US20140202457A1 - Metered dose nebulizer - Google Patents

Metered dose nebulizer Download PDF

Info

Publication number
US20140202457A1
US20140202457A1 US14/166,890 US201414166890A US2014202457A1 US 20140202457 A1 US20140202457 A1 US 20140202457A1 US 201414166890 A US201414166890 A US 201414166890A US 2014202457 A1 US2014202457 A1 US 2014202457A1
Authority
US
United States
Prior art keywords
nebulizer
medication
air
venturi nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/166,890
Inventor
W. Robert Addington
Stuart P. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pneumoflex Systems LLC
Original Assignee
Pneumoflex Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161434613P priority Critical
Priority to US13/353,611 priority patent/US8671934B2/en
Priority to US13/799,196 priority patent/US20130192594A1/en
Application filed by Pneumoflex Systems LLC filed Critical Pneumoflex Systems LLC
Priority to US14/166,903 priority patent/US9452274B2/en
Priority to US14/166,890 priority patent/US20140202457A1/en
Priority to US14/166,882 priority patent/US20140207016A1/en
Priority claimed from PCT/US2014/021036 external-priority patent/WO2014164175A2/en
Assigned to PNEUMOFLEX SYSTEMS, LLC reassignment PNEUMOFLEX SYSTEMS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADDINGTON, W. ROBERT, MILLER, STUART P.
Publication of US20140202457A1 publication Critical patent/US20140202457A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0823Detecting or evaluating cough events
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J17/00Baby-comforters; Teething rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0033Details of the piercing or cutting means
    • A61M15/0035Piercing means
    • A61M15/0036Piercing means hollow piercing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0086Inhalation chambers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0091Inhalators mechanically breath-triggered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J17/00Baby-comforters; Teething rings
    • A61J17/001Baby-comforters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J17/00Baby-comforters; Teething rings
    • A61J17/001Baby-comforters
    • A61J17/006Baby-comforters releasing medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J7/00Devices for administering medicines orally, e.g. spoons; Pill counting devices; Arrangements for time indication or reminder for taking medicine
    • A61J7/0015Devices specially adapted for taking medicines
    • A61J7/0053Syringes, pipettes or oral dispensers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/13General characteristics of the apparatus with means for the detection of operative contact with patient, e.g. lip sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8218Gas operated
    • A61M2205/8225Gas operated using incorporated gas cartridges for the driving gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/14Static flow deviators in tubes disturbing laminar flow in tubes, e.g. archimedes screws

Abstract

A nebulizer includes a venturi nozzle positioned at the outlet end of an air line and oriented horizontally and located within a patient's oral cavity when in use. A canister port is located at the inlet end of the air line and receives a gas canister. A valve is actuable to allow a metered flow of gas at a predetermined pressure and time to flow from the gas canister through the air line and venturi nozzle. A medication receiver is carried by the nebulizer body proximal to the venturi nozzle. A suction line extends from the venturi nozzle to the medication receiver and draws medication upward from a medication container and mixes it with air passing through the venturi nozzle and nebulizes the medication.

Description

    PRIORITY APPLICATION(S)
  • This application is a continuation-in-part application of application Ser. No. 13/799,196 filed Mar. 13, 2013, which is a continuation-in-part application of Ser. No. 13/353,611 filed Jan. 19, 2012, which claims priority to U.S. provisional application Ser. No. 61/434,613 filed Jan. 20, 2011, the disclosures which are hereby incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of nebulizers, and more particularly, this invention relates to nebulizers having a venturi.
  • BACKGROUND OF THE INVENTION
  • Inhalation is a very old method of drug delivery. In the twentieth century it became a mainstay of respiratory care and was known as aerosol therapy. Use of inhaled epinephrine for relief of asthma was reported as early as 1929, in England. Dry powder inhalers have been used to administer penicillin dust to treat respiratory infections. In 1956, the first metered dosed inhaler was approved for clinical use.
  • The scientific basis for aerosol therapy developed relatively late, following the 1974 Sugar Loaf conference on the scientific basis of respiratory therapy. A more complete history of the development of aerosol therapy and the modern nebulizer is described in the 2004 Phillip Kitridge Memorial Lecture entitled, “The Inhalation of Drugs: Advantages and Problems by Joseph L. Row; printed in the March 2005 issue of Respiratory Care, vol. 50, no. 3.
  • Table 8 of the Respiratory Care article, referred to above, page 381, lists the characteristics of an ideal aerosol inhaler as follows:
  • TABLE 8 Dose reliability and reproducibility High lung-deposition efficiency (target lung deposition of 100% of nominal dose) Production of the fine particles ≦5 μm diameter, with correspondingly low mass median diameter Simple to use and handle Short treatment time Small size and easy to carry Multiple-dose capability Resistance to bacterial contamination Durable Cost-effective No drug released to ambient-air Efficient (small particle size, high lung deposition) for the specific drug being aerosolized Liked by patients and health care personnel
  • Standard nebulizers typically fail to achieve a number of these characteristics because they waste medication during exhalation. Further, the particle size is often too large to reach the bottom of the lungs where the medication may be most needed. There is difficulty in estimating the dose of the drug being given to a patient and there is difficulty in reproducing that dose. There is a possibility of contamination when opening the initially sterile kit, pouring medication into the cup, and assembling the pieces for use by a patient. There is also considerable inefficiency in the medication delivery, with much of it being deposited in the throat, rather than in the lungs.
  • Commonly assigned U.S. Pat. No. 8,109,266, the disclosure which is hereby incorporated by reference in its entirety, discloses a nebulizer having a flow meter function that is applied to venturi type intra-oral nebulizers as disclosed in commonly assigned U.S. Pat. Nos. 7,712,466 and 7,726,306, the disclosures which are hereby incorporated by reference in their entirety. These nebulizers are horizontally configured, and in one example, include a venturi at a rainfall chamber. Further enhancements to the nebulizers are desirable.
  • SUMMARY OF THE INVENTION
  • A nebulizer includes a nebulizer body having an air channel section and nebulizer outlet. An air line extends through the air channel section and has an inlet and an outlet. A venturi nozzle is positioned at the outlet end of the air line and oriented horizontally and located within a patient's oral cavity when in use. A canister port is located at the inlet end of the air line and receives a gas canister. A valve is positioned at the canister port and actuable to allow a metered flow of gas at a predetermined pressure and time to flow from the gas canister and through the air line and venturi nozzle. A medication receiver is carried by the nebulizer body proximal to the venturi nozzle. A suction line extends from the venturi nozzle to the medication receiver that draws medication upward from a medication container received within the medication receiver and mixes it with air passing through the venturi nozzle and nebulizes the medication for discharge through the nebulizer outlet.
  • In one example, the medication receiver is located within the patient's oral cavity when in use. In another example, the valve is actuated to deliver gas when pressure is applied downward on the gas canister. A medication container is received within the medication receiver and the primary suction line connects into the medication container. The valve actuates a pulsed flow of gas during nebulization. A pulse duration for each pulse of the flow of gas is from about 0.5 to 2.0 seconds during nebulization. The flow of gas is actuated as a pulse from about 10 to 20 times during nebulization. In another example, the nebulizer outlet is configured as an infant pacifier and the valve is actuable based on a predetermined sensed SNIP (Sniff Nasal Inspiratory Pressure).
  • In yet another example, the nebulizer body is substantially L-shaped and forms a vertical portion and a horizontal portion. The venturi nozzle is positioned within the horizontal portion of the nebulizer and the canister port is positioned within the vertical portion of the nebulizer body and receives the gas canister in a vertical orientation in an example. The medication receiver is formed in a horizontal portion of the nebulizer body proximal to the venturi nozzle in an example.
  • In another example, the suction line extends from the venturi nozzle to the medication receiver and the venturi nozzle and suction line are formed together and replaceable as one unit and supported by the medication receiver. The suction line extends through the top support surface of the medication receiver and connects into a medication container received within the medication receiver. The suction line includes a flange that is seated on the top support surface of the medication receiver to support the venturi nozzle and suction line in position within the nebulizer body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of the present invention will become apparent from the detailed description of the invention which follows, when considered in light of the accompanying drawings in which:
  • FIG. 1 is cross-sectional view of a nebulizer in accordance with a non-limiting example that is activated by negative inspiratory pressure and can be configured as a pediatric nebulizer in one non-limiting example and include in one embodiment a flow meter function.
  • FIGS. 2-3 are sectional views of the nebulizer shown in FIG. 1 and showing a flow diagram of the airflow at 2 L/min at standard temperature and pressure (STP).
  • FIGS. 4-5 are flow diagrams showing the airflow through the nebulizer of FIG. 1 at 2 L/min at −3 cmH2O.
  • FIGS. 6-7 are flow diagrams showing the airflow through the nebulizer of FIG. 1 with 2 L/min at −15 cmH2O.
  • FIGS. 8-9 are flow diagrams showing the airflow through the nebulizer of FIG. 1 with 2 L/min at −52 cmH2O.
  • FIG. 10 is a diagram showing the pressure gradient in the nebulizer of FIG. 1 at standard temperature and pressure.
  • FIG. 11 is a diagram of the nebulizer of FIG. 1 showing the pressure gradient at −3 cmH2O.
  • FIG. 12 is a sectional view of the nebulizer of FIG. 1 showing the pressure gradient at −15 cmH2O.
  • FIG. 13 is a sectional view of the nebulizer of FIG. 1 showing the pressure gradient at −52 cmH2O.
  • FIG. 14 is a sectional view of the nebulizer of FIG. 1 showing the medication flow upward at 2 L/min −3 cmH2O.
  • FIG. 15 is a sectional view of the nebulizer of FIG. 1 showing the medication flow upward at 2 L/min −15 cmH2O.
  • FIG. 16 is a sectional view of the nebulizer of FIG. 1 showing the medication flow upward at 2 L/min −52 cmH2O.
  • FIG. 17 is a table showing respiratory pressures for the measured and predicted MIP and MEP for males and females.
  • FIG. 18 is a general environmental view of a child sucking on a pediatric nebulizer such as disclosed in FIGS. 19-22 in accordance with non-limiting examples.
  • FIG. 19 is a general environmental view of a pediatric nebulizer used by the infant shown in FIG. 18 in accordance with non-limiting examples.
  • FIG. 20 is a side sectional view in isometric of the pediatric nebulizer shown in FIG. 19 that engages the patient's mouth.
  • FIG. 20A is a more detailed view of the pediatric nebulizer body with the rainfall chamber, which includes an airflow sensor in accordance with non-limiting examples.
  • FIG. 21 is another side sectional view of a pediatric nebulizer in accordance with non-limiting examples.
  • FIG. 22 is another side sectional view of a different embodiment of a pediatric nebulizer in accordance with the non-limiting example.
  • FIG. 23 is a sectional view of another embodiment of the nebulizer in accordance with a non-limiting example and showing an airflow sensor such as a spinning fan wheel and associated with the main body, and a wireless module that includes a processor and transceiver that can receive measured airflow and wirelessly transmit data containing measured airflow to a separate device such as a handheld processing device in accordance with the non-limiting example.
  • FIG. 24 is a plan view of the nebulizer of FIG. 23 and showing an air flow sensor mounted within the air channel section of that nebulizer.
  • FIG. 25 is a cross-section view of another nebulizer configuration that provides air curtains and showing an air flow sensor mounted at the mixing end of the nebulizer in accordance with the non-limiting example.
  • FIG. 26 is a fragmentary plan view of a handheld processing device that can be used in conjunction with the nebulizers having the airflow sensors and which can be configured to wirelessly receive data containing air flow measurements, such as for measuring and processing data regarding the involuntary cough event.
  • FIG. 27 is a block diagram showing example components of a hand held processing device such as shown in FIG. 26, which can receive data from a nebulizer containing air flow measurements.
  • FIG. 28 is a side elevation view of the nebulizer shown in FIGS. 1-16.
  • FIG. 29 is an end elevation view of the nebulizer shown in FIG. 28.
  • FIG. 30 is a plan view of the nebulizer shown in FIG. 28.
  • FIG. 31 is a phantom diagram showing internal components of a portion of the nebulizer body that includes the air channel section, air line and vent in accordance with a non-limiting example.
  • FIG. 32 is a perspective view in partial cut-away of the nebulizer body showing components of the nebulizer body.
  • FIG. 33 is a top plan view of a portion of the nebulizer body shown in FIG. 32 and showing details of the vent in accordance with a non-limiting example.
  • FIG. 34 is another top plan view of the vent of FIG. 33.
  • FIG. 35 is a partial, sectional view of the nebulizer of FIG. 28 in accordance with a non-limiting example.
  • FIG. 36A is an anatomical, sectional view of a patient's oral and nasal passages and showing the positioning in the oral cavity of an intra-oral nebulizer in accordance with a non-limiting example and showing the nebulized medication generated in the mouth and passing into the air passageway.
  • FIG. 36B is another anatomical, sectional view similar to that of FIG. 36A and showing the positioning in the oral cavity of a standard jet nebulizer and showing the nebulized medication generated in the mouth and passing into the air passageway and requiring an increased flow rate as compared to the nebulizer example of FIG. 36A.
  • FIG. 37 is a graph related to secondary droplet formation in the nebulizer as described relative to FIGS. 1-16 and showing a critical diameter for splashing to occur on the baffle or impactor of the nebulizer in accordance with a non-limiting example.
  • FIG. 3B shows a nebulizer testing set-up used to test the nebulizer in accordance with a non-limiting example for particle size distribution and determine a change in nebulizer MMAD (Mass Median Aerodynamic Diameter) during nebulization.
  • FIG. 39 is a graph showing a particle size distribution by mass for different flow rates of the nebulizer such as described in the test of FIG. 38 in accordance with a non-limiting example.
  • FIG. 40 is another graph showing particle size distribution by mass for the nebulizer similar as described in the test of FIG. 38 in accordance with a non-limiting example, but a smaller diameter feed orifice as compared to the nebulizer example of FIG. 39.
  • FIG. 41 is a graph showing the change in nebulizer MMAD during nebulization as described in the test of FIG. 38.
  • FIG. 42 shows a nebulizer testing set-up for evaluating the nebulizer in accordance with a non-limiting example under pulsed conditions.
  • FIG. 43 is a graph showing the average peak particle size distribution for different trials under different pulsed conditions as described in the test of FIG. 42 in accordance with a non-limiting example.
  • FIG. 44 is a graph showing the average peak particle size distribution with the mass concentration and average for each pulse pressure as described in the test of FIG. 42 in accordance with a non-limiting example.
  • FIG. 45A is a bar chart showing the amount of delivered drug as albuterol sulfate per actuation as described in the test of FIG. 42 in accordance with a non-limiting example.
  • FIG. 45B is a chart showing the total delivered drug results from the pulsed air trials using the test set-up shown in FIG. 42.
  • FIG. 46 is a side elevation view of a nebulizer similar to that shown in FIG. 28, but including a gas canister connected to a valve to provide either a pulsed or continuous air flow through the nebulizer that may be actuated by a negative inspiratory pressure.
  • FIG. 47 is a perspective view of a metered dose nebulizer in accordance with a non-limiting example.
  • FIG. 48 is a side elevation view of the metered dose nebulizer shown in FIG. 47 in accordance with a non-limiting example.
  • FIG. 49 is a front elevation view of the metered dose nebulizer shown in FIG. 47 in accordance with a non-limiting example.
  • FIG. 50 is a sectional view taken along line 50-50 of FIG. 49 of the metered dose nebulizer in accordance with a non-limiting example.
  • FIG. 51 is an exploded perspective view of the metered dose nebulizer shown in FIG. 47 in accordance with a non-limiting example.
  • FIG. 52 is an enlarged isometric, partial sectional view of the nebulizer outlet for the nebulizer shown in FIGS. 47-51 and showing the venturi nozzle and suction line formed together and replaceable within the nebulizer body as one unit.
  • FIG. 53 is an enlarged perspective view of a portion of the underside of the nebulizer body at its nebulizer outlet and showing the medication container that can be inserted within the medication receiver and connected into the suction line.
  • FIG. 54 is a sectional view of a metered dose atomizer similar to the nebulizer sectional view shown in FIG. 50, but modified to form a metered dose atomizer in accordance with a non-limiting example.
  • FIG. 55 is another general environmental view of a child sucking on a pediatric nebulizer such as the nebulizer shown in FIG. 18 and disclosed in FIGS. 19-22 and modified in accordance with non-limiting examples and showing a sensor for SNIP (Sniff Nasal Inspiratory Pressure) that can be used to actuate operation of the pediatric nebulizer.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Different embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments are shown. Many different forms can be set forth and described embodiments should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope to those skilled in the art.
  • In accordance with a non-limiting example as shown in the examples of FIGS. 1-16 and 28-35, and disclosed in the incorporated by reference Ser. No. 13/799,196 and now allowed Ser. No. 13/353,611 applications, the nebulizer uses a vent that is formed in the nebulizer body and communicates with the air channel section and medication reservoir to vent the air channel section and medication reservoir to outside ambient air. A primary suction line extends from the medication reservoir to the low pressure mixing chamber through which medication is drawn upward and mixed with air passing through the venturi nozzle and nebulized for discharge through the nebulizer outlet. This vent is configured to vent the air channel section and medication reservoir to atmospheric pressure such that at standard temperature and pressure (STP), a differential pressure results between the venturi nozzle and medication reservoir such that no medication is drawn upward through the primary suction line for nebulization and discharge through the nebulizer outlet into a negative inspiratory pressure is created from inhalation by a user. The air line extends through the air channel section and includes the venturi nozzle and is configured at its end to form the low pressure mixing chamber. Air is continually pressurized in the air line from an air source, but at a low pressure that works in conjunction with the vent such that at standard temperature and pressure (STP), the differential pressure resulting between the venturi nozzle and medication reservoir is such that no medication is drawn upward through the primary suction line for nebulization and discharge. The various pressure flow diagrams in FIGS. 2-16 show the various applied pressures and suction and when medication is drawn upward through the primary suction line and nebulization occurs and the forces involved, such as through inhalation.
  • In accordance with a non-limiting example as disclosed in the Ser. No. 13/799,196 and Ser. No. 13/353,611 applications, the nebulizer initiates nebulization upon inhalation. The nebulizer is configured as an intra-oral nebulizer and can be operated with half liter air flow using the low pressure air source in one example. Nebulization is activated by a patient breathing and inhaling. Micro amounts of medication are released only when required during inspiration and will not flow into the gut because of the low velocity and the configuration of the nebulizer as an intra-oral nebulizer. This is also aided because the venturi nozzle is positioned intra-orally. Because most dosages of the nebulized medication go into the lungs upon inhalation, if dangerous drugs are being inhaled during nebulization, it is not likely that they will be released into the ambient and surrounding air to harm others.
  • There are various mechanics of jet nebulizers that should be understood. A jet nebulizer is a device that is used to deliver medication to the respiratory system using a supplied air source. Traditional nebulizers have a vertical column of air passing through a reservoir of medication, which has a separation at the top of the nozzle allowing the air and medication to mix. This mixture accounts for the initial medication droplet formation due to the drastic change in surface area and aerodynamic effects of the mixture region. This initial droplet formation can be estimated from a linear stability analysis and an aerodynamic loading analysis using parameters such as the Reynolds number, Mach number, and Weber number. This initial droplet formation in this region is normally not sufficient for the desired deposition of the medication in the respiratory tract. To further reduce the droplet size, these droplets travel at high speed and collide with a baffle. This impact energy greatly reduces the droplet size to an acceptable level for deposition of medicine.
  • This traditional approach has several draw backs. One of the primary factors is that additional medication is required to deliver the proper dose to the desired region of the respiratory tract. Droplet formation occurs outside of the mouth in traditional devices and then has to travel through tubes, masks and the mouth. This additional travel period allows more particle to particle interaction. These particle collisions allow for particle combining, creating a larger diameter. Deposition will not occur with these larger diameter droplets, and therefore waste occurs.
  • Reducing these particle interactions is possible using the nebulizer as shown in FIG. 1. This nebulizer operates to nebulize in the mouth and operates as a horizontal nebulizer to allow for smaller droplet sizes for deposition at a lower zone in the respiratory tract and use less medication, resulting in less waste.
  • The illustrated nebulizer operates such that the differential pressures result with the nebulizer operating at a flow condition when at standard atmospheric pressure. Nebulization does not occur. As pressure decreases within the nebulizer due to inhalation, the differential pressures result in medication as fluid to flow up a suction line into the nozzle.
  • Referring now to FIG. 1, there is disclosed an improved horizontal nebulizer 50 having a nebulizer body 51 with a breath activated venturi nozzle 52 that together with other components creates the differential pressure between the venturi nozzle 52 and the medication reservoir 58 when air is passed through the venturi nozzle 52. The nebulizer body 51 includes an air channel section 54 and medication reservoir 58 and a nebulizer outlet 60 configured to be received within an oral cavity of the patient. The nebulizer body is generally horizontally configured and includes a mouthpiece portion 62. In one embodiment, a pacifier housing 64 is added as shown by the dashed line, to form a pacifier or lollipop configuration at the nebulizer outlet. An air line 66 extends into the air channel section and includes the venturi nozzle 52 that is configured with the air channel section to form at its end a low pressure mixing chamber 68. FIGS. 2 and 3 show in greater detail the air line 66 and venturi nozzle 52 that are configured with the air channel section to form that low pressure mixing chamber, which is somewhat conically shaped.
  • A primary suction line 70 extends from the medication reservoir 58 to the low pressure mixing chamber 68 through which medication is drawn upward and mixed with air from the venturi nozzle 52 and nebulized for discharge through the nebulizer outlet 60. A compressed air line 72 can connect to the end of the body via an appropriate fitting 74. The venturi nozzle 52, low pressure mixing chamber 68 and air channel section 54 are configured such that at standard temperature and pressure (STP), a differential pressure results in no medication that is drawn upward through the primary suction line 70 for atomization, and none discharged through the nebulizer outlet, until a negative inspiratory pressure is created from inhalation by a user.
  • As explained below, nebulization begins at a negative expiratory pressure from about −3 cmH2O to about −52 cmH2O. The venturi nozzle 52 is positioned at a location to be placed within a patient's oral cavity when the nebulizer in use and received in the mouth of the user. As illustrated, a rainfall chamber 76 is formed within the body 51 at the air channel section 54 into which the venturi nozzle 52 and low pressure mixing chamber are formed. As further illustrated, a diffuser 78 acts an impactor upon which the nebulized medication and air exiting the venturi nozzle and low pressure mixing chamber impacts to aid in nebulization. A secondary suction line 80 is formed within the rainfall chamber 76 and draws nebulized medication that had dropped down after impacting the diffuser or impactor. A better view of the secondary suction line is shown in FIGS. 2 and 3. In another example, an airflow sensor 82 can be positioned within the air channel section at the nebulizer outlet and configured to generate signals 83 indicative of air flow generated by a patient's involuntary cough event occurring at nebulization. A processor 84 could be associated with the nebulizer or a separate unit such as a handheld unit as shown in FIG. 26. This processor can receive signals and evaluate the involuntary cough event as explained in greater detail below.
  • The dashed lines in FIG. 1 show that the nebulizer outlet can be configured as a infant pacifier and be formed as a housing or lollipop. In another example, it is possible for a housing to enclose the body and have an end adjacent to the nebulizer outlet configured as an infant pacifier such as shown relative to FIGS. 21 and 22.
  • When the nebulizer is operating at a flow condition and at standard atmospheric pressure (STP), the differential pressures cause no fluid flow from the medication reservoir upward through the primary suction line into the low pressure mixing chamber. As the pressure decreases within the nebulizer due to inhalation, i.e., resulting from the negative inspiratory pressure, the differential pressure results in medication flowing up into the low pressure mixing chamber and air flowing through the venturi nozzle.
  • There is illustrated the medication reservoir 58 that includes the primary suction line where the medication is drawn up into the low pressure mixing chamber and air flows through the venturi nozzle. The nebulizer includes a breath activated venturi. Although the venturi is positioned for intra-oral use, it is not necessary to be in that position and can be located outside the oral cavity. The medication is released during breath activation as a horizontal nebulizer compared to an updraft style. Various medications could be mixed during the intake cycle. The nebulizer in accordance with a non-limiting example is an improvement over those prior art nebulizers that are actuated by pressing a valve for a user regulator while nebulizing.
  • In the nebulizer shown in FIG. 1, the flow through the venturi nozzle 52 is not activated until there is a negative inspiratory pressure, such as created from inhalation by the patient. In this nebulizer, air pressure is continuous, but nebulization is not. The rainfall chamber 76 is provided, but at STP, there is no flow of medication. At about −3 cm negative pressure, the negative suction actuates air flow and medication to be drawn upward through the primary suction line. When this occurs, the nebulized solution extends from the low pressure mixing chamber 68 and impacts the diffuser 78, i.e., impactor and some droplets fall to be picked up by the secondary suction line 80. There are no residual drops, condensation or agglomeration of nebulized medication that forms in front of the rain chamber, which could result in poor nebulization and air being drawn in by the patient. It is recirculated as a true nebulized medication.
  • In one example, the average pressure begins nebulizer operation at −52 cm with a 2 liter a minute flow rate. It is possible to begin flow at −3 cm negative pressure, but that has been found to be too sensitive. In another example, the nebulizer is configured to begin flow at −15 cm corresponding to −1 bar. The venturi nozzle and other components of the nebulizer as shown in FIG. 1 can be designed to begin flow from −3 to −100 cm within the venturi nozzle. The nebulizer is a jet nebulizer that requires the negative inspiratory pressure to allow the venturi to begin operating. The medicine fluid will not pass into the airstream until the flow begins through the venturi nozzle. Air is blowing at rest, but no venturi operation with flow occurs until a negative inspiratory pressure is supplied in front of the venturi nozzle at the air channel section to initiate the venturi effect and draw the medication up into the jet stream at the low pressure mixing chamber. As long as the negative inspiratory pressure is applied, there will be flow. If the negative inspiratory pressure stops, there is no flow. One nebulizer configuration is for a 5 liter per minute air flow, but the nebulizer can be configured for 2 liter up to 15 liter air flow. When the venturi nozzle begins operation, the medication hits the diffuser or impactor and some droplets fall downward and are drawn up by the secondary suction line.
  • The nebulizer shown in FIG. 1 operates when there is negative inspiratory pressure that activates the air flow through the venturi nozzle and into the low pressure mixing chamber. It does not matter if the venturi nozzle is inside or outside the mouth. It is also not a timed type of nebulizer such as with processor monitored breathing or arranging nebulization based on breathing cycles and