp 171 in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp 262 and Glu 288 from TM-VI and -VII, respectively.
  • mimetics such as for example, peptide or non-peptide antagonists with improved oral bioavailability can be designed to efficiently and selectively block the CXCR4 receptor.
  • a pharmaceutical composition of the present invention may comprise an effective amount of at least one stem cell mobilizer.
  • plerixafor and G-CSF are co-administered to subject suffering from acute liver injury (e.g., ALF).
  • ALF acute liver injury
  • the term “effective” means adequate to accomplish a desired, expected, or intended result. More particularly, the terms “effective amount” and “therapeutically effective amount” are used interchangeably and refer to an amount of at least one stem cell mobilizer, perhaps in further combination with a second stem call mobilizer and/or optionally another therapeutic agent, necessary to provide the desired treatment or therapeutic effect. e.g. an amount that is effective to prevent, alleviate, treat or ameliorate symptoms of a disease or prolong the survival of the subject being treated.
  • the pharmaceutical compositions of the present invention are administered in a therapeutically effective amount to treat a subject suffering from ALF.
  • a therapeutically effective amount to treat a subject suffering from ALF.
  • the exact amount required will vary from subject to subject, depending on age, general condition of the subject, the severity of the condition being treated, the particular compound and/or composition administered, and the like.
  • An appropriate “therapeutically effective amount” in any individual case can be determined by one of ordinary skill in the art by reference to the pertinent texts and literature and/or by using routine experimentation.
  • compositions of the present invention are in biologically compatible forms suitable for administration in vivo to subjects.
  • the pharmaceutical compositions can further comprise a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans.
  • carrier refers to a diluent, adjuvant, excipient, or vehicle with which the at least one stem cell mobilizer is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • Water may be a carrier when the pharmaceutical composition is administered orally.
  • Saline and aqueous dextrose may be carriers when the pharmaceutical composition is administered intravenously.
  • Saline solutions and aqueous dextrose and glycerol solutions may be employed as liquid carriers for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried slim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the pharmaceutical composition may also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
  • compositions of the present invention can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained-release formulations and the like.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.
  • a pharmaceutical composition comprises an effective amount of at least one stem cell mobilizer together with a suitable amount of a pharmaceutically acceptable carrier so as to provide the form for proper administration to the patient.
  • the stem cell mobilizers can be separately formulated and administered according to the present invention.
  • the formulation should suit the mode of administration.
  • compositions of the present invention may be administered by any particular route of administration including, but not limited to oral, parenteral, subcutaneous, intramuscular, intravenous, intrarticular, intrabronchial, intraabdominal, intracapsular, intracartilaginous, intracavitary, intracelial, intracelebellar, intracerebroventricular, intracolic, intracervical, intragastric, intrahepatic, intramyocardial, intraosteal, intraosseous, intrapelvic, intrapericardiac, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrarectal, intrarenal, intraretinal, intraspinal, intrasynovial, intrathoracic, intrauterine, intravesical, bolus, vaginal, rectal, buccal, sublingual, intranasal, iontophoretic means, or transdermal means.
  • Most suitable routes are oral administration or injection. In certain embodiments, subcutaneous injection is preferred.
  • the pharmaceutical compositions comprising at least one stem cell mobilizer disclosed herein may be used alone (i.e., two co-administered stem cell mobilizers) or in concert with other therapeutic agents at appropriate dosages defined by routine testing in order to obtain optimal efficacy while minimizing any potential toxicity.
  • the dosage regimen utilizing a pharmaceutical composition of the present invention may be selected in accordance with a variety of factors including type, species, age, weight, sex, medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular pharmaceutical composition employed.
  • a physician of ordinary skill can readily determine and prescribe the effective amount of the pharmaceutical composition (and potentially other agents including therapeutic agents) required to prevent, counter, or arrest the progress of the condition.
  • Optimal precision in achieving concentrations of the therapeutic regimen within the range that yields maximum efficacy with minimal toxicity may require a regimen based on the kinetics of the pharmaceutical composition's availability to one or more target sites. Distribution, equilibrium, and elimination of a pharmaceutical composition may be considered when determining the optimal concentration for a treatment regimen.
  • the dosages of a pharmaceutical composition disclosed herein may be adjusted when combined to achieve desired effects.
  • dosages of the pharmaceutical compositions and various therapeutic agents may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either was used alone.
  • toxicity and therapeutic efficacy of a pharmaceutical composition disclosed herein may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effect is the therapeutic index and it may be expressed as the ratio LD 50 /ED 50 .
  • Pharmaceutical compositions exhibiting large therapeutic indices are preferred except when cytotoxicity of the composition is the activity or therapeutic outcome that is desired.
  • a delivery system can target such compositions to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • the pharmaceutical compositions of the present invention may be administered in a manner that maximizes efficacy and minimizes toxicity.
  • Data obtained from cell culture assays and animal studies may be used in formulating a range of dosages for use in humans.
  • the dosages of such compositions lie preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose may be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (the concentration of the test composition that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information may be used to accurately determine useful doses in humans.
  • Levels in plasma may be measured, for example, by high performance liquid chromatography.
  • the dosage administration of the compositions of the present invention may be optimized using a pharmacokinetic/pharmacodynamic modeling system. For example, one or more dosage regimens may be chosen and a pharmacokinetic/pharmacodynamic model may be used to determine the pharmacokinetic/pharmacodynamic profile of one or more dosage regimens. Next, one of the dosage regimens for administration may be selected which achieves the desired pharmacokinetic/pharmacodynamic response based on the particular pharmacokinetic/pharmacodynamic profile. See WO 00/67776, which is entirely expressly incorporated herein by reference.
  • the pharmaceutical compositions may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.
  • the daily dosage of the compositions may be varied over a wide range from about 0.1 ng to about 1.000 mg per patient, per day. The range may more particularly be from about 0.001 ng/kg to 10 mg/kg of body weight per day, about 0.1-100 ⁇ g, about 1.0-50 ⁇ g or about 1.0-20 mg per day for adults (at about 60 kg).
  • the daily dosage of the pharmaceutical compositions may be varied over a wide range from about 0.1 ng to about 1000 mg per adult human per day.
  • the compositions may be provided in the form of tablets containing from about 0.1 ng to about 1000 mg of the composition or 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, or 1000 milligrams of the composition for the symptomatic adjustment of the dosage to the patient to be treated.
  • An effective amount of the pharmaceutical composition is ordinarily supplied at a dosage level of from about 0.1 ng/kg to about 20 mg/kg of body weight per day.
  • the range is from about 0.2 ng/kg to about 10 mg/kg of body weight per day. In another embodiment, the range is from about 0.5 ng/kg to about 10 mg/kg of body weight per day.
  • the pharmaceutical compositions may be administered on a regimen of about 1 to about 10 times per day.
  • a plerixafor dose may comprise about 2 mg/kg, and may be administered once a day for about three days.
  • a G-CSF dose may comprise about 300 ⁇ g/kg, and can be administered once a day for about three days.
  • Doses of a pharmaceutical composition of the present invention can optionally include 0.0001 ⁇ g to 1,000 mg/kg/administration, or 0.001 ⁇ g to 100.0 mg/kg/administration, from 0.01 ⁇ g to 10 mg/kg/administration, from 0.1 mg to 10 mg/kg/administration, including, but not limited to, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
  • treatment of subjects can be provided as a one-time or periodic dosage of a composition of the present invention 0.1 ng to 100 mg/kg such as 0.0001, 0.001, 0.01, 0.1 0.5, 0.9, 1.0, 1.1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 45, 50, 60, 70, 80, 90 or 100 mg/kg, per day, on at least one of day 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40, or alternatively or additionally, at least one of week 1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, or alternatively or additionally, at least one of week 1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
  • the pharmaceutical compositions of the present invention may be administered at least once a week over the course of several weeks.
  • the pharmaceutical compositions are administered at least once a week over several weeks to several months.
  • the pharmaceutical compositions are administered once a week over four to eight weeks.
  • the pharmaceutical compositions are administered once a week over four weeks.
  • the pharmaceutical compositions may be administered at least once a day for about 2 days, at least once a day for about 3 days, at least once a day for about 4 days, at least once a day for about 5 days, at least once a day for about 6 days, at least once a day for about 7 days, at least once a day for about 8 days, at least once a day for about 9 days, at least once a day for about 10 days, at least once a day for about 11 days, at least once a day for about 12 days, at least once a day for about 13 days, at least once a day for about 14 days, at least once a day for about 15 days, at least once a day for about 16 days, at least once a day for about 17 days, at least once a day for about 18 days, at least once a day for about 19 days, at least once a day for about 20 days, at least once a day for about 21 days, at least once a day for about 22 days, at least once a day for about 23 days, at least once a
  • the pharmaceutical compositions may be administered about once every day, about once every 2 days, about once every 3 days, about once every 4 days, about once every 5 days, about once every 6 days, about once every 7 days, about once every 8 days, about once every 9 days, about once every 10 days, about once every 11 days, about once every 12 days, about once every 13 days, about once every 14 days, about once every 15 days, about once every 16 days, about once every 17 days, about once every 18 days, about once every 19 days, about once every 20 days, about once every 21 days, about once every 22 days, about once every 23 days, about once every 24 days, about once every 25 days, about once every 26 days, about once every 27 days, about once every 28 days, about once every 29 days, about once every 30 days, or about once every 31 days.
  • compositions of the present invention may alternatively be administered about once every week, about once every 2 weeks, about once every 3 weeks, about once every 4 weeks, about once every 5 weeks, about once every 6 weeks, about once every 7 weeks, about once every 8 weeks, about once every 9 weeks, about once every 10 weeks, about once every 11 weeks, about once every 12 weeks, about once every 13 weeks, about once every 14 weeks, about once every 15 weeks, about once every 16 weeks, about once every 17 weeks, about once every 18 weeks, about once every 19 weeks, about once every 20 weeks.
  • compositions of the present invention may be administered about once every month, about once every 2 months, about once every 3 months, about once every 4 months, about once every 5 months, about once every 6 months, about once every 7 months, about once every 8 months, about once every 9 months, about once every 10 months, about once every 11 months, or about once every 12 months.
  • the pharmaceutical compositions may be administered at least once a week for about 2 weeks, at least once a week for about 3 weeks, at least once a week for about 4 weeks, at least once a week for about 5 weeks, at least once a week for about 6 weeks, at least once a week for about 7 weeks, at least once a week for about 8 weeks, at least once a week for about 9 weeks, at least once a week for about 10 weeks, at least once a week for about 11 weeks, at least once a week for about 12 weeks, at least once a week for about 13 weeks, at least once a week fir about 14 weeks, at least once a week for about 15 weeks, at least once a week for about 16 weeks, at least once a week for about 17 weeks, at least once a week for about 18 weeks, at least once a week for about 19 weeks, or at least once a week for about 20 weeks.
  • the pharmaceutical compositions may be administered at least once a week for about 1 month, at least once a week for about 2 months, at least once a week for about 3 months, at least once a week for about 4 months, at least once a week for about 5 months, at least once a week for about 6 months, at least once a week for about 7 months, at least once a week for about 8 months, at least once a week for about 9 months, at least once a week for about 10 months, at least once a week for about 11 months, or at least once a week for about 12 months.
  • compositions of the present invention can be administered simultaneously or sequentially by the same or different routes of administration.
  • the pharmaceutical compositions may further be combined with one or more additional therapeutic agents.
  • the determination of the identity and amount of the pharmaceutical compositions for use in the methods of the present invention can be readily made by ordinarily skilled medical practitioners using standard techniques known in the art.
  • an effective amount of a first stem cell mobilizer of the present invention can be administered in combination with an effective amount of a second stem cell mobilizer.
  • a first stem cell mobilizer and a second stem cell mobilizer can be administered in combination with an effective amount of another therapeutic agent.
  • the at least one stem cell mobilizer of the present invention may be administered at about the same time, less than 1 minute apart, less than 2 minutes apart, less than 5 minutes apart, less than 30 minutes apart, 1 hour apart, at about 1 hour apart, at about 1 to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, at about 12 hours to 18 hours apart, 18 hours to 24 hours apart, 24 hours to 36 hours apart, 36 hours to 48 hours apart, 48 hours to 52 hours apart, 52 hours to 60 hours apart, 60 hours to 72 hours apart, 72 hours to 84 hours apart, 84 hours to 96 hours apart, or
  • the at least one stem cell mobilizer of the present invention (and optionally another stem cell mobilizer and/or another therapeutic agent) are cyclically administered. Cycling therapy involves the administration of a first therapy (e.g., first stem cell mobilizer) for a period of time, followed by the administration of a second therapy (e.g., a second stem cell mobilizer) for a period of time, optionally, followed by the administration of perhaps a third therapy (e.g., another therapeutic agent) for a period of time and so forth, and repeating this sequential administration, e.g., the cycle, in order to reduce the development of resistance to one of the therapies, to avoid or reduce the side effects of one of the therapies, and/or to improve the efficacy of the therapies.
  • a first therapy e.g., first stem cell mobilizer
  • a second therapy e.g., a second stem cell mobilizer
  • a third therapy e.g., another therapeutic agent
  • the administration of the combination therapy of the present invention may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
  • a first stem cell mobilizer is administered in combination with a second stem cell mobilizer.
  • the first stem cell mobilizer e.g., plerixafor or NIBR1816
  • second stem cell mobilizer e.g., G-CSF
  • the treatment regimen for a patient suffering from ALF may comprise the following: plerixafor (2 mg/kg) and G-CSF (300 ⁇ g/kg) at Day 0, 1, 2, and 3 (subcutaneous injection).
  • the dosage regimen for a patient may comprise NIBR1816 (30 mg/kg) and G-CSF (300 ⁇ g/kg).
  • plerixafor can be administered in a dose of about 10 ⁇ g to about 10 mg per kg of body weight, about 100 ⁇ g to about 5 mg per kg of body weight, about 200 ⁇ g to about 3 mg per kg of body weight, about 300 ⁇ g to about 2 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of plerixafor can be about 1 mg to about 4 mg/kg.
  • plerixafor can be administered at a dose of about 2 mg/kg of body weight.
  • Such doses can be administered within about 1 hour to about 96 hours following injury (e.g., acute liver injury, acute liver failure, ischemic injury, etc.), within about 1 hour to about 72 hours, within about 1 to about 48 hours, within about 1 to about 24 hours, and within about 2 hours to about 12 hours following injury.
  • plerixafor can be administered several days to several hours prior to surgery.
  • CXCR4 antagonists like NIBR1816 can be administered in a dose of about 1 mg to about 60 mg per kg of body weight, about 10 mg to about 50 mg per kg of body weight, about 20 mg to about 40 mg per kg of body weight, about 25 ⁇ g to about 45 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of NIBR1816 can be about 25 mg to about 35 mg/kg.
  • NIBR1816 can be administered at a dose of about 30 mg/kg of body weight.
  • a CXCR4 antagonist like TG-0054 can be administered in a dose of about 0.1 mg to about 10 mg per kg of body weight, about 0.5 mg to about 8 mg per kg of body weight, about 1 mg to about 6 mg per kg of body weight, about 1.5 mg to about 5 mg per kg of body weight, or any range or value of the foregoing.
  • the dose of TG-0054 can be about 2 mg to about 5 mg/kg.
  • TG-0054 can be administered at a dose of about 4 mg/kg of body weight.
  • Such doses of CXCR4 antagonists can be administered within about 1 hour to about 96 hours following injury (e.g., acute liver injury, acute liver failure, ischemic injury, etc.), within about 1 hour to about 72 hours, within about 1 to about 48 hours, within about 1 to about 24 hours, and within about 2 hours to about 12 hours following injury.
  • a stem cell mobilizer e.g., a CXCR4 antagonist
  • a CXCR4 antagonist can be administered several days to several hours prior to surgery.
  • G-CSF can be administered in a dose of about 1 ⁇ g to about 3 mg per kg of body weight, about 5 ⁇ g to about 2 mg per kg, about 10 ⁇ g to about 1 mg per kg, about 50 ⁇ g to about 900 ⁇ g per kg, and about 100 ⁇ g to about 500 ⁇ g per kg, or any range or value of the foregoing.
  • the dose of G-CSF can be about 200 ⁇ g to about 400 ⁇ g per kg.
  • G-CSF can be administered at a dose of about 300 ⁇ g/kg of body weight.
  • Such doses can be administered within about 1 hour to about 96 hours following injury (e.g. acute liver injury, acute liver failure, ischemic injury, etc.), within about 1 hour to about 72 hours, within about 1 to about 48 hours, within about 1 to about 24 hours, and within about 2 hours to about 12 hours following injury.
  • G-CSF can be administered several days to several hours prior to surgery.
  • reaction conditions e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
  • CCL 4 carbon tetrachloride
  • mice Female Lewis rats or C57BL/6 mice were administered various doses of carbon tetrachloride (CCl 4 ) (Sigma) via intraperitoneal injection to determine the sublethal dose that would best recapitulate ALF in humans.
  • CCL 4 was dissolved in mineral oil to a final of concentration of fifty percent (50%) for mice and twenty five percent (25%) for rats, and was administered by single intraperitoneal injection at doses ranging from 2 ml/kg to 4.5 ml/kg under inhaled isoflurane anesthesia.
  • each treatment group was comprised of eight to ten animals.
  • hepatic injury For characterization of hepatic injury in response to CCl 4 injection, animals were sacrificed daily for measurement of serum transaminases (aspartate transaminase (AST) and alanine transaminase (ALT)), and for histopathologic analysis of liver injury. All experimental regimens were repeated for survival analyses and animals were observed for up to 16 days.
  • serum transaminases aspartate transaminase (AST) and alanine transaminase (ALT)
  • plerixafor and G-CSF were administered by subcutaneous injection at weight-based doses consistent with those that have proven effective in human clinical trials or as has been used previously by the present inventors (plerixafor, 2 mg/kg/dose: G-CSF 300 ⁇ g/kg/dose).
  • Plerixafor and G-CSF were administered 12-hours following CCl 4 injection, in treatment groups comprised of eight to ten animals.
  • Control treatment groups were administered an injection with an equivalent volume of saline.
  • mice were sacrificed at either one or six hours post treatment and blood was collected.
  • Leukocyte suspensions (1 ⁇ 10 6 ) of peripheral blood were analyzed for CD34, Thy-1 and c-Kit expression.
  • Nonspecific antibody binding was blocked with mouse and donkey serum (Sigma) for 30 minutes.
  • the cells were incubated with Alexa Fluor 647 conjugated mouse anti-rat CD34 (1:10) (Santa Cruz Biotechnology), fluorescein isothiocyanate (FITC)-conjugated mouse anti-rat CD90 (Thy-1, 1:100) (BD Pharmingen), and rabbit anti-rat c-Kit (1:100) (Santa Cruz Biotechnology) for 45 minutes at 4° C., followed by phycoerythrin (PE)-conjugated donkey anti-rabbit IgG (1:200) (eBioscience) for 30 minutes at 4° C.
  • Thy-1 and c-Kit positive cells were counted by flow cytometry using CELLQuest software (Becton-Dickinson).
  • Frozen sections of 5 ⁇ m cut serially were fixed with acetone at ⁇ 20° C. for 10 minutes and dried for 1 hour at room temperature.
  • the streptavidin-biotin-peroxidase method with the DAKO Kit was used to detect CD34 antigen.
  • the specimens were reacted with goat anti-CD34 (1:100) (R&D Systems, Inc) at 4° C. overnight.
  • the sections were incubated with Biotin-SP-conjugated bovine anti-goat IgG (1:200) (Jackson Laboratories) at room temperature for 30 minutes.
  • Diaminobenzidine tetrahydrochloride was used as the chromogen, and hematoxylin was used for counterstaining.
  • CCL 4 Carbon Tetrachloride (CCL 4 ) Administration Recapitulates Acute Liver Failure (ALF) in Rodents
  • FIG. 1A Animals that were treated with increasing amounts of CCL 4 showed a dose-dependent decrement in survival.
  • Groups of ten animals that were treated with 2 ml/kg routinely showed one or two mortalities per ten within the first one to two days after treatment. The large majority of animals in this group were transiently ill but rapidly regained vigor. Animals that received 3 ml/kg showed higher mortality rates, typically 3 or 4 animals died but reliably more than half recovered spontaneously. A dose of 4 ml/kg would result in about 60% to 100% mortality among the animals over the course of three to seven days. Slight adjustments in the dose (i.e., 4.5 ml/kg) at this level would have obvious effects on mortality with all animals succumbing within 24-48 hours.
  • Rats that received either plerixafor or G-CSF showed an increase in their peripheral white blood cell (WBC) counts at 1 and 6 hours ( FIG. 2A ).
  • the lymphocyte compartment which is thought to contain the majority of HSCs showed similar changes ( FIG. 2A ).
  • Animals receiving plerixafor had total lymphocyte counts of 4,400 and 4,800 at one and six hours respectively.
  • Animals receiving G-CSF had total lymphocyte counts of 2,000 and 4,100 at one and six hours respectively.
  • Animals receiving both drugs had total lymphocyte counts of 3,600 and 5,200 at one and six hours respectively.
  • CD34 + cells were increased in all three treatment groups ( FIG. 2B ). Animals that received plerixafor alone had peripheral CD34 + absolute counts of 333 cells/ml and 135 cells/ml at one and six hours, respectively. Animals that received G-CSF alone had absolute CD34 + cell totals of 216 cells/ml and 238 cells/ml at one and six hours. Animals that received both drugs had peripheral CD34+ cells counts of 363 cells/ml and 346 cells/ml.
  • FIG. 4A Panel 4
  • FIG. 4A panel 4
  • animals that had undergone injury only FIG. 4A , panel 3
  • animals that had been treated with mobilizing agents but no injury FIG. 4A , panel 2
  • FIG. 4B shows increased CD34+ staining over 5 days in animals that were injured and underwent stem cell mobilization.
  • the dosage of plerixafor used in swine transplants was based on the experiments in rats. It is possible that the effective dosage of plerixafor will differ among species.
  • the efficacy of plerixafor was tested in non-transplanted pigs and blood cell count and flow cytometric analysis were used to measure CD34 + stem cells in peripheral blood.
  • FIG. 5 shows that the absolute number of CD34 + cells in per ml blood was significantly increased in a time-dependent fashion, and reached peak levels at 3 hours after subcutaneous injection of plerixafor.
  • FIG. 6A A swine pre-clinical liver transplant model was successfully established.
  • 20 kg miniature swine FIG. 6A
  • a midline laparotomy in the recipient FIG. 6C
  • Transplantation consisted of a suprahepatic ( FIG. 6D ) and infrahepatic ( FIG. 6E ) vena caval anastomosis followed by reconnection of the portal vein ( FIG. 6F ) and graft reperfusion.
  • the hepatic artery was sewn after an aortic conduit had been constructed utilizing donor iliac artery ( FIG. 60 ), and finally the bile duct anastomosis was constructed in an end-to-end fashion ( FIG. 6H ).
  • the liver had a normal appearance at the end of the procedure ( FIG. 6I ) and the animals tolerated the relatively short operation well. Long-term function is assayed utilizing procedures known to those of ordinary skill in the art. Based on the appearance and texture of the liver after the transplant, it is expected that the pig liver transplant model will become a routine procedure.
  • CD34 + stem cells will be mobilized using the methods of the present invention in this pig liver transplant model.
  • stem cell mobilization using at least one stem cell mobilizer will facilitate quicker recovery, the ability to use ever more extended criteria grafts or ever smaller living donor gratis (which would then serve as scaffolds for endogenous repopulation by mobilized host stem cells), and/or the conversion of donor graft to recipient phenotype.
  • stem cell mobilizer e.g., plerixafor and G-CSF

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US13/636,733 2010-03-23 2011-03-23 Methods of treatment using stem cell mobilizers Abandoned US20140219952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/636,733 US20140219952A1 (en) 2010-03-23 2011-03-23 Methods of treatment using stem cell mobilizers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31648110P 2010-03-23 2010-03-23
PCT/US2011/029634 WO2011119738A2 (fr) 2010-03-23 2011-03-23 Méthodes de traitement utilisant des agents mobilisateurs des cellules souches
US13/636,733 US20140219952A1 (en) 2010-03-23 2011-03-23 Methods of treatment using stem cell mobilizers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/029634 A-371-Of-International WO2011119738A2 (fr) 2010-03-23 2011-03-23 Méthodes de traitement utilisant des agents mobilisateurs des cellules souches

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/254,526 Continuation US10086045B2 (en) 2010-03-23 2016-09-01 Methods of treatment using stem cell mobilizers

Publications (1)

Publication Number Publication Date
US20140219952A1 true US20140219952A1 (en) 2014-08-07

Family

ID=44673853

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/636,733 Abandoned US20140219952A1 (en) 2010-03-23 2011-03-23 Methods of treatment using stem cell mobilizers
US15/254,526 Active US10086045B2 (en) 2010-03-23 2016-09-01 Methods of treatment using stem cell mobilizers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/254,526 Active US10086045B2 (en) 2010-03-23 2016-09-01 Methods of treatment using stem cell mobilizers

Country Status (3)

Country Link
US (2) US20140219952A1 (fr)
EP (1) EP2549992B1 (fr)
WO (1) WO2011119738A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081553A1 (fr) * 2014-11-19 2016-05-26 StemBios Technologies, Inc. Cellules souches somatiques pour le traitement de déficits osseux
WO2017127810A1 (fr) * 2016-01-22 2017-07-27 Indiana University Research & Technology Corporation Méthodes pour la réparation de tissus pulmonaires
US9770473B2 (en) 2009-02-24 2017-09-26 StemBios Technologies, Inc. Treatment of immunosuppression-related disorders
US9777259B2 (en) 2011-09-28 2017-10-03 StemBios Technologies, Inc. Somatic stem cells
US9810684B2 (en) 2012-12-21 2017-11-07 StemBios Technologies, Inc. Method for increasing number of stem cells in human or animal bodies
US9856452B2 (en) 2012-12-06 2018-01-02 StemBios Technologies, Inc. Lgr5+ somatic stem cells
US10143710B2 (en) 2010-08-04 2018-12-04 StemBios Technologies, Inc. Somatic stem cells
US11364264B2 (en) 2016-09-09 2022-06-21 The General Hospital Corporation Ex vivo antigen-presenting cells or activated CD-positive T cells for treatment of cancer
US11890348B2 (en) 2015-09-18 2024-02-06 The General Hospital Corporation Localized delivery of anti-fugetactic agent for treatment of cancer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375406B2 (en) * 2014-09-30 2016-06-28 Taigen Biotechnology Co., Ltd. Substituted pyrimidines for mobilizing cells expressing a type 4 CXC chemokine receptor
US20210008161A1 (en) 2019-06-17 2021-01-14 Crispr Therapeutics Ag Methods and compositions for improved homology directed repair
GB202002711D0 (en) * 2020-02-26 2020-04-08 Ucl Business Ltd Treatment
CA3205138A1 (fr) 2020-12-17 2022-06-23 Vertex Pharmaceuticals Incorporated Compositions et procedes pour l'edition de beta-globine pour le traitement d'hemoglobinopathies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281754A1 (en) * 2003-03-28 2006-12-14 Oben Jude A Method of treating liver disease
US20080038269A1 (en) * 2006-05-25 2008-02-14 Mount Sinai Hospital Methods for detecting and treating kidney disease
US20110135651A1 (en) * 2008-08-19 2011-06-09 Children's Hospital Medical Center Method and composition for enhancing hematopoietic stem cell mobilization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811773B1 (en) 1993-12-22 2004-11-02 Human Genome Sciences, Inc. Human monocyte colony inhibitory factor (M-CIF) polypeptides
PL360581A1 (en) 1999-05-11 2004-09-06 Ortho-Mcneil Pharmaceutical, Inc. Pharmacokinetic and pharmacodynamic modeling of erythropoietin administration
WO2002022599A2 (fr) 2000-09-15 2002-03-21 Anormed Inc. Composes heterocycliques se liant avec les recepteurs de chimiokines
RU2308451C2 (ru) 2001-09-12 2007-10-20 Анормед, Инк. Способы получения рацемического аминозамещенного 5,6,7,8-тетрагидрохинолина или рацемического аминозамещенного 5,6,7,8-тетрагидроизохинолина, способы их разделения и рацемизации, способ получения кетозамещенного 5,6,7,8-тетрагидрохинолина или кетозамещенного 5,6,7,8-тетрагидроизохинолина, способ получения энантиомера конденсированного бициклического кольца, замещенного первичным амином, производные 5,6,7,8-тетрагидрохинолина
US20040191215A1 (en) 2003-03-25 2004-09-30 Michael Froix Compositions for induction of a therapeutic response
RU2009108289A (ru) 2006-08-07 2010-09-20 Джензим Корпорейшн (Us) Комбинированная терапия
US20110218143A1 (en) 2007-11-20 2011-09-08 University Of Florida Research Foundation Compositions and methods for tissue repair

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281754A1 (en) * 2003-03-28 2006-12-14 Oben Jude A Method of treating liver disease
US20080038269A1 (en) * 2006-05-25 2008-02-14 Mount Sinai Hospital Methods for detecting and treating kidney disease
US20110135651A1 (en) * 2008-08-19 2011-06-09 Children's Hospital Medical Center Method and composition for enhancing hematopoietic stem cell mobilization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jin et al., World J. Gastroenterology 15: 2657-2664, 2009 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770473B2 (en) 2009-02-24 2017-09-26 StemBios Technologies, Inc. Treatment of immunosuppression-related disorders
US10143710B2 (en) 2010-08-04 2018-12-04 StemBios Technologies, Inc. Somatic stem cells
US9777259B2 (en) 2011-09-28 2017-10-03 StemBios Technologies, Inc. Somatic stem cells
US9856452B2 (en) 2012-12-06 2018-01-02 StemBios Technologies, Inc. Lgr5+ somatic stem cells
US11492592B2 (en) 2012-12-06 2022-11-08 StemBios Technologies, Inc. Lgr5+ somatic stem cells
US9810684B2 (en) 2012-12-21 2017-11-07 StemBios Technologies, Inc. Method for increasing number of stem cells in human or animal bodies
WO2016081553A1 (fr) * 2014-11-19 2016-05-26 StemBios Technologies, Inc. Cellules souches somatiques pour le traitement de déficits osseux
JP2018501189A (ja) * 2014-11-19 2018-01-18 ステムバイオス テクノロジーズ,インコーポレイテッド 骨欠損を治療するための体性幹細胞
CN106573018A (zh) * 2014-11-19 2017-04-19 干细胞生物科技公司 用于治疗骨骼缺损的体干细胞
US20190105353A1 (en) * 2014-11-19 2019-04-11 StemBios Technologies, Inc. Somatic stem cells for treating bone defects
CN113521107A (zh) * 2014-11-19 2021-10-22 干细胞生物科技公司 用于治疗骨骼缺损的体干细胞
US11890348B2 (en) 2015-09-18 2024-02-06 The General Hospital Corporation Localized delivery of anti-fugetactic agent for treatment of cancer
WO2017127810A1 (fr) * 2016-01-22 2017-07-27 Indiana University Research & Technology Corporation Méthodes pour la réparation de tissus pulmonaires
US11364264B2 (en) 2016-09-09 2022-06-21 The General Hospital Corporation Ex vivo antigen-presenting cells or activated CD-positive T cells for treatment of cancer

Also Published As

Publication number Publication date
WO2011119738A2 (fr) 2011-09-29
EP2549992B1 (fr) 2019-08-14
WO2011119738A9 (fr) 2011-12-29
EP2549992A4 (fr) 2013-10-16
US10086045B2 (en) 2018-10-02
US20170340709A1 (en) 2017-11-30
EP2549992A2 (fr) 2013-01-30

Similar Documents

Publication Publication Date Title
US10086045B2 (en) Methods of treatment using stem cell mobilizers
US11559566B2 (en) Use of low dose IL-2 for treating autoimmune-related or inflammatory disorders
US8455435B2 (en) Remedies for ischemia
US11291657B2 (en) Methods of treating inflammatory bowel disease with AMD3100 and Tacrolimus
Colletti et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat
Graubardt et al. Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis
Chan et al. Adenosine in fibrosis
EP2683395A1 (fr) Utilisation d'il-2 à faible dose pour le traitement de troubles de type auto-immuns ou de troubles inflammatoires
US20230255931A1 (en) Pharmaceutical compositions useful for the treatment of tissue injury
US20090221683A1 (en) Combination of CXCR4 Antagonist and Morphogen to Increase Angiogenesis
EP2007416B1 (fr) Hormone parathyroïdienne pour l'utilisation dans le traitement l'ischémie
EP3808368A2 (fr) Méthodes de traitement utilisant des mobilisateurs de cellules souches et des immunosuppresseurs
EP2063908B1 (fr) Utilisation de protéines modifiées de l'interleukine 8 pour traiter les lésions de reperfusion et les rejets de greffe
ES2261447T3 (es) Antagonistas no peptidicos del receptor ccr1 en combinacion con ciclosporina a para el tratamiento del rechazo de los transplantes de corazon.
Mazzoccoli et al. Immunopathogenetic and pharmacological aspects of interstitial lung diseases
Parker Reversal of overt type I diabetes in the NOD mouse through the use of combination therapy
della Sofferenza et al. G. MAZZOCCOLI, A. DE CATA, GD DE PINTO, A. DE MATTHAEIS

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE JOHNS HOPKINS UNIVERSITY, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMERON, ANDREW MACGREGOR;REEL/FRAME:031076/0138

Effective date: 20121110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION