US20140186199A1 - Electric blower - Google Patents

Electric blower Download PDF

Info

Publication number
US20140186199A1
US20140186199A1 US14/142,513 US201314142513A US2014186199A1 US 20140186199 A1 US20140186199 A1 US 20140186199A1 US 201314142513 A US201314142513 A US 201314142513A US 2014186199 A1 US2014186199 A1 US 2014186199A1
Authority
US
United States
Prior art keywords
electric blower
impeller
set forth
driving module
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/142,513
Inventor
Sung Tai Jung
Yong Wan CHO
Sang Ho Seo
Myung Geun Oh
Hee Soo Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Assigned to SAMSUNG ELECTRO-MECHANICS CO., LTD. reassignment SAMSUNG ELECTRO-MECHANICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, YONG WAN, OH, MYUNG GEUN, SEO, SANG HO, YOON, HEE SOO, JUNG, SUNG TAE
Publication of US20140186199A1 publication Critical patent/US20140186199A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0666Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump a sensor is integrated into the pump/motor design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/22Mountings for motor fan assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to an electric blower.
  • an electric blower for a vacuum cleaner is a hand type product, wherein miniaturization and lightness are very important.
  • the miniaturization and lightness are possible.
  • the electric blower according to the prior art uses a shaft system of a ball bearing and has a fan, a rotating body rotor, and bearing separated from each other.
  • the electric blower according to the prior art is implemented in a shape in which an impeller is assembled at an upper side of the rotor.
  • the electric blower according to the prior art including the following Patent Document has a separate ball bearing module and a driving module of the impeller coupled to each other so as to be mounted on a lower portion of the impeller, such that a structure thereof is complicated and it is difficult to implement the miniaturization as well as stability of the motor is not kept at the time of a high speed rotation.
  • a control module is separately included, such that it is also difficult to miniaturize.
  • Patent Document 1 US 20070134109 A
  • the present invention has been made in an effort to provide an electric blower capable of implementing miniaturization and lightening thereof by integrally forming a control module controlling a driving module of the electric blower with a motor housing.
  • the present invention has been made in an effort to provide an electric blower in which an impeller is rotated so as to minimize friction as a plate of the impeller contacts a ball of the driving module at the time of an initial driving, that is, before floating the impeller and in which the impeller is rotated in a state in which the friction is minimized according to a dynamic pressure design by an air bearing to thereby allow ultra-high speed driving, whereby it is to implement an ultra-small size and ultra-light weight of the electric blower.
  • an electric blower including: an impeller; a driving module including a rotor part coupled to the impeller in order to driving the impeller and a stator part, the rotator part including a magnet and the stator part including an armature formed of a core positioned so as to face the magnet and a coil; a motor housing having the driving module mounted thereon; and a control module mounted on the motor housing and controlling the driving module.
  • the driving module may have an air bearing part formed between the stator part and the rotor part.
  • the electric blower may further include an impeller cover covering the impeller and coupled to the motor housing.
  • the control module may include: a control substrate coupled to the motor housing; and a hall sensor connected to the control substrate and positioned so as to face the rotor part of the driving module.
  • the rotor part of the driving module may include: a sleeve rotatably supported by a shaft; and a magnet coupled to the sleeve so as to face the armature of the stator part.
  • the sleeve and the shaft may include magnets for magnetic bearing mounted on each of facing surfaces of each other.
  • the magnets for magnetic bearing may be mounted at an upper end portion of the sleeve.
  • the magnets for magnetic bearing may be formed in an annular ring shape.
  • the stator part of the driving module may include: a shaft rotatably supporting the rotator part; and an armature facing the magnet of the rotator part and including a core and a coil.
  • the shaft may be inserted into the sleeve so as to form an air bearing part, having a fine interval therebetween and an outer peripheral surface of the shaft and an inner peripheral surface of the sleeve facing each other may be selectively provided with a dynamic pressure generating groove.
  • the shaft may include a ball mounted on a surface facing the impeller with respect to an axial direction of the shaft.
  • the impeller may include a plate mounted on a surface facing the ball.
  • the electric blower may further include an impeller cover covering the impeller, wherein the impeller cover may be coupled to the motor housing.
  • the impeller cover and the motor housing may be screw-coupled by a clamp screw.
  • FIG. 1 is a front view schematically showing an electric blower of preferred embodiment of the present invention
  • FIG. 2 is a schematic perspective cross-sectional view of the electric blower shown in FIG. 1 ;
  • FIG. 3 is a schematic cross-sectional view of the electric blower shown in FIG. 1 .
  • FIG. 1 is a front view schematically showing an electric blower of preferred embodiment of the present invention
  • FIG. 2 is a schematic perspective cross-sectional view of the electric blower shown in FIG. 1
  • FIG. 3 is a schematic cross-sectional view of the electric blower shown in FIG. 1 .
  • the electric blower 100 is integrally formed with a control module.
  • the electric blower 100 includes an impeller 110 , a driving module 120 , an impeller cover 130 , a motor housing 140 , and a control module 150 .
  • the impeller 110 is connected to the driving module 120 and is rotated by the driving module so as to make air flow.
  • the impeller 110 is covered by the impeller cover 130 .
  • the driving module 120 is coupled to the motor housing 140 and the motor housing 140 is coupled to the impeller cover 130 .
  • control module 150 is to control the driving module 120 and is mounted on the motor housing 140 .
  • the impeller 110 is connected to the driving module 120 and is in communication with a rotation of a rotor part of the driving module so as to make the air flow.
  • a wing 111 is formed so as to make the air flow.
  • the impeller cover 130 is provided with a suction hole for introducing air and is formed in a cylindrical shape.
  • impeller cover 130 and a motor housing 140 may be coupled using various methods such as a bonding coupling, a press-fitting coupling, a screw coupling, or the like and FIGS. 1 to 3 , which are an embodiment for each of the above-mention coupling methods show the coupling by a clamp screw 160 .
  • the driving module 120 is formed of a stator part including an armature 124 and a shaft 121 and a rotor part including a sleeve 122 and a magnet 123 , the rotor part is connected to the impeller 110 , and the stator part is mounted on the motor housing 140 .
  • an outer diameter portion of the shaft 121 and an inner diameter portion of the sleeve 122 have a fine interval therebetween and the fine interval may be provided with a bearing part.
  • the present invention employs an air bearing part as an example, the present invention is not limited thereto, but may be variously implemented.
  • facing surfaces of the sleeve and the shaft are mounted with magnets 125 a and 125 b for magnetic bearing, respectively.
  • the sleeve 122 is rotatably supported by the shaft 121 and is coupled to the impeller 110 .
  • the sleeve 122 may have a radial dynamic generating groove (not shown) formed in the inner diameter portion thereof so that the air bearing part is formed in the fine interval between the sleeve 122 and the shaft 121 .
  • the sleeve 122 has a magnet 123 mounted on the outer peripheral surface thereof so as to face the armature 124 of the stator part.
  • the driving module according to the preferred embodiment of the present invention further includes a magnetic bearing part in addition to the air bearing part.
  • the driving module has the shaft and sleeve mounted with the magnets 125 a and 125 b for magnetic bearing, respectively.
  • the magnet 125 a for magnetic bearing coupled to the sleeve is mounted so as to face the magnet 125 b for magnetic bearing of the shaft 121 .
  • the magnet 125 a for magnetic bearing may be formed in an annular ring shape.
  • the shaft 121 rotatably supports the sleeve 122 , as described above.
  • an upper end portion of the shaft 121 faces the impeller 110 and a lower end portion thereof is fixedly coupled to the motor housing 140 .
  • the shaft 121 is mounted with the magnet 125 b for magnetic bearing so as to face the magnet 125 a for magnetic bearing of the sleeve.
  • the dynamic pressure design may be more precisely performed by the magnet 125 a and 125 b for magnetic bearing mounted on each of the sleeve 122 and the shaft 121 in addition to the air bearing.
  • the shaft 121 may be mounted with a ball 126 for a point contact in order to decrease friction with the impeller 110 at the time of an initial driving.
  • the shaft 121 is provided with a ball receiving groove for receiving the ball.
  • the ball receiving groove may be formed at a central portion of an upper end surface of the shaft.
  • the impeller 110 may be mounted with a plate 112 so as to face the ball 126 as shown in FIGS. 2 and 3 .
  • the shaft 121 may have a radial dynamic pressure groove formed on an outer peripheral surface thereof so as to form the air bearing part.
  • the dynamic pressure groove may be selectively formed on the outer peripheral surface of the shaft facing the sleeve or the inner peripheral surface facing the shaft.
  • the dynamic pressure generating groove has shapes and sizes variously implemented by a herringbone and the like according to the dynamic design.
  • the armature is formed of a coil (not shown) and a core 124 and is fixedly coupled to the motor housing so as to face the magnet 123 .
  • control module 150 is to control the driving of the driving module and includes a control substrate 151 and a hall sensor 152 connected to the control substrate 151 .
  • the hall sensor 152 is to sense a position and displacement of the rotor part of the driving module and is positioned so as to face the rotor part, wherein FIGS. 2 and 3 show an embodiment in which the hall sensor faces the magnet 123 .
  • the control substrate 151 is mounted on the motor housing 140 , wherein FIGS. 2 and 3 show a case in which the control substrate 151 and the motor housing 140 are coupled by the clamp screw 160 , as an embodiment.
  • the electric blower 100 which is miniaturized and lightened, and is driven at a high speed by the air bearing.
  • an electric blower capable of implementing miniaturization and lightening thereof by integrally forming a control module controlling a driving module of the electric blower with a motor housing and in which an impeller is rotated so as to minimize friction as a plate of the impeller contacts a ball of the driving module at the time of an initial driving, that is, before floating the impeller and in which the impeller is rotated in a state in which the friction is minimized according to a dynamic pressure design by an air bearing to thereby be driven at an ultra-high speed, whereby it is possible to implement an ultra-small size and ultra-small weight of the electric blower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Disclosed herein is an electric blower including: an impeller; a driving module including a rotor part coupled to the impeller in order to driving the impeller and a stator part, the rotator part including a magnet and the stator part including an armature formed of a core positioned so as to face the magnet and a coil; a motor housing having the driving module mounted thereon; and a control module mounted on the motor housing and controlling the driving module.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of Korean Patent Application No. 10-2012-0156592, filed on Dec. 28, 2012, entitled “Electric Blower”, which is hereby incorporated by reference in its entirety into this application.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to an electric blower.
  • 2. Description of the Related Art
  • Generally, an electric blower for a vacuum cleaner is a hand type product, wherein miniaturization and lightness are very important. In addition, in the case in which output density of a motor is increased, the miniaturization and lightness are possible.
  • Meanwhile, the electric blower according to the prior art uses a shaft system of a ball bearing and has a fan, a rotating body rotor, and bearing separated from each other. In addition, the electric blower according to the prior art is implemented in a shape in which an impeller is assembled at an upper side of the rotor.
  • When being formed described above, the electric blower according to the prior art including the following Patent Document has a separate ball bearing module and a driving module of the impeller coupled to each other so as to be mounted on a lower portion of the impeller, such that a structure thereof is complicated and it is difficult to implement the miniaturization as well as stability of the motor is not kept at the time of a high speed rotation. In addition to this, a control module is separately included, such that it is also difficult to miniaturize.
  • PRIOR ART DOCUMENT Patent Document
  • (Patent Document 1) US 20070134109 A
  • SUMMARY OF THE INVENTION
  • The present invention has been made in an effort to provide an electric blower capable of implementing miniaturization and lightening thereof by integrally forming a control module controlling a driving module of the electric blower with a motor housing.
  • The present invention has been made in an effort to provide an electric blower in which an impeller is rotated so as to minimize friction as a plate of the impeller contacts a ball of the driving module at the time of an initial driving, that is, before floating the impeller and in which the impeller is rotated in a state in which the friction is minimized according to a dynamic pressure design by an air bearing to thereby allow ultra-high speed driving, whereby it is to implement an ultra-small size and ultra-light weight of the electric blower.
  • According to a preferred embodiment of the present invention, there is provided an electric blower, including: an impeller; a driving module including a rotor part coupled to the impeller in order to driving the impeller and a stator part, the rotator part including a magnet and the stator part including an armature formed of a core positioned so as to face the magnet and a coil; a motor housing having the driving module mounted thereon; and a control module mounted on the motor housing and controlling the driving module.
  • The driving module may have an air bearing part formed between the stator part and the rotor part.
  • The electric blower may further include an impeller cover covering the impeller and coupled to the motor housing.
  • The control module may include: a control substrate coupled to the motor housing; and a hall sensor connected to the control substrate and positioned so as to face the rotor part of the driving module.
  • The rotor part of the driving module may include: a sleeve rotatably supported by a shaft; and a magnet coupled to the sleeve so as to face the armature of the stator part.
  • The sleeve and the shaft may include magnets for magnetic bearing mounted on each of facing surfaces of each other.
  • The magnets for magnetic bearing may be mounted at an upper end portion of the sleeve.
  • The magnets for magnetic bearing may be formed in an annular ring shape.
  • The stator part of the driving module may include: a shaft rotatably supporting the rotator part; and an armature facing the magnet of the rotator part and including a core and a coil.
  • The shaft may be inserted into the sleeve so as to form an air bearing part, having a fine interval therebetween and an outer peripheral surface of the shaft and an inner peripheral surface of the sleeve facing each other may be selectively provided with a dynamic pressure generating groove.
  • The shaft may include a ball mounted on a surface facing the impeller with respect to an axial direction of the shaft.
  • The impeller may include a plate mounted on a surface facing the ball.
  • The electric blower may further include an impeller cover covering the impeller, wherein the impeller cover may be coupled to the motor housing.
  • The impeller cover and the motor housing may be screw-coupled by a clamp screw.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a front view schematically showing an electric blower of preferred embodiment of the present invention;
  • FIG. 2 is a schematic perspective cross-sectional view of the electric blower shown in FIG. 1; and
  • FIG. 3 is a schematic cross-sectional view of the electric blower shown in FIG. 1.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The objects, features and advantages of the present invention will be more clearly understood from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof are omitted. Further, in the following description, the terms “first”, “second”, “one side”, “the other side” and the like are used to differentiate a certain component from other components, but the configuration of such components should not be construed to be limited by the terms. Further, in the description of the present invention, when it is determined that the detailed description of the related art would obscure the gist of the present invention, the description thereof will be omitted.
  • Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
  • FIG. 1 is a front view schematically showing an electric blower of preferred embodiment of the present invention, FIG. 2 is a schematic perspective cross-sectional view of the electric blower shown in FIG. 1, and FIG. 3 is a schematic cross-sectional view of the electric blower shown in FIG. 1. More specifically, the electric blower 100 is integrally formed with a control module.
  • As shown, the electric blower 100 includes an impeller 110, a driving module 120, an impeller cover 130, a motor housing 140, and a control module 150.
  • More specifically, the impeller 110 is connected to the driving module 120 and is rotated by the driving module so as to make air flow.
  • In addition, the impeller 110 is covered by the impeller cover 130.
  • Further, the driving module 120 is coupled to the motor housing 140 and the motor housing 140 is coupled to the impeller cover 130.
  • In addition, the control module 150 is to control the driving module 120 and is mounted on the motor housing 140.
  • Hereinafter, characteristics of the respective components and systematic coupling therebetween will be described in detail.
  • As described above, the impeller 110 is connected to the driving module 120 and is in communication with a rotation of a rotor part of the driving module so as to make the air flow. In addition, to this end, a wing 111 is formed so as to make the air flow.
  • In addition, the impeller cover 130 is provided with a suction hole for introducing air and is formed in a cylindrical shape.
  • In addition, the impeller cover 130 and a motor housing 140 may be coupled using various methods such as a bonding coupling, a press-fitting coupling, a screw coupling, or the like and FIGS. 1 to 3, which are an embodiment for each of the above-mention coupling methods show the coupling by a clamp screw 160.
  • Next, the driving module 120 is formed of a stator part including an armature 124 and a shaft 121 and a rotor part including a sleeve 122 and a magnet 123, the rotor part is connected to the impeller 110, and the stator part is mounted on the motor housing 140.
  • In addition, an outer diameter portion of the shaft 121 and an inner diameter portion of the sleeve 122 have a fine interval therebetween and the fine interval may be provided with a bearing part. Although the present invention employs an air bearing part as an example, the present invention is not limited thereto, but may be variously implemented.
  • In addition, facing surfaces of the sleeve and the shaft are mounted with magnets 125 a and 125 b for magnetic bearing, respectively.
  • More specifically, in the rotor part, the sleeve 122 is rotatably supported by the shaft 121 and is coupled to the impeller 110.
  • The sleeve 122 may have a radial dynamic generating groove (not shown) formed in the inner diameter portion thereof so that the air bearing part is formed in the fine interval between the sleeve 122 and the shaft 121.
  • In addition, the sleeve 122 has a magnet 123 mounted on the outer peripheral surface thereof so as to face the armature 124 of the stator part.
  • In addition, the driving module according to the preferred embodiment of the present invention further includes a magnetic bearing part in addition to the air bearing part. To this end, the driving module has the shaft and sleeve mounted with the magnets 125 a and 125 b for magnetic bearing, respectively.
  • That is, the magnet 125 a for magnetic bearing coupled to the sleeve is mounted so as to face the magnet 125 b for magnetic bearing of the shaft 121. In addition, the magnet 125 a for magnetic bearing may be formed in an annular ring shape.
  • Next, in the stator part, the shaft 121 rotatably supports the sleeve 122, as described above. In addition, an upper end portion of the shaft 121 faces the impeller 110 and a lower end portion thereof is fixedly coupled to the motor housing 140.
  • In addition, the shaft 121 is mounted with the magnet 125 b for magnetic bearing so as to face the magnet 125 a for magnetic bearing of the sleeve.
  • As described above, the dynamic pressure design may be more precisely performed by the magnet 125 a and 125 b for magnetic bearing mounted on each of the sleeve 122 and the shaft 121 in addition to the air bearing.
  • In addition, the shaft 121 may be mounted with a ball 126 for a point contact in order to decrease friction with the impeller 110 at the time of an initial driving. In addition, the shaft 121 is provided with a ball receiving groove for receiving the ball. In addition, the ball receiving groove may be formed at a central portion of an upper end surface of the shaft.
  • In addition, the impeller 110 may be mounted with a plate 112 so as to face the ball 126 as shown in FIGS. 2 and 3.
  • In addition, the shaft 121 may have a radial dynamic pressure groove formed on an outer peripheral surface thereof so as to form the air bearing part. As described above, the dynamic pressure groove may be selectively formed on the outer peripheral surface of the shaft facing the sleeve or the inner peripheral surface facing the shaft. In addition, the dynamic pressure generating groove has shapes and sizes variously implemented by a herringbone and the like according to the dynamic design.
  • Next, the armature is formed of a coil (not shown) and a core 124 and is fixedly coupled to the motor housing so as to face the magnet 123.
  • In addition, the control module 150 is to control the driving of the driving module and includes a control substrate 151 and a hall sensor 152 connected to the control substrate 151. In addition, the hall sensor 152 is to sense a position and displacement of the rotor part of the driving module and is positioned so as to face the rotor part, wherein FIGS. 2 and 3 show an embodiment in which the hall sensor faces the magnet 123. In addition, the control substrate 151 is mounted on the motor housing 140, wherein FIGS. 2 and 3 show a case in which the control substrate 151 and the motor housing 140 are coupled by the clamp screw 160, as an embodiment.
  • As described above, according to the embodiment of the present invention, it is possible to implement the electric blower 100 which is miniaturized and lightened, and is driven at a high speed by the air bearing.
  • According to the preferred embodiment of the present invention, it is possible to obtain an electric blower capable of implementing miniaturization and lightening thereof by integrally forming a control module controlling a driving module of the electric blower with a motor housing and in which an impeller is rotated so as to minimize friction as a plate of the impeller contacts a ball of the driving module at the time of an initial driving, that is, before floating the impeller and in which the impeller is rotated in a state in which the friction is minimized according to a dynamic pressure design by an air bearing to thereby be driven at an ultra-high speed, whereby it is possible to implement an ultra-small size and ultra-small weight of the electric blower.
  • Although the embodiments of the present invention have been disclosed for illustrative purposes, it will be appreciated that the present invention is not limited thereto, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention.
  • Accordingly, any and all modifications, variations or equivalent arrangements should be considered to be within the scope of the invention, and the detailed scope of the invention will be disclosed by the accompanying claims.

Claims (14)

What is claimed is:
1. An electric blower, comprising:
an impeller;
a driving module including a rotor part coupled to the impeller in order to driving the impeller and a stator part, the rotator part including a magnet and the stator part including an armature formed of a core positioned so as to face the magnet and a coil;
a motor housing having the driving module mounted thereon; and
a control module mounted on the motor housing and controlling the driving module.
2. The electric blower as set forth in claim 1, wherein the driving module has an air bearing part formed between the stator part and the rotor part.
3. The electric blower as set forth in claim 1, further comprising an impeller cover covering the impeller and coupled to the motor housing.
4. The electric blower as set forth in claim 1, wherein the control module includes:
a control substrate coupled to the motor housing; and
a hall sensor connected to the control substrate and positioned so as to face the rotor part of the driving module.
5. The electric blower as set forth in claim 1, wherein the rotor part of the driving module includes:
a sleeve rotatably supported by a shaft; and
a magnet coupled to the sleeve so as to face the armature of the stator part.
6. The electric blower as set forth in claim 5, wherein the sleeve and the shaft include magnets for magnetic bearing mounted on each of facing surfaces of each other.
7. The electric blower as set forth in claim 6, wherein the magnets for magnetic bearing are mounted at an upper end portion of the sleeve.
8. The electric blower as set forth in claim 7, wherein the magnets for magnetic bearing are formed in an annular ring shape.
9. The electric blower as set forth in claim 1, wherein the stator part of the driving module includes:
a shaft rotatably supporting the rotator part; and
an armature facing the magnet of the rotator part and including a core and a coil.
10. The electric blower as set forth in claim 9, wherein the shaft is inserted into the sleeve so as to form an air bearing part, having a fine interval therebetween and an outer peripheral surface of the shaft and an inner peripheral surface of the sleeve facing each other is selectively provided with a dynamic pressure generating groove.
11. The electric blower as set forth in claim 10, wherein the shaft includes a ball mounted on a surface facing the impeller with respect to an axial direction of the shaft.
12. The electric blower as set forth in claim 11, wherein the impeller includes a plate mounted on a surface facing the ball.
13. The electric blower as set forth in claim 1, further comprising an impeller cover covering the impeller,
wherein the impeller cover is coupled to the motor housing.
14. The electric blower as set forth in claim 13, wherein the impeller cover and the motor housing are screw-coupled by a clamp screw.
US14/142,513 2012-12-28 2013-12-27 Electric blower Abandoned US20140186199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120156592A KR101454083B1 (en) 2012-12-28 2012-12-28 Electric blower
KR10-2012-0156592 2012-12-28

Publications (1)

Publication Number Publication Date
US20140186199A1 true US20140186199A1 (en) 2014-07-03

Family

ID=51017402

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/142,513 Abandoned US20140186199A1 (en) 2012-12-28 2013-12-27 Electric blower

Country Status (3)

Country Link
US (1) US20140186199A1 (en)
KR (1) KR101454083B1 (en)
CN (1) CN103912510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170177009A1 (en) * 2015-12-17 2017-06-22 Venturedyne, Ltd. Environmental sensor and method of operating the same
US20170175730A1 (en) * 2015-12-17 2017-06-22 Venturedyne, Ltd. Environmental sensor and method of operating the same
EP3421807A1 (en) * 2017-06-29 2019-01-02 Koninklijke Philips N.V. Device having a surface arranged to meet rotating air
US11136988B2 (en) * 2019-03-29 2021-10-05 Nidec Corporation Gas dynamic bearing, motor, and blower apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102171454B1 (en) 2019-07-10 2020-10-29 엘지전자 주식회사 Fan Motor and Manufacturing the Same
KR102334621B1 (en) 2019-07-10 2021-12-03 엘지전자 주식회사 Fan Motor
KR102512291B1 (en) 2019-07-10 2023-03-22 엘지전자 주식회사 Fan Motor and Manufacturing the Same
KR102252511B1 (en) 2019-07-25 2021-05-14 엘지전자 주식회사 Fan Motor
KR102464110B1 (en) 2019-07-25 2022-11-07 엘지전자 주식회사 Fan Motor
KR20210099885A (en) 2020-02-05 2021-08-13 엘지전자 주식회사 Fan Motor
KR20210033452A (en) 2021-03-17 2021-03-26 엘지전자 주식회사 Fan Motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604962A (en) * 1969-09-11 1971-09-14 Rotron Inc Motor bearing and fan construction
US6545381B1 (en) * 1999-07-17 2003-04-08 Papst-Motoren Gmbh & Co. Kg Small electric motor with axial bearing
US6960854B2 (en) * 2001-11-27 2005-11-01 Mallinckrodt Developpement France Centrifugal turbine for breathing-aid devices
US7276828B2 (en) * 2003-12-25 2007-10-02 Delta Electronics, Inc. Magnetic bearing system
US20090196770A1 (en) * 2008-02-01 2009-08-06 Po-Hao Yu Fan
US20100196174A1 (en) * 2007-09-18 2010-08-05 Amotech Co., Ltd. Ipm motor and vacuum inhaling apparatus using the same
US20130022065A1 (en) * 2010-02-03 2013-01-24 Trumpf Maschinen Ag Gas Laser having Radial and Axial Gas Bearings

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712091A (en) * 1993-09-24 1995-01-17 Ebara Corp Magnetic bearing device
KR100499170B1 (en) * 2003-01-09 2005-07-01 삼성전기주식회사 Kinetic Pressure Bearing Motor
DE10338167A1 (en) * 2003-08-20 2005-04-07 Lust Antriebstechnik Gmbh Hermetically sealed process chamber e.g. for liquid pumps or radial compressors, has shaft vibrations influenced by electromagnetic forces generated with permanent magnets and coil
JP2006064151A (en) * 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd Fluid bearing, spindle motor using it, and magnetic disc unit
KR100783451B1 (en) * 2006-12-26 2007-12-11 전자부품연구원 Motor assembly for driving air blower in fuel cell system
JP5056432B2 (en) * 2008-01-21 2012-10-24 アイシン精機株式会社 Rotating shaft device and fuel cell system
DE102008034948A1 (en) * 2008-07-26 2010-01-28 Pfeiffer Vacuum Gmbh vacuum pump
KR101134968B1 (en) * 2009-11-19 2012-04-09 현대자동차주식회사 Electric water pump
JP2012139058A (en) * 2010-12-27 2012-07-19 Nippon Densan Corp Motor, fan, and method of manufacturing motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604962A (en) * 1969-09-11 1971-09-14 Rotron Inc Motor bearing and fan construction
US6545381B1 (en) * 1999-07-17 2003-04-08 Papst-Motoren Gmbh & Co. Kg Small electric motor with axial bearing
US6960854B2 (en) * 2001-11-27 2005-11-01 Mallinckrodt Developpement France Centrifugal turbine for breathing-aid devices
US7276828B2 (en) * 2003-12-25 2007-10-02 Delta Electronics, Inc. Magnetic bearing system
US20100196174A1 (en) * 2007-09-18 2010-08-05 Amotech Co., Ltd. Ipm motor and vacuum inhaling apparatus using the same
US20090196770A1 (en) * 2008-02-01 2009-08-06 Po-Hao Yu Fan
US20130022065A1 (en) * 2010-02-03 2013-01-24 Trumpf Maschinen Ag Gas Laser having Radial and Axial Gas Bearings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170177009A1 (en) * 2015-12-17 2017-06-22 Venturedyne, Ltd. Environmental sensor and method of operating the same
US20170175730A1 (en) * 2015-12-17 2017-06-22 Venturedyne, Ltd. Environmental sensor and method of operating the same
US9983596B2 (en) * 2015-12-17 2018-05-29 Venturedyne, Ltd. Environmental sensor and method of operating the same
US10557472B2 (en) * 2015-12-17 2020-02-11 Venturedyne, Ltd. Environmental sensor and method of operating the same
EP3421807A1 (en) * 2017-06-29 2019-01-02 Koninklijke Philips N.V. Device having a surface arranged to meet rotating air
US11136988B2 (en) * 2019-03-29 2021-10-05 Nidec Corporation Gas dynamic bearing, motor, and blower apparatus

Also Published As

Publication number Publication date
KR20140086286A (en) 2014-07-08
CN103912510A (en) 2014-07-09
KR101454083B1 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
US20140186199A1 (en) Electric blower
JP6512792B2 (en) Maglev pump
US20130175891A1 (en) Switched reluctance motor
US20170353095A1 (en) Driving Device And Bladeless Fan Utilizing the Same
JP6396083B2 (en) Electric blower and vacuum cleaner
US20140175912A1 (en) Motor
US7261524B2 (en) Rotation support with improved thrust-bearing for rotors of pump electric motors
JP6887968B2 (en) Thrust magnetic bearing and turbo compressor with it
US11118625B2 (en) Magnetic bearing
US8710709B2 (en) Motor with power-generation coil module
US20160341219A1 (en) Single-phase Motor, Airflow Generating Device, And Electric Apparatus
EP2644901A2 (en) Impeller and vacuum cleaner motor assembly including the same
EP2333343A3 (en) Electric pump and electric pump mounting structure
TWI307992B (en) Dual fan and motor thereof
JP6927735B2 (en) Vacuum pumps, magnetic bearings and rotors
JP2008190328A (en) Centrifugal compressor
JP6351819B1 (en) Rotating device
JP2014114804A (en) Impeller coupling module and electric blower including the same
JP2020159538A (en) Thrust magnetic bearing and turbo compressor equipped with the same
WO2018066232A1 (en) Centrifugal blower
CN106208585B (en) Brushless motor
JP2018194004A (en) Electric air blower and vacuum cleaner
JP2007032405A (en) Electric water pump
JP7147976B2 (en) Vacuum pump and magnetic bearing integrated motor
KR101494138B1 (en) Electric blower

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, SUNG TAE;CHO, YONG WAN;SEO, SANG HO;AND OTHERS;SIGNING DATES FROM 20140317 TO 20140320;REEL/FRAME:032599/0465

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION