US20140175885A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
US20140175885A1
US20140175885A1 US14/133,675 US201314133675A US2014175885A1 US 20140175885 A1 US20140175885 A1 US 20140175885A1 US 201314133675 A US201314133675 A US 201314133675A US 2014175885 A1 US2014175885 A1 US 2014175885A1
Authority
US
United States
Prior art keywords
voltage
electronic device
output voltage
power
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/133,675
Other languages
English (en)
Inventor
Wei-Chih Shih
Yi-Hsun Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compal Electronics Inc
Original Assignee
Compal Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compal Electronics Inc filed Critical Compal Electronics Inc
Priority to US14/133,675 priority Critical patent/US20140175885A1/en
Assigned to COMPAL ELECTRONICS, INC. reassignment COMPAL ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, YI-HSUN, SHIH, WEI-CHIH
Publication of US20140175885A1 publication Critical patent/US20140175885A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates generally to a power control technique, and more particularly to a power supply system and an electronic device having a power saving function.
  • power may be supplied by batteries within the electronic apparatuses or by means of external power adapters. That is, the electronic apparatuses require the power conversion apparatuses (e.g., alternating-current (AC) to direct-current (DC) adapters) to supply power or to charge the internal batteries.
  • AC alternating-current
  • DC direct-current
  • the power conversion apparatus is a passive equipment. Namely, when the input terminal of the power conversion apparatus is connected to AC power, this power conversion apparatus passively provides the stable DC power to an electronic apparatus connected to the power conversion apparatus. However, once the power conversion apparatus is connected to the AC power, the power conversion apparatus may continue providing the DC power even though the power conversion apparatus is not connected to any electronic apparatus or the electronic apparatus connected to the power conversion apparatus is in an off mode. Accordingly, the existing power conversion apparatus is unable to adjust the output power according to the state of the electronic apparatus connected to the power conversion apparatus, which leads to the significant amount of unnecessary power consumption.
  • the invention is directed to an electronic device capable of determining the state of the electronic device by the power value of the DC output voltage, and thereby dynamically regulate the voltage level of the DC output voltage, so as to effectively manage power consumption and achieve power savings.
  • an electronic device in an embodiment of the invention, includes a controller and a first dummy load connected to the controller.
  • the controller turns on the first dummy load according to a state of the electronic device.
  • the first dummy load regulates a DC output voltage outputted to the electronic device by a power conversion apparatus connected to the electronic device.
  • the power conversion apparatus includes an AC to DC converter and a power conversion control unit.
  • the AC to DC converter is coupled to the electronic device, and the AC to DC converter converts an AC input voltage to the DC output voltage according to a switch signal and provides the DC output voltage to the electronic device.
  • the power conversion control unit is coupled to the AC to DC converter, and the power conversion control unit detects the DC output voltage to determine the state of the electronic device. When the electronic device is turned off, the power conversion control unit sets the DC output voltage as a standby voltage through the switch signal.
  • the controller when the electronic device is turned on, the controller turns on the first dummy load, and the power conversion control unit sets the DC output voltage as a normal voltage through the switch signal, in which the normal voltage is higher than the standby voltage.
  • the electronic device further includes a second dummy load, in which the first dummy load and the second dummy are used to regulate the DC output voltage.
  • the controller when the electronic device is turned off, the controller turns on the first dummy load, and the power conversion control unit sets the DC output voltage as the standby voltage through the switch signal.
  • the controller when the electronic device is turned on, the controller turns on the second dummy load, and the power conversion control unit sets the DC output voltage as a normal voltage through the switch signal, in which the normal voltage is higher than the standby voltage.
  • the power conversion control unit when the electronic device is cut off from the power conversion apparatus, sets the DC output voltage as a ground voltage through the switch signal.
  • the AC to DC converter includes a converter circuit, a transformer, and a rectifier circuit.
  • the converter circuit converts the AC input voltage into a first power voltage according to the switch signal.
  • the transformer converts the first power voltage into a second power voltage.
  • the rectifier circuit converts the second power voltage into the DC output voltage.
  • the power conversion control unit includes a power detector, a counter, a feedback control circuit, and a pulse modulation controller.
  • the power detector detects the power value of the DC output voltage.
  • the counter counts a predetermined period when the power value of the DC output voltage is within a predetermined range.
  • the voltage feedback circuit detects a voltage level of the DC output voltage, and the voltage feedback circuit outputs a voltage setting signal according to the voltage level of the DC output voltage and a count result of the counter.
  • the pulse modulation controller outputs the switch signal according to the voltage setting signal.
  • the pulse modulation controller includes a trigger circuit and a logic circuit.
  • the trigger circuit outputs a switch trigger signal according to the voltage setting signal.
  • the logic circuit outputs the switch signal to the AC to DC converter according to the switch trigger signal.
  • the power conversion control unit further includes an optical coupling circuit transmitting the voltage setting signal to the pulse modulation controller.
  • the power conversion control unit controls the AC to DC converter to output the DC output voltage having a normal voltage to the electronic device within a predetermined period, in which the normal voltage is higher than the standby voltage.
  • the power supply system has the first dummy load configured in the electronic device, such that the power value of the DC output voltage is adjusted according to the state of the electronic device. Therefore, the power conversion control unit in the power conversion apparatus is able to determine the state of the electronic device according to the power value of the DC output voltage. Moreover, the power conversion control unit is able to dynamically regulate the voltage level of the DC output voltage according to the power requirement of the electronic device, and thereby save power by preventing unnecessary power consumption.
  • FIG. 1A is a block diagram of a power supply system according to an embodiment of the invention.
  • FIG. 1B is a driving waveform diagram of a power supply system according to an embodiment of the invention.
  • FIG. 1C is a schematic view of a pulse modulation controller according to an embodiment of the invention.
  • FIG. 2A is a block diagram of a power supply system according to another embodiment of the invention.
  • FIG. 2B is a driving waveform diagram of a power supply system according to another embodiment of the invention.
  • FIG. 3 is a flow diagram of a power control method of a power conversion apparatus according to an embodiment of the invention.
  • embodiments of the invention provide an electronic device suitable for application in the power supply system.
  • the electronic device in the power supply system is configured with at least one dummy load.
  • the electronic device may turn on the dummy load based on a state of the electronic device, and regulate a direct current (DC) output voltage outputted by a power conversion apparatus.
  • the power conversion apparatus may then obtain a power requirement of the connected electronic device according to a power value of the DC output voltage, and thereby dynamically regulate a voltage level of the DC output voltage. Accordingly, the power conversion apparatus can provide a suitable power source matching the requirement and achieve a power saving effect.
  • FIG. 1A is a block diagram of a power supply system according to an embodiment of the invention.
  • a power supply system 100 includes an electronic device 110 and a power conversion apparatus 120 .
  • the electronic device 110 includes a controller 111 , a first dummy load 113 , and a battery 115 .
  • the controller 111 may be an embedded controller or a keyboard controller, and the controller 111 may operate by receiving a DC output voltage Vdc provided by the power conversion apparatus 120 or by receiving a power provided by the battery 115 .
  • the first dummy load 113 may be implemented by physical circuit elements, such as in a circuit framework including resistors, capacitors, inductors, transistors, and/or combines thereof.
  • the first dummy load 113 receives the DC output voltage Vdc, and the first dummy load 113 regulates a power value of the DC output voltage Vdc.
  • the controller 111 may determine whether to turn on the first dummy load 113 according to a state of the electronic device 110 . In other words, when the electronic device 110 is turned off, the power value of the DC output voltage Vdc is reduced. On the other hand, when the electronic device 110 is turned on, the controller 111 may turn on the first dummy load 113 , and therefore the power value of the DC output voltage Vdc is increased. When the DC output voltage Vdc reaches a predetermined value, the controller 111 turns off the first dummy load 113 .
  • the power conversion apparatus 120 includes an AC to DC converter 121 and a power conversion control unit 123 .
  • the AC to DC converter 121 is coupled to the electronic device 110 and receives an AC input voltage AC and a switch signal Ssw.
  • the AC to DC converter 121 converts the AC input voltage AC to the DC output voltage Vdc according to the switch signal Ssw and provides the DC output voltage Vdc to the electronic device 110 .
  • the power conversion control unit 123 is coupled to the AC to DC converter 121 , and the power conversion control unit 123 detects the power value of the DC output voltage Vdc to determine the state of the electronic device 110 .
  • the power conversion control unit 123 may set the DC output voltage Vdc as a standby voltage through the switch signal Ssw, such as 5V, for example.
  • the power conversion control unit 123 may set the DC output voltage Vdc as a normal voltage through the switch signal Ssw, such as 19V, in which the normal voltage is typically higher than the standby voltage.
  • the AC to DC converter 121 includes a converter circuit 131 , a transformer TR, and a rectifier circuit 133 .
  • the converter circuit 131 receives the AC input voltage AC, and the converter circuit 131 converts the AC input voltage AC to a first power voltage VP 1 according to the switch signal Ssw.
  • the transformer TR converts the first power voltage VP 1 to a second power voltage VP 2 .
  • the rectifier circuit 133 converts the second power voltage VP 2 to the DC output voltage Vdc.
  • the rectifier circuit 133 may be formed by a diode D 1 and a capacitor C 1 , although embodiments of the invention are not limited thereto.
  • the power conversion control unit 123 includes a power detector 141 , a counter 143 , a voltage feedback circuit 145 , an optical coupling circuit 147 , and a pulse modulation controller 149 .
  • the power detector 141 detects the power value of the DC output voltage Vdc, in which the power of the DC output voltage Vdc is related to the power of the second power voltage VP 2 . Therefore, the present embodiment may determine the power value of the DC output voltage Vdc by detecting the power value of the second power voltage VP 2 , although embodiments of the invention are not limited thereto.
  • the counter 143 is controlled by the power detector 141 to count for a predetermined period. For example, when the power value of the DC output voltage Vdc is within a predetermined range, the power detector 141 controls the counter 143 to count for the predetermined period.
  • the voltage feedback circuit 145 detects the voltage level of the DC output voltage Vdc, and the voltage feedback circuit 145 outputs a voltage setting signal Svs 1 according to the voltage level of the DC output voltage Vdc and a count result CR 1 of the counter 143 .
  • the optical coupling circuit 147 converts the voltage setting signal Svs 1 to a voltage setting signal Svs 2 , and the optical coupling circuit 147 transmits the voltage setting signal Svs 2 to the pulse modulation controller 149 .
  • the voltage setting signals Svs 1 and Svs 2 are substantially the same. However, the signal type of the voltage setting signal Svs 2 may be set according to a requirement of the pulse modulation controller 149 .
  • the pulse modulation controller 149 when the pulse modulation controller 149 is a current mode controller, then the voltage setting signal Svs 2 may be a current signal, although embodiments of the invention are not limited thereto.
  • the pulse modulation controller 149 outputs the switch signal Ssw according to the voltage setting signal Svs 2 , so as to control the first power voltage VP 1 outputted by the converter circuit 131 .
  • the voltage feedback circuit 145 may be further coupled to the power detector 141 , such that the voltage feedback circuit 145 outputs the voltage setting signal Svs 1 according to the voltage level and the power value of the DC output voltage Vdc and the count result CR 1 of the counter 143 .
  • FIG. 1B is a driving waveform diagram of a power supply system according to an embodiment of the invention.
  • the AC to DC converter 121 receives the AC input voltage AC and outputs the DC output voltage Vdc, and the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having a normal voltage Vnr.
  • the power detector 141 detects that a power value PW 1 of the DC output voltage Vdc is within a predetermined range (between 0 to a power detection level LPD). Therefore, the power detector 141 controls the counter 143 to count a predetermined time TD.
  • the voltage level of the DC output voltage Vdc is maintained at the normal voltage Vnr.
  • the predetermined time TD may be set manually according to a circuit requirement, such as the response speed of the controller 111 , although embodiments of the invention are not limited thereto.
  • the counter 143 has counted the predetermined time TD. Therefore, the count result CR 1 of the counter 143 is maintained, and the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having a standby voltage Vst.
  • the electronic device 110 electrically connects to the power conversion apparatus 120 at a time TA and provides the DC output voltage Vdc to the electronic device 110 .
  • the power value PW 1 of the DC output voltage Vdc is lower than the power detection level LPD, and therefore the voltage level of the DC output voltage Vdc is maintained at the standby voltage Vst.
  • a period T 13 assume that the electronic device 110 is turned on, and the first dummy load 113 is turned on, such that the power value PW 1 of the DC output voltage Vdc exceeds the power detection level LPD.
  • the power detector 141 controls the counter 143 to reset the count result CR 1
  • the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having the normal voltage Vnr.
  • a period T 14 assume that the electronic device 110 is turned off, and the first dummy load 113 is not turned on. Therefore, the power value PW 1 of the DC output voltage Vdc returns to be within the predetermined range (between 0 to the power detection level LPD). At this time, the power detector 141 controls the counter 143 to count the predetermined time TD. Moreover, during the predetermined time TD, the voltage level of the DC output voltage Vdc is still maintained at the normal voltage Vnr.
  • the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having the standby voltage Vst. Since the electronic device 110 is turned off at this time, which means that the power value PW 1 of the DC output voltage Vdc will not exceed the power detection level LPD, the voltage level of the DC output voltage Vdc is maintained at the standby voltage Vst.
  • FIG. 1C is a schematic view of a pulse modulation controller according to an embodiment of the invention.
  • a pulse modulation controller 149 a includes a trigger circuit 151 and a logic circuit 153 , for example.
  • the trigger circuit 151 outputs a switch trigger signal Strs according to the voltage setting signal Svs 2
  • the logic circuit 153 generates the switch signal Ssw according to the switch trigger signal Strs
  • the logic circuit 153 outputs the switch signal Ssw to the converter circuit 131 of the AC to DC converter 120 .
  • the trigger circuit 151 may obtain an adjustment requirement of the DC output voltage Vdc according to the voltage setting signal Svs 2 .
  • the trigger circuit 151 may regulate the voltage level of the switch signal Ssw generated by the logic circuit 153 through the switch trigger signal Strs, such that the AC to DC converter 120 correspondingly regulates the voltage level of the DC output voltage Vdc.
  • FIG. 2A is a block diagram of a power supply system according to another embodiment of the invention.
  • a power supply system 200 includes an electronic device 210 and a power conversion apparatus 220 .
  • the electronic device 210 includes a controller 211 , a first dummy load 213 , a second dummy load 215 , and a battery 217 .
  • the functions of the battery 217 is similar to the battery 115 .
  • the first dummy load 213 and the second dummy load 215 receive the DC output voltage Vdc to regulate the power value of the DC output voltage Vdc.
  • the controller 211 may determine whether to turn on the first dummy load 213 and the second dummy load 215 according to a state of the electronic device 210 . For example, when the electronic device 210 is turned off, the controller 211 may turn on the first load 213 , such that the power value of the DC output voltage Vdc is increased. Thereafter, when the electronic device 110 is turned on, the controller 111 may turn on the first dummy load 213 and the second dummy load 215 , and accordingly the power value of the DC output voltage Vdc is again increased.
  • the power conversion apparatus 220 includes the AC to DC converter 121 and a power conversion control unit 221 .
  • the power conversion control unit 221 includes a power detector 231 , a counter 233 , a voltage feedback circuit 235 , an optical coupling circuit 237 , and a pulse modulation controller 239 . Since the functions and coupling relationships of the power detector 231 , the counter 233 , the voltage feedback circuit 235 , the optical coupling circuit 237 , and the pulse modulation controller 239 are similar to the power detector 141 , the counter 143 , the voltage feedback circuit 145 , the optical coupling circuit 147 , and the pulse modulation controller 149 , further elaboration thereof is omitted hereafter.
  • FIG. 2B is a driving waveform diagram of a power supply system according to another embodiment of the invention.
  • the AC to DC converter 121 receives the AC input voltage AC and outputs the DC output voltage Vdc, and the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having the normal voltage Vnr.
  • the power detector 231 detects the rise of a power value PW 2 of the DC output voltage Vdc, and therefore the power detector 231 controls the counter 233 to count the predetermined time TD.
  • the voltage level of the DC output voltage Vdc is maintained at the normal voltage Vnr. Furthermore, assume that the electronic device 210 is electrically connected to the power conversion apparatus 220 at a time TB to provide the DC output voltage Vdc to the electronic device 210 , such that the power value PW 2 of the DC output voltage Vdc rises to be within a predetermined range (between the power detection level LPD and a system on level LSON) due to the first dummy load 213 .
  • the power detector 231 controls the counter 233 to maintain a count result CR 2 .
  • the power conversion control unit 221 controls the AC to DC converter 121 to output the DC output voltage Vdc having the standby voltage Vst.
  • a period T 23 assume that the electronic device 210 is turned on. That is, the first dummy load 213 is not turned on and the second dummy load 215 is turned on, such that the power value PW 2 of the DC output voltage Vdc exceeds the system on level LSON.
  • the power detector 231 controls the counter 233 to reset the count result CR 2 .
  • the power conversion control unit 221 controls the AC to DC converter 121 to output the DC output voltage Vdc having the normal voltage Vnr, and then the second dummy load 215 may be turned off
  • a period T 24 assume that the electronic device 210 is turned off, and the second dummy load 215 has not been turned on. Therefore, the power value PW 2 of the DC output voltage Vdc returns to the predetermined range (between the power detection level LPD and a system on level LSON). At this time, the power detector 231 controls the counter 233 to count the predetermined time TD. During the predetermined time TD, the voltage level of the DC output voltage Vdc is still maintained at the normal voltage Vnr. Moreover, assume that the electronic device 210 is cut off from the power conversion apparatus 220 at a time TC. Accordingly, the power value PW 2 of the DC output voltage Vdc is reduced to be lower than the power detection level LPD.
  • the power detector 231 controls the counter 233 to reset the count result CR 2 , and the power conversion control unit 123 controls the AC to DC converter 121 to output the DC output voltage Vdc having a ground voltage (i.e. 0V).
  • Embodiments of the invention also provide a power control method of an electronic device.
  • the power conversion apparatuses 120 and 220 obtain the power requirements of the connected electronic devices 110 and 210 through the power value of the DC output voltage Vdc, a suitable power source can be provided and a power saving effect can be achieved.
  • FIG. 3 is a flow diagram of a power control method of a power conversion apparatus according to an embodiment of the invention.
  • the power conversion apparatus detects the power value of the DC output voltage, in which the power value of the DC output voltage corresponds with state of the electronic device.
  • the controller in the electronic device may turn on the dummy load according to the state of the electronic device, such that the power value of the DC output voltage changes in accordance with state of the electronic device.
  • Step S 304 the power conversion apparatus determines whether the electronic device is turned on.
  • the power detector in the power conversion apparatus may determine the state of the electronic device by the power value of the DC output voltage.
  • Step S 306 when the electronic device is determined to be turned on, the power conversion apparatus provides the DC output voltage having the normal voltage to the electronic device.
  • the switch signal provided to the AC to DC converter may be regulated, such that the AC to DC converter provides the DC output voltage having the normal voltage to the power conversion apparatus.
  • Step S 308 when the electronic device is determined to be turned off, the power conversion apparatus provides the DC output voltage having the standby voltage to the electronic device.
  • the switch signal provided to the AC to DC converter may be regulated, such that the AC to DC converter provides the DC output voltage having the standby voltage to the power conversion apparatus.
  • the power conversion apparatus when the power conversion apparatus receives the AC input voltage, the AC input voltage may be converted into the DC output voltage having the normal voltage and provided to the electronic device. However, when the electronic device is still turned off during the predetermined period, the power conversion apparatus provides the DC output voltage having the standby voltage to the electronic device. Furthermore, when the power conversion apparatus is cutoff from the electronic device, the output of the DC output voltage may be terminated. That is, the DC output voltage having the ground voltage may be outputted.
  • the power supply system has at least one dummy load configured in the electronic device, such that the power value of the DC output voltage is adjusted according to the state of the electronic device. Therefore, the power conversion control unit in the power conversion apparatus may determine the state of the electronic device according to the power value of the DC output voltage. Moreover, the power conversion control unit may dynamically regulate the voltage level of the DC output voltage according to the power requirement of the electronic device, and thereby save power by preventing unnecessary power consumption.
US14/133,675 2012-12-20 2013-12-19 Electronic device Abandoned US20140175885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/133,675 US20140175885A1 (en) 2012-12-20 2013-12-19 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261740431P 2012-12-20 2012-12-20
US14/133,675 US20140175885A1 (en) 2012-12-20 2013-12-19 Electronic device

Publications (1)

Publication Number Publication Date
US20140175885A1 true US20140175885A1 (en) 2014-06-26

Family

ID=50956743

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/133,664 Active US8953351B2 (en) 2012-12-20 2013-12-19 Power conversion apparatus for electronic apparatus
US14/133,675 Abandoned US20140175885A1 (en) 2012-12-20 2013-12-19 Electronic device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/133,664 Active US8953351B2 (en) 2012-12-20 2013-12-19 Power conversion apparatus for electronic apparatus

Country Status (3)

Country Link
US (2) US8953351B2 (zh)
CN (2) CN103888001A (zh)
TW (2) TWI513168B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140232205A1 (en) * 2013-02-18 2014-08-21 Compal Electronics, Inc. Electronic apparatus
WO2018141766A1 (en) * 2017-02-06 2018-08-09 Philips Lighting Holding B.V. A power converter and power conversion method
US10311803B2 (en) * 2017-02-20 2019-06-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight driving circuit and liquid crystal display

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780104A (zh) * 2012-10-24 2014-05-07 全汉企业股份有限公司 电源供应装置
CN104104213A (zh) * 2014-07-03 2014-10-15 宁波摩米创新工场电子科技有限公司 一种脉波调变转换电路
PT3232554T (pt) * 2016-02-18 2019-08-26 Streamax Tech Co Ltd Circuito dc-dc de controlo de fonte de alimentação e dispositivo eletrónico
CN206620335U (zh) * 2017-03-01 2017-11-07 常州市巨泰电子有限公司 带遥控信号接收的led的控制器
CN109582113A (zh) * 2018-11-13 2019-04-05 广州广哈通信股份有限公司 基于单电源输入的准atx电源实现装置及方法
TWI799222B (zh) * 2022-04-01 2023-04-11 新唐科技股份有限公司 消耗電能評估裝置以及消耗電能評估方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359466A (en) * 1991-06-21 1994-10-25 Sharp Kabushiki Kaisha Magnetic head driving circuit with impedance elements to balance auxiliary coil loads
US20060259202A1 (en) * 2005-01-24 2006-11-16 Vaish Himangshu R Signaling system
US20080007490A1 (en) * 2006-07-06 2008-01-10 Fujitsu Hitachi Plasma Display Limited Plasma display apparatus with improvement in supply of sustain voltage
US20110310639A1 (en) * 2010-06-21 2011-12-22 Niko Semiconductor Co., Ltd. Flyback power converter with multiple outputs and a secondary side post regulator thereof
US20120062136A1 (en) * 2010-09-13 2012-03-15 Richtek Technology Corporation, R.O.C. Direct current light emitting device control circuit with dimming function and method thereof
US20120163040A1 (en) * 2010-12-23 2012-06-28 Hong Liang Zhang Reducing voltage stress in a flyback converter design
US20130134927A1 (en) * 2011-11-29 2013-05-30 Samsung Electronics Co., Ltd. Wireless power transmission system based on cell division
US8492992B2 (en) * 2009-09-18 2013-07-23 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
US20140232205A1 (en) * 2013-02-18 2014-08-21 Compal Electronics, Inc. Electronic apparatus

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936219B2 (ja) * 1975-11-04 1984-09-03 アサヒコウガクコウギヨウ カブシキガイシヤ カメラノデイジタルヒヨウジカイロ
US5033012A (en) * 1989-02-22 1991-07-16 Wohld Peter R Motor-operated valve evaluation unit
US5003192A (en) * 1989-06-23 1991-03-26 Core Industries, Inc. AC power switching device with non-volatile memory unit
KR920011068B1 (ko) * 1990-07-25 1992-12-26 현대전자산업 주식회사 무선에 의한 채널 및 비밀코드 변경과 상호기억방식을 채용한 무선전화시스템 및 비밀코드 변경방법
US5103390A (en) * 1990-09-10 1992-04-07 Prodigit Electronics Co. Ltd. AC load simulator
US5489891A (en) * 1993-01-29 1996-02-06 Noval Controls Sdn Bhd Control means for lighting devices
US6274950B1 (en) * 1994-03-03 2001-08-14 American Power Conversion Battery communication system
DE69406774T2 (de) * 1994-06-13 1998-03-12 Bull Hn Information Syst Leistungsversorgung mit Leistungsfaktorkorrektur und Schutz gegen Ausfallen der Leistungsfaktorkorrektur
US5731681A (en) * 1995-06-28 1998-03-24 Hitachi Koki Co., Ltd. Motor control system for centrifugal machine
AUPO044596A0 (en) * 1996-06-14 1996-07-11 Skop Gmbh Ltd Improved electrical signal supply
US6144187A (en) * 1998-11-12 2000-11-07 Fairchild Semiconductor Corporation Power measurement for adaptive battery charger
US6480043B2 (en) * 1999-05-24 2002-11-12 Semiconductor Components Industries Llc Circuit and method for protecting a switching power supply from a fault condition
JP2001169549A (ja) * 1999-12-01 2001-06-22 Internatl Business Mach Corp <Ibm> コンピュータ用アクティブフィルタ、フィルタモジュール、電源モジュール及びコンピュータ
US20030034209A1 (en) * 2001-08-16 2003-02-20 Golden Friends Corporation Wireless transmission control apparatus for elevator systems
AT413617B (de) * 2002-05-14 2006-04-15 Siemens Ag Oesterreich Ladenetzteil
JP4156324B2 (ja) * 2002-09-30 2008-09-24 ローム株式会社 直流−交流変換装置、及び交流電力供給方法
JP2004187355A (ja) * 2002-11-29 2004-07-02 Fujitsu Ltd 電源制御方法、電流・電圧変換回路及び電子装置
US6844705B2 (en) * 2002-12-09 2005-01-18 Intersil Americas Inc. Li-ion/Li-polymer battery charger configured to be DC-powered from multiple types of wall adapters
TW200527809A (en) * 2004-01-27 2005-08-16 Rohm Co Ltd DC-AC converter, controller IC there for, and an electronic apparatus using such DC-AC converter
US7446512B2 (en) * 2004-05-07 2008-11-04 Matsushita Electric Industrial Co., Ltd. Resonant switching power supply device
US7276861B1 (en) * 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
JP4884665B2 (ja) * 2004-11-12 2012-02-29 ローム株式会社 直流−交流変換装置、そのコントローラic、及び直流−交流変換装置の並行運転システム
US8994276B2 (en) * 2006-03-28 2015-03-31 Wireless Environment, Llc Grid shifting system for a lighting circuit
US7773395B2 (en) * 2007-02-21 2010-08-10 The Aerospace Corporation Uniform converter input voltage distribution power system
US7990106B2 (en) * 2007-04-19 2011-08-02 Summit Microelectronics, Inc. Battery charging systems and methods with adjustable current limit
KR101365753B1 (ko) * 2007-04-23 2014-02-21 페어차일드코리아반도체 주식회사 컨버터 및 그 구동방법
CN101765964A (zh) * 2007-07-30 2010-06-30 京瓷株式会社 电力转换装置及其制造方法
US8385088B2 (en) * 2010-12-06 2013-02-26 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter
JP4855444B2 (ja) * 2008-06-25 2012-01-18 レノボ・シンガポール・プライベート・リミテッド 充電制御システムおよび制御方法
JP2010154692A (ja) * 2008-12-25 2010-07-08 Nikon Corp 電子機器における充電装置、電子機器及び充電方法
CN101820171A (zh) * 2009-02-26 2010-09-01 佛山市顺德区汉达精密电子科技有限公司 电源供应方法及电源转换装置
CN101964599B (zh) * 2009-07-23 2013-04-17 台达电子工业股份有限公司 交换式电源转换电路及其所适用的电源供应器
US8976549B2 (en) * 2009-12-03 2015-03-10 Power Systems Technologies, Ltd. Startup circuit including first and second Schmitt triggers and power converter employing the same
US8327165B2 (en) * 2010-01-21 2012-12-04 Dell Products L.P. Soft start with active reset
CN101761456A (zh) * 2010-02-01 2010-06-30 李群英 集成控制式智能控制器
US8841879B2 (en) * 2010-03-08 2014-09-23 Masco Canada Limited Control circuit operable to charge a battery at multiple charge rates
CN201673449U (zh) * 2010-05-11 2010-12-15 新巨企业股份有限公司 改善待机耗能的电源电路
JP5601158B2 (ja) * 2010-11-02 2014-10-08 富士電機株式会社 スイッチング電源装置用半導体制御装置及びこれを使用したスイッチング電源装置
US20120235630A1 (en) * 2011-03-15 2012-09-20 Intersil Americas LLC Charging system with adaptive power management
JP5803228B2 (ja) * 2011-04-08 2015-11-04 富士通株式会社 Acアダプタ、電子装置ユニット
TWI451652B (zh) * 2011-10-05 2014-09-01 Leadtrend Tech Corp 電源控制器以及電源管理控制方法
JP2013102573A (ja) * 2011-11-07 2013-05-23 Sony Corp 充放電制御装置および充放電制御システム
EP2683068B1 (en) * 2012-07-06 2014-09-10 Nxp B.V. Control circuit for a switched-mode power supply
US9093894B2 (en) * 2012-12-17 2015-07-28 Greenmark Technology Inc. Multiple-level power control system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359466A (en) * 1991-06-21 1994-10-25 Sharp Kabushiki Kaisha Magnetic head driving circuit with impedance elements to balance auxiliary coil loads
US20060259202A1 (en) * 2005-01-24 2006-11-16 Vaish Himangshu R Signaling system
US20080007490A1 (en) * 2006-07-06 2008-01-10 Fujitsu Hitachi Plasma Display Limited Plasma display apparatus with improvement in supply of sustain voltage
US8492992B2 (en) * 2009-09-18 2013-07-23 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
US20110310639A1 (en) * 2010-06-21 2011-12-22 Niko Semiconductor Co., Ltd. Flyback power converter with multiple outputs and a secondary side post regulator thereof
US20120062136A1 (en) * 2010-09-13 2012-03-15 Richtek Technology Corporation, R.O.C. Direct current light emitting device control circuit with dimming function and method thereof
US20120163040A1 (en) * 2010-12-23 2012-06-28 Hong Liang Zhang Reducing voltage stress in a flyback converter design
US20130134927A1 (en) * 2011-11-29 2013-05-30 Samsung Electronics Co., Ltd. Wireless power transmission system based on cell division
US20140232205A1 (en) * 2013-02-18 2014-08-21 Compal Electronics, Inc. Electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140232205A1 (en) * 2013-02-18 2014-08-21 Compal Electronics, Inc. Electronic apparatus
US9667095B2 (en) * 2013-02-18 2017-05-30 Compal Electronics, Inc. Electronic apparatus
WO2018141766A1 (en) * 2017-02-06 2018-08-09 Philips Lighting Holding B.V. A power converter and power conversion method
US10311803B2 (en) * 2017-02-20 2019-06-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight driving circuit and liquid crystal display

Also Published As

Publication number Publication date
US20140177296A1 (en) 2014-06-26
TWI612417B (zh) 2018-01-21
TW201429146A (zh) 2014-07-16
TW201432434A (zh) 2014-08-16
US8953351B2 (en) 2015-02-10
CN103887993B (zh) 2017-07-14
CN103887993A (zh) 2014-06-25
CN103888001A (zh) 2014-06-25
TWI513168B (zh) 2015-12-11

Similar Documents

Publication Publication Date Title
US20140175885A1 (en) Electronic device
US10461549B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
US10056779B2 (en) Power source adaptor for charging directly and mobile terminal
US11404898B2 (en) Method of controlling an output power of a charging device, a circuit, and a charging device
US10044204B2 (en) Power source adaptor for charging directly
US9667095B2 (en) Electronic apparatus
US20170040804A1 (en) DC-Charging Power Source Adaptor And Mobile Terminal
US9559596B2 (en) Ultra-low power converter
JP6277273B2 (ja) 動的電圧調整回路および方法
US10228793B2 (en) Management of common mode noise frequencies in portable electronic devices
US20170264204A1 (en) Power supply apparatus
US20140369085A1 (en) Power delivery device and control method of the same
US20160111963A1 (en) Switching converter and control circuit thereof, current sensing method, ac/dc converter, and power adaptor and electronic devices
US9444348B2 (en) Electronic apparatus and power controlling method thereof
TWM574786U (zh) 電力轉換器及一次控制器
US10491039B2 (en) Power transfer circuit and method utilizing power capability proclamation to transfer electrical power to charger
US20160181934A1 (en) Insulated synchronous rectification dc/dc converter
JP2011182538A (ja) 充電装置および充電システム
WO2010125751A1 (ja) スイッチング電源装置
US20160056724A1 (en) Switching Power Supplies And Methods Of Operating Switching Power Supplies
JP6520412B2 (ja) 電子機器、電源制御装置、および電源システム
US20240072573A1 (en) Wireless Power System With Voltage Regulation
US20140164796A1 (en) Systems and methods for providing improved power backup for desktop computers
TWI502874B (zh) 電子裝置及其電源轉接器以及電源轉接器的操作方法
TW201427236A (zh) 電子裝置及其電源供應方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: COMPAL ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIH, WEI-CHIH;LIN, YI-HSUN;REEL/FRAME:032056/0695

Effective date: 20131218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION