US20140147442A1 - Use of il-23 antagonists for treatment of infection - Google Patents
Use of il-23 antagonists for treatment of infection Download PDFInfo
- Publication number
- US20140147442A1 US20140147442A1 US14/065,171 US201314065171A US2014147442A1 US 20140147442 A1 US20140147442 A1 US 20140147442A1 US 201314065171 A US201314065171 A US 201314065171A US 2014147442 A1 US2014147442 A1 US 2014147442A1
- Authority
- US
- United States
- Prior art keywords
- infection
- cells
- antibody
- antagonist
- mice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000015181 infectious disease Diseases 0.000 title claims abstract description 131
- 239000005557 antagonist Substances 0.000 title claims abstract description 127
- 238000011282 treatment Methods 0.000 title abstract description 57
- 108010065637 Interleukin-23 Proteins 0.000 claims abstract description 275
- 238000000034 method Methods 0.000 claims abstract description 83
- 208000031888 Mycoses Diseases 0.000 claims abstract description 50
- 206010017533 Fungal infection Diseases 0.000 claims abstract description 45
- 208000036142 Viral infection Diseases 0.000 claims abstract description 19
- 102000013691 Interleukin-17 Human genes 0.000 claims description 132
- 108050003558 Interleukin-17 Proteins 0.000 claims description 132
- 108010074328 Interferon-gamma Proteins 0.000 claims description 62
- 102100037850 Interferon gamma Human genes 0.000 claims description 60
- 102100036672 Interleukin-23 receptor Human genes 0.000 claims description 60
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 50
- 238000009739 binding Methods 0.000 claims description 49
- 108040001844 interleukin-23 receptor activity proteins Proteins 0.000 claims description 45
- 241000222122 Candida albicans Species 0.000 claims description 33
- 239000000427 antigen Substances 0.000 claims description 25
- 108091007433 antigens Proteins 0.000 claims description 25
- 102000036639 antigens Human genes 0.000 claims description 25
- 239000012634 fragment Substances 0.000 claims description 25
- 206010007134 Candida infections Diseases 0.000 claims description 23
- 201000003984 candidiasis Diseases 0.000 claims description 23
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 108020004707 nucleic acids Proteins 0.000 claims description 18
- 102000039446 nucleic acids Human genes 0.000 claims description 18
- 208000037581 Persistent Infection Diseases 0.000 claims description 17
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 16
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 16
- 102100036705 Interleukin-23 subunit alpha Human genes 0.000 claims description 15
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 15
- 206010062207 Mycobacterial infection Diseases 0.000 claims description 14
- 108020004459 Small interfering RNA Proteins 0.000 claims description 14
- 208000027531 mycobacterial infectious disease Diseases 0.000 claims description 14
- 230000009385 viral infection Effects 0.000 claims description 13
- 208000035143 Bacterial infection Diseases 0.000 claims description 11
- 241000221204 Cryptococcus neoformans Species 0.000 claims description 11
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 11
- 201000002909 Aspergillosis Diseases 0.000 claims description 10
- 208000036641 Aspergillus infections Diseases 0.000 claims description 10
- 201000007336 Cryptococcosis Diseases 0.000 claims description 9
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 9
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 9
- 108010076561 Interleukin-23 Subunit p19 Proteins 0.000 claims description 9
- 108090001005 Interleukin-6 Proteins 0.000 claims description 8
- 102000004889 Interleukin-6 Human genes 0.000 claims description 8
- 230000000692 anti-sense effect Effects 0.000 claims description 6
- 241000700605 Viruses Species 0.000 claims description 4
- 230000001010 compromised effect Effects 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 208000010195 Onychomycosis Diseases 0.000 claims description 2
- 201000005882 tinea unguium Diseases 0.000 claims description 2
- 230000029662 T-helper 1 type immune response Effects 0.000 claims 3
- 102000013264 Interleukin-23 Human genes 0.000 abstract description 268
- 239000000203 mixture Substances 0.000 abstract description 48
- 230000001580 bacterial effect Effects 0.000 abstract description 16
- 230000001684 chronic effect Effects 0.000 abstract description 10
- 230000003612 virological effect Effects 0.000 abstract description 9
- 229940124829 interleukin-23 Drugs 0.000 description 267
- 210000004027 cell Anatomy 0.000 description 140
- 241000699670 Mus sp. Species 0.000 description 110
- 102000013462 Interleukin-12 Human genes 0.000 description 94
- 108010065805 Interleukin-12 Proteins 0.000 description 94
- 102000004127 Cytokines Human genes 0.000 description 63
- 108090000695 Cytokines Proteins 0.000 description 63
- 230000000694 effects Effects 0.000 description 58
- 102000005962 receptors Human genes 0.000 description 52
- 108020003175 receptors Proteins 0.000 description 52
- 210000003622 mature neutrocyte Anatomy 0.000 description 47
- 230000002538 fungal effect Effects 0.000 description 38
- 108090000623 proteins and genes Proteins 0.000 description 36
- 239000003814 drug Substances 0.000 description 35
- 230000014509 gene expression Effects 0.000 description 35
- 238000011740 C57BL/6 mouse Methods 0.000 description 31
- 230000001965 increasing effect Effects 0.000 description 31
- 230000004044 response Effects 0.000 description 31
- 239000003795 chemical substances by application Substances 0.000 description 29
- 238000002474 experimental method Methods 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 28
- 230000037361 pathway Effects 0.000 description 28
- 239000003446 ligand Substances 0.000 description 27
- 241000233866 Fungi Species 0.000 description 26
- 230000004054 inflammatory process Effects 0.000 description 26
- 108090000765 processed proteins & peptides Proteins 0.000 description 26
- 206010061218 Inflammation Diseases 0.000 description 25
- 230000002757 inflammatory effect Effects 0.000 description 24
- 102000004169 proteins and genes Human genes 0.000 description 24
- 201000008827 tuberculosis Diseases 0.000 description 24
- 210000000068 Th17 cell Anatomy 0.000 description 22
- 230000012010 growth Effects 0.000 description 21
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 20
- 230000004913 activation Effects 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 19
- 229940124597 therapeutic agent Drugs 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 18
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 description 18
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 description 18
- 230000003704 interleukin-23 production Effects 0.000 description 18
- 210000000056 organ Anatomy 0.000 description 18
- 101000980920 Homo sapiens Cyclin-dependent kinase 4 inhibitor D Proteins 0.000 description 17
- 101000980932 Homo sapiens Cyclin-dependent kinase inhibitor 2A Proteins 0.000 description 17
- 101000733249 Homo sapiens Tumor suppressor ARF Proteins 0.000 description 17
- 101000983859 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Lipoprotein LpqH Proteins 0.000 description 17
- 101000652566 Tetrahymena thermophila (strain SB210) Telomerase-associated protein of 19 kDa Proteins 0.000 description 17
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 17
- 230000001419 dependent effect Effects 0.000 description 17
- 230000036039 immunity Effects 0.000 description 17
- 101710195550 Interleukin-23 receptor Proteins 0.000 description 16
- 229940121375 antifungal agent Drugs 0.000 description 16
- 239000012636 effector Substances 0.000 description 16
- 210000004072 lung Anatomy 0.000 description 16
- 230000004083 survival effect Effects 0.000 description 16
- 230000006870 function Effects 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 230000005764 inhibitory process Effects 0.000 description 14
- 239000004055 small Interfering RNA Substances 0.000 description 14
- 230000000843 anti-fungal effect Effects 0.000 description 13
- 108020004999 messenger RNA Proteins 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 13
- 150000003384 small molecules Chemical class 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 241000228212 Aspergillus Species 0.000 description 12
- 239000000556 agonist Substances 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 230000024949 interleukin-17 production Effects 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 230000003393 splenic effect Effects 0.000 description 12
- 108090000663 Annexin A1 Proteins 0.000 description 11
- 238000002965 ELISA Methods 0.000 description 11
- 241000711549 Hepacivirus C Species 0.000 description 11
- 102100030698 Interleukin-12 subunit alpha Human genes 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 208000030507 AIDS Diseases 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 230000002950 deficient Effects 0.000 description 10
- 210000002784 stomach Anatomy 0.000 description 10
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 9
- 244000053095 fungal pathogen Species 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 230000003472 neutralizing effect Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 241001225321 Aspergillus fumigatus Species 0.000 description 8
- 208000008818 Chronic Mucocutaneous Candidiasis Diseases 0.000 description 8
- 206010028080 Mucocutaneous candidiasis Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 230000002085 persistent effect Effects 0.000 description 8
- 230000023794 response to fungus Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 241000701806 Human papillomavirus Species 0.000 description 7
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 description 7
- 101710103841 Interleukin-12 receptor subunit beta-1 Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 210000000447 Th1 cell Anatomy 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000008485 antagonism Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000012228 culture supernatant Substances 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 7
- 230000000855 fungicidal effect Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 230000003834 intracellular effect Effects 0.000 description 7
- 238000001990 intravenous administration Methods 0.000 description 7
- 239000013641 positive control Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 238000010561 standard procedure Methods 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 208000031886 HIV Infections Diseases 0.000 description 6
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 102100020792 Interleukin-12 receptor subunit beta-2 Human genes 0.000 description 6
- 101710103840 Interleukin-12 receptor subunit beta-2 Proteins 0.000 description 6
- 102100035018 Interleukin-17 receptor A Human genes 0.000 description 6
- 101710186083 Interleukin-17 receptor A Proteins 0.000 description 6
- 102100035012 Interleukin-17 receptor C Human genes 0.000 description 6
- 101710186068 Interleukin-17 receptor C Proteins 0.000 description 6
- 108090000978 Interleukin-4 Proteins 0.000 description 6
- 102000001776 Matrix metalloproteinase-9 Human genes 0.000 description 6
- 239000003429 antifungal agent Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000020411 cell activation Effects 0.000 description 6
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 6
- 230000007123 defense Effects 0.000 description 6
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 210000001165 lymph node Anatomy 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000007170 pathology Effects 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 208000035473 Communicable disease Diseases 0.000 description 5
- 208000037357 HIV infectious disease Diseases 0.000 description 5
- 102100022297 Integrin alpha-X Human genes 0.000 description 5
- 108010047761 Interferon-alpha Proteins 0.000 description 5
- 102000006992 Interferon-alpha Human genes 0.000 description 5
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 description 5
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 description 5
- 241000186366 Mycobacterium bovis Species 0.000 description 5
- -1 Val Chemical compound 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000004599 antimicrobial Substances 0.000 description 5
- 239000003443 antiviral agent Substances 0.000 description 5
- 238000004166 bioassay Methods 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000003071 memory t lymphocyte Anatomy 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 4
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 108010020326 Caspofungin Chemical class 0.000 description 4
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 238000011510 Elispot assay Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241000700721 Hepatitis B virus Species 0.000 description 4
- 206010061598 Immunodeficiency Diseases 0.000 description 4
- 108010017515 Interleukin-12 Receptors Proteins 0.000 description 4
- 102000004560 Interleukin-12 Receptors Human genes 0.000 description 4
- 241000186362 Mycobacterium leprae Species 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 4
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229920000392 Zymosan Polymers 0.000 description 4
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 4
- 229960003942 amphotericin b Drugs 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 4
- 229960004884 fluconazole Drugs 0.000 description 4
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 4
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 4
- 229960004413 flucytosine Drugs 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 230000019734 interleukin-12 production Effects 0.000 description 4
- 210000005087 mononuclear cell Anatomy 0.000 description 4
- 230000010807 negative regulation of binding Effects 0.000 description 4
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 4
- 229960001699 ofloxacin Drugs 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000002035 prolonged effect Effects 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 230000033631 response to yeast Effects 0.000 description 4
- 238000003757 reverse transcription PCR Methods 0.000 description 4
- 229960000329 ribavirin Drugs 0.000 description 4
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 208000020884 susceptibility to aspergillosis Diseases 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 229960002555 zidovudine Drugs 0.000 description 4
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101000853012 Homo sapiens Interleukin-23 receptor Proteins 0.000 description 3
- 101000595548 Homo sapiens TIR domain-containing adapter molecule 1 Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 208000019693 Lung disease Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 3
- 201000009906 Meningitis Diseases 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 3
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 3
- 102100036073 TIR domain-containing adapter molecule 1 Human genes 0.000 description 3
- 108010059993 Vancomycin Proteins 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 230000003042 antagnostic effect Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 229940091771 aspergillus fumigatus Drugs 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 229940095731 candida albicans Drugs 0.000 description 3
- 230000024245 cell differentiation Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 229960003405 ciprofloxacin Drugs 0.000 description 3
- 230000001332 colony forming effect Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000008482 dysregulation Effects 0.000 description 3
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 3
- 229960000285 ethambutol Drugs 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- 238000012226 gene silencing method Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229950000038 interferon alfa Drugs 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 229960003350 isoniazid Drugs 0.000 description 3
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 3
- 229960004130 itraconazole Drugs 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 239000011325 microbead Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229960005206 pyrazinamide Drugs 0.000 description 3
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 3
- 229960001225 rifampicin Drugs 0.000 description 3
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 229960003165 vancomycin Drugs 0.000 description 3
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- 230000001018 virulence Effects 0.000 description 3
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 3
- 229960004740 voriconazole Drugs 0.000 description 3
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 2
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 2
- MQHLMHIZUIDKOO-OKZBNKHCSA-N (2R,6S)-2,6-dimethyl-4-[(2S)-2-methyl-3-[4-(2-methylbutan-2-yl)phenyl]propyl]morpholine Chemical compound C1=CC(C(C)(C)CC)=CC=C1C[C@H](C)CN1C[C@@H](C)O[C@@H](C)C1 MQHLMHIZUIDKOO-OKZBNKHCSA-N 0.000 description 2
- AFNXATANNDIXLG-SFHVURJKSA-N 1-[(2r)-2-[(4-chlorophenyl)methylsulfanyl]-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound C1=CC(Cl)=CC=C1CS[C@H](C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 AFNXATANNDIXLG-SFHVURJKSA-N 0.000 description 2
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 2
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- HZLHRDBTVSZCBS-UVJJDBRNSA-N 4-[(e)-(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-2-methylaniline;hydrochloride Chemical compound Cl.C1=CC(=N)C(C)=C\C1=C(C=1C=C(C)C(N)=CC=1)/C1=CC=C(N)C=C1 HZLHRDBTVSZCBS-UVJJDBRNSA-N 0.000 description 2
- DCGOMTSIZLGUOK-UHFFFAOYSA-N 6-[imidazol-1-yl(phenyl)methyl]-2-methyl-1h-benzimidazole Chemical compound C1=C2NC(C)=NC2=CC=C1C(N1C=NC=C1)C1=CC=CC=C1 DCGOMTSIZLGUOK-UHFFFAOYSA-N 0.000 description 2
- 206010000349 Acanthosis Diseases 0.000 description 2
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 2
- 108010064760 Anidulafungin Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 241000589562 Brucella Species 0.000 description 2
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 2
- 244000197813 Camelina sativa Species 0.000 description 2
- 241000222173 Candida parapsilosis Species 0.000 description 2
- 241000222178 Candida tropicalis Species 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 241001508813 Clavispora lusitaniae Species 0.000 description 2
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 2
- 241000223205 Coccidioides immitis Species 0.000 description 2
- 241001477872 Cornus rugosa Species 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- QFVAWNPSRQWSDU-UHFFFAOYSA-N Dibenzthion Chemical compound C1N(CC=2C=CC=CC=2)C(=S)SCN1CC1=CC=CC=C1 QFVAWNPSRQWSDU-UHFFFAOYSA-N 0.000 description 2
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 2
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 2
- 108010049047 Echinocandins Proteins 0.000 description 2
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 101710154643 Filamentous hemagglutinin Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 206010017964 Gastrointestinal infection Diseases 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 2
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 2
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 2
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 2
- 101000852980 Homo sapiens Interleukin-23 subunit alpha Proteins 0.000 description 2
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 102100022338 Integrin alpha-M Human genes 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 2
- 102000014154 Interleukin-12 Subunit p35 Human genes 0.000 description 2
- 108010011301 Interleukin-12 Subunit p35 Proteins 0.000 description 2
- 108090000176 Interleukin-13 Proteins 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- 239000012480 LAL reagent Substances 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241000235048 Meyerozyma guilliermondii Species 0.000 description 2
- 108010021062 Micafungin Proteins 0.000 description 2
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 2
- 208000007027 Oral Candidiasis Diseases 0.000 description 2
- JNTOCHDNEULJHD-UHFFFAOYSA-N Penciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(CCC(CO)CO)C=N2 JNTOCHDNEULJHD-UHFFFAOYSA-N 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 241000235645 Pichia kudriavzevii Species 0.000 description 2
- NCXMLFZGDNKEPB-UHFFFAOYSA-N Pimaricin Chemical class OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCC(C)OC(=O)C=CC2OC2CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 NCXMLFZGDNKEPB-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010010974 Proteolipids Proteins 0.000 description 2
- 102000016202 Proteolipids Human genes 0.000 description 2
- 240000005384 Rhizopus oryzae Species 0.000 description 2
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 2
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 2
- 210000004241 Th2 cell Anatomy 0.000 description 2
- 102000002689 Toll-like receptor Human genes 0.000 description 2
- 108020000411 Toll-like receptor Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 241000287411 Turdidae Species 0.000 description 2
- HDOVUKNUBWVHOX-QMMMGPOBSA-N Valacyclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 HDOVUKNUBWVHOX-QMMMGPOBSA-N 0.000 description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 2
- 229960004748 abacavir Drugs 0.000 description 2
- MCGSCOLBFJQGHM-SCZZXKLOSA-N abacavir Chemical compound C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 MCGSCOLBFJQGHM-SCZZXKLOSA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 206010064930 age-related macular degeneration Diseases 0.000 description 2
- 229960003805 amantadine Drugs 0.000 description 2
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 2
- 229960005260 amiodarone Drugs 0.000 description 2
- 229960003204 amorolfine Drugs 0.000 description 2
- 229960001830 amprenavir Drugs 0.000 description 2
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 229960003348 anidulafungin Drugs 0.000 description 2
- JHVAMHSQVVQIOT-MFAJLEFUSA-N anidulafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@@H](C)O)[C@H](O)[C@@H](O)C=2C=CC(O)=CC=2)[C@@H](C)O)=O)C=C1 JHVAMHSQVVQIOT-MFAJLEFUSA-N 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002876 beta blocker Substances 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 229960002962 butenafine Drugs 0.000 description 2
- ABJKWBDEJIDSJZ-UHFFFAOYSA-N butenafine Chemical class C=1C=CC2=CC=CC=C2C=1CN(C)CC1=CC=C(C(C)(C)C)C=C1 ABJKWBDEJIDSJZ-UHFFFAOYSA-N 0.000 description 2
- 229960005074 butoconazole Drugs 0.000 description 2
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 2
- 229960003034 caspofungin Drugs 0.000 description 2
- JYIKNQVWKBUSNH-WVDDFWQHSA-N caspofungin Chemical class C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 JYIKNQVWKBUSNH-WVDDFWQHSA-N 0.000 description 2
- 229960000730 caspofungin acetate Drugs 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 229960003749 ciclopirox Drugs 0.000 description 2
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 2
- 208000035850 clinical syndrome Diseases 0.000 description 2
- 229960005228 clioquinol Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229960004022 clotrimazole Drugs 0.000 description 2
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 206010009887 colitis Diseases 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000037011 constitutive activity Effects 0.000 description 2
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 2
- 229960005319 delavirdine Drugs 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- HWOLQKJPMRZMEX-PJKMHFRUSA-N diazonio-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)-2-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]azanide Chemical compound O=C1NC(=O)C(C)=CN1[C@]1(N=[N+]=[N-])O[C@H](CO)[C@@H](O)C1 HWOLQKJPMRZMEX-PJKMHFRUSA-N 0.000 description 2
- 229960002656 didanosine Drugs 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 208000019836 digestive system infectious disease Diseases 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229960003913 econazole Drugs 0.000 description 2
- 229960003804 efavirenz Drugs 0.000 description 2
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229960004396 famciclovir Drugs 0.000 description 2
- GGXKWVWZWMLJEH-UHFFFAOYSA-N famcyclovir Chemical compound N1=C(N)N=C2N(CCC(COC(=O)C)COC(C)=O)C=NC2=C1 GGXKWVWZWMLJEH-UHFFFAOYSA-N 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000007804 gelatin zymography Methods 0.000 description 2
- 229960001235 gentian violet Drugs 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 229960002442 glucosamine Drugs 0.000 description 2
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 2
- 229960002867 griseofulvin Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000002650 immunosuppressive therapy Methods 0.000 description 2
- 229960001936 indinavir Drugs 0.000 description 2
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 230000031261 interleukin-10 production Effects 0.000 description 2
- 229960004125 ketoconazole Drugs 0.000 description 2
- 229960001627 lamivudine Drugs 0.000 description 2
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 2
- UGFHIPBXIWJXNA-UHFFFAOYSA-N liarozole Chemical compound ClC1=CC=CC(C(C=2C=C3NC=NC3=CC=2)N2C=NC=C2)=C1 UGFHIPBXIWJXNA-UHFFFAOYSA-N 0.000 description 2
- 229950007056 liarozole Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960002159 micafungin Drugs 0.000 description 2
- PIEUQSKUWLMALL-YABMTYFHSA-N micafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS(O)(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 PIEUQSKUWLMALL-YABMTYFHSA-N 0.000 description 2
- 229960002509 miconazole Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 229960004313 naftifine Drugs 0.000 description 2
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical class C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 2
- 229960003255 natamycin Drugs 0.000 description 2
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical class O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229960000884 nelfinavir Drugs 0.000 description 2
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 229960000689 nevirapine Drugs 0.000 description 2
- 229960000988 nystatin Drugs 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical class O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- 229960003752 oseltamivir Drugs 0.000 description 2
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical class C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229960003483 oxiconazole Drugs 0.000 description 2
- QRJJEGAJXVEBNE-MOHJPFBDSA-N oxiconazole Chemical compound ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)\CN1C=NC=C1 QRJJEGAJXVEBNE-MOHJPFBDSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229960001179 penciclovir Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229960001589 posaconazole Drugs 0.000 description 2
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 2
- 229960004839 potassium iodide Drugs 0.000 description 2
- 229940124606 potential therapeutic agent Drugs 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 229960000311 ritonavir Drugs 0.000 description 2
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 2
- 229960001852 saquinavir Drugs 0.000 description 2
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 229940001474 sodium thiosulfate Drugs 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229960001203 stavudine Drugs 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 229960002999 sulbentine Drugs 0.000 description 2
- 229960002607 sulconazole Drugs 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229960002722 terbinafine Drugs 0.000 description 2
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical class C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 2
- 229960000580 terconazole Drugs 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical class C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 2
- 150000003557 thiazoles Chemical class 0.000 description 2
- 229960004214 tioconazole Drugs 0.000 description 2
- 229960004880 tolnaftate Drugs 0.000 description 2
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229960001005 tuberculin Drugs 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 229940093257 valacyclovir Drugs 0.000 description 2
- OGUJBRYAAJYXQP-IJFZAWIJSA-N vuw370o5qe Chemical compound CC(O)=O.CC(O)=O.C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 OGUJBRYAAJYXQP-IJFZAWIJSA-N 0.000 description 2
- 229960000523 zalcitabine Drugs 0.000 description 2
- 229960001028 zanamivir Drugs 0.000 description 2
- ARAIBEBZBOPLMB-UFGQHTETSA-N zanamivir Chemical compound CC(=O)N[C@@H]1[C@@H](N=C(N)N)C=C(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO ARAIBEBZBOPLMB-UFGQHTETSA-N 0.000 description 2
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- GUXHBMASAHGULD-SEYHBJAFSA-N (4s,4as,5as,6s,12ar)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1([C@H]2O)=C(Cl)C=CC(O)=C1C(O)=C1[C@@H]2C[C@H]2[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]2(O)C1=O GUXHBMASAHGULD-SEYHBJAFSA-N 0.000 description 1
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- 241000235389 Absidia Species 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241000588626 Acinetobacter baumannii Species 0.000 description 1
- 241000186046 Actinomyces Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000606749 Aggregatibacter actinomycetemcomitans Species 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000605281 Anaplasma phagocytophilum Species 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 241000228197 Aspergillus flavus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 241000122818 Aspergillus ustus Species 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 206010064539 Autoimmune myocarditis Diseases 0.000 description 1
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 1
- 102100036465 Autoimmune regulator Human genes 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 1
- 241000606124 Bacteroides fragilis Species 0.000 description 1
- 241001148536 Bacteroides sp. Species 0.000 description 1
- 241001518086 Bartonella henselae Species 0.000 description 1
- 241000186016 Bifidobacterium bifidum Species 0.000 description 1
- 241000212384 Bifora Species 0.000 description 1
- 241000228405 Blastomyces dermatitidis Species 0.000 description 1
- 206010005098 Blastomycosis Diseases 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000180135 Borrelia recurrentis Species 0.000 description 1
- 241000589969 Borreliella burgdorferi Species 0.000 description 1
- 206010006473 Bronchopulmonary aspergillosis Diseases 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 241001136175 Burkholderia pseudomallei Species 0.000 description 1
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000190890 Capnocytophaga Species 0.000 description 1
- 241000207210 Cardiobacterium hominis Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241001647378 Chlamydia psittaci Species 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000949031 Citrobacter rodentium Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241000193449 Clostridium tetani Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 241000606678 Coxiella burnetii Species 0.000 description 1
- 241000235555 Cunninghamella Species 0.000 description 1
- 241000186427 Cutibacterium acnes Species 0.000 description 1
- 102000003910 Cyclin D Human genes 0.000 description 1
- 108090000259 Cyclin D Proteins 0.000 description 1
- FMTDIUIBLCQGJB-UHFFFAOYSA-N Demethylchlortetracyclin Natural products C1C2C(O)C3=C(Cl)C=CC(O)=C3C(=O)C2=C(O)C2(O)C1C(N(C)C)C(O)=C(C(N)=O)C2=O FMTDIUIBLCQGJB-UHFFFAOYSA-N 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000605310 Ehrlichia chaffeensis Species 0.000 description 1
- 241000588878 Eikenella corrodens Species 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000186810 Erysipelothrix rhusiopathiae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000589565 Flavobacterium Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 241000233732 Fusarium verticillioides Species 0.000 description 1
- 241000605909 Fusobacterium Species 0.000 description 1
- 102000013382 Gelatinases Human genes 0.000 description 1
- 108010026132 Gelatinases Proteins 0.000 description 1
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 1
- 229940124683 HCV polymerase inhibitor Drugs 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 241001453258 Helicobacter hepaticus Species 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000000616 Hemoptysis Diseases 0.000 description 1
- 241000228404 Histoplasma capsulatum Species 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000928549 Homo sapiens Autoimmune regulator Proteins 0.000 description 1
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 206010020429 Human ehrlichiosis Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 229940126060 IL-17A antagonist Drugs 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010017525 Interleukin-17 Receptors Proteins 0.000 description 1
- 102000004554 Interleukin-17 Receptors Human genes 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 208000037026 Invasive Fungal Infections Diseases 0.000 description 1
- 101150009057 JAK2 gene Proteins 0.000 description 1
- 241000589014 Kingella kingae Species 0.000 description 1
- 241001534216 Klebsiella granulomatis Species 0.000 description 1
- 206010061259 Klebsiella infection Diseases 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 241000589902 Leptospira Species 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 241000132887 Lomentospora prolificans Species 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 241000203736 Mobiluncus Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 101000773238 Mus musculus Actin, cytoplasmic 2 Proteins 0.000 description 1
- 101000853010 Mus musculus Interleukin-23 receptor Proteins 0.000 description 1
- 101000852978 Mus musculus Interleukin-23 subunit alpha Proteins 0.000 description 1
- 101001065556 Mus musculus Lymphocyte antigen 6G Proteins 0.000 description 1
- 101001099463 Mus musculus Myeloperoxidase Proteins 0.000 description 1
- 241001467553 Mycobacterium africanum Species 0.000 description 1
- 241000187474 Mycobacterium asiaticum Species 0.000 description 1
- 241000513886 Mycobacterium avium complex (MAC) Species 0.000 description 1
- 241000187482 Mycobacterium avium subsp. paratuberculosis Species 0.000 description 1
- 241000187478 Mycobacterium chelonae Species 0.000 description 1
- 241000186365 Mycobacterium fortuitum Species 0.000 description 1
- 241000187484 Mycobacterium gordonae Species 0.000 description 1
- 241001147828 Mycobacterium haemophilum Species 0.000 description 1
- 241000186364 Mycobacterium intracellulare Species 0.000 description 1
- 241000186363 Mycobacterium kansasii Species 0.000 description 1
- 241001248583 Mycobacterium lentiflavum Species 0.000 description 1
- 241000187493 Mycobacterium malmoense Species 0.000 description 1
- 241000187492 Mycobacterium marinum Species 0.000 description 1
- 241000187919 Mycobacterium microti Species 0.000 description 1
- 241000187481 Mycobacterium phlei Species 0.000 description 1
- 241000089536 Mycobacterium pseudoshottsii Species 0.000 description 1
- 241000187490 Mycobacterium scrofulaceum Species 0.000 description 1
- 241000919916 Mycobacterium shottsii Species 0.000 description 1
- 241000187480 Mycobacterium smegmatis Species 0.000 description 1
- 241000218972 Mycobacterium triplex Species 0.000 description 1
- 241000187917 Mycobacterium ulcerans Species 0.000 description 1
- 241000187494 Mycobacterium xenopi Species 0.000 description 1
- 102100038610 Myeloperoxidase Human genes 0.000 description 1
- 108090000235 Myeloperoxidases Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 206010030154 Oesophageal candidiasis Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000606693 Orientia tsutsugamushi Species 0.000 description 1
- 102100034574 P protein Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 208000009608 Papillomavirus Infections Diseases 0.000 description 1
- 208000005775 Parakeratosis Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241000606856 Pasteurella multocida Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 206010064458 Penicilliosis Diseases 0.000 description 1
- 241000191992 Peptostreptococcus Species 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000606999 Plesiomonas shigelloides Species 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 108010015724 Prephenate Dehydratase Proteins 0.000 description 1
- 241000605861 Prevotella Species 0.000 description 1
- 102000015537 Protein Kinase C-alpha Human genes 0.000 description 1
- 108010050276 Protein Kinase C-alpha Proteins 0.000 description 1
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 208000004430 Pulmonary Aspergillosis Diseases 0.000 description 1
- 208000029464 Pulmonary infiltrates Diseases 0.000 description 1
- 101710185720 Putative ethidium bromide resistance protein Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 108091008778 RORγ2 Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 244000097202 Rathbunia alamosensis Species 0.000 description 1
- 235000009776 Rathbunia alamosensis Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000235402 Rhizomucor Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 241000158504 Rhodococcus hoagii Species 0.000 description 1
- 241000606695 Rickettsia rickettsii Species 0.000 description 1
- 101150099493 STAT3 gene Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 1
- 241001222774 Salmonella enterica subsp. enterica serovar Minnesota Species 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 241000132889 Scedosporium Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 239000004187 Spiramycin Substances 0.000 description 1
- 241000605008 Spirillum Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 208000010513 Stupor Diseases 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- PJSFRIWCGOHTNF-UHFFFAOYSA-N Sulphormetoxin Chemical compound COC1=NC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1OC PJSFRIWCGOHTNF-UHFFFAOYSA-N 0.000 description 1
- 108700027337 Suppressor of Cytokine Signaling 3 Proteins 0.000 description 1
- 102100024283 Suppressor of cytokine signaling 3 Human genes 0.000 description 1
- 230000030429 T-helper 17 type immune response Effects 0.000 description 1
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 1
- 241001523006 Talaromyces marneffei Species 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- 240000007591 Tilia tomentosa Species 0.000 description 1
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 241000589884 Treponema pallidum Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241001148134 Veillonella Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 1
- 241000607265 Vibrio vulnificus Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 201000007096 Vulvovaginal Candidiasis Diseases 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 206010061418 Zygomycosis Diseases 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 241000606834 [Haemophilus] ducreyi Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960000919 alatrofloxacin Drugs 0.000 description 1
- UUZPPAMZDFLUHD-VUJLHGSVSA-N alatrofloxacin Chemical compound C([C@@H]1[C@H]([C@@H]1C1)NC(=O)[C@H](C)NC(=O)[C@@H](N)C)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F UUZPPAMZDFLUHD-VUJLHGSVSA-N 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 238000011483 antifungal activity assay Methods 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000009771 autoimmune polyendocrine syndrome type 1 Diseases 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 229960000794 baclofen Drugs 0.000 description 1
- 229940092524 bartonella henselae Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 208000036815 beta tubulin Diseases 0.000 description 1
- 229940002008 bifidobacterium bifidum Drugs 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 101150113535 chek1 gene Proteins 0.000 description 1
- MYPYJXKWCTUITO-KIIOPKALSA-N chembl3301825 Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)C(O)[C@H](C)O1 MYPYJXKWCTUITO-KIIOPKALSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 229960004621 cinoxacin Drugs 0.000 description 1
- VDUWPHTZYNWKRN-UHFFFAOYSA-N cinoxacin Chemical compound C1=C2N(CC)N=C(C(O)=O)C(=O)C2=CC2=C1OCO2 VDUWPHTZYNWKRN-UHFFFAOYSA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960004287 clofazimine Drugs 0.000 description 1
- WDQPAMHFFCXSNU-BGABXYSRSA-N clofazimine Chemical compound C12=CC=CC=C2N=C2C=C(NC=3C=CC(Cl)=CC=3)C(=N/C(C)C)/C=C2N1C1=CC=C(Cl)C=C1 WDQPAMHFFCXSNU-BGABXYSRSA-N 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 201000003486 coccidioidomycosis Diseases 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229960002398 demeclocycline Drugs 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 229960004100 dirithromycin Drugs 0.000 description 1
- WLOHNSSYAXHWNR-NXPDYKKBSA-N dirithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H]2O[C@H](COCCOC)N[C@H]([C@@H]2C)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 WLOHNSSYAXHWNR-NXPDYKKBSA-N 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 201000005655 esophageal candidiasis Diseases 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000012638 fungal effector Substances 0.000 description 1
- 229960001625 furazolidone Drugs 0.000 description 1
- PLHJDBGFXBMTGZ-WEVVVXLNSA-N furazolidone Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)OCC1 PLHJDBGFXBMTGZ-WEVVVXLNSA-N 0.000 description 1
- 238000011902 gastrointestinal surgery Methods 0.000 description 1
- 230000000477 gelanolytic effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229960000642 grepafloxacin Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008938 immune dysregulation Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000007365 immunoregulation Effects 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 108040001304 interleukin-17 receptor activity proteins Proteins 0.000 description 1
- 102000053460 interleukin-17 receptor activity proteins Human genes 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- 239000002555 ionophore Substances 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IDIIJJHBXUESQI-DFIJPDEKSA-N moxifloxacin hydrochloride Chemical compound Cl.COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 IDIIJJHBXUESQI-DFIJPDEKSA-N 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- WIDKTXGNSOORHA-CJHXQPGBSA-N n,n'-dibenzylethane-1,2-diamine;(2s,5r,6r)-3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;tetrahydrate Chemical compound O.O.O.O.C=1C=CC=CC=1CNCCNCC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 WIDKTXGNSOORHA-CJHXQPGBSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 description 1
- 229960000564 nitrofurantoin Drugs 0.000 description 1
- 230000001937 non-anti-biotic effect Effects 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 230000000803 paradoxical effect Effects 0.000 description 1
- 229940051027 pasteurella multocida Drugs 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108010092853 peginterferon alfa-2a Proteins 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000000079 pharmacotherapeutic effect Effects 0.000 description 1
- 208000001297 phlebitis Diseases 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000008560 physiological behavior Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002516 postimmunization Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940055019 propionibacterium acne Drugs 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000012755 real-time RT-PCR analysis Methods 0.000 description 1
- 238000001525 receptor binding assay Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229940075118 rickettsia rickettsii Drugs 0.000 description 1
- 229960000885 rifabutin Drugs 0.000 description 1
- 229960002599 rifapentine Drugs 0.000 description 1
- WDZCUPBHRAEYDL-GZAUEHORSA-N rifapentine Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N(CC1)CCN1C1CCCC1 WDZCUPBHRAEYDL-GZAUEHORSA-N 0.000 description 1
- 210000005163 right hepatic lobe Anatomy 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229960004954 sparfloxacin Drugs 0.000 description 1
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 1
- 229960001294 spiramycin Drugs 0.000 description 1
- 235000019372 spiramycin Nutrition 0.000 description 1
- 229930191512 spiramycin Natural products 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- PBCZLFBEBARBBI-UHFFFAOYSA-N sulfabenzamide Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC(=O)C1=CC=CC=C1 PBCZLFBEBARBBI-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- QPPBRPIAZZHUNT-UHFFFAOYSA-N sulfamerazine Chemical compound CC1=CC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 QPPBRPIAZZHUNT-UHFFFAOYSA-N 0.000 description 1
- 229960002597 sulfamerazine Drugs 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- GECHUMIMRBOMGK-UHFFFAOYSA-N sulfapyridine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=CC=CC=N1 GECHUMIMRBOMGK-UHFFFAOYSA-N 0.000 description 1
- 229960002211 sulfapyridine Drugs 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000008427 tissue turnover Effects 0.000 description 1
- 230000003614 tolerogenic effect Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000023750 transforming growth factor beta production Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 229960000497 trovafloxacin Drugs 0.000 description 1
- WVPSKSLAZQPAKQ-CDMJZVDBSA-N trovafloxacin Chemical compound C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F WVPSKSLAZQPAKQ-CDMJZVDBSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 229940023147 viral vector vaccine Drugs 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000011816 wild-type C57Bl6 mouse Methods 0.000 description 1
- 229940098232 yersinia enterocolitica Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
Definitions
- the present invention relates generally to treatment of infections. Specifically, the invention relates to administration of antagonist of IL-23, e.g. antibodies, to subjects exhibiting infections, such as chronic bacterial, fungal or viral infections.
- antagonist of IL-23 e.g. antibodies
- a number of pathogens cause chronic infections.
- Major fungal pathogens include Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans , with estimated annual incidence for invasive mycoses involving these pathogens of 72-228 (for Candida species), 12-34 (for Aspergillus species) and 30-66 (for C. neoformans ) infections per million population in the United States. Pfaller et al. (2006) Clin. Infect. Dis. 43:S3-14.
- the rise in fungal infections is primarily due to the increasing number of immuno-compromised patients as a result of medical advances (transplantation and chemotherapy), and as a result of the increasing population of AIDS patients.
- Cryptococcosis is the second most prevalent fungal infection in AIDS patients following candidiasis. Aspergillosis is responsible for at least 30% of the infections in cancer and organ transplant patients and has a high mortality rate.
- fluconazole Although fluconazole has been an effective drug against fungal pathogens for a number of years, resistance is increasing. Alternatives such as amphotericin B have serious drawbacks, including such side effects as fever, kidney damage, anemia, low blood pressure, headache, nausea, vomiting and phlebitis.
- Immune compromised individuals include the elderly, transplant recipients, chemotherapy patients, and individuals with acquired immune deficiency syndrome (AIDS). Nearly two million patients in the United States get an infection in the hospital each year, and 70% of the bacteria responsible for those infections are resistant to at least one antibiotic.
- NIAID Fact Sheet “The Problem of Antimicrobial Resistance,” April 2006. In recent years, about 90,000 people in the United States die from infections, up from 13,300 in 1992. Although most bacterial infections remain susceptible to a prolonged course of therapy of at least one antibiotic (e.g. continuous intravenous administration of vancomycin), there is no guarantee that this will remain true with future pathogenic bacteria.
- Methicillin resistant Stapholococcus aureus is a prime example of a multiple-antibiotic-resistant microbe that represents a significant public health challenge.
- the Centers for Disease Control CDC
- Persistent bacterial pathogens also include Salmonella spp., Brucella spp. and Chlamydia spp.
- Mycobacteria are a diverse and widely distributed group of aerobic, nonsportulating, nonmotile bacilli that have a high cell-wall lipid content and a slow growth rate.
- Members of the genus Mycobacterium vary in virulence, e.g., from harmless to species with significant pathogenicity, for example, M. tuberculosis , the causative agent in tuberculosis (TB).
- TB is the second leading infectious cause of death in the world. It is estimated that about two billion people, or one third of the world's population, are infected with M. tuberculosis . Eight million new cases and nearly three million deaths occur annually.
- Chronic viral infections also represent a significant threat to public health. Failure to completely eradicate viral infections such as hepatitis C virus (HCV) or human immunodeficiency virus (HIV) can lead to subsequent reactivations and complications such as liver cancer or acquired immune deficiency syndrome (AIDS), respectively. Robertson & Hasenkrug (2006) Springer Semin. Immun. 28:51.
- human papillomavirus (HPV) genotypes 16, 18, 31, 33, 45, and 56 account for more than 95% of cases of cervical cancer. Berzofsky et al. (2004) J. Clin. Invest. 114:450. It is estimated that chronic infections arise in virtually 100% of cases of HIV infection, 55-85% of cases of HCV infection, and over 30% of cases of HPV. Berzofsky et al. (2004).
- the present invention meets these needs and more by providing compositions, medicaments and methods of using antagonists of IL-23 to combat bacterial, viral and fungal infections.
- the invention relates to methods of treatment of a subject having an infection, suspected of having an infection, or at risk of acquiring an infection, involving administration of an antagonist of IL-23.
- the antagonist is a binding compound, such as an antibody or binding fragment thereof, that binds to IL-23 or the p19 subunit thereof.
- the binding of the antibody blocks binding of IL-23 or its p19 subunit to the IL-23 receptor or the IL-23R subunit thereof.
- the antagonist of IL-23 binds to IL-23 receptor or the IL-23R subunit thereof.
- the invention relates to compositions for use in said methods of treatment.
- the infectious disorder comprises an infectious disease, such as a bacterial, mycobacterial, viral or fungal infection.
- the infectious disorder is a mycobacterial infection caused by M. bovis, M. leprae , or M. tuberculosis .
- the infectious disorder is TB.
- the infectious disorder is a fungal infection selected from the group consisting of onychomycosis, candidiasis, aspergillosis, cryptococcosis.
- the infectious disorder is a fungal infection caused by C. albicans (e.g. chronic mucocutaneous candidiasis, thrush), C. neoformans or A. fumigatus .
- the infectious disorder is a viral infection, e.g. a viral infection caused by human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) or human papillomavirus (HPV).
- HIV human immunodeficiency virus
- HBV hepatitis B virus
- HCV hepatitis C virus
- HPV human papillomavirus
- the infectious disorder is a chronic infection.
- the chronic infection has persisted, despite at least one previous attempt to resolve the infection, for 1, 2, 4, 6, 9, 12, 18, 24, 36 or 48 months or longer.
- the previous attempt to resolve the chronic infection involves treatment with antimicrobial agents, antibiotics, antiviral agents, or antifungal agents.
- the invention relates to combination therapy combining administration of an antagonist of IL-23 with at least one other therapeutic modality, such as another therapeutic agent.
- the other therapeutic agent is an IL-17A antagonist, an IL-17F antagonist, an IL-12 agonist (including IL-12), a TGF- ⁇ antagonist, or an IL-6 antagonist.
- the other therapeutic agent is one or more antifungal agent selected from the group consisting of posaconazole, fluconazole, voriconazole, itraconazole, ketoconazole, liarozole, irtemazol, clotrimazole, miconazole, econazole, butoconazole, oxiconazole, sulconazole, tioconazole, and terconazole, substituted thiazoles, thiadiazole, oxadiazole, caspofungin, amphotericin B, nystatin, pimaricin, flucytosine (5-fluorocytosine), naftifine, terbinafine, butenafine, thiocarbonate tolnaftate, griseofulvin, amiodarone, ciclopirox, sulbentine, amorolfine, clioquinol, gentian violet, potassium iodide, sodium thios
- the other therapeutic agent is one or more antimicrobial agent selected from the group consisting of isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, ciprofloxacin, vancomycin or ofloxacin.
- the other therapeutic agent is one or more antiviral agent selected from the group consisting of abacavir, acyclovir, amantadine, amprenavir, delavirdine, didanosine, efavirenz, famciclovir, indinavir, an interferon alfa (IFN- ⁇ ), ribavirin, lamivudine, nelfinavir, nevirapine, oseltamivir, penciclovir, ribavirin, ritonavir, saquinavir, stavudine, valacyclovir, zalcitabine, zanamivir, zidovudine (azidodeoxythymidine, AZT).
- abacavir acyclovir
- amantadine amprenavir
- delavirdine didanosine
- efavirenz favirenz
- famciclovir indinavir
- the invention relates to methods of enhancing a type 1 (Th1) immune response in a subject having an infection or suspected of having an infection.
- enhancement of the Th1 response is reflected by an increase in the percentage of CD4 + T cells expressing IFN- ⁇ , a decrease in the percentage of CD4 + T cells expressing IL-17A, or both, when compared to the percentage of T cells prior to treatment with an antagonist of IL-23.
- the increase or decrease is 1.5-, 2-, 3-, 5-, 10-, 20-, 50-fold or more.
- the invention relates to compositions for use in said methods of enhancing a Th1 response.
- the other therapeutic agent is administered before, and/or concurrently with, and/or after administration of the antagonist of IL-23.
- an antagonist of IL-17A is administered before and/or concurrently with the antagonist of IL-23.
- an antimicrobial, antifungal or antiviral agent is administered concurrently with the antagonist of IL-23.
- the invention relates to methods of treatment of a subject having an infection, suspected of having an infection, or at risk of acquiring an infection, involving administration of antagonists of IL-17A and/or IL-17F, such as antagonistic antibodies to the cytokines themselves or to their respective receptors or receptor subunits.
- antagonists of IL-17A and/or IL-17F such as antagonistic antibodies to the cytokines themselves or to their respective receptors or receptor subunits.
- the antagonist of IL-23 comprises a polynucleotide.
- the polynucleotide is an antisense polynucleotide (e.g. antisense RNA) or a small interfering RNA (siRNA).
- the polynucleotide antagonist of IL-23 is delivered in gene therapy vector, such as an adenovirus, lentivirus, retrovirus or adenoassociated virus vector.
- the polynucleotide antagonist of IL-23 is delivered as a therapeutic agent.
- the antagonist of IL-23 comprises a soluble receptor polypeptide.
- the antagonist of IL-23 is a soluble fragment derived from the extracellular domain of IL-23R.
- the antagonist of IL-23 is an antibody or antigen binding fragment thereof.
- the antibody or antigen binding fragment thereof comprises a polyclonal antibody, a monoclonal antibody, a humanized antibody, a fully human antibody; an antibody fragment (e.g. Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′) 2 , and a diabody).
- the antagonist comprises a peptide mimetic of an antibody.
- the antibody or antigen binding fragment thereof is detectably labeled.
- the antagonist of IL-23 is an antibody, or antigen binding fragment thereof, that exhibits reduced complement activation, antibody-dependent cellular cytotoxicity (ADCC), or both.
- ADCC antibody-dependent cellular cytotoxicity
- the IL-23 antagonist antibody or fragment thereof with reduced effector function is an anti-IL-23 receptor (e.g. anti-IL-23R) antibody or fragment.
- the antibody with reduced effector function is an antibody fragment (e.g. Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′) 2 ), an IgG4, or has altered glycosylation.
- the invention relates to treatment of an infection, e.g. a chronic fungal, bacterial or viral infection, by administering an effective amount of a bispecific antibody that binds specifically to any two proteins selected from the group consisting of IL-23p19, IL-23R, IL-17A, IL-17F, IL-17RA, IL-17RC, IL-6 and TGF- ⁇ .
- a bispecific antibody that binds specifically to any two proteins selected from the group consisting of IL-23p19, IL-23R, IL-17A, IL-17F, IL-17RA, IL-17RC, IL-6 and TGF- ⁇ .
- the proteins are human proteins.
- the antagonist of IL-23 is specific for IL-23 (or its receptor) and does not antagonize IL-12 (or its receptor).
- antagonism is measured by an in vitro binding assay (e.g. an ELISA) or by a bioassay (e.g. BaF3 cell proliferation or promotion of Th17 cell production).
- the ratio of the IC50 for inhibition of binding of IL-12 to its receptor to the IC50 for inhibition of binding of IL-23 to its receptor is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more.
- the methods and compositions of the present invention are used to treat TB, and the success of the treatment is measured by a reduction in bacterial burden.
- the mycobacterial burden is measured by a tuberculin test, a Mantoux test, or presence of mycobacterial DNA or RNA in a clinical sample.
- the subject having an infection has been previously treated for the infection with other methods or compositions.
- the previous treatment was not effective in eliminating infection.
- the subject having an infection, suspected of having an infection, or at risk of acquiring an infection is immunocompromised, e.g. as a result of AIDS, transplant or chemotherapy.
- the invention further encompasses use of antagonists of IL-23 in the manufacture of a medicament for the treatment of one or more infectious diseases selected from the group consisting of a fungal infection, a persistent fungal infection, candidiasis, chronic mucocutaneous candidiasis (CMC), aspergillosis, cryptococcosis, a viral infection, a persistent viral infection, HIV infection, HBV infection, HCV infection, a persistent bacterial infection, mycobacterial infection, M. tuberculosis infection, M. bovis infection, and M. leprae infection.
- the medicament may comprise one or more additional therapeutic agents.
- the medicament of the present invention may be used in conjunction with one or more other therapeutic agents.
- FIGS. 1A-1E show the results of experiments on the role of IL-23/IL-17-dependent pathway in susceptibility to candidiasis. Mice were injected intragastrically with 10 8 virulent Candida . Results are pooled from 3 experiments (6 mice per group per experiment).
- FIG. 1A shows percent (%) survival over time for p19 ⁇ / ⁇ , p35 ⁇ / ⁇ , p40 ⁇ / ⁇ and C57BL/6(WT) mice.
- FIG. 1B shows fungal growth (CFU) in the stomach three and ten days after the infection. Results were statistically different (p ⁇ 0.05, indicated by *) for p19 ⁇ / ⁇ , p35 ⁇ / ⁇ or p40 ⁇ / ⁇ mice when compared with C57BL/6 mice at both three and ten day timepoints.
- FIG. 1C shows p35 and p19 mRNA expression (one day after the infection) and IL-12 ⁇ 2R and IL-23R mRNA expression (three days after the infection) in MLN. mRNA expression was measured by real-time RT-PCR.
- FIG. 1D shows the frequencies of IFN- ⁇ -, IL-17- or IL-4-producing MLN CD4+ cells a week after the infection.
- the frequency of cytokine-producing cells was measured by ELISPOT assay, and values are the mean number of cytokine-producing cells ( ⁇ SE) per 10 5 cells.
- FIG. 1E shows the levels of inflammatory cytokines (IL-17, IL-23, IFN- ⁇ , IL-12) in the stomach homogenates three days after the infection. Cytokines were measured by ELISA (pg/ml).
- FIGS. 1C-1E differences were statistically significant (p ⁇ 0.05) when comparing infected (+) to uninfected ( ⁇ ) mice (*), and when comparing p19 ⁇ / ⁇ or p35 ⁇ / ⁇ mice to C57BL/6 mice (**), as indicated in the figures.
- FIGS. 2A and 2B show the results of experiments on the role of IL-23/IL-17-dependent pathway in susceptibility to aspergillosis. Mice were infected intranasally with 2 ⁇ 10 7 Aspergillus resting conidia. Results shown in FIGS. 2A and 2B are pooled from four experiments (six animals/group).
- FIG. 2A shows fungal growth (chitin content, expressed as ⁇ g glucosamine/organ) in the lung three days after the infection. Differences were statistically significant (p ⁇ 0.05) when comparing p19 ⁇ / ⁇ , p35 ⁇ / ⁇ or p40 ⁇ / ⁇ mice to C57BL/6 mice (*).
- FIG. 2B shows p35/p19 mRNA expression (one day after the infection) and IL-12 ⁇ 2R/IL-23R mRNA expression (three days after the infection) in TLN.
- Messenger RNA expression was measured by RT-PCR. Differences were statistically significant (P ⁇ 0.05) when comparing infected (+) to uninfected ( ⁇ ) mice (*), and when comparing p19 ⁇ / ⁇ or p35 ⁇ / ⁇ mice to C57BL/6 mice (**), as indicated in the figure.
- FIGS. 3A-3C show the results of experiments on the importance of the IL-23/IL-17-dependent pathway in susceptibility to fungal infections.
- Mice were infected as in FIGS. 1 and 2 , and treated with 200 ⁇ g of p19- or IL-17-neutralizing antibodies 5 h after the infection, or with 1 mg TGF- ⁇ neutralizing antibody 5 and 24 h after the infection.
- FIG. 3A shows fungal growth in the stomach or lung of mice with candidiasis ( C. albicans ) or aspergillosis ( A. fumigatus ) three days after the infection. Differences were statistically significant (p ⁇ 0.05) when comparing treated (+) to untreated ( ⁇ ) mice (*), as indicated in the figure.
- FIG. 3B shows the frequencies of IFN- ⁇ - or IL-17-producing CD4+ cells from MLN or TLN from mice with candidiasis or aspergillosis, respectively, as determined by ELISPOT assay. Values are the mean number of cytokine-producing cells ( ⁇ SE) per 10 5 cells.
- FIG. 3B further shows actual IL-17 production (one week after the infection) in culture supernatants of antigen-stimulated unfractionated MLN or TLN. Differences were statistically significant (p ⁇ 0.05) when comparing infected to uninfected (Ct) mice (*), and when comparing treated (+) to untreated ( ⁇ ) mice (**), as indicated in the figure.
- FIG. 3C shows fungal growth in the stomach of mice with candidiasis treated with p19 neutralizing antibodies as above, three days after the infection. Differences were statistically significant (p ⁇ 0.05) when comparing treated (+) to untreated ( ⁇ ) mice (*), and when comparing IL-4 ⁇ / ⁇ , IFN- ⁇ ⁇ / ⁇ , p35 ⁇ / ⁇ or IFN- ⁇ ⁇ / ⁇ /p35 ⁇ / ⁇ mice to BALB/c mice (**), as indicated in the figure.
- FIGS. 4A-4D show the results of experiments on IL-23 and IL-12 production in DC subsets in response to fungi.
- Bone marrow DC obtained in the presence of GM-CSF+IL-4 (GM-DC) or FLT3-L (FL-DC) were stimulated with fungi and assessed for cytokine expression.
- FIG. 4A shows real time RT-PCR analysis of cytokine mRNA expression
- FIG. 4B shows cytokine expression as measured by ELISA (pg/ml).
- Zymosan, LPS (10 ⁇ g/ml) or CpG-ODN 2006 (0.06 ⁇ M) were used as positive controls.
- DC were exposed to yeasts at 10:1 ratio. Differences were statistically significant (p ⁇ 0.05) when comparing exposed to unexposed (“None”) DC (*), as indicated in the figure.
- FIG. 4C shows IL-12 and IL-23 production in splenic CD11c+DC from p19 ⁇ / ⁇ or p35 ⁇ / ⁇ mice. Mice were stimulated with fungi before the measurement of cytokines in culture supernatants.
- FIG. 4D shows IL-12 and IL-23 production in splenic CD11c+DC from C57BL/6 mice exposed to fungi for 12 h in the presence (+) or absence ( ⁇ ) of IL-12 or IL-23 (10 ng/ml), or in the presence of neutralizing anti-IL-12 or anti-IL-23 antibodies (10 ⁇ g/ml), as indicated in the figure.
- FIGS. 5A-5C show the results of experiments on IL-23 production by inflammatory DC in response to fungi, and specifically whether such production is TLR- and T cell-dependent.
- FIG. 5A shows IL-23 production (pg/ml) in splenic CD11c+DC from different types of mice exposed to fungi 12 h earlier. Pooled results from four experiments are shown. Differences were statistically significant (p ⁇ 0.05) when comparing exposed to unexposed (“None”) DC (*), as indicated in the figure.
- FIG. 5B shows expression of cytokines in various cell cultures and co-cultures.
- Splenic CD4+T cells from C57BL/6 (WT) or p35 ⁇ / ⁇ mice were cultured in the presence of the corresponding splenic DC either unpulsed (groups 2 and 5) or pulsed with Candida yeasts (Ag) (groups 3 and 6).
- Cytokines (IL-12, IL-23, IFN- ⁇ , IL-17) were measured by ELISA five days post-pulse.
- Groups 1 and 4 are C57BL/6 or p35 ⁇ / ⁇ DC stimulated with fungi and no T cells.
- Groups 7 and 8 are p35 ⁇ / ⁇ or C57BL/6 CD4+ T cells cultivated with C57BL/6 or p35 ⁇ / ⁇ DC, respectively, in the presence of the fungus. Differences are statistically significant (p ⁇ 0.05, indicated by *) when groups 3 and 7 are compared to group 1 for IFN- ⁇ production, and when groups 6 and 8 are compared to group 4 for IL-23 and IL-17 production, as indicated in the figure.
- FIG. 5C shows data similar to those shown in FIG. 5B , except that some of the samples include anti-IL-23 or anti-TGF- ⁇ antibodies.
- Splenic CD4+T cells from C57BL/6 (WT) (groups 1-3) or p35 ⁇ / ⁇ (groups 4-6) mice were cultured in the presence of the corresponding splenic DC. Cultures were pulsed with Candida yeasts (Ag) for 5 days in the presence of 10 ⁇ g/ml of IL-23 or TGF- ⁇ neutralizing antibodies, and cytokines (IFN- ⁇ , IL-17) were quantified in culture supernatants by ELISA. Differences are statistically significant (p ⁇ 0.05, indicated by *) when groups 2 and 3 are compared to group 1 for IFN- ⁇ and IL-17 production, and when group 5 is compared to group 4 for IL-17 production, as indicated in the figure.
- FIGS. 6A-6E show the results of experiments on the ability of IL-23 and IL-17 to impair antifungal effector functions and subvert the anti-inflammatory program of PMN.
- FIG. 6A shows fungicidal activity in PMN from C57BL/6 (WT), p19 ⁇ / ⁇ or p35 ⁇ / ⁇ mice after incubation with unopsonized yeasts (30 min) or conidia (60 min) at an effector to fungal cell ratio of 5:1, at 37° C. Results are plotted as the percentage of colony forming units inhibition (mean ⁇ SE). Results reflect pooled data from three experiments. Differences were statistically significant (p ⁇ 0.05) when comparing p19 ⁇ / ⁇ or p35 ⁇ / ⁇ PMN to C57BL/6 (WT) PMN (*), as indicated in the figure.
- FIG. 6B shows fungicidal activity of PMN from C57BL/6 (WT) mice exposed to IL-23 or IL-17 at the indicated concentrations. Differences were statistically significant (p ⁇ 0.05) when comparing cytokine-exposed PMN to unexposed PMN (*).
- FIGS. 6C and 6D shows fungicidal activity of PMN from C57BL/6 (WT) mice exposed to various combinations of IFN- ⁇ (50 ng/ml), IL-23 (100 ng/ml) and IL-17 (100 ng/ml) for 60 min. Fungicidal activity was measured against Candida yeasts or Aspergillus conidia ( FIG. 6C ). MMP9/MPO production was also measured ( FIG. 6D ). Production of gelatinase and myeloperoxidase was assessed by gelatin zymography and Western blot analysis was performed on culture supernatants. Gels show bands corresponding to the active 92 kDa MMP9 and the 60 kDa MPO.
- FIG. 6E shows bands on a Western blot. PMN were exposed in vitro to various combinations of IFN- ⁇ , IL-23 and IL-17 for 12 h. IDO protein expression was then determined by Western Blotting. IDO-expressing MC 24 transfectants and mock-transfected MC 22 cells served as positive and negative controls, respectively. ⁇ -tubulin serves as a loading control.
- an agent that inhibits IL-23 but “does not” inhibit IL-12 refers to an agent that is less effective at inhibiting IL-12 than IL-23 when the agent is present at a given concentration in comparable assays for the two cytokines.
- Activation may have the same meaning, e.g., activation, stimulation, or treatment of a cell or receptor with a ligand, unless indicated otherwise by the context or explicitly.
- Ligand encompasses natural and synthetic ligands, e.g., cytokines, cytokine variants, analogues, muteins, and binding compositions derived from antibodies.
- Ligand also encompasses small molecules, e.g., peptide mimetics of cytokines and peptide mimetics of antibodies.
- Activation can refer to cell activation as regulated by internal mechanisms as well as by external or environmental factors.
- Response e.g., of a cell, tissue, organ, or organism, encompasses a change in biochemical or physiological behavior, e.g., concentration, density, adhesion, or migration within a biological compartment, rate of gene expression, or state of differentiation, where the change is correlated with activation, stimulation, or treatment, or with internal mechanisms such as genetic programming.
- “Activity” of a molecule may describe or refer to the binding of the molecule to a ligand or to a receptor, to catalytic activity; to the ability to stimulate gene expression or cell signaling, differentiation, or maturation; to antigenic activity, to the modulation of activities of other molecules, and the like. “Activity” of a molecule may also refer to activity in modulating or maintaining cell-to-cell interactions, e.g., adhesion, or activity in maintaining a structure of a cell, e.g., cell membranes or cytoskeleton. “Activity” can also mean specific activity, e.g., [catalytic activity]/[mg protein], or [immunological activity]/[mg protein], concentration in a biological compartment, or the like.
- Proliferative activity encompasses an activity that promotes, that is necessary for, or that is specifically associated with, e.g., normal cell division, as well as cancer, tumors, dysplasia, cell transformation, metastasis, and angiogenesis.
- administering refers to contact of an exogenous pharmaceutical, therapeutic, diagnostic agent, or composition to the animal, human, subject, cell, tissue, organ, or biological fluid.
- administering can refer, e.g., to therapeutic, pharmacokinetic, diagnostic, research, and experimental methods. Treatment of a cell encompasses contact of a reagent to the cell, as well as contact of a reagent to a fluid, where the fluid is in contact with the cell.
- administering also means in vitro and ex vivo treatments, e.g., of a cell, by a reagent, diagnostic, binding composition, or by another cell.
- Treatment refers to therapeutic treatment, prophylactic or preventative measures, to research and diagnostic applications.
- Treatment as it applies to a human, veterinary, or research subject, or cell, tissue, or organ, encompasses contact of IL-23 or IL-23R antagonist to a human or animal subject, a cell, tissue, physiological compartment, or physiological fluid.
- Treatment of a cell also encompasses situations where the IL-23 or IL-23R antagonist contacts IL-23R complex (IL-23R/IL-12Rbetal heterodimer), e.g., in the fluid phase or colloidal phase, but also situations where the antagonist does not contact the cell or the receptor.
- IL-23R/IL-12Rbetal heterodimer IL-23R/IL-12Rbetal heterodimer
- Binding composition refers to a molecule, small molecule, macromolecule, antibody, a fragment or analogue thereof, or soluble receptor, capable of binding to a target. “Binding composition” also may refer to a complex of molecules, e.g., a non-covalent complex, to an ionized molecule, and to a covalently or non-covalently modified molecule, e.g., modified by phosphorylation, acylation, cross-linking, cyclization, or limited cleavage, which is capable of binding to a target. “Binding composition” may also refer to a molecule in combination with a stabilizer, excipient, salt, buffer, solvent, or additive, capable of binding to a target. “Binding” may be defined as an association of the binding composition with a target where the association results in reduction in the normal Brownian motion of the binding composition, in cases where the binding composition can be dissolved or suspended in solution.
- the binding compounds of the invention may comprise bispecific antibodies.
- the term “bispecific antibody” refers to an antibody, typically a monoclonal antibody, having binding specificities for at least two different antigenic epitopes.
- the epitopes are from the same antigen.
- the epitopes are from two different antigens.
- Methods for making bispecific antibodies are known in the art. For example, bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305: 537-39. Alternatively, bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan, et al.
- Bispecific antibodies include bispecific antibody fragments. See, e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 6444-48, Gruber, et al., J. Immunol. 152: 5368 (1994).
- a “classical TH1-type T cell” is a T cell that expresses interferon-gamma (IFN ⁇ ) to an extent greater than expression of each of IL-4, IL-5, or IL-13, while a “classical TH2-type T cell” is a T cell that expresses IL-4, IL-5, or IL-13, each to an extent greater than expression of IFN ⁇ .
- Extent is typically 4-fold or more, more typically 8-fold or more, and most typically 16-fold or more than for a classical TH2-type cell.
- “Memory T cells” as defined herein are a subset of long-lived T cells with prior exposure to a given antigen. Memory T cells can be present in an organism for years, allowing a rapid response to subsequent challenges by the same antigen.
- the phenotype for mouse memory T cells is defined as CD4+ high CD45RB low .
- the phenotype of human memory T cells is defined as CD45RA neg/low CD45R0 high .
- IL-23 treatment of these memory T cells results in proliferation and expression of IL-17.
- IL-17 refers to IL-17A. See, e.g., Moseley et al. (2003) Cytokine & Growth Factor Rev. 14:155.
- Constantly modified variants applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids that encode identical or essentially identical amino acid sequences or, where the nucleic acid does not encode an amino acid sequence, to essentially identical nucleic acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids may encode any given protein.
- amino acid sequences As to amino acid sequences, one of skill will recognize that an change in a nucleic acid, peptide, polypeptide, or protein sequence that substitutes an amino acid or a small percentage of amino acids in the encoded sequence for a conserved amino acid is a “conservatively modified variant.” Conservative substitution tables providing functionally similar amino acids are well known in the art. An example of a conservative substitution is the exchange of an amino acid in one of the following groups for another amino acid of the same group (U.S. Pat. No. 5,767,063 issued to Lee, et al.; Kyte and Doolittle (1982) J. Mol. Biol. 157: 105-132):
- Effective amount encompasses an amount sufficient to ameliorate or prevent a symptom or sign of the medical condition. Effective amount also means an amount sufficient to allow or facilitate diagnosis. An effective amount for a particular patient or veterinary subject may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects. See, e.g., U.S. Pat. No. 5,888,530. An effective amount can be the maximal dose or dosing protocol that avoids significant side effects or toxic effects.
- the effect will result in an improvement of a diagnostic measure or parameter by at least 5%, usually by at least 10%, more usually at least 20%, most usually at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60%, ideally at least 70%, more ideally at least 80%, and most ideally at least 90%, where 100% is defined as the diagnostic parameter shown by a normal subject. See, e.g., Maynard, et al. (1996) A Handbook of SOPs for Good Clinical Practice , Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice , Urch Publ., London, UK.
- Exogenous refers to substances that are produced outside an organism, cell, or human body, depending on the context. “Endogenous” refers to substances that are produced within a cell, organism, or human body, depending on the context.
- infectious disease refers to microbial, e.g., bacterial, viral, and/or fungal, infections of an organism, organ, tissue, or cell.
- IL-17-producing cell means a T cell that is not a classical TH1-type T cell or classical TH2-type T cell.
- IL-17-producing cell also means a T cell that expresses a gene or polypeptide (e.g., mitogen responsive P-protein; chemokine ligand 2; interleukin-17 (IL-17); transcription factor ROR- ⁇ T related; suppressor of cytokine signaling 3. etc.), where expression with treatment by an IL-23 agonist is greater than treatment with an IL-12 agonist, where “greater than” is defined as follows.
- a gene or polypeptide e.g., mitogen responsive P-protein; chemokine ligand 2; interleukin-17 (IL-17); transcription factor ROR- ⁇ T related; suppressor of cytokine signaling 3. etc.
- Expression with an IL-23 agonist is ordinarily at least 5-fold greater, typically at least 10-fold greater, more typically at least 15-fold greater, most typically at least 20-fold greater, preferably at least 25-fold greater, and most preferably at least 30-fold greater, than with IL-12 treatment.
- Expression can be measured, e.g., with treatment of a population of substantially pure IL-17 producing cells.
- IL-17-producing cell includes a progenitor or precursor cell that is committed, in a pathway of cell development or cell differentiation, to differentiating into an IL-17-producing cell, as defined above.
- a progenitor or precursor cell to the IL-17 producing cell can be found in a draining lymph node (DLN).
- DNN draining lymph node
- IL-17-producing cell encompasses an IL-17-producing cell, as defined above, that has been, e.g., activated, e.g., by a phorbol ester, ionophore, and/or carcinogen, further differentiated, stored, frozen, desiccated, inactivated, partially degraded, e.g., by apoptosis, proteolysis, or lipid oxidation, or modified, e.g., by recombinant technology.
- “Inhibitors” and “antagonists” refer to inhibitory molecules for the inhibition of, e.g., a ligand, receptor, cofactor, a gene, cell, tissue, or organ.
- a modulator of a gene, a receptor, a ligand, or a cell is a molecule that alters an activity of the gene, receptor, ligand, or cell, where activity can be activated, inhibited, or altered in its regulatory properties.
- the modulator may act alone, or it may use a cofactor, e.g., a protein, metal ion, or small molecule
- Inhibitors are compounds that decrease, block, prevent, delay activation, inactivate, desensitize, or down regulate, e.g., a gene, protein, ligand, receptor, or cell.
- Activators are compounds that increase, activate, facilitate, enhance activation, sensitize, or up regulate, e.g., a gene, protein, ligand, receptor, or cell.
- An inhibitor may also be defined as a composition that reduces, blocks, or inactivates a constitutive activity.
- An “antagonist” is a compound that opposes the actions of an agonist.
- An antagonist prevents, reduces, inhibits, or neutralizes the activity of an agonist.
- An antagonist can also prevent, inhibit, or reduce constitutive activity of a target, e.g., a target receptor, even where there is no identified agonist.
- An antagonist of IL-23 includes any agent that disrupts the biological activity of IL-23, such as amplification and survival of Th17 cells as described in greater detail infra.
- Antagonists of IL-23 receptor and IL-23R are subsets of antagonists of IL-23 because they serve to block the activity of IL-23 by blocking IL-23 signaling.
- samples or assays comprising a given protein, gene, cell, or organism, are treated with a potential activator or inhibitor and are compared to control samples without the inhibitor.
- Control samples i.e., not treated with antagonist, are assigned a relative activity value of 100% Inhibition is achieved when the activity value relative to the control is about 90% or less, typically 85% or less, more typically 80% or less, most typically 75% or less, generally 70% or less, more generally 65% or less, most generally 60% or less, typically 55% or less, usually 50% or less, more usually 45% or less, most usually 40% or less, preferably 35% or less, more preferably 30% or less, still more preferably 25% or less, and most preferably less than 25%.
- Activation is achieved when the activity value relative to the control is about 110%, generally at least 120%, more generally at least 140%, more generally at least 160%, often at least 180%, more often at least 2-fold, most often at least 2.5-fold, usually at least 5-fold, more usually at least 10-fold, preferably at least 20-fold, more preferably at least 40-fold, and most preferably over 40-fold higher.
- Endpoints in activation or inhibition can be monitored as follows.
- Activation, inhibition, and response to treatment e.g., of a cell, physiological fluid, tissue, organ, and animal or human subject, can be monitored by an endpoint.
- the endpoint may comprise a predetermined quantity or percentage of, e.g., an indicium of reduced bacterial burden, oncogenicity, or cell degranulation or secretion, such as the release of a cytokine, toxic oxygen, or a protease.
- the endpoint may comprise, e.g., a predetermined quantity of ion flux or transport; cell migration; cell adhesion; cell proliferation; potential for metastasis; cell differentiation; and change in phenotype, e.g., change in expression of gene relating to inflammation, apoptosis, transformation, cell cycle, or metastasis.
- a predetermined quantity of ion flux or transport e.g., a predetermined quantity of ion flux or transport
- cell migration e.g., cell adhesion; cell proliferation; potential for metastasis; cell differentiation; and change in phenotype, e.g., change in expression of gene relating to inflammation, apoptosis, transformation, cell cycle, or metastasis.
- phenotype e.g., change in expression of gene relating to inflammation, apoptosis, transformation, cell cycle, or metastasis.
- An endpoint of inhibition is generally 75% of the control or less, preferably 50% of the control or less, more preferably 25% of the control or less, and most preferably 10% of the control or less.
- an endpoint of activation is at least 150% the control, preferably at least two times the control, more preferably at least four times the control, and most preferably at least 10 times the control.
- “Knockout” refers to the partial or complete reduction of expression of at least a portion of a polypeptide encoded by a gene, e.g., encoding a subunit of IL-23 or IL-23 receptor, where the gene is endogenous to a single cell, selected cells, or all of the cells of a mammal.
- KO also encompasses embodiments where biological function is reduced, but where expression is not necessarily reduced, e.g., a polypeptide that contains an inserted inactivating peptide.
- Disruptions in a coding sequence or a regulatory sequence are encompassed by the knockout technique.
- the cell or mammal may be a “heterozygous knockout”, where one allele of the endogenous gene has been disrupted.
- the cell or mammal may be a “homozygous knockout” where both alleles of the endogenous gene have been disrupted. “Homozygous knockout” is not intended to limit the disruption of both alleles to identical techniques or to identical outcomes at the genome.
- a composition that is “labeled” is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, immunochemical, isotopic, or chemical methods.
- useful labels include 32 P, 33 P, 35 S, 14 C, 3 H, 125 I, stable isotopes, fluorescent dyes, electron-dense reagents, substrates, epitope tags, or enzymes, e.g., as used in enzyme-linked immunoassays, or fluorettes. See, e.g., Rozinov and Nolan (1998) Chem. Biol. 5:713-728.
- Ligand refers, e.g., to a small molecule, peptide, polypeptide, and membrane associated or membrane-bound molecule, or complex thereof, that can act as an agonist or antagonist of a receptor. “Ligand” also encompasses an agent that is not an agonist or antagonist, but that can bind to the receptor. Moreover, “ligand” includes a membrane-bound ligand that has been changed, e.g., by chemical or recombinant methods, to a soluble version of the membrane-bound ligand. By convention, where a ligand is membrane-bound on a first cell, the receptor usually occurs on a second cell. The second cell may have the same or a different identity as the first cell.
- a ligand or receptor may be entirely intracellular, that is, it may reside in the cytosol, nucleus, or some other intracellular compartment.
- the ligand or receptor may change its location, e.g., from an intracellular compartment to the outer face of the plasma membrane.
- the complex of a ligand and receptor is termed a “ligand receptor complex.” Where a ligand and receptor are involved in a signaling pathway, the ligand occurs at an upstream position and the receptor occurs at a downstream position of the signaling pathway.
- a “marker” relates to the phenotype of a cell, tissue, organ, animal, e.g., of an IL-17 producing cell. Markers are used to detect cells, e.g., during cell purification, quantitation, migration, activation, maturation, or development, and may be used for both in vitro and in vivo studies.
- An activation marker is a marker that is associated with cell activation.
- Purified cell encompasses, e.g., one or more “IL-17 producing cells” that is substantially free of other types of cells, e.g., contamination by other types of T cells. Purity can be assessed by use of a volume that is defined by geometric coordinates or by a compartment comprising, e.g., a flask, tube, or vial.
- a “purified IL-17 producing cell” can be defined by, e.g., a compartment where the “IL-17 producing cells” normally constitute at least 20% of all the cells, more normally at least 30% of all the cells, most normally at least 40% of all the cells, generally at least 50% of all the cells, more generally at least 60% of all the cells, most generally at least 70% of all the cells, preferably at least 80% of all the cells, more preferably at least 90% of all the cells; and most preferably at least 95% of all the cells.
- Small molecule is defined as a molecule with a molecular weight that is less than 10 kD, typically less than 2 kD, and preferably less than 1 kD.
- Small molecules include, but are not limited to, inorganic molecules, organic molecules, organic molecules containing an inorganic component, molecules comprising a radioactive atom, synthetic molecules, peptide mimetics, and antibody mimetics.
- a small molecule may be more permeable to cells, less susceptible to degradation, and less apt to elicit an immune response than large molecules.
- Small molecules, such as peptide mimetics of antibodies and cytokines, as well as small molecule toxins are known in the art. See, e.g., Casset et al.
- Specifically or “selectively” binds when referring to a ligand/receptor, antibody/antigen, or other binding pair, indicates a binding reaction which is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics.
- a specified ligand binds to a particular receptor and does not bind in a significant amount to other proteins present in the sample.
- the antibody, or binding composition derived from the antigen-binding site of an antibody, of the contemplated method binds to its antigen, or a variant or mutein thereof, with an affinity that is at least two fold greater, preferably at least ten times greater, more preferably at least 20-times greater, and most preferably at least 100-times greater than the affinity with any other antibody, or binding composition derived thereof.
- the antibody will have an affinity for the desired target that is greater than about 10 9 liters/mol, as determined, e.g., by Scatchard analysis. Munsen et al. (1980) Analyt. Biochem. 107:220-239.
- an antibody that “specifically binds” to IL-23 or IL-23 receptor does not bind to proteins that do not comprise the IL-23-derived sequences, i.e. “specificity” as used herein relates to IL-23 specificity, and not any other sequences that may be present in the protein in question.
- an antibody that “specifically binds” to IL-23 will typically bind to FLAG-hIL-23, which is a fusion protein comprising IL-23 and a FLAG® peptide tag, but it does not bind to the FLAG® peptide tag alone or when it is fused to a protein other than IL-23.
- specificity for IL-23 may also refer to the ability to bind to IL-23 (or its receptor) but not to other proteins, such as IL-12 (or its receptor).
- Interleukin-23 is a heterodimeric cytokine comprised of two subunits, i.e., p19 and p40.
- the p19 subunit is structurally related to IL-6, granulocyte-colony stimulating factor (G-CSF) and the p35 subunit of IL-12.
- G-CSF granulocyte-colony stimulating factor
- the p40 subunit is part of the cytokine IL-12, which is composed of p35 and p40.
- Heterodimeric IL-12 is often referred to as IL-12p70.
- IL-23 mediates signaling by binding to a heterodimeric receptor, comprised of IL-23R and IL-12R ⁇ 1.
- the IL-12R ⁇ 1 subunit is shared by the IL-12 receptor, which is composed of IL-12R ⁇ 1 and IL-12R ⁇ 2.
- IL-23 and IL-23 receptor, and their respective IL-23-specific subunits are disclosed at WO 99/05280, WO 01/18051, WO 00/73451, and WO 01/85790.
- Th17 cells are now thought to be a separate lineage of effector Th cells contributing to immune pathogenesis previously attributed to the Th1 lineage. Although the pathways leading to Th17 differentiation are still unclear (Dong (2006) Nat Rev Immunol 6:329), IL-23 is a critical cytokine for the generation and maintenance of this lineage (Trinchieri et al. (2003) Immunity 19:641). While both IL-12 and IL-23 can induce IFN- ⁇ expression in CD4+T-cells, IL-23 alone facilitates production of the proinflammatory cytokine IL-17 by Th cells.
- Th cells primed for IL-17 are responsible for various organ-related autoimmune diseases (Harrington et al. (2006) Curr. Opin. Immunol. 18:349), including experimental autoimmune encephalomyelitis (EAE) (Langrish et al. (2005) J. Exp. Med. 201:233), arthritis (Murphy et al. (2003) J. Exp. Med. 198:1951), colitis (Yen et al. (2006) J. Clin. Invest. 116:1310) and autoimmune myocarditis (Sonderegger et al. (2006) Eur. J. Immunol.
- EAE experimental autoimmune encephalomyelitis
- CMC chronic mucocutaneous candidiasis
- CMC also encompasses a variety of clinical disorders of unknown immunopathogenesis. Lilic (2002) Curr. Opin. Infect. Dis. 15:143. For Aspergillus , persistent inflammation with intractable infection is common in non-neutropenic patients after allogeneic hematopoietic stem cell transplantation (Ortega et al. (2006) Bone Marrow Transplant 37:499) as well as in allergic fungal diseases (Schubert (2006) Clin. Rev. Allergy Immunol. 30:205).
- IL-23 and IL-17 negatively regulate IL-12/Th1-mediated immune resistance to fungi and play an inflammatory role previously attributed to uncontrolled Th1 cell responses.
- IL-23 is known to promote the survival of Th17 cells (which produce IL-17 and cause inflammation) and antagonize the IL-12-mediated Th1 response (which involves production of interferon- ⁇ (IFN- ⁇ )). Langrish et al. (2004) Immunol. Rev. 202:96.
- IL-23 counter-regulation of IL-12 production and Th1 responses results in uncontrolled inflammation and growth of Candida albicans and Aspergillus fumigatus , two major human fungal pathogens. Both IL-23 and IL-17 subvert the inflammatory program and anti-fungal activity of neutrophils, resulting in severe tissue inflammatory pathology associated with infection. In summary, IL-23-driven inflammation promotes infection and impairs antifungal immune resistance. See also Zelante et al. (2007) Eur. J. Immunol. 37:2695, and related commentary at Cooper (2007) Eur. J. Immunol. 37:2680. Modulation of the inflammatory response by antagonism of IL-23 represents a represents a promising strategy to stimulate protective immune responses to fungi.
- the present invention provides compositions and methods for the treatment of infection, such as chronic infections, by blocking the activity of IL-23 and/or IL-17 to reduce the effects of Th17 cells and allow a robust Th1 response to emerge and eliminate the infected cells or organisms.
- infection such as chronic infections
- IL-17 IL-23 and/or IL-17
- Cytokines are the soluble mediators of immune cells.
- the following cytokines have been detected in pleural or bronchoalveolar lavage (BAL) fluids of patients infected with TB: IL-113, TNF ⁇ , IFN ⁇ , TGF ⁇ , and IL-12. See, e.g., Crystal, et al. (eds.) (1997) The Lung Scientific Foundations , Lippincott-Raven, New York, N.Y., pp. 2381-2394.
- IFN- ⁇ and TNF ⁇ have been shown to play important roles in the control of mycobacterial infections. See, e.g., Cooper et al. (1993) J. Exp. Med. 178:2243; Flynn et al. (1993) J. Exp. Med. 178:2249; Kindler et al. (1989) Cell 56:731; Cheuse et al. (1994) Am. J. Pathol. 145:1105.
- antagonism of IL-23 activity may be expected to enhance resolution of bacterial infection.
- IL-12 deficient KO mice failed to control the growth of BCG, and antibody blocking of IL-12 correlated with significantly higher numbers of CFU in the spleen, livers and lungs as compared to isotype-control-treated mice.
- IL-23 does not play a significant role in host defense against mycobacteria in the presence of IL-12, and therefore that selective inhibition of IL-23 may be safer than treatments that involve IL-12 neutralization (either with or without concurrent IL-23 neutralization).
- the results presented herein extend these results to suggest that antagonists of IL-23 are not only safer, in that they don't compromise host defense, but they may in fact be beneficial in helping to resolve chronic infections caused by dysregulation of IL-23/IL-17 inflammation.
- the results of the present study show that the IL-23/IL-17 axis, and not an uncontrolled Th1 response, is associated with defective pathogen clearance, failure to resolve inflammation and to initiate protective immune responses to Candida and Aspergillus .
- the new findings may serve to accommodate the paradoxical association of chronic inflammatory responses with intractable forms of fungal infections where fungal persistence occurs in the face of an ongoing inflammation.
- both IL-23 and IL-17 impaired the antifungal effector activities of PMN even in the presence of IFN- ⁇ , a finding suggesting that the Th17 effector pathway prevails over the Th1 pathway.
- both cytokines activated the inflammatory program of PMN by counteracting the IFN- ⁇ -dependent activation of indoleamine 2,3-dioxygenase (IDO), known to limit the inflammatory status of PMN against fungi (Bozza et al. (2005) J. Immunol. 174:2910), as well as by inducing the release of MMP9 and MPO which likely accounts for the high inflammatory pathology and tissue destruction associated with Th17 cell activation.
- IDO indoleamine 2,3-dioxygenase
- IDO The action on IDO is of interest. IDO is expressed in C. albicans and is involved in tryptophan auxotrophy-dependent inhibition of fungal germination. Bozza et al. (2005). Similar to IDO blockade, and as opposed to IFN- ⁇ (Kalo-Klein et al. (1990) Infect. Immun. 58:260), IL-17 promoted fungal germination (data not shown), a finding suggesting an action on fungal IDO, an enzyme that is highly responsive to signals from the mammalian host immune system. Mellor and Munn (2004) Nat. Rev. Immunol. 4:762.
- Th17 pathway may go beyond its ability to promote inflammation and subvert antimicrobial immunity, as already described for other infections (McKenzie et al. (2006) Trends Immunol. 27:17), to include an action on fungal morphology and virulence. This may translate in concomitant IL-4+Th2 cell activation, known to be strictly dependent on high levels fungal growth (Mencacci et al. (1996) Infect. Immun. 64:4907) and further preventing Th1 functioning.
- IL-23 is produced in response to fungi in condition of high-threat inflammation, that is by inflammatory DC in response to high yeast number through the TLR-/MyD88 pathway, has important implications. Not only does it point to IL-23 as an important molecular link between the inflammatory processes and fungal virulence, but it also establishes a scenario whereby a vicious circle may be at work. Because p19 ⁇ / ⁇ mice produce less IL-17 and TGF- ⁇ showed a non-essential role in Th17 activation and/or maintenance against fungi, it is conceivable that IL-23 acts as a proximal mediator of IL-17. In this scenario, the uncontrolled fungal growth may perpetuate the activation of pathogenic Th17 cells implicating concomitant activation of nonprotective Th2 cells.
- the above considerations may help to accommodate fungi, either commensals or ubiquitous, within the immune homeostasis and its dysregulation. If the ability to subvert the inflammatory program through the activation of the IL-23/IL-17 axis may eventually lead to immune dysregulation, their ability to activate T reg cells, integral and essential components of protective immunity to either Candida or Aspergillus (Romani & Puccetti (2006)), may represent a mechanism whereby dysregulated immunity is prevented.
- a functional antagonism between Th17 and T reg cells has been described (Bettelli & Kuchroo (2005) J. Exp. Med. 201:169), including the inhibitory role of IL-10 in the development of IL-17-producing cells in vivo. Kullberg et al.
- IL-23/IL-17-dependent pathway may provide some antifungal resistance in condition of IFN- ⁇ deficiency, through a p35-dependent pathway. That IL-23 may serve a protective role in condition of IL-12 deficiency has already been reported in chronic cryptococcosis (Kleinschek et al. (2006) J. Immunol. 176:1098), mycobacterial infection (Khader et al. (2005) J. Immunol. 175:788) and acute pulmonary Klebsiella pneumoniae infection (Happel et al. (2005) Infect. Immun.
- Antagonists of IL-23 include any substance or method capable of inhibiting one or more biological activities of IL-23. Such activities include binding to the IL-23 (comprising p19 and p40 subunits), IL-23 receptor (comprising IL-23R and IL-12R ⁇ 1 subunits) and promotion and maintenance of Th17 cells.
- Antagonists may comprise, e.g., small molecules, antibodies or antibody fragments, peptide mimetics, aptamers (e.g. as disclosed in U.S. Patent Application Publication No. 2006-0193821), soluble receptor derived from on the extracellular region of a subunit of the IL-23 receptor, and nucleic acid based antagonists.
- Nucleic acid-based antagonists of IL-23 include antisense nucleic acids and siRNA directed to the IL-23p19 gene or the IL-23R gene.
- siRNA methodology see WO 2006/06060598. See also Arenz and Schepers (2003) Naturwissenschaften 90:345; Sazani and Kole (2003) J. Clin. Invest. 112:481; Pirollo et al. (2003) Pharmacol. Therapeutics 99:55; Wang et al. (2003) Antisense Nucl. Acid Drug Devel. 13:169.
- Antisense and siRNA molecules can be designed based on the known sequences of human IL-23p19 and IL-23R mRNA.
- RNA and amino acid sequences for human IL-23p19 are found at GenBank Accession Nos. NM — 016584 and NP — 057668, respectively.
- cDNA and amino acid sequences for human IL-23R are found at GenBank Accession Nos. AF461422 and AAM44229, respectively.
- the invention also provides compositions for RNA interference.
- siRNA molecules are also being used in clinical trials, e.g., of chronic myeloid leukemia (CML) (ClinicalTrials.gov Identifier: NCT00257647) and age-related macular degeneration (AMD) (ClinicalTrials.gov Identifier: NCT00363714).
- CML chronic myeloid leukemia
- AMD age-related macular degeneration
- siRNA is used herein to refer to molecules used to induce gene silencing via the RNA interference pathway (Fire et al. (1998) Nature 391:806), such siRNA molecules need not be strictly polyribonucleotides, and may instead contain one or more modifications to the nucleic acid to improve its properties as a therapeutic agent. Such agents are occasionally referred to as “siNA” for short interfering nucleic acids. Although such changes may formally move the molecule outside the definition of a “ribo”nucleotide, such molecules are nonetheless referred to as “siRNA” molecules herein.
- Nucleic acid-based inhibitors may be delivered, e.g., by transformation with a recombinant vector such as a plasmid or a virus (e.g. as naked DNA), or by gene therapy with any of known gene therapy vector (e.g. adeno-associated virus (AAV), adenovirus, a retrovirus or a lentivirus).
- a recombinant vector such as a plasmid or a virus (e.g. as naked DNA)
- gene therapy vector e.g. adeno-associated virus (AAV), adenovirus, a retrovirus or a lentivirus.
- Nucleic acids may be delivered by transformation, electroporation, biolistic bombardment or other methods known in the art.
- Antibody antagonists of IL-23 for use in the compositions and methods of the present invention include antibodies to IL-23 and antibodies to IL-23 receptor.
- Exemplary antagonist antibodies to IL-23 include the anti-human IL-23p19 antibodies, and fragments thereof, as disclosed in commonly-assigned U.S. Provisional Patent Application Nos. 60/891,409 and 60/891,413 (both filed 23 Feb. 2007), in U.S. Patent Application Publication Nos. 2007-0009526 and 2007-0048315, and in International Patent Publication Nos. WO 2007/076524, WO 2007/024846 and WO 2007/147019.
- Antibody antagonists to IL-23 also include antibodies that bind to the IL-12p40 subunit when that subunit is bound to IL-23p19, but not when it is bound to IL-12p35. See, e.g., U.S. Patent Application Publication No. 2005-0137385 and U.S. Pat. No. 7,252,971.
- Exemplary antagonist antibodies to IL-23 include anti-human IL-23 receptor antibodies, e.g. anti-IL-23R antibodies, and fragments thereof.
- Exemplary antagonist antibodies to IL-23R are disclosed in commonly-assigned U.S. Provisional Patent Application No. 60/892,104 (filed 28 Feb. 2007) and 60/945,183 (filed 20 Jun. 2007).
- Antagonists of IL-23 also include bispecific antibodies.
- Regions of increased antigenicity can be used for antibody generation. Regions of increased antigenicity of human p19 occur, e.g., at amino acids 16-28; 57-87; 110-114; 136-154; and 182-186 of GenBank AAQ89442 (gi:37183284). Regions of increased antigenicity of human IL-23R occur, e.g., at amino acids 22-33; 57-63; 68-74; 101-112; 117-133; 164-177; 244-264; 294-302; 315-326; 347-354; 444-473; 510-530; and 554-558 of GenBank AAM44229 (gi: 21239252).
- the present invention also provides an IL-23 antagonist that is a soluble receptor, i.e., comprising an extracellular region of IL-23R, e.g., amino acids 1-353 of GenBankAAM44229, or a fragment thereof, where the extracellular region or fragment thereof specifically binds to IL-23.
- Mouse IL-23R is GenBank NP — 653131 (gi:21362353). Muteins and variants are contemplated, e.g., pegylation or mutagenesis to remove or replace deamidating Asn residues.
- Additional potential methods of antagonizing the activity of IL-23 for use in the methods and compositions of the present invention include administering filamentous hemagglutinin (FHA) (WO 2006/109195) and vaccinating to generate an immune response against IL-23 (WO 2005/058349).
- FHA filamentous hemagglutinin
- an antagonist of an IL-17 producing (Th17) cell encompasses a reagent that specifically modulates the activity of a Th17 cell, e.g., without substantial influence on the activity of, e.g., a na ⁇ ve T cell, Th1-type T cell, TH2-type T cell, epithelial cell, and/or endothelial cell.
- the reagent can modulate expression or activity of, e.g., a transcription factor (e.g. ROR ⁇ t) or adhesion protein, of the IL-17 producing cell.
- an antagonist of IL-23, TGF- ⁇ , or IL-6 may decrease the creation and survival of Th17 cells, and an antagonist of IL-17 may decrease the inflammatory effects (e.g. neutrophil recruitment) of such cells.
- Monoclonal, polyclonal, and humanized antibodies can be prepared (see, e.g., Sheperd and Dean (eds.) (2000) Monoclonal Antibodies , Oxford Univ. Press, New York, N.Y.; Kontermann and Dubel (eds.) (2001) Antibody Engineering , Springer-Verlag, New York; Harlow and Lane (1988) Antibodies A Laboratory Manual , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 139-243; Carpenter, et al. (2000) J. Immunol. 165:6205; He et al. (1998) J. Immunol. 160:1029; Tang et al. (1999) J. Biol. Chem.
- Fully human antibodies may also be prepared, in which the entirety of the antibody sequence is derived from human germline sequences. Such fully human antibodies may be prepared from transgenic animals engineered to express human immunoglobulin genes, or by methods such as phage display and the like. See, e.g., Lonberg (2005) Nature Biotechnol. 23:1117; Vaughan et al. (1998) Nature Biotechnol. 16:535.
- Antibody fragments include Fab, Fab′, Fab′-SH, Fv, single-chain Fv (scFv), F(ab′) 2 , and a diabodies.
- the antibodies of the present invention also include antibodies with modified (or blocked) Fc regions to provide altered effector functions. See, e.g., U.S. Pat. No. 5,624,821; WO 2003/086310; WO 2005/120571; WO 2006/0057702; Presta (2006) Adv. Drug Delivery Rev. 58:640-656. Such modification can be used to enhance or suppress various reactions of the immune system, with possible beneficial effects in diagnosis and therapy. Alterations of the Fc region include amino acid changes (substitutions, deletions and insertions), glycosylation or deglycosylation, and adding multiple Fc.
- Changes to the Fc can also alter the half-life of antibodies in therapeutic antibodies, and a longer half-life would result in less frequent dosing, with the concomitant increased convenience and decreased use of material.
- Altered effector functions may be achieved by introducing specific mutations in the Fc portion of IgG1, e.g. by altering Asn297, e.g. to Ala or Gln (N297A or N297Q). See Presta (2005) J. Allergy Clin. Immunol. 116:731 at 734-35. Effector functions may also be changed by selecting different constant domains.
- a heavy chain constant domain other than IgG1 may be used.
- IgG1 antibodies provide for long half-life and for effector functions, such as complement activation and antibody-dependent cellular cytotoxicity (ADCC), such activities may not be desirable for all uses of the antibody.
- an IgG4 constant domain may be used.
- Altered effector functions are of particular relevance in the case of antibodies to IL-23 receptor (e.g. to IL-23R), since in one embodiment (not the only embodiment) the goal is not to induce killing of cells expressing IL-23 receptor, but instead merely to block IL-23 signaling in such cells. In this embodiment, the goal is to shift Th cells from the Th17 lineage toward the Th1 lineage, in which case cell killing would be unproductive.
- Immunization can be performed by DNA vector immunization, see, e.g., Wang et al. (1997) Virology 228:278.
- animals can be immunized with cells bearing the antigen of interest.
- Splenocytes can then be isolated from the immunized animals, and the splenocytes can fused with a myeloma cell line to produce a hybridoma (Meyaard et al. (1997) Immunity 7:283; Wright et al. (2000) Immunity 13:233; Preston et al. (1997) Eur. J. Immunol. 27:1911).
- Resultant hybridomas can be screened for production of the desired antibody by functional assays or biological assays, that is, assays not dependent on possession of the purified antigen. Immunization with cells may prove superior for antibody generation than immunization with purified antigen (Kaithamana et al. (1999) J. Immunol. 163:5157).
- Antibody to antigen and ligand to receptor binding properties can be measured, e.g., by surface plasmon resonance (Karlsson et al. (1991) J. Immunol. Methods 145:229; Neri et al. (1997) Nat. Biotechnol. 15:1271; Jonsson et al. (1991) Biotechniques 11:620) or by competition ELISA (Friguet et al. (1985) J. Immunol. Methods 77:305; Hubble (1997) Immunol. Today 18:305).
- Antibodies can be used for affinity purification to isolate the antibody's target antigen and associated bound proteins. See, e.g., Wilchek et al. (1984) Meth. Enzymol. 104:3.
- Antibodies will usually bind with at least a K D of about 10 ⁇ 6 M, typically at least 10 ⁇ 7 M, more typically at least 10 ⁇ 8 M, preferably at least about 10 ⁇ 9 M, and more preferably at least 10 ⁇ 10 M, and most preferably at least 10 ⁇ 11 M. See, e.g., Presta et al. (2001) Thromb. Haemost. 85:379; Yang et al. (2001) Crit. Rev. Oncol. Hematol. 38:17; Carnahan et al. (2003) Clin. Cancer Res . (Suppl.) 9:3982s.
- Soluble receptors comprising the extracellular domain of IL-23R are useful in the compositions and methods of the present invention.
- Soluble receptors can be prepared and used according to standard methods. See, e.g., Jones et al. (2002) Biochim. Biophys. Acta 1592:251; Prudhart et al. (2001) Expert Opinion Biol. Ther. 1:359; Fernandez-Botran (1999) Crit. Rev. Clin. Lab Sci. 36:165-224.
- compositions and methods of the present invention require antagonism of IL-23 and not antagonism of IL-12.
- agents under development that target the IL-12p40 subunit of both IL-12 and IL-23 that would block the activity of both IL-23 and IL-12.
- Such agents would not be suitable for use in this embodiment of the compositions and methods of the present invention since they would inhibit the robust IL-12-mediated Th1 response that the invention is intended to promote.
- it is in principle possible to develop an agent that binds to IL-12p40 only in the context of IL-23 but not in the context of IL-12 see U.S. Patent Application Publication No. 2005-0137385 and U.S. Pat. No.
- a potential therapeutic agent specifically inhibits IL-23 rather than IL-12 may be determined by any method known in the art.
- a potential IL-23-specific antagonist may be tested for its ability to block the binding of IL-23 to its receptor, or IL-12 to its receptor.
- Such blocking assays may be performed in solution (e.g. by fluorescence-activated cell sorting) or on a solid support (e.g. by enzyme-linked immunosorbent assay—ELISA).
- IL-23 and IL-12 receptor blocking can also be measured in a bioassay, such as a Ba/F3 cell proliferation assay. See e.g. Ho et al. (1995) Mol. Cell. Biol . (1995) 15:5043.
- the potency and specificity of a potential IL-23 antagonist may be expressed as an IC50, or the concentration of the potential antagonist necessary to achieve a 50% reduction in IL-23 binding (or biological activity dependent on binding) under a given set of assay conditions.
- a lower IC50 indicates a more effective antagonist.
- the IL-23 specificity of a potential antagonist may be expressed as the ratio of the IC50 for inhibition of binding of IL-12 to its receptor to the IC50 for inhibition of binding of IL-23 to its receptor (IC50 IL-12 /IC50 IL-23 ).
- a potential IL-23 specific antagonist is considered to be IL-23 specific if this ratio (IC50 IL-12 /IC50 IL-23 ) is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more.
- the levels of IL-23 and IL-12 used in inhibition assays are adjusted to ensure that at least one, and preferably both of the IL-23 and IL-12 assays, are performed in the linear dose response concentration range.
- IL-23 and IL-12 also have different biological functions that may be used to determine specificity of antagonism.
- IL-23 preferentially stimulates memory as opposed to na ⁇ ve T cell populations in both human and mouse.
- IL-23 activates a number of intracellular cell-signaling molecules, e.g., Jak2, Tyk2, Stat1, Stat2, Stat3, and Stat4.
- IL-12 activates this same group of molecules, but Stat4 response to IL-23 is relatively weak, while Stat4 response to IL-12 is strong.
- a potential IL-23-specific antagonist may also be tested for its ability to inhibit the amplification and survival of Th1 and Th17 cells by IL-12 and IL-23.
- An IL-23-specific antagonist will preferentially inhibit the IL-23-mediated amplification and survival of Th17 cells, but not the IL-12-mediated amplification and survival of Th1 cells.
- Th17 cells characteristically secrete IL-17 whereas Th1 cells characteristically secrete IFN- ⁇ .
- Data from an exemplary Th1/Th17 assay is found at FIG. 2 of Langrish et al. (2005) J. Exp. Med.
- an agent is considered to be an “IL-23-specific” antagonist (relative to IL-12) when it is able to inhibit IL-23-mediated amplification and survival of Th17 cells, while not inhibiting IL-12-mediated amplification and survival of Th1 cells
- Inhibition of Th17/Th1 cell proliferation can be expressed as an IC50, or the concentration of the agent necessary to achieve a 50% reduction in the activity of IL-23 in promoting the amplification and survival of a particular T cell subset producing IL-17 or IFN- ⁇ under a given set of assay conditions.
- An exemplary assay is provided at Example 13.
- the potency of an IL-23 antagonist in a bioassay like the one described in Example 13 may be expressed as the IC50 IL-23 , i.e. the concentration of antagonist needed to reduce the activity of IL-23 to 50% of its uninhibited value.
- An analogous IC50 IL-12 may be determined for IL-12 and its activity in promoting production of IFN- ⁇ producing cells.
- the IL-23-specificity of the antagonist can then be expressed as the ratio IC50 IL-12 /IC50 IL-23 .
- the IC50 IL-12 /IC50 IL-23 ratio for a validated IL-23-specific antagonist is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more.
- IL-17A and IFN- ⁇ may be measured by intracellular cytokine flow cytometry by fluorescence activated cell sorting (FACS® analysis) with fluorescent reagents that bind to the cytokines, essentially as described in Langrish et al. (2005). It is important to define the threshold level of IL-17A or IFN- ⁇ in a live CD4′ T cell for that cell to be considered “IL-17 producing” or “IFN- ⁇ producing.” In one embodiment the threshold level is defined as the level at which 5% of live CD4′ T cells are “IL-17 producing” or “IFN- ⁇ producing” in a control sample of untreated cells. Exemplary untreated cells include draining lymph node (DLN) cells isolated from SJL mice (The Jackson Laboratories, Bar Harbor, Me., USA) immunized with proteolipid protein (PLP) cultured in the presence of PLP.
- DLN draining lymph node
- SJL mice The Jackson Laboratories, Bar Harbor, Me., USA
- compositions including an antagonist of IL-23 the antagonist is admixed with a pharmaceutically acceptable carrier or excipient, see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary , Mack Publishing Company, Easton, Pa. (1984).
- a pharmaceutically acceptable carrier or excipient see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary , Mack Publishing Company, Easton, Pa. (1984).
- Formulations of therapeutic agents may be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions or suspensions (see, e.g., Hardman, et al.
- the route of administration is by, e.g., topical or cutaneous application, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems or an implant.
- Injection of gene transfer vectors into the central nervous system has been described. See, e.g., Cua et al. (2001) J. Immunol. 166:602; Sidman et al. (1983) Biopolymers 22:547; Langer et al. (1981) J. Biomed. Mater. Res. 15:167; Langer (1982) Chem. Tech. 12:98; Epstein et al.
- an administration regimen for a therapeutic agent depends on several factors, including the serum or tissue turnover rate of the agent, the level of symptoms, the immunogenicity of the agent, and the accessibility of the target cells in the biological matrix.
- an administration regimen maximizes the amount of therapeutic agent delivered to the patient consistent with an acceptable level of side effects. Accordingly, the amount of agent delivered depends in part on the particular entity and the severity of the condition being treated. Guidance in selecting appropriate doses of antibodies, cytokines, and small molecules are available. See, e.g., Wawrzynczak (1996) Antibody Therapy , Bios Scientific Pub.
- Antibodies, antibody fragments, and cytokines can be provided by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. Doses may be provided intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscularly, intracerebrally, intraspinally, or by inhalation. In various embodiments the mode of administration is selected based on the primary locus of infection, e.g. the lung or GI tract.
- a preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.
- a total weekly dose is generally at least about 0.05 ⁇ g/kg, 0.2 ⁇ g/kg, 0.5 ⁇ g/kg, 1 ⁇ g/kg, 10 ⁇ g/kg, 100 ⁇ g/kg, 0.2 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 10 mg/kg, 25 mg/kg, or 50 mg/kg. See, e.g., Yang et al. (2003) New Engl. J. Med. 349:427; Herold et al. (2002) New Engl. J. Med. 346:1692; Liu et al. (1999) J. Neurol. Neurosurg. Psych.
- a small molecule therapeutic e.g., a peptide mimetic, natural product, or organic chemical
- the desired dose of a small molecule therapeutic is about the same as for an antibody or polypeptide, on a moles/kg basis.
- An effective amount for a particular patient may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects, see, e.g., Maynard et al. (1996) A Handbook of SOPs for Good Clinical Practice , Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice , Urch Publ., London, UK.
- Typical veterinary, experimental, or research subjects include monkeys, dogs, cats, rats, mice, rabbits, guinea pigs, horses, and humans.
- Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
- Important diagnostic measures include those of symptoms of, e.g., the infection or infection levels.
- a biologic to be used is derived from the same species as the animal targeted for treatment, or is modified to mimic a protein derived from the same species (e.g. humanized antibodies), thereby minimizing a humoral response to the reagent.
- a second therapeutic agent e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation
- a second therapeutic agent e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation
- An effective amount of therapeutic will decrease the symptoms typically by at least 10%; usually by at least 20%; preferably at least about 30%; more preferably at least 40%, and most preferably by at least 50%.
- the invention further provides use of antagonists of IL-23 or IL-23R, or both, in the manufacture of a medicament for the treatment of an infectious disease, including but not limited to a condition selected from the group consisting of a fungal infection, a persistent fungal infection, candidiasis, CMC, aspergillosis, cryptococcosis, a viral infection, a persistent viral infection, HIV infection, HBV infection, HCV infection, a baceterial infection, mycobacterial infection, an M. tuberculosis infection, an M. bovis infection and an M. leprae infection.
- the medicament may comprise one or more additional therapeutic agents.
- the medicament of the present invention may be used in conjunction with one or more other therapeutic agents.
- the invention further provides anti-idiotypic antibodies directed to therapeutic anti-IL-23 or anti-IL-23R antibodies of the present invention.
- An anti-idiotypic antibody is an antibody that recognizes unique determinants generally associated with the antigen-binding region of another antibody.
- the anti-idiotypic antibody can be prepared by immunizing an animal of the same species and genetic type (e.g., mouse strain) as the source of the original anti-IL-23 antibody with the anti-IL-23 antibody or a CDR containing region thereof. The immunized animal then generates antibodies to the idiotypic determinants of the immunizing antibody to produce an anti-idiotypic antibody.
- the anti-idiotypic antibody may also be used as an immunogen to induce an immune response in yet another animal, producing a so-called “anti-anti-Id antibody.”
- Anti-idiotypic antibodies may be used, for example, to determine the level of a therapeutic anti-IL-23 (or anti-IL-23R) antibody in a subject, e.g. in a bodily fluid (e.g. blood) of a subject undergoing anti-IL-23 therapy. Determination of the level of anti-IL-23 (or anti-IL-23R) antibody in a subject may be useful in maintaining a desired level of anti-IL-23 antibody in a subject since dosing may be modified in response to such determinations. Dosing may be increased or decreased (in frequency and/or amount per administration) to obtain a circulating level of anti-IL-23 antibody within a desired range of values. The desirable range may be determined by medical practitioners by methods typical in the art, and may depend on the therapeutic index for the anti-IL-23 (or anti-IL-23R) antibody or fragment thereof.
- An anti-idiotypic antibody may be supplied in a form suitable for easy detection, including antibodies with polypeptide tags (e.g. the FLAG® tag), or coupled to dyes, isotopes, enzymes, and metals.
- polypeptide tags e.g. the FLAG® tag
- dyes e.g. the FLAG® tag
- isotopes e.g. the FLAG® tag
- assay formats exist, such as radioimmunoassays (RIA), ELISA, and lab on a chip.
- kits for use in treatment of subjects (human or non-human) suffering from infections, such as chronic bacterial, mycobacterial, viral and fungal infections.
- the kit comprises a compartment for containing an antagonist of IL-23, the antagonist of IL-23 itself (such as an antibody), and optionally instructions for use, one or more additional therapeutic agent or agents, and one or more medical devices for administration (e.g. a syringe or a disposable injector such as the RedipenTM injector device).
- the antagonist of IL-23 may be any of the agents described herein, including but not limited to, anti-p19 antibodies or p19-binding fragments thereof, anti-IL-23R antibodies or IL-23R-binding fragments thereof, or soluble IL-23R fragments.
- the one or more additional therapeutic agents include, but are not limited to, non-steroidal anti-inflammatories (NSAIDS), steroids, IL-12 or an agonist thereof, and antagonists of cytokines such as IL-17A, IL-17F, TGF-13, IL-6, or their respective receptors.
- Antagonists for cytokines include antibodies that bind to the cytokine, its subunits, or its receptor. Although not all antibodies that bind to cytokines or their receptors are necessarily antagonists, such antagonist activity can readily be assessed by techniques commonly known in the art, such as a bioassay or receptor binding assay.
- IL-17A NM — 002190, NP — 002181
- IL-17F NM — 052872, NP — 443104
- IL-17RA NM — 014339, NP — 055154
- IL-17RC transcript variants NM — 153461, NM — 153460, NM — 032732, and their respective translations.
- kits comprising anti-idiotypic antibodies directed to therapeutic anti-IL-23 (or anti-IL-23R) antibodies of the present invention.
- the kit comprises a compartment for containing the anti-idiotypic antibody, the anti-idiotypic antibody itself, and optionally instructions for use, one or more detection reagents, one or more devices for detection of the anti-idiotypic antibody (such as a microtiter plate), and one or more samples of the anti-IL-23 antibodies to be detected (or other positive control).
- IL-23 and IL-23R antagonist therapy can be commenced upon analysis of various diagnostic markers of TB.
- Patients exhibiting a positive tuberculin test or Mantoux test can be given IL-23 or IL-23R antagonist therapy to prevent the further growth of mycobacteria, or to clear an existing non-pathological infection.
- Patients with high levels of mycobacterium in biological samples may also benefit from IL-23 and IL-23R antagonist therapy to prevent the further growth of mycobacteria and clear bacterial burdens in the lungs. Similar treatment may be used for patients having high mycobacterial DNA or RNA levels in clinical samples or a positive niacin test in culture. Also envisioned is the use of IL-23 and IL-23R antagonists in conjunction with pathologically symptomatic TB infections to lessen or clear bacterial burdens.
- Bacterial infections that may be treated using the methods and compositions of the present invention include, but are not limited to, those caused by: Staphylococcus aureus, Staphylococcus epidermidis; Streptococcus pneumoniae; Streptococcus agalactiae; Streptococcus pyogenes; Enterococcus spp.; Bacillus anthracis; Bacillus cereus; Bifidobacterium bifidum; Lactobacillus spp.; Listeria monocytogenes; Nocardia spp.; Rhodococcus equi (coccobacillus); Erysipelothrix rhusiopathiae Corynebacterium diptheriae; Propionibacterium acnes; Actinomyces spp.; Clostridium botulinum; Clostridium difficile; Clostridium perfringens; Clostridium tetani; Mobiluncu
- Mycobacterial infections that may be treated using the methods and compositions of the present invention include, but are not limited to, those caused by: M abscessus, M. africanum, M. asiaticum, Mycobacterium avium complex (MAC), M. avium paratuberculosis, M. bovis, M. chelonae, M. fortuitum, M. gordonae, M. haemophilum, M. intracellulare, M. kansasii, M. lentiflavum, M. leprae, M liflandii, M. malmoense, M. marinum, M. microti, M. phlei, M. pseudoshottsii, M. scrofulaceum, M. shottsii, M. smegmatis, M. triplex, M. tuberculosis, M. ulcerans, M. uvium , and M. xenopi.
- M abscessus M
- the methods and compositions of the present invention may also be used to treat fungal conditions, including but not limited to, histoplasmosis, coccidioidomycosis, blastomycosis, aspergillosis, penicilliosis, candidiasis and cryptococcosis.
- Risk factors for mycoses include blood and marrow transplant, solid-organ transplant, major surgery (especially gastrointestinal surgery), AIDS, neoplastic disease, advanced age, immunosuppressive therapy, and prematurity in infants.
- Fungal pathogens causing infections (and clinical syndromes) that may be treated using the methods and compositions of the present invention include, but are not limited to, Candida albicans (thrush, vaginal candidiasis, esophageal candidiasis), Cryptococcus neoformans (meningitis), Histoplasma capsulatum (disseminated infection with fever and weight loss), Coccidioides immitis (diffuse and focal pulmonary disease), Blastomyces dermatitidis (localized pulmonary disease and disseminated infection, including meningitis), Aspergillus fumigatus (pulmonary disease with fever, cough, and hemoptysis), and Penicillium marneffei (fever alone or with pulmonary infiltrates, lymphadenopathy, or cutaneous lesions).
- Candida albicans thrush, vaginal candidiasis, esophageal candidiasis
- Cryptococcus neoformans mening
- the methods and compositions of the present invention may also be used to treat infections with Candida species C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, C. guilliermondii , and C. rugosa .
- the preceding fungal pathogens (and clinical syndromes) are commonly associated with HIV infection.
- the methods and compositions of the present invention may also be used to treat infections with Candida species such as C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, C. guilliermondii , and C. rugosa .
- the methods and compositions of the present invention may also be used to treat infections with Aspergillus species such as A. flavus, A. niger, A. ustus and A. terreus .
- Additional fungal pathogens include Fusarium species (e.g. F. moniliforme, F. solani, F. oxysporum ) and Scedosporium species (e.g. S. apiosperum, S. prolificans ).
- Additional fungal diseases include zygomycoses caused by species of Rhizopus (e.g. R. oryzae, R. arrhizus ), Rhizomucor , Absidia, Cunninghamella.
- Antagonists of IL-23 and IL-23R may be used alone or in conjunction with agents intended to enhance a Th1 response (e.g. IL-12 or agonists thereof) or inhibit a Th17 response (e.g. TGF- ⁇ antagonists; IL-6 antagonists; IL-17A and/or IL-17F antagonists), or both. Agonists and antagonists of the receptors for these cytokines may also be used. Such agents may include antibodies and antigen-binding fragments thereof, small molecules, siRNA and antisense nucleic acids. Antagonists of IL-23 and IL-23R may also be used in conjunction with anti-inflammatory agents, such as corticosteroids, e.g. prednisone.
- anti-inflammatory agents such as corticosteroids, e.g. prednisone.
- the IL-17 antagonist may inhibit the expression of IL-17A, IL-17F, IL-17RA or IL-17RC or may inhibit IL-17 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction.
- the IL-17 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-17A, IL-17F, IL-17RA or IL-17RC.
- the IL-17 antagonist is a monoclonal antibody that specifically binds to IL-17A.
- Exemplary antagonist antibodies to IL-17A include the anti-human IL-17A antibodies, and fragments thereof, disclosed in commonly-assigned U.S. patent application Ser. No. 11/836,318 (filed 9 Aug. 2007), and in WO 2006/013107 and WO 2006/054059.
- the IL-17 antagonist comprises a bispecific antibody.
- the IL-23 antagonist comprises a bispecific antibody that binds to and inhibits the activity of IL-23.
- Such bispecific antibodies may bind to IL-23p19 or IL-23R, and may also bind to the IL-17A, IL-17F, IL-17RA, IL-17RC.
- the IL-23 antagonist is a bispecific antibody that binds to IL-23p19 and IL-17 and inhibits the activity of IL-23 and IL-17. See, e.g., WO 2007/147019.
- IL-23 and IL-17 antagonist bispecific antibodies may bind to either IL-23 receptor (e.g.
- bispecific antibodies that antagonize both IL-17 and IL-23 activity can be produced by any technique known in the art.
- bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305:537-39.
- bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan et al. (1985) Science 229:81.
- Bifunctional antibodies can also be prepared by disulfide exchange, production of hybrid-hybridomas (quadromas), by transcription and translation to produce a single polypeptide chain embodying a bispecific antibody, or transcription and translation to produce more than one polypeptide chain that can associate covalently to produce a bispecific antibody.
- the contemplated bispecific antibody can also be made entirely by chemical synthesis.
- the bispecific antibody may comprise two different variable regions, two different constant regions, a variable region and a constant region, or other variations.
- Antagonists of IL-23 and IL-23R may be used alone or co-administered with known antibacterials, such as isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, ciprofloxacin, and ofloxacin.
- Additional antibacterial agents include, but are not limited to, alatrofloxacin, azithromycin, baclofen, benzathine penicillin, cinoxacin, clarithromycin, clofazimine, cloxacillin, demeclocycline, dirithromycin, doxycycline, erythromycin, ethionamide, furazolidone, grepafloxacin, imipenem, levofloxacin, lorefloxacin, moxifloxacin HCl, nalidixic acid, nitrofurantoin, norfloxacin, ofloxacin, rifabutin, rifapentine, sparfloxacin, spiramycin, sulphabenzamide, sulphadoxine, sulphamerazine, ulphacetamide, sulphadiazine, sulphafurazole, sulphamethoxazole, sulphapyridine, tetracycline, trim
- the methods and compositions of the present invention may be used to treat persistent viral infections, including but not limited to infections caused by HBV, HCV, HIV, human papillomavirus (HPV). Such chronic infections represent a failure of the immune response to eradicate the infection.
- Antagonists of IL-23 and IL-23R may be used alone or in conjunction with other antiviral agents, including but not limited to, abacavir, acyclovir, amantadine, amprenavir, delavirdine, didanosine, efavirenz, famciclovir, indinavir, an interferon alfa, ribavirin, lamivudine, nelfinavir, nevirapine, oseltamivir, penciclovir, ribavirin, ritonavir, saquinavir, stavudine, valacyclovir, zalcitabine, zanamivir, zidovudine (azi
- Preferred interferon alfa agents include pegylated interferon alfa 2a and pegylated interferon 2b. Exemplary forms of interferon alpha are discussed in U.S. Pat. No. 6,923,966.
- the IL-23 antagonist may also be used in combination with viral specific agents, such as HCV protease or HCV polymerase inhibitors for chronic HCV infection, and CCR5 antagonists for chronic HIV infection.
- Antagonists of IL-23 and IL-23R may also be used in conjunction with a therapeutic vaccine, e.g. gp120-depleted whole killed virus for HIV infection, a recombinant E1 protein for HCV infection, and viral E6 and E7 oncoproteins for HPV infection.
- a therapeutic vaccine e.g. gp120-depleted whole killed virus for HIV infection, a recombinant E1 protein for HCV infection, and viral E6 and E7 oncoproteins for HPV infection.
- Such therapeutic vaccines include DNA vaccines or viral vectors, optionally administered in a heterologous priming and boosting regimen in which a DNA vaccine is followed by a viral vector vaccine. Berzofsky et al. (2004).
- Antagonists of IL-23 and IL-23R may be used alone or in conjunction with other antifungal agents, including but not limited to, posaconazole, fluconazole (U.S. Pat. No. 4,404,216), voriconazole, itraconazole (U.S. Pat. No. 4,267,179), ketoconazole (U.S. Pat. Nos.
- liarozole irtemazol, clotrimazole, miconazole, econazole, butoconazole, oxiconazole, sulconazole, tioconazole, and terconazole, substituted thiazoles, thiadiazole, oxadiazole, caspofungin, amphotericin B, nystatin, pimaricin, flucytosine (5-fluorocytosine), naftifine, terbinafine, butenafine, thiocarbonate tolnaftate, griseofulvin, amiodarone, ciclopirox, sulbentine, amorolfine, clioquinol, gentian violet, potassium iodide, sodium thiosulfate, carbol-fuchsin solution, and the echinocandins (e.g. caspofungin acetate, micafungin and
- the IL-23 and IL-23R antagonists of the present invention may be used in combination with standard antifungal agents at their usual dosages when used as single agents, or at lower dosages if there is any synergistic enhancement in efficacy when the drugs are used together.
- Fluconazole may be administered, e.g., at 400-800 mg/day.
- Voriconazole may be administered at 4 mg/kg bid.
- Itraconazole may be administered at 200-600 mg/day.
- Amphotericin B desoxycholate (D-AmB) may be administered at 0.5-1 mg/kg/day.
- the subject having an infection, or suspected to have an infection has been previously treated for the infection using other methods or compositions (i.e. not methods or compositions of the present invention).
- the previous treatment may include treatment with any of the antimicrobial agents, antibiotics, antifungal agents, antiviral agents disclosed herein, or any other treatment method or composition.
- the subject will have a formal diagnosis of infection, optionally with an identification of the etiological agent, but in other embodiments the subject may not have a formal diagnosis, or may have a partial diagnosis limiting but not fully identifying the etiological agent.
- the subject is only suspected of having an infection.
- the subject is at risk of having or acquiring an infection, e.g. the subject is undergoing immunosuppressive therapy, is at risk of acquiring a fungal infection because of AIDS, etc.
- the subject having an infection, or suspected to have an infection, or at risk of having or acquiring an infection is immunocompromised, e.g. due to AIDS, chemotherapy, transplant, old age.
- Fluorescent reagents suitable for modifying nucleic acids including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g., as diagnostic reagents, are available (Molecular Probes (2003) Catalogue , Molecular Probes, Inc., Eugene, Oreg.; Sigma-Aldrich (2003) Catalogue, St. Louis, Mo.).
- mice Female C57BL/6 and BALB/c mice, 8-10 wk old, were purchased from Charles River (Calco, Italy). Homozygous IL-12p35-, IL-23p19- or IL-12p40-deficient mice (hereafter referred to as p35 ⁇ / ⁇ , p19 ⁇ / ⁇ and p40 ⁇ / ⁇ , respectively), TLR-2-, TLR-4-, MyD88- or TRIF-deficient mice (hereafter referred to as TLR-2 ⁇ / ⁇ , TLR-4 ⁇ / ⁇ , MyD88 ⁇ / ⁇ or TRIF ⁇ / ⁇ ) mice on C57BL/6 background were bred under specific pathogen-free conditions at the Animal Facility of Perugia University, Perugia, Italy.
- IFN- ⁇ ⁇ / ⁇ /p35 ⁇ / ⁇ mice Breeding pairs of IFN- ⁇ ⁇ / ⁇ /p35 ⁇ / ⁇ mice, on BALB/c background, were provided by Dr. M. Colombo (Istituto Tumori, Milan, Italy). IFN- ⁇ ⁇ / ⁇ and IL-4 ⁇ / ⁇ mice, on BALB/c background, were also bred at the Animal Facility of Perugia University. Experiments were performed according to the Italian Approved Animal Welfare Assurance A-3143-01.
- Fungi were suspended in endotoxin-free solutions (Detoxi-gel, Pierce, Rockford, Ill.) at ⁇ 1.0 EU/ml, as determined by the Limulus amebocyte lysate (LAL) method. Fungal growth was quantified by the chitin assay, with results expressed as micrograms of glucosamine/organ. For histology, tissues were excised and immediately fixed in formalin, and sections (3-4 ⁇ m) of paraffin-embedded tissues were stained with periodic acid-Schiff reagent and examined. Bacci et al. (2002); Montagnoli et al. (2006). Infected animals were treated with 200 ⁇ g of p19-neutralizing Ab (Belladonna et al.
- CD11b+ polymorphonuclear neutrophils were isolated from the peritoneal cavity of mice by magnetic-activating sorting using Ly-6G MicroBeads and MidiMacs (Miltenyi Biotech, Bergisch Gladbach, Germany).
- CD4+ T cells were purified from the mesenteric lymph nodes (MLN), thoracic lymph nodes (TLN) and spleens by magnetic-activated sorting using CD4 MicroBeads and MidiMacs (Miltenyi Biotech).
- DC were obtained from bone marrow cells cultured in Iscove's modified medium in the presence of 150 U/ml mouse rGM-CSF (Sigma-Aldrich, St. Louis, Mo.) and 75 U/ml rIL-4 (R&D Systems, Minneapolis, Minn.) for 7 days to obtain CD11b+ DC or 200 ng/ml FLT3-L (R&D Systems) for 9 days to obtain FL-DC.
- 150 U/ml mouse rGM-CSF Sigma-Aldrich, St. Louis, Mo.
- rIL-4 R&D Systems, Minneapolis, Minn.
- Splenic DC (>99% CD11c+ and ⁇ 0.1% CD3+) consisting of 90-95% CD8-, 5-10% CD8+, and 1-5% B220+ cells) were purified by magnetic activated sorting using CD11c MicroBeads and MidiMacs (Miltenyi Biotech). Zymosan from Saccharomyces cerevisiae (10 ⁇ g/ml, Sigma-Aldrich), ultra-pure LPS from Salmonella minnesota Re 595 (10 ⁇ g/ml, Labogen, Rho, Milan, Italy) and CpG oligonucleotides 2006 (CpGODN, 0.06 ⁇ M) were used as described. Bellocchio et al. (2004) J. Immunol. 173:7406.
- DC cells were pulsed and cultured as follows. DC were exposed to live unopsonized fungi, with and without 10 ng/ml cytokines (from R&D Systems; Space Import-Export srl, Milan, Italy; and BD Biosciences-PharMingen, San Diego, Calif.) or neutralizing antibodies (10 ⁇ g/ml), at a 1:1 cell:fungus ratio, as described. Bacci et al. (2002); Montagnoli et al. (2006). Cells were harvested for RT-PCR at 12 h of culture, and supernatants were assessed for cytokine contents by ELISA.
- cytokines from R&D Systems; Space Import-Export srl, Milan, Italy; and BD Biosciences-PharMingen, San Diego, Calif.
- neutralizing antibodies 10 ⁇ g/ml
- Splenic CD4+T cells (10 6 /ml) were cultured in flat-bottomed 96-well plates in the presence of 5 ⁇ 10 5 Candida -pulsed splenic DC for 5 days, with and without neutralizing antibodies (10 ⁇ g/ml), before cytokines quantification in culture supernatants.
- Unfractionated MLN or TLN cells were cultured with inactivated fungi as described (Montagnoli et al. (2006); Montagnoli et al. (2002) J. Immunol. 169:6298) before cytokine determination in culture supernatants 5 days later.
- MMP9 matrix metalloproteinase 9
- IDO Indoleamine 2,3-dioxygenase
- Cytokines were quantified by real-time RT-PCR, ELISA and ELISPOT assays, as follows.
- Real-time RT-PCR was performed using the iCycler iQ® detection system (Bio-Rad, Hercules, Calif.) and SYBR® Green chemistry (Finnzymes Oy, Espoo, Finland). Cells were lysed and total RNA was extracted using RNeasy Mini Kit (QIAGEN S.p.A., Milano, Italy) and was reverse transcribed with Sensiscript Reverse Transcriptase (QIAGEN) according to the manufacturer's directions.
- PCR primers were obtained from Invitrogen (Carlsbad, Calif.). The PCR primers used were:
- PCR amplification of the housekeeping ⁇ -actin gene was performed for each sample (triplicates) to control for sample loading and allow normalization between samples as per the manufacturer's instructions (Applied Biosystems, Foster City, Calif.). Water controls were included to ensure specificity.
- the thermal profile for SYBR® Green real time PCR was at 95° C. for 3 min, followed by 40 cycles of denaturation for 15 s at 95° C. and an annealing/extension step of 1 min at 60° C. Each data point was examined for integrity by analysis of the amplification plot. The mRNA-normalized data were expressed as relative cytokine mRNA in treated cells compared to that of mock-infected cells.
- Cytokine content was assessed by enzyme-linked immunosorbent assays (R&D Systems and, for IL-23, eBioscience, Societa Italianá Chimici, Rome, Italy) on tissue homogenates or supernatants of cultured cells.
- the detection limits (pg/ml) of the assays were ⁇ 16 for IL-12p70, ⁇ 30 for IL-23, ⁇ 10 for IFN- ⁇ , ⁇ 3 for IL-10, ⁇ 10 for IL-17 and ⁇ 4,6 for TGF- ⁇ 1.
- AID EliSpot assay kits (Amplimedical, Buttigliera Alta, Turin, Italy) were used on purified MLN CD4+ T cells co-cultured with Candida -pulsed DC for 3 days to enumerate cytokine-producing cells.
- FIGS. 1A-E showed that resistance to candidiasis was severely impaired in p35 ⁇ / ⁇ mice, more than 50% of which succumbed to the infection ( FIG. 1A ) with an elevated fungal growth in the stomach ( FIG. 1B ).
- mice were assessed for p35, p19, IL-12R ⁇ 2 and IL-23R mRNA expression in MLN one or three days after the infection ( FIG. 1C ), and frequencies of IFN- ⁇ -, IL-4- or IL-17-producing CD4+ cells in MLN at day seven after infection ( FIG. 1D ).
- FIG. 1C mice were assessed for p35, p19, IL-12R ⁇ 2 and IL-23R mRNA expression in MLN one or three days after the infection
- FIG. 1D frequencies of IFN- ⁇ -, IL-4- or IL-17-producing CD4+ cells in MLN at day seven after infection.
- FIG. 1D We found increased levels p35 and IL-12R ⁇ 2, and numbers of IFN- ⁇ + cells, in p19 ⁇ / ⁇ mice compared to C57BL/6 mice demonstrating augmented IL-12/Th1 responses in the absence of IL-23.
- mice lacking IL-12 In contrast, levels of p19 and IL-23R and number of IL-17-producing cells were enhanced in mice lacking IL-12 (p35 ⁇ / ⁇ ). Expectedly, the number of IL-4-producing cells was also considerably enhanced in p35 ⁇ / ⁇ mice.
- IL-12 suppresses IL-23 and IL-17 production, and vice versa—IL-23 inhibits IL-12 and IFN- ⁇ ⁇ production—indicating cross-regulation of IL-23/Th17 and IL-12/Th1 pathways.
- IL-12 and IL-23 and their respective receptors were crossregulated, with upregulation of p35 and IL-12R ⁇ 2 in TLN of p19 ⁇ / ⁇ mice, and upregulation of p19 and IL-23R in TLN of p35 ⁇ / ⁇ mice, compared to C57BL/6 mice ( FIG. 2B ).
- absence of both IL-12 and IL-23 in p40 ⁇ / ⁇ mice did not significantly alter expression of p35 and p19 or their receptors IL-12R ⁇ 2 and IL-23R.
- TGF- ⁇ neutralization effectively reduced TGF- ⁇ production in infections (from 46 to 24 pg/ml in the stomach and from 36 to 15 pg/ml in the lung), we conclude that TGF- ⁇ plays a minor role in Th17-mediated susceptibility to fungal infection.
- IL-23 can have a protective role in fungal infection in the absence of IFN- ⁇ .
- IL-23 has the opposite effect in the absence of IL-12p70, or in the absence of both IL-12p70 and IFN- ⁇ , ⁇ as demonstrated by reduced fungal burden upon neutralization of IL-23 in p35 ⁇ / ⁇ or doubly deficient IFN- ⁇ ⁇ / ⁇ /p35 ⁇ / ⁇ mice ( FIG. 3C ).
- IL-23 is produced by human DC in response to Aspergillus in vitro. Gafa et al. (2006) Infect. Immun. 74:1480. We evaluated here whether IL-23 is produced by DC in response to C. albicans and how it relates to the production of IL-12 and IL-10, two cytokines essentially required for the induction of protective tolerance to the fungus. Romani & Puccetti (2006).
- GM-DC GM-CSF
- FL-DC Flt3-L
- DC were stimulated in vitro with yeasts or hyphae of the fungus and assessed for cytokine mRNA expression and production.
- Zymosan and LPS were used as positive controls of GM-DC and CpG-ODN as a positive control of FL-DC.
- RT-PCR analysis revealed that p19 mRNA expression only increased in GM-DC in response to yeasts more than hyphae; p35 mRNA expression slightly increased in GM-DC in response to yeasts but, similar to IL-10, greatly increased in FL-DC exposed to hyphae ( FIG. 4A ).
- the measurement of actual cytokine production in culture supernatants confirmed that IL-23 was produced by GM-DC in response to yeasts, particularly at high fungus:DC ratios, as well as to zymosan or LPS ( FIG. 4B ).
- Candida -pulsed FL-DC conferred protection and Candida -pulsed GM-DC exacerbated the infection upon adoptive transfer into recipient mice with candidiasis.
- FIG. 4C shows that IL-12p70 and IL-23 are indeed cross-regulated as the production of IL-12p70 was higher in p19 ⁇ / ⁇ DC and that of IL-23 higher in p35 ⁇ / ⁇ DC as compared to WT DC.
- FIG. 5A shows that both TLR2 and TLR4 are essential for IL-23 production by signaling through MyD88, but not TRIF. Notably, IL-23 appeared to be promoted even in the absence of the TRIF. Therefore, IL-23 is produced by conventional DC in response to fungi through the TLR/MyD88-dependent inflammatory pathway.
- T cells may also regulate IL-23 production.
- IL-23 production was-up-regulated in cultures of T cells stimulated with Candida pulsed-DC from C57BL/6 and particularly p35 ⁇ / ⁇ mice (group 3 vs group 6, FIG. 5B ), a finding suggesting that activated T cells may provide a positive feedback loop for amplification of IL-23 production.
- the results of criss-cross experiments confirmed that IL-23-producing DC were necessary and sufficient to activate IL-17-producing cells (groups 7 and 8).
- PMN are essential in the initiation and execution of the acute inflammatory response to fungi.
- Romani (2004) The finding that PMN were abundantly recruited to sites of infections, together with early fungal growth in p35 ⁇ / ⁇ mice, led us to hypothesize that the IL-23/IL-17-dependent pathway could adversely affect the anti-fungal effector functions of PMN.
- the killing activity was significantly increased in p19 ⁇ / ⁇ PMN and decreased in p35 ⁇ / ⁇ mice as compared to C57BL/6 PMN ( FIG. 6A ).
- IL-23R was also expressed on murine PMN.
- Quantitative RT-PCR revealed that unstimulated PMN express IL-23R, whose expression was further increased after stimulation with LPS (data not shown), a finding suggesting that PMN are also responsive to IL-23.
- IL-17 is a potent chemoattractant for PMN (Ye et al. (2001) J. Exp. Med. 194:59) such that decreased influx of peripheral PMN to infected organs accounted for the high susceptibility of IL-17AR-deficient mice to candidiasis (Huang et al. (2004) J. Infect. Dis. 190:624), our results also point to a detrimental effect for IL-17 on PMN function.
- DLN murine draining lymph node
- the baseline data on IL-23 and IL-12 activity in the absence of a potential IL-23-specific antagonist are obtained as follows. Normal wild type SJL mice are immunized (s.c.) with proteolipid peptide (PLP) emulsified in complete Freund's adjuvant, and with (i.v.) pertussis toxin. Draining lymph nodes are removed at day 9 post-immunization, and mononuclear cells are either assessed for intracellular IFN- ⁇ and IL-17 production right away (as described below), or isolated and cultured in the presence of PLP plus either rIL-12 or rIL-23 for 5 days.
- PLP proteolipid peptide
- IL-23 and IL-12 are evaluated relative to the control cells that were not cytokine treated.
- IL-23 treated cells will exhibit an increased percentage of IL-17 producing cells with no increase in IFN- ⁇ producing cells
- IL-12 treated cells will exhibit an increased percentage of IFN- ⁇ producing cells with no increase (or even a decrease) in IL-12 producing cells.
- the potency and specificity of a potential IL-23-specific antagonist is determined by performing the same experiment in the presence of the antagonist, or preferably at a series of concentrations of antagonist.
- An IL-23 specific antagonist will inhibit the activity of IL-23 (i.e. the antagonist will decrease the percentage of IL-17 producing cells that would otherwise be induced by IL-23), but not substantially reduce the activity of IL-12.
- An agent that inhibits the activity of IL-12 or both IL-12 and IL-23 is not an IL-23-specific antagonist.
- a positive control may be included in which a known anti-p19 antagonist antibody is used to specifically inhibit the activity of IL-23.
- a method of demonstrating the efficacy of the compositions and methods of the present invention in the treatment of mycobacterial infections is provided.
- C57BL/6 mice are infected with mycobacteria as follows.
- Theracys-BCG Live (Aventis Pasteur, Inc., Swiftwater, Pa.), a freeze-dried preparation of the Connaught strain of Bacille Calmette and Guerin and attenuated strain of M. bovis , is reconstituted as recommended by the manufacturer.
- the reconstituted bacteria are brought to a concentration of approximately 6 ⁇ 10 7 cfu/mL in 10% glycerol saline. Aliquots are diluted to appropriate concentration in 0.02% Tween-80/0.9% saline prior to injection into mice.
- mice Six to eight week old female C57BL/6 mice are infected intravenously via the lateral tail vein with approximately 3.5 ⁇ 10 5 cfu of BCG. Mice are given 1 mg of the appropriate monoclonal antibody (e.g. isotype control, anti IL-23p19, or anti IL-23R) in 0.9% saline, administered subcutaneously, one day prior to mycobacteria infection and again 1-2 weeks post mycobacteria infection. Mice are sacrificed at appropriate time points after infection by CO 2 narcosis.
- the appropriate monoclonal antibody e.g. isotype control, anti IL-23p19, or anti IL-23R
- the sacrificed BCG infected mice are analyzed as follows. Blood is purged from the lungs by perfusing RPMI 1640 through the right ventricle of the heart after the inferior vena cava is severed. The left lung, the lower right liver lobe, and half the spleen are aseptically removed. The tissues are homogenized in 0.9% NaCl/0.02% Tween 80 with a Mini-Bead Beater-8 homogenizer (BioSpec Products, Bartlesville, Okla.). Viable mycobacteria are quantitated by plating 10-fold serial dilutions of organ homogenates onto 7H10 Middlebrook agar plates (Becton Dickinson, Sparks, Md.).
- Colony-forming units are manually counted after two weeks of incubation at 37° C.
- a statistically significant decrease in bacterial burden (as measured by CFU) in animals treated with anti-IL-23 antibodies (e.g. anti-IL-23p19 antibodies or anti-IL-23R antibodies) as compared with control mice (e.g. isotype control) is evidence of efficacious treatment of mycobacterial infection.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biotechnology (AREA)
- AIDS & HIV (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Methods and compositions comprising antagonists of IL-23 are provided for the treatment of infections, such as chronic bacterial, viral and fungal infections.
Description
- This application claims benefit of U.S. Provisional Patent Application No. 60/889,475, filed Feb. 12, 2007, the disclosure of which is hereby incorporated by reference in its entirety.
- The present invention relates generally to treatment of infections. Specifically, the invention relates to administration of antagonist of IL-23, e.g. antibodies, to subjects exhibiting infections, such as chronic bacterial, fungal or viral infections.
- A number of pathogens cause chronic infections. Various viruses, fungi and bacteria, for example, can cause persistent infections that fail to resolve.
- As the number of severe fungal infections continues to rise, the need for methods and compositions for their treatment is more urgent. Major fungal pathogens include Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, with estimated annual incidence for invasive mycoses involving these pathogens of 72-228 (for Candida species), 12-34 (for Aspergillus species) and 30-66 (for C. neoformans) infections per million population in the United States. Pfaller et al. (2006) Clin. Infect. Dis. 43:S3-14. The rise in fungal infections is primarily due to the increasing number of immuno-compromised patients as a result of medical advances (transplantation and chemotherapy), and as a result of the increasing population of AIDS patients. More than 80% of fungal infections in immunocompromised patients are caused by Candida species. Cryptococcosis is the second most prevalent fungal infection in AIDS patients following candidiasis. Aspergillosis is responsible for at least 30% of the infections in cancer and organ transplant patients and has a high mortality rate.
- Although fluconazole has been an effective drug against fungal pathogens for a number of years, resistance is increasing. Alternatives such as amphotericin B have serious drawbacks, including such side effects as fever, kidney damage, anemia, low blood pressure, headache, nausea, vomiting and phlebitis.
- Bacterial infections remain an important issue despite the prevalence of antibiotics, in light of an increased population of immune compromised individuals and a widespread development of antibiotic resistant bacterial strains. Immune compromised individuals include the elderly, transplant recipients, chemotherapy patients, and individuals with acquired immune deficiency syndrome (AIDS). Nearly two million patients in the United States get an infection in the hospital each year, and 70% of the bacteria responsible for those infections are resistant to at least one antibiotic. NIAID Fact Sheet, “The Problem of Antimicrobial Resistance,” April 2006. In recent years, about 90,000 people in the United States die from infections, up from 13,300 in 1992. Although most bacterial infections remain susceptible to a prolonged course of therapy of at least one antibiotic (e.g. continuous intravenous administration of vancomycin), there is no guarantee that this will remain true with future pathogenic bacteria. Methicillin resistant Stapholococcus aureus (MRSA) is a prime example of a multiple-antibiotic-resistant microbe that represents a significant public health challenge. In 2002, the Centers for Disease Control (CDC) reported the first case of a S. aureus infection that was completely resistant to vancomycin (dubbed VRSA) in a patient in Michigan. Persistent bacterial pathogens also include Salmonella spp., Brucella spp. and Chlamydia spp.
- Mycobacteria are a diverse and widely distributed group of aerobic, nonsportulating, nonmotile bacilli that have a high cell-wall lipid content and a slow growth rate. Members of the genus Mycobacterium vary in virulence, e.g., from harmless to species with significant pathogenicity, for example, M. tuberculosis, the causative agent in tuberculosis (TB). TB is the second leading infectious cause of death in the world. It is estimated that about two billion people, or one third of the world's population, are infected with M. tuberculosis. Eight million new cases and nearly three million deaths occur annually. TB is directly responsible for 7% of all deaths world wide, and the global epidemic is likely to worsen as a result of the spread of drug-resistant organisms and the ongoing HIV epidemic. See, e.g., Dale and Federman (eds.) (2002) WebMD Scientific American Medicine, WebMD Professional Publishing, New York, N.Y.
- Most current methods to treat TB involve the use of broad spectrum anti-infective agents such as isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, ciprofloxacin, and ofloxacin. Such agents, however, can cause toxicities in various organs, and with the growth of several antibiotic resistant strains of TB, are losing efficaciousness. Reducing the mycobacterial burden in the lungs of tuberculosis patients with the use of a variety of non-antibiotic agents can prevent disease formation, transmission, and death.
- Chronic viral infections also represent a significant threat to public health. Failure to completely eradicate viral infections such as hepatitis C virus (HCV) or human immunodeficiency virus (HIV) can lead to subsequent reactivations and complications such as liver cancer or acquired immune deficiency syndrome (AIDS), respectively. Robertson & Hasenkrug (2006) Springer Semin. Immun. 28:51. In addition, human papillomavirus (HPV) genotypes 16, 18, 31, 33, 45, and 56 account for more than 95% of cases of cervical cancer. Berzofsky et al. (2004) J. Clin. Invest. 114:450. It is estimated that chronic infections arise in virtually 100% of cases of HIV infection, 55-85% of cases of HCV infection, and over 30% of cases of HPV. Berzofsky et al. (2004).
- The need exists for improved methods and compositions for treatment and/or prevention of bacterial, viral and fungal infections. Such methods and compositions are preferably less toxic and/or more efficacious that existing treatment methods and compositions.
- The present invention meets these needs and more by providing compositions, medicaments and methods of using antagonists of IL-23 to combat bacterial, viral and fungal infections.
- In one aspect the invention relates to methods of treatment of a subject having an infection, suspected of having an infection, or at risk of acquiring an infection, involving administration of an antagonist of IL-23. In one embodiment the antagonist is a binding compound, such as an antibody or binding fragment thereof, that binds to IL-23 or the p19 subunit thereof. In some embodiments the binding of the antibody blocks binding of IL-23 or its p19 subunit to the IL-23 receptor or the IL-23R subunit thereof. In another embodiment the antagonist of IL-23 binds to IL-23 receptor or the IL-23R subunit thereof. In some embodiments the antagonist that binds to IL-23 receptor, or the IL-23R subunit thereof, and blocks binding to IL-23 or the p19 subunit thereof. In another aspect the invention relates to compositions for use in said methods of treatment.
- In some embodiments the infectious disorder comprises an infectious disease, such as a bacterial, mycobacterial, viral or fungal infection. In one embodiment the infectious disorder is a mycobacterial infection caused by M. bovis, M. leprae, or M. tuberculosis. In one embodiment the infectious disorder is TB. In another embodiment the infectious disorder is a fungal infection selected from the group consisting of onychomycosis, candidiasis, aspergillosis, cryptococcosis. In yet another embodiment the infectious disorder is a fungal infection caused by C. albicans (e.g. chronic mucocutaneous candidiasis, thrush), C. neoformans or A. fumigatus. In a further embodiment the infectious disorder is a viral infection, e.g. a viral infection caused by human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) or human papillomavirus (HPV).
- In other embodiments, the infectious disorder is a chronic infection. In various embodiments the chronic infection has persisted, despite at least one previous attempt to resolve the infection, for 1, 2, 4, 6, 9, 12, 18, 24, 36 or 48 months or longer. In various embodiments the previous attempt to resolve the chronic infection involves treatment with antimicrobial agents, antibiotics, antiviral agents, or antifungal agents.
- In one embodiment the invention relates to combination therapy combining administration of an antagonist of IL-23 with at least one other therapeutic modality, such as another therapeutic agent. In various embodiments, the other therapeutic agent is an IL-17A antagonist, an IL-17F antagonist, an IL-12 agonist (including IL-12), a TGF-β antagonist, or an IL-6 antagonist. In another embodiment the other therapeutic agent is one or more antifungal agent selected from the group consisting of posaconazole, fluconazole, voriconazole, itraconazole, ketoconazole, liarozole, irtemazol, clotrimazole, miconazole, econazole, butoconazole, oxiconazole, sulconazole, tioconazole, and terconazole, substituted thiazoles, thiadiazole, oxadiazole, caspofungin, amphotericin B, nystatin, pimaricin, flucytosine (5-fluorocytosine), naftifine, terbinafine, butenafine, thiocarbonate tolnaftate, griseofulvin, amiodarone, ciclopirox, sulbentine, amorolfine, clioquinol, gentian violet, potassium iodide, sodium thiosulfate, carbol-fuchsin solution, and the echinocandins (e.g. caspofungin acetate, micafungin and anidulafungin).
- In another embodiment the other therapeutic agent is one or more antimicrobial agent selected from the group consisting of isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, ciprofloxacin, vancomycin or ofloxacin.
- In another embodiment the other therapeutic agent is one or more antiviral agent selected from the group consisting of abacavir, acyclovir, amantadine, amprenavir, delavirdine, didanosine, efavirenz, famciclovir, indinavir, an interferon alfa (IFN-α), ribavirin, lamivudine, nelfinavir, nevirapine, oseltamivir, penciclovir, ribavirin, ritonavir, saquinavir, stavudine, valacyclovir, zalcitabine, zanamivir, zidovudine (azidodeoxythymidine, AZT).
- In one aspect the invention relates to methods of enhancing a type 1 (Th1) immune response in a subject having an infection or suspected of having an infection. In various embodiments, enhancement of the Th1 response is reflected by an increase in the percentage of CD4+ T cells expressing IFN-γ, a decrease in the percentage of CD4+ T cells expressing IL-17A, or both, when compared to the percentage of T cells prior to treatment with an antagonist of IL-23. In various embodiments the increase or decrease is 1.5-, 2-, 3-, 5-, 10-, 20-, 50-fold or more. In another aspect the invention relates to compositions for use in said methods of enhancing a Th1 response.
- In various embodiments the other therapeutic agent is administered before, and/or concurrently with, and/or after administration of the antagonist of IL-23. In one embodiment, an antagonist of IL-17A is administered before and/or concurrently with the antagonist of IL-23. In another embodiment, an antimicrobial, antifungal or antiviral agent is administered concurrently with the antagonist of IL-23.
- In another aspect the invention relates to methods of treatment of a subject having an infection, suspected of having an infection, or at risk of acquiring an infection, involving administration of antagonists of IL-17A and/or IL-17F, such as antagonistic antibodies to the cytokines themselves or to their respective receptors or receptor subunits.
- In other embodiments the antagonist of IL-23 comprises a polynucleotide. In various embodiments the polynucleotide is an antisense polynucleotide (e.g. antisense RNA) or a small interfering RNA (siRNA). In one embodiment the polynucleotide antagonist of IL-23 is delivered in gene therapy vector, such as an adenovirus, lentivirus, retrovirus or adenoassociated virus vector. In another embodiment the polynucleotide antagonist of IL-23 is delivered as a therapeutic agent.
- In yet another embodiment the antagonist of IL-23 comprises a soluble receptor polypeptide. In one embodiment the antagonist of IL-23 is a soluble fragment derived from the extracellular domain of IL-23R.
- In various embodiments the antagonist of IL-23 is an antibody or antigen binding fragment thereof. In various embodiment the antibody or antigen binding fragment thereof comprises a polyclonal antibody, a monoclonal antibody, a humanized antibody, a fully human antibody; an antibody fragment (e.g. Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′)2, and a diabody). In other embodiments the antagonist comprises a peptide mimetic of an antibody. In still further embodiments the antibody or antigen binding fragment thereof is detectably labeled. In one embodiment, the antagonist of IL-23 is an antibody, or antigen binding fragment thereof, that exhibits reduced complement activation, antibody-dependent cellular cytotoxicity (ADCC), or both. In one embodiment the IL-23 antagonist antibody or fragment thereof with reduced effector function is an anti-IL-23 receptor (e.g. anti-IL-23R) antibody or fragment. In various embodiments the antibody with reduced effector function is an antibody fragment (e.g. Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′)2), an IgG4, or has altered glycosylation.
- In one embodiment, the invention relates to treatment of an infection, e.g. a chronic fungal, bacterial or viral infection, by administering an effective amount of a bispecific antibody that binds specifically to any two proteins selected from the group consisting of IL-23p19, IL-23R, IL-17A, IL-17F, IL-17RA, IL-17RC, IL-6 and TGF-β. In one embodiment the proteins are human proteins.
- In one embodiment the antagonist of IL-23 is specific for IL-23 (or its receptor) and does not antagonize IL-12 (or its receptor). In various embodiments antagonism is measured by an in vitro binding assay (e.g. an ELISA) or by a bioassay (e.g. BaF3 cell proliferation or promotion of Th17 cell production). In various embodiments the ratio of the IC50 for inhibition of binding of IL-12 to its receptor to the IC50 for inhibition of binding of IL-23 to its receptor (IC50IL-12/IC50IL-23) is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more.
- In one embodiment the methods and compositions of the present invention are used to treat TB, and the success of the treatment is measured by a reduction in bacterial burden. In various embodiments the mycobacterial burden is measured by a tuberculin test, a Mantoux test, or presence of mycobacterial DNA or RNA in a clinical sample.
- In some embodiments of the present invention the subject having an infection has been previously treated for the infection with other methods or compositions. In one embodiment, the previous treatment was not effective in eliminating infection. In another embodiment the subject having an infection, suspected of having an infection, or at risk of acquiring an infection, is immunocompromised, e.g. as a result of AIDS, transplant or chemotherapy.
- The invention further encompasses use of antagonists of IL-23 in the manufacture of a medicament for the treatment of one or more infectious diseases selected from the group consisting of a fungal infection, a persistent fungal infection, candidiasis, chronic mucocutaneous candidiasis (CMC), aspergillosis, cryptococcosis, a viral infection, a persistent viral infection, HIV infection, HBV infection, HCV infection, a persistent bacterial infection, mycobacterial infection, M. tuberculosis infection, M. bovis infection, and M. leprae infection. In some embodiments, the medicament may comprise one or more additional therapeutic agents. In other embodiments the medicament of the present invention may be used in conjunction with one or more other therapeutic agents.
-
FIGS. 1A-1E show the results of experiments on the role of IL-23/IL-17-dependent pathway in susceptibility to candidiasis. Mice were injected intragastrically with 108 virulent Candida. Results are pooled from 3 experiments (6 mice per group per experiment). -
FIG. 1A shows percent (%) survival over time for p19−/−, p35−/−, p40−/− and C57BL/6(WT) mice. -
FIG. 1B shows fungal growth (CFU) in the stomach three and ten days after the infection. Results were statistically different (p<0.05, indicated by *) for p19−/−, p35−/− or p40−/− mice when compared with C57BL/6 mice at both three and ten day timepoints. -
FIG. 1C shows p35 and p19 mRNA expression (one day after the infection) and IL-12β2R and IL-23R mRNA expression (three days after the infection) in MLN. mRNA expression was measured by real-time RT-PCR. -
FIG. 1D shows the frequencies of IFN-γ-, IL-17- or IL-4-producing MLN CD4+ cells a week after the infection. The frequency of cytokine-producing cells was measured by ELISPOT assay, and values are the mean number of cytokine-producing cells (±SE) per 105 cells. -
FIG. 1E shows the levels of inflammatory cytokines (IL-17, IL-23, IFN-γ, IL-12) in the stomach homogenates three days after the infection. Cytokines were measured by ELISA (pg/ml). - In
FIGS. 1C-1E , differences were statistically significant (p<0.05) when comparing infected (+) to uninfected (−) mice (*), and when comparing p19−/− or p35−/− mice to C57BL/6 mice (**), as indicated in the figures. -
FIGS. 2A and 2B show the results of experiments on the role of IL-23/IL-17-dependent pathway in susceptibility to aspergillosis. Mice were infected intranasally with 2×107 Aspergillus resting conidia. Results shown inFIGS. 2A and 2B are pooled from four experiments (six animals/group). -
FIG. 2A shows fungal growth (chitin content, expressed as μg glucosamine/organ) in the lung three days after the infection. Differences were statistically significant (p<0.05) when comparing p19−/−, p35−/− or p40−/− mice to C57BL/6 mice (*). -
FIG. 2B shows p35/p19 mRNA expression (one day after the infection) and IL-12β2R/IL-23R mRNA expression (three days after the infection) in TLN. Messenger RNA expression was measured by RT-PCR. Differences were statistically significant (P<0.05) when comparing infected (+) to uninfected (−) mice (*), and when comparing p19−/− or p35−/− mice to C57BL/6 mice (**), as indicated in the figure. -
FIGS. 3A-3C show the results of experiments on the importance of the IL-23/IL-17-dependent pathway in susceptibility to fungal infections. Mice were infected as inFIGS. 1 and 2 , and treated with 200 μg of p19- or IL-17-neutralizing antibodies 5 h after the infection, or with 1 mg TGF-β neutralizing antibody 5 and 24 h after the infection. -
FIG. 3A shows fungal growth in the stomach or lung of mice with candidiasis (C. albicans) or aspergillosis (A. fumigatus) three days after the infection. Differences were statistically significant (p<0.05) when comparing treated (+) to untreated (−) mice (*), as indicated in the figure. -
FIG. 3B shows the frequencies of IFN-γ- or IL-17-producing CD4+ cells from MLN or TLN from mice with candidiasis or aspergillosis, respectively, as determined by ELISPOT assay. Values are the mean number of cytokine-producing cells (±SE) per 105 cells.FIG. 3B further shows actual IL-17 production (one week after the infection) in culture supernatants of antigen-stimulated unfractionated MLN or TLN. Differences were statistically significant (p<0.05) when comparing infected to uninfected (Ct) mice (*), and when comparing treated (+) to untreated (−) mice (**), as indicated in the figure. -
FIG. 3C shows fungal growth in the stomach of mice with candidiasis treated with p19 neutralizing antibodies as above, three days after the infection. Differences were statistically significant (p<0.05) when comparing treated (+) to untreated (−) mice (*), and when comparing IL-4−/−, IFN-γ−/−, p35−/− or IFN-γ−/−/p35−/− mice to BALB/c mice (**), as indicated in the figure. -
FIGS. 4A-4D show the results of experiments on IL-23 and IL-12 production in DC subsets in response to fungi. Bone marrow DC obtained in the presence of GM-CSF+IL-4 (GM-DC) or FLT3-L (FL-DC) were stimulated with fungi and assessed for cytokine expression. -
FIG. 4A shows real time RT-PCR analysis of cytokine mRNA expression, andFIG. 4B shows cytokine expression as measured by ELISA (pg/ml). Zymosan, LPS (10 μg/ml) or CpG-ODN 2006 (0.06 μM) were used as positive controls. DC were exposed to yeasts at 10:1 ratio. Differences were statistically significant (p<0.05) when comparing exposed to unexposed (“None”) DC (*), as indicated in the figure. -
FIG. 4C shows IL-12 and IL-23 production in splenic CD11c+DC from p19−/− or p35−/− mice. Mice were stimulated with fungi before the measurement of cytokines in culture supernatants. -
FIG. 4D shows IL-12 and IL-23 production in splenic CD11c+DC from C57BL/6 mice exposed to fungi for 12 h in the presence (+) or absence (−) of IL-12 or IL-23 (10 ng/ml), or in the presence of neutralizing anti-IL-12 or anti-IL-23 antibodies (10 μg/ml), as indicated in the figure. -
FIGS. 5A-5C show the results of experiments on IL-23 production by inflammatory DC in response to fungi, and specifically whether such production is TLR- and T cell-dependent. -
FIG. 5A shows IL-23 production (pg/ml) in splenic CD11c+DC from different types of mice exposed to fungi 12 h earlier. Pooled results from four experiments are shown. Differences were statistically significant (p<0.05) when comparing exposed to unexposed (“None”) DC (*), as indicated in the figure. -
FIG. 5B shows expression of cytokines in various cell cultures and co-cultures. Splenic CD4+T cells from C57BL/6 (WT) or p35−/− mice were cultured in the presence of the corresponding splenic DC either unpulsed (groups 2 and 5) or pulsed with Candida yeasts (Ag) (groups 3 and 6). Cytokines (IL-12, IL-23, IFN-γ, IL-17) were measured by ELISA five days post-pulse.Groups Groups 7 and 8 are p35−/− or C57BL/6 CD4+ T cells cultivated with C57BL/6 or p35−/− DC, respectively, in the presence of the fungus. Differences are statistically significant (p<0.05, indicated by *) whengroups 3 and 7 are compared togroup 1 for IFN-γ production, and whengroups group 4 for IL-23 and IL-17 production, as indicated in the figure. -
FIG. 5C shows data similar to those shown inFIG. 5B , except that some of the samples include anti-IL-23 or anti-TGF-β antibodies. Splenic CD4+T cells from C57BL/6 (WT) (groups 1-3) or p35−/− (groups 4-6) mice were cultured in the presence of the corresponding splenic DC. Cultures were pulsed with Candida yeasts (Ag) for 5 days in the presence of 10 μg/ml of IL-23 or TGF-β neutralizing antibodies, and cytokines (IFN-γ, IL-17) were quantified in culture supernatants by ELISA. Differences are statistically significant (p<0.05, indicated by *) whengroups group 1 for IFN-γ and IL-17 production, and whengroup 5 is compared togroup 4 for IL-17 production, as indicated in the figure. -
FIGS. 6A-6E show the results of experiments on the ability of IL-23 and IL-17 to impair antifungal effector functions and subvert the anti-inflammatory program of PMN. -
FIG. 6A shows fungicidal activity in PMN from C57BL/6 (WT), p19−/− or p35−/− mice after incubation with unopsonized yeasts (30 min) or conidia (60 min) at an effector to fungal cell ratio of 5:1, at 37° C. Results are plotted as the percentage of colony forming units inhibition (mean±SE). Results reflect pooled data from three experiments. Differences were statistically significant (p<0.05) when comparing p19−/− or p35−/− PMN to C57BL/6 (WT) PMN (*), as indicated in the figure. -
FIG. 6B shows fungicidal activity of PMN from C57BL/6 (WT) mice exposed to IL-23 or IL-17 at the indicated concentrations. Differences were statistically significant (p<0.05) when comparing cytokine-exposed PMN to unexposed PMN (*). -
FIGS. 6C and 6D shows fungicidal activity of PMN from C57BL/6 (WT) mice exposed to various combinations of IFN-γ (50 ng/ml), IL-23 (100 ng/ml) and IL-17 (100 ng/ml) for 60 min. Fungicidal activity was measured against Candida yeasts or Aspergillus conidia (FIG. 6C ). MMP9/MPO production was also measured (FIG. 6D ). Production of gelatinase and myeloperoxidase was assessed by gelatin zymography and Western blot analysis was performed on culture supernatants. Gels show bands corresponding to the active 92 kDa MMP9 and the 60 kDa MPO. Differences were statistically significant (p<0.05) when comparing cytokine-exposed PMN to unexposed PMN (*), and when comparing (IFN-γ+IL-23)- or (IFN-γ+IL-17)-exposed PMN to IFN-γ-exposed PMN (**), as indicated in the figure. -
FIG. 6E shows bands on a Western blot. PMN were exposed in vitro to various combinations of IFN-γ, IL-23 and IL-17 for 12 h. IDO protein expression was then determined by Western Blotting. IDO-expressing MC24 transfectants and mock-transfected MC22 cells served as positive and negative controls, respectively. β-tubulin serves as a loading control. - As used herein, including the appended claims, the singular forms of words such as “a,” “an,” and “the,” include their corresponding plural references unless the context clearly dictates otherwise. Unless otherwise indicated, exemplary embodiments provided herein are not to be considered to limit the scope of the invention. Such exemplary embodiments may be preceded by such phrases as “e.g.,” “for example,” “in one embodiment” or other such non-limiting language, or their exemplary nature may be apparent from the context (e.g. the “Examples”). Unless indicated otherwise, terms such a “does not inhibit” are intended to be relative rather than absolute. For example, an agent that inhibits IL-23 but “does not” inhibit IL-12 refers to an agent that is less effective at inhibiting IL-12 than IL-23 when the agent is present at a given concentration in comparable assays for the two cytokines.
- All references cited herein are incorporated by reference in their entireties to the same extent as if each individual publication, database entry, patent application, or patent, was specifically and individually incorporated by reference.
- “Activation,” “stimulation,” and “treatment,” as it applies to cells or to receptors, may have the same meaning, e.g., activation, stimulation, or treatment of a cell or receptor with a ligand, unless indicated otherwise by the context or explicitly. “Ligand” encompasses natural and synthetic ligands, e.g., cytokines, cytokine variants, analogues, muteins, and binding compositions derived from antibodies. “Ligand” also encompasses small molecules, e.g., peptide mimetics of cytokines and peptide mimetics of antibodies. “Activation” can refer to cell activation as regulated by internal mechanisms as well as by external or environmental factors. “Response,” e.g., of a cell, tissue, organ, or organism, encompasses a change in biochemical or physiological behavior, e.g., concentration, density, adhesion, or migration within a biological compartment, rate of gene expression, or state of differentiation, where the change is correlated with activation, stimulation, or treatment, or with internal mechanisms such as genetic programming.
- “Activity” of a molecule may describe or refer to the binding of the molecule to a ligand or to a receptor, to catalytic activity; to the ability to stimulate gene expression or cell signaling, differentiation, or maturation; to antigenic activity, to the modulation of activities of other molecules, and the like. “Activity” of a molecule may also refer to activity in modulating or maintaining cell-to-cell interactions, e.g., adhesion, or activity in maintaining a structure of a cell, e.g., cell membranes or cytoskeleton. “Activity” can also mean specific activity, e.g., [catalytic activity]/[mg protein], or [immunological activity]/[mg protein], concentration in a biological compartment, or the like. “Proliferative activity” encompasses an activity that promotes, that is necessary for, or that is specifically associated with, e.g., normal cell division, as well as cancer, tumors, dysplasia, cell transformation, metastasis, and angiogenesis.
- “Administration” and “treatment,” as it applies to an animal, human, experimental subject, cell, tissue, organ, or biological fluid, refers to contact of an exogenous pharmaceutical, therapeutic, diagnostic agent, or composition to the animal, human, subject, cell, tissue, organ, or biological fluid. “Administration” and “treatment” can refer, e.g., to therapeutic, pharmacokinetic, diagnostic, research, and experimental methods. Treatment of a cell encompasses contact of a reagent to the cell, as well as contact of a reagent to a fluid, where the fluid is in contact with the cell. “Administration” and “treatment” also means in vitro and ex vivo treatments, e.g., of a cell, by a reagent, diagnostic, binding composition, or by another cell. “Treatment,” as it applies to a human, veterinary, or research subject, refers to therapeutic treatment, prophylactic or preventative measures, to research and diagnostic applications. “Treatment” as it applies to a human, veterinary, or research subject, or cell, tissue, or organ, encompasses contact of IL-23 or IL-23R antagonist to a human or animal subject, a cell, tissue, physiological compartment, or physiological fluid. “Treatment of a cell” also encompasses situations where the IL-23 or IL-23R antagonist contacts IL-23R complex (IL-23R/IL-12Rbetal heterodimer), e.g., in the fluid phase or colloidal phase, but also situations where the antagonist does not contact the cell or the receptor.
- “Binding composition” refers to a molecule, small molecule, macromolecule, antibody, a fragment or analogue thereof, or soluble receptor, capable of binding to a target. “Binding composition” also may refer to a complex of molecules, e.g., a non-covalent complex, to an ionized molecule, and to a covalently or non-covalently modified molecule, e.g., modified by phosphorylation, acylation, cross-linking, cyclization, or limited cleavage, which is capable of binding to a target. “Binding composition” may also refer to a molecule in combination with a stabilizer, excipient, salt, buffer, solvent, or additive, capable of binding to a target. “Binding” may be defined as an association of the binding composition with a target where the association results in reduction in the normal Brownian motion of the binding composition, in cases where the binding composition can be dissolved or suspended in solution.
- The binding compounds of the invention may comprise bispecific antibodies. As used herein, the term “bispecific antibody” refers to an antibody, typically a monoclonal antibody, having binding specificities for at least two different antigenic epitopes. In one embodiment, the epitopes are from the same antigen. In another embodiment, the epitopes are from two different antigens. Methods for making bispecific antibodies are known in the art. For example, bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305: 537-39. Alternatively, bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan, et al. (1985) Science 229: 81. Bispecific antibodies include bispecific antibody fragments. See, e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 6444-48, Gruber, et al., J. Immunol. 152: 5368 (1994).
- A “classical TH1-type T cell” is a T cell that expresses interferon-gamma (IFNγ) to an extent greater than expression of each of IL-4, IL-5, or IL-13, while a “classical TH2-type T cell” is a T cell that expresses IL-4, IL-5, or IL-13, each to an extent greater than expression of IFNγ. “Extent” is typically 4-fold or more, more typically 8-fold or more, and most typically 16-fold or more than for a classical TH2-type cell.
- “Memory T cells” as defined herein are a subset of long-lived T cells with prior exposure to a given antigen. Memory T cells can be present in an organism for years, allowing a rapid response to subsequent challenges by the same antigen. The phenotype for mouse memory T cells is defined as CD4+highCD45RBlow. The phenotype of human memory T cells is defined as CD45RAneg/low CD45R0high. IL-23 treatment of these memory T cells results in proliferation and expression of IL-17. Unless otherwise indicated “IL-17,” as used herein, refers to IL-17A. See, e.g., Moseley et al. (2003) Cytokine & Growth Factor Rev. 14:155.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids that encode identical or essentially identical amino acid sequences or, where the nucleic acid does not encode an amino acid sequence, to essentially identical nucleic acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids may encode any given protein.
- As to amino acid sequences, one of skill will recognize that an change in a nucleic acid, peptide, polypeptide, or protein sequence that substitutes an amino acid or a small percentage of amino acids in the encoded sequence for a conserved amino acid is a “conservatively modified variant.” Conservative substitution tables providing functionally similar amino acids are well known in the art. An example of a conservative substitution is the exchange of an amino acid in one of the following groups for another amino acid of the same group (U.S. Pat. No. 5,767,063 issued to Lee, et al.; Kyte and Doolittle (1982) J. Mol. Biol. 157: 105-132):
- (2) Neutral hydrophilic: Cys, Ser, Thr;
- (5) Residues that influence chain orientation: Gly, Pro;
- (7) Small amino acids: Gly, Ala, Ser.
- “Effective amount” encompasses an amount sufficient to ameliorate or prevent a symptom or sign of the medical condition. Effective amount also means an amount sufficient to allow or facilitate diagnosis. An effective amount for a particular patient or veterinary subject may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects. See, e.g., U.S. Pat. No. 5,888,530. An effective amount can be the maximal dose or dosing protocol that avoids significant side effects or toxic effects. The effect will result in an improvement of a diagnostic measure or parameter by at least 5%, usually by at least 10%, more usually at least 20%, most usually at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60%, ideally at least 70%, more ideally at least 80%, and most ideally at least 90%, where 100% is defined as the diagnostic parameter shown by a normal subject. See, e.g., Maynard, et al. (1996) A Handbook of SOPs for Good Clinical Practice, Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice, Urch Publ., London, UK.
- “Exogenous” refers to substances that are produced outside an organism, cell, or human body, depending on the context. “Endogenous” refers to substances that are produced within a cell, organism, or human body, depending on the context.
- “Infectious disease” refers to microbial, e.g., bacterial, viral, and/or fungal, infections of an organism, organ, tissue, or cell.
- An “IL-17-producing cell” means a T cell that is not a classical TH1-type T cell or classical TH2-type T cell. “IL-17-producing cell” also means a T cell that expresses a gene or polypeptide (e.g., mitogen responsive P-protein;
chemokine ligand 2; interleukin-17 (IL-17); transcription factor ROR-γT related; suppressor of cytokine signaling 3. etc.), where expression with treatment by an IL-23 agonist is greater than treatment with an IL-12 agonist, where “greater than” is defined as follows. Expression with an IL-23 agonist is ordinarily at least 5-fold greater, typically at least 10-fold greater, more typically at least 15-fold greater, most typically at least 20-fold greater, preferably at least 25-fold greater, and most preferably at least 30-fold greater, than with IL-12 treatment. Expression can be measured, e.g., with treatment of a population of substantially pure IL-17 producing cells. - Moreover, “IL-17-producing cell” includes a progenitor or precursor cell that is committed, in a pathway of cell development or cell differentiation, to differentiating into an IL-17-producing cell, as defined above. A progenitor or precursor cell to the IL-17 producing cell can be found in a draining lymph node (DLN). Additionally, “IL-17-producing cell” encompasses an IL-17-producing cell, as defined above, that has been, e.g., activated, e.g., by a phorbol ester, ionophore, and/or carcinogen, further differentiated, stored, frozen, desiccated, inactivated, partially degraded, e.g., by apoptosis, proteolysis, or lipid oxidation, or modified, e.g., by recombinant technology.
- “Inhibitors” and “antagonists” refer to inhibitory molecules for the inhibition of, e.g., a ligand, receptor, cofactor, a gene, cell, tissue, or organ. A modulator of a gene, a receptor, a ligand, or a cell, is a molecule that alters an activity of the gene, receptor, ligand, or cell, where activity can be activated, inhibited, or altered in its regulatory properties. The modulator may act alone, or it may use a cofactor, e.g., a protein, metal ion, or small molecule Inhibitors are compounds that decrease, block, prevent, delay activation, inactivate, desensitize, or down regulate, e.g., a gene, protein, ligand, receptor, or cell. Activators are compounds that increase, activate, facilitate, enhance activation, sensitize, or up regulate, e.g., a gene, protein, ligand, receptor, or cell. An inhibitor may also be defined as a composition that reduces, blocks, or inactivates a constitutive activity. An “antagonist” is a compound that opposes the actions of an agonist. An antagonist prevents, reduces, inhibits, or neutralizes the activity of an agonist. An antagonist can also prevent, inhibit, or reduce constitutive activity of a target, e.g., a target receptor, even where there is no identified agonist.
- An antagonist of IL-23, for example, includes any agent that disrupts the biological activity of IL-23, such as amplification and survival of Th17 cells as described in greater detail infra. Antagonists of IL-23 receptor and IL-23R are subsets of antagonists of IL-23 because they serve to block the activity of IL-23 by blocking IL-23 signaling.
- To examine the extent of inhibition, for example, samples or assays comprising a given protein, gene, cell, or organism, are treated with a potential activator or inhibitor and are compared to control samples without the inhibitor. Control samples, i.e., not treated with antagonist, are assigned a relative activity value of 100% Inhibition is achieved when the activity value relative to the control is about 90% or less, typically 85% or less, more typically 80% or less, most typically 75% or less, generally 70% or less, more generally 65% or less, most generally 60% or less, typically 55% or less, usually 50% or less, more usually 45% or less, most usually 40% or less, preferably 35% or less, more preferably 30% or less, still more preferably 25% or less, and most preferably less than 25%. Activation is achieved when the activity value relative to the control is about 110%, generally at least 120%, more generally at least 140%, more generally at least 160%, often at least 180%, more often at least 2-fold, most often at least 2.5-fold, usually at least 5-fold, more usually at least 10-fold, preferably at least 20-fold, more preferably at least 40-fold, and most preferably over 40-fold higher.
- Endpoints in activation or inhibition can be monitored as follows. Activation, inhibition, and response to treatment, e.g., of a cell, physiological fluid, tissue, organ, and animal or human subject, can be monitored by an endpoint. The endpoint may comprise a predetermined quantity or percentage of, e.g., an indicium of reduced bacterial burden, oncogenicity, or cell degranulation or secretion, such as the release of a cytokine, toxic oxygen, or a protease. The endpoint may comprise, e.g., a predetermined quantity of ion flux or transport; cell migration; cell adhesion; cell proliferation; potential for metastasis; cell differentiation; and change in phenotype, e.g., change in expression of gene relating to inflammation, apoptosis, transformation, cell cycle, or metastasis. See, e.g., Knight (2000) Ann. Clin. Lab. Sci. 30:145-158; Hood and Cheresh (2002) Nature Rev. Cancer 2:91-100; Timme et al. (2003) Curr. Drug Targets 4:251-261; Robbins and Itzkowitz (2002) Med. Clin. North Am. 86:1467-1495; Grady and Markowitz (2002) Annu. Rev. Genomics Hum. Genet. 3:101-128; Bauer et al. (2001) Glia 36:235-243; Stanimirovic and Satoh (2000) Brain Pathol. 10:113-126.
- An endpoint of inhibition is generally 75% of the control or less, preferably 50% of the control or less, more preferably 25% of the control or less, and most preferably 10% of the control or less. Generally, an endpoint of activation is at least 150% the control, preferably at least two times the control, more preferably at least four times the control, and most preferably at least 10 times the control.
- “Knockout” (KO) refers to the partial or complete reduction of expression of at least a portion of a polypeptide encoded by a gene, e.g., encoding a subunit of IL-23 or IL-23 receptor, where the gene is endogenous to a single cell, selected cells, or all of the cells of a mammal. KO also encompasses embodiments where biological function is reduced, but where expression is not necessarily reduced, e.g., a polypeptide that contains an inserted inactivating peptide. Disruptions in a coding sequence or a regulatory sequence are encompassed by the knockout technique. The cell or mammal may be a “heterozygous knockout”, where one allele of the endogenous gene has been disrupted. Alternatively, the cell or mammal may be a “homozygous knockout” where both alleles of the endogenous gene have been disrupted. “Homozygous knockout” is not intended to limit the disruption of both alleles to identical techniques or to identical outcomes at the genome.
- A composition that is “labeled” is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, immunochemical, isotopic, or chemical methods. For example, useful labels include 32P, 33P, 35S, 14C, 3H, 125I, stable isotopes, fluorescent dyes, electron-dense reagents, substrates, epitope tags, or enzymes, e.g., as used in enzyme-linked immunoassays, or fluorettes. See, e.g., Rozinov and Nolan (1998) Chem. Biol. 5:713-728.
- “Ligand” refers, e.g., to a small molecule, peptide, polypeptide, and membrane associated or membrane-bound molecule, or complex thereof, that can act as an agonist or antagonist of a receptor. “Ligand” also encompasses an agent that is not an agonist or antagonist, but that can bind to the receptor. Moreover, “ligand” includes a membrane-bound ligand that has been changed, e.g., by chemical or recombinant methods, to a soluble version of the membrane-bound ligand. By convention, where a ligand is membrane-bound on a first cell, the receptor usually occurs on a second cell. The second cell may have the same or a different identity as the first cell. A ligand or receptor may be entirely intracellular, that is, it may reside in the cytosol, nucleus, or some other intracellular compartment. The ligand or receptor may change its location, e.g., from an intracellular compartment to the outer face of the plasma membrane. The complex of a ligand and receptor is termed a “ligand receptor complex.” Where a ligand and receptor are involved in a signaling pathway, the ligand occurs at an upstream position and the receptor occurs at a downstream position of the signaling pathway.
- A “marker” relates to the phenotype of a cell, tissue, organ, animal, e.g., of an IL-17 producing cell. Markers are used to detect cells, e.g., during cell purification, quantitation, migration, activation, maturation, or development, and may be used for both in vitro and in vivo studies. An activation marker is a marker that is associated with cell activation.
- “Purified cell” encompasses, e.g., one or more “IL-17 producing cells” that is substantially free of other types of cells, e.g., contamination by other types of T cells. Purity can be assessed by use of a volume that is defined by geometric coordinates or by a compartment comprising, e.g., a flask, tube, or vial. A “purified IL-17 producing cell” can be defined by, e.g., a compartment where the “IL-17 producing cells” normally constitute at least 20% of all the cells, more normally at least 30% of all the cells, most normally at least 40% of all the cells, generally at least 50% of all the cells, more generally at least 60% of all the cells, most generally at least 70% of all the cells, preferably at least 80% of all the cells, more preferably at least 90% of all the cells; and most preferably at least 95% of all the cells.
- “Small molecule” is defined as a molecule with a molecular weight that is less than 10 kD, typically less than 2 kD, and preferably less than 1 kD. Small molecules include, but are not limited to, inorganic molecules, organic molecules, organic molecules containing an inorganic component, molecules comprising a radioactive atom, synthetic molecules, peptide mimetics, and antibody mimetics. As a therapeutic, a small molecule may be more permeable to cells, less susceptible to degradation, and less apt to elicit an immune response than large molecules. Small molecules, such as peptide mimetics of antibodies and cytokines, as well as small molecule toxins are known in the art. See, e.g., Casset et al. (2003) Biochem. Biophys. Res. Commun. 307:198-205; Muyldermans (2001) J. Biotechnol. 74:277-302; Li (2000) Nat. Biotechnol. 18:1251-1256; Apostolopoulos et al. (2002) Curr. Med. Chem. 9:411-420; Monfardini et al. (2002) Curr. Pharm. Des. 8:2185-2199; Domingues et al. (1999) Nat. Struct. Biol. 6:652-656; Sato and Sone (2003) Biochem. J. 371:603-608; U.S. Pat. No. 6,326,482.
- “Specifically” or “selectively” binds, when referring to a ligand/receptor, antibody/antigen, or other binding pair, indicates a binding reaction which is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated conditions, a specified ligand binds to a particular receptor and does not bind in a significant amount to other proteins present in the sample. The antibody, or binding composition derived from the antigen-binding site of an antibody, of the contemplated method binds to its antigen, or a variant or mutein thereof, with an affinity that is at least two fold greater, preferably at least ten times greater, more preferably at least 20-times greater, and most preferably at least 100-times greater than the affinity with any other antibody, or binding composition derived thereof. In a preferred embodiment the antibody will have an affinity for the desired target that is greater than about 109 liters/mol, as determined, e.g., by Scatchard analysis. Munsen et al. (1980) Analyt. Biochem. 107:220-239.
- An antibody that “specifically binds” to IL-23 or IL-23 receptor does not bind to proteins that do not comprise the IL-23-derived sequences, i.e. “specificity” as used herein relates to IL-23 specificity, and not any other sequences that may be present in the protein in question. For example, as used herein, an antibody that “specifically binds” to IL-23 will typically bind to FLAG-hIL-23, which is a fusion protein comprising IL-23 and a FLAG® peptide tag, but it does not bind to the FLAG® peptide tag alone or when it is fused to a protein other than IL-23. Depending on the context, specificity for IL-23 may also refer to the ability to bind to IL-23 (or its receptor) but not to other proteins, such as IL-12 (or its receptor).
- Although IL-23 and IL-12 are both heterodimeric cytokines sharing a common subunit and a common receptor subunit, recent results have suggested that their roles in inflammation and host defense are more antagonistic than overlapping. Interleukin-23 (IL-23) is a heterodimeric cytokine comprised of two subunits, i.e., p19 and p40. The p19 subunit is structurally related to IL-6, granulocyte-colony stimulating factor (G-CSF) and the p35 subunit of IL-12. The p40 subunit is part of the cytokine IL-12, which is composed of p35 and p40. Heterodimeric IL-12 is often referred to as IL-12p70. IL-23 mediates signaling by binding to a heterodimeric receptor, comprised of IL-23R and IL-12Rβ1. The IL-12Rβ1 subunit is shared by the IL-12 receptor, which is composed of IL-12Rβ1 and IL-12Rβ2. IL-23 and IL-23 receptor, and their respective IL-23-specific subunits, are disclosed at WO 99/05280, WO 01/18051, WO 00/73451, and WO 01/85790.
- A number of early studies on IL-12 involved a genetic deficiency in p40 (p40 knockout mouse; p40KO mouse), but it was subsequently realized with the discovery of IL-23 that such mice were deficient in both IL-12 and IL-23. Oppmann et al. (2000) Immunity 13:715-725; Wiekowski et al. (2001) J. Immunol. 166:7563-7570; Parham et al. (2002) J. Immunol. 168:5699-708; Frucht (2002) Sci STKE 2002, E1-E3; Elkins et al. (2002) Infection Immunity 70:1936-1948. These results changed the interpretation of many of the early observations that were originally thought to relate to IL-12 and the Th1 response.
- Recent studies have suggested a greater diversification of the CD4+ T-cell effector repertoire than that encompassed by the Th1/Th2 paradigm. Th17 cells are now thought to be a separate lineage of effector Th cells contributing to immune pathogenesis previously attributed to the Th1 lineage. Although the pathways leading to Th17 differentiation are still unclear (Dong (2006) Nat Rev Immunol 6:329), IL-23 is a critical cytokine for the generation and maintenance of this lineage (Trinchieri et al. (2003) Immunity 19:641). While both IL-12 and IL-23 can induce IFN-γ expression in CD4+T-cells, IL-23 alone facilitates production of the proinflammatory cytokine IL-17 by Th cells.
- Despite many similarities, there is increasing evidence that IL-12 and IL-23 drive divergent immunological pathways. Th cells primed for IL-17 (Th17 cells) are responsible for various organ-related autoimmune diseases (Harrington et al. (2006) Curr. Opin. Immunol. 18:349), including experimental autoimmune encephalomyelitis (EAE) (Langrish et al. (2005) J. Exp. Med. 201:233), arthritis (Murphy et al. (2003) J. Exp. Med. 198:1951), colitis (Yen et al. (2006) J. Clin. Invest. 116:1310) and autoimmune myocarditis (Sonderegger et al. (2006) Eur. J. Immunol. 36:2844). Moreover, although less clear, the production of high levels IL-23/IL-17, more than IL-12/IFN-γ, better correlates with disease severity and immunopathology in diverse infections. Hunter (2005) Nat. Rev. Immunol. 5:521; Rutitzky (2005) J. Immunol. 175:3920. Other studies have suggested that IL-12 and IL-23 have distinct roles in host defense against Klebsiella pneumoniae (Happel et al. (2005) J. Exp. Med. 202:761) and Citrobacter rodentium (Mangan et al. (2006) Nature 441:231). These studies suggest that IL-12 and IL-23 have distinct roles in promoting antimicrobial immune responses and diseases in vivo.
- The different roles of IL-12 and IL-23 in inflammation and host defense have important implications for chronic infections, such as chronic fungal infection. Although inflammation is required for prompt control of fungal infections, resolution of inflammation is essential for maintaining the balance between protection and immunopathology in infections and associated diseases. Han and Ulevitch (2005) Nat. Immunol. 6:1198. Prolonged inflammation is a hallmark of a wide range of chronic diseases and autoimmunity. Han & Ulevitch (2005). For Candida, failure to resolve inflammation is associated with defective fungal clearance. This unresolved Candida infection results in chronic mucocutaneous candidiasis (CMC). CMC is associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, a condition of dysfunctional T cell activity. Ryan et al. (2005) J. Allergy Clin. Immunol. 116:1158. CMC also encompasses a variety of clinical disorders of unknown immunopathogenesis. Lilic (2002) Curr. Opin. Infect. Dis. 15:143. For Aspergillus, persistent inflammation with intractable infection is common in non-neutropenic patients after allogeneic hematopoietic stem cell transplantation (Ortega et al. (2006) Bone Marrow Transplant 37:499) as well as in allergic fungal diseases (Schubert (2006) Clin. Rev. Allergy Immunol. 30:205). For the last two decades the immunopathogenesis of fungal infections and associated inflammatory diseases has been explained primarily in terms of Th1/Th2 balance as affected by a combination of different types of regulatory T cells (T reg). Romani (2004) Nat. Rev. Immunol. 4:1; Romani and Puccetti (2006) Trends Microbiol. 14:183.
- Although inflammation is an essential component of the protective response to fungi, its dysregulation may significantly worsen fungal diseases. As disclosed herein, IL-23 and IL-17 negatively regulate IL-12/Th1-mediated immune resistance to fungi and play an inflammatory role previously attributed to uncontrolled Th1 cell responses. IL-23 is known to promote the survival of Th17 cells (which produce IL-17 and cause inflammation) and antagonize the IL-12-mediated Th1 response (which involves production of interferon-γ (IFN-γ)). Langrish et al. (2004) Immunol. Rev. 202:96. As demonstrated herein, IL-23 counter-regulation of IL-12 production and Th1 responses results in uncontrolled inflammation and growth of Candida albicans and Aspergillus fumigatus, two major human fungal pathogens. Both IL-23 and IL-17 subvert the inflammatory program and anti-fungal activity of neutrophils, resulting in severe tissue inflammatory pathology associated with infection. In summary, IL-23-driven inflammation promotes infection and impairs antifungal immune resistance. See also Zelante et al. (2007) Eur. J. Immunol. 37:2695, and related commentary at Cooper (2007) Eur. J. Immunol. 37:2680. Modulation of the inflammatory response by antagonism of IL-23 represents a represents a promising strategy to stimulate protective immune responses to fungi.
- The present invention provides compositions and methods for the treatment of infection, such as chronic infections, by blocking the activity of IL-23 and/or IL-17 to reduce the effects of Th17 cells and allow a robust Th1 response to emerge and eliminate the infected cells or organisms. In the optimal case the result is a sterile cure in which the infection is fully resolved (i.e. treatment may be discontinued without recurrence of the infection).
- The same reasoning regarding the role of Th17 cells in maintaining a counter-productive inflammatory state applies in the case of chronic viral and bacterial infection, such as tuberculosis (TB). Cytokines are the soluble mediators of immune cells. The following cytokines have been detected in pleural or bronchoalveolar lavage (BAL) fluids of patients infected with TB: IL-113, TNFα, IFNγ, TGFβ, and IL-12. See, e.g., Crystal, et al. (eds.) (1997) The Lung Scientific Foundations, Lippincott-Raven, New York, N.Y., pp. 2381-2394. IFN-γ and TNFα have been shown to play important roles in the control of mycobacterial infections. See, e.g., Cooper et al. (1993) J. Exp. Med. 178:2243; Flynn et al. (1993) J. Exp. Med. 178:2249; Kindler et al. (1989) Cell 56:731; Cheuse et al. (1994) Am. J. Pathol. 145:1105. To the extent that IL-23 promotes the survival of Th17 cells, which reduces IL-12 driven IFN-γ production, antagonism of IL-23 activity may be expected to enhance resolution of bacterial infection.
- The literature suggest that treatment with antagonists of IL-23 may be safer than treatment with antagonists of IL-12, e.g. in the treatment of autoimmune disorders or chronic infection. Chackerian et al. describe experiments in which elimination of IL-23 activity, either through antibody neutralization or genetic elimination in p19−/− knockout (KO) mice, did not compromise immunity to mycobacterial (BCG) infection. Chackerian et al. (2006) J. Exp. Med. 74:6092. The course of infection in IL-23p19 KO mice was indistinguishable from that in wildtype mice, and the numbers of bacterial colony forming units in anti-IL-23p19-treated mice did not differ from the number in isotype-control-treated mice. In contrast, IL-12 deficient KO mice failed to control the growth of BCG, and antibody blocking of IL-12 correlated with significantly higher numbers of CFU in the spleen, livers and lungs as compared to isotype-control-treated mice. These results suggest that IL-23 does not play a significant role in host defense against mycobacteria in the presence of IL-12, and therefore that selective inhibition of IL-23 may be safer than treatments that involve IL-12 neutralization (either with or without concurrent IL-23 neutralization). The results presented herein extend these results to suggest that antagonists of IL-23 are not only safer, in that they don't compromise host defense, but they may in fact be beneficial in helping to resolve chronic infections caused by dysregulation of IL-23/IL-17 inflammation.
- The experiments in Chackerian et al. (2006) were not designed to address the issue of whether blocking IL-23 would enhance clearance of pre-existing chronic mycobacterial infections. Control mice (WT mice, untreated or treated with isotype control antibody only) were able to effectively clear the infections, rather than developing a chronic infection. In both the KO mice and the antibody-blocking experiments in Chackerian et al. (2006), IL-23 activity was eliminated prior to infection with intravenous BCG, rather than after infection. The experiments described herein involved fungal, rather than mycobacterial, infections. In addition, the experiments described at Examples 4 and 5 herein include experiments using intragastric and intranasal administration of fungal pathogens, rather than intravenous administration. Direct delivery of these fungal pathogens to lung and stomach provides a more physiologically relevant disease model than intravenous delivery. The tissues infected with fungal pathogens in the experiments described herein have been suggested as the tissues in which the Th17 response may have its most important physiological role, i.e. the mucosal barrier of the lung and gut. Cua and Kastelein (2006) Nature Immunol. 7:557. In addition, anti-IL-23p19 and anti-IL-17 antibodies were administered five hours after infection in the experiments disclosed herein, rather than prior to infection.
- Prolonged inflammation is a hallmark of a wide range of chronic diseases and autoimmunity. Han & Ulevitch (2005). Before the discovery of IL-23 and its recently documented role in autoimmune inflammation (Cua et al. (2003) Nature 421:744; Langrish et al. (2005) J. Exp. Med. 201:233), IL-12, by initiating and maintaining Th1 responses, was thought to be responsible for overreacting immune and autoimmune disorders. This was also true of fungal infections and diseases where immunoregulation proved to be essential in fine-tuning inflammation and uncontrolled Th1/Th2 antifungal reactivity. Ryan et al. (2005); Romani (2004); Romani & Puccetti (2006).
- The results of the present study show that the IL-23/IL-17 axis, and not an uncontrolled Th1 response, is associated with defective pathogen clearance, failure to resolve inflammation and to initiate protective immune responses to Candida and Aspergillus. Thus, the new findings may serve to accommodate the paradoxical association of chronic inflammatory responses with intractable forms of fungal infections where fungal persistence occurs in the face of an ongoing inflammation.
- Both IL-23 and IL-17 impaired the antifungal effector activities of PMN even in the presence of IFN-γ, a finding suggesting that the Th17 effector pathway prevails over the Th1 pathway. In addition, both cytokines activated the inflammatory program of PMN by counteracting the IFN-γ-dependent activation of
indoleamine 2,3-dioxygenase (IDO), known to limit the inflammatory status of PMN against fungi (Bozza et al. (2005) J. Immunol. 174:2910), as well as by inducing the release of MMP9 and MPO which likely accounts for the high inflammatory pathology and tissue destruction associated with Th17 cell activation. - The action on IDO is of interest. IDO is expressed in C. albicans and is involved in tryptophan auxotrophy-dependent inhibition of fungal germination. Bozza et al. (2005). Similar to IDO blockade, and as opposed to IFN-γ (Kalo-Klein et al. (1990) Infect. Immun. 58:260), IL-17 promoted fungal germination (data not shown), a finding suggesting an action on fungal IDO, an enzyme that is highly responsive to signals from the mammalian host immune system. Mellor and Munn (2004) Nat. Rev. Immunol. 4:762. Therefore, the function of the Th17 pathway may go beyond its ability to promote inflammation and subvert antimicrobial immunity, as already described for other infections (McKenzie et al. (2006) Trends Immunol. 27:17), to include an action on fungal morphology and virulence. This may translate in concomitant IL-4+Th2 cell activation, known to be strictly dependent on high levels fungal growth (Mencacci et al. (1996) Infect. Immun. 64:4907) and further preventing Th1 functioning.
- As already described for other infections (Cruz et al. (2006) J. Immunol. 177:1416; Park et al. (2005) Nat. Immunol. 6:1133), the Th1 or Th17 pathways were reciprocally regulated in both fungal infections. This finding suggests that the occurrence of either pathway in response to fungi is under strict environmental control. Regulation may occur at different stages. One obvious level of regulation is represented by IFN-γ which is known to regulate the induction of Th17 cells. Cruz et al. (2006); Park et al. (2005). The IL-23/IL-17 axis was indeed heightened in condition of IFN-γ deficiency in both infections, and the number of IFN-γ-producing cells increased upon IL-17 neutralization. These data are in line with the notion that IFN-γ is required for IL-12 responsiveness in mice with candidiasis. Cenci et al. (1998) J. Immunol. 161:3543.
- More important, the production of IL-12 was higher in p19−/− DC and production of IL-23 higher in p35−/− DC, and both cytokines were cross-regulated in WT DC. These findings suggest that these cytokines are reciprocally regulated at the level of DC production. Becker et al. (2006) J. Immunol. 177:2760. However, because inflammatory DC more than tolerogenic DC appear to produce IL-23 in response to fungi, this implies that the Th1/Th17 balance also depends on the reciprocal regulation between DC subsets at different body sites.
- The finding that IL-23 is produced in response to fungi in condition of high-threat inflammation, that is by inflammatory DC in response to high yeast number through the TLR-/MyD88 pathway, has important implications. Not only does it point to IL-23 as an important molecular link between the inflammatory processes and fungal virulence, but it also establishes a scenario whereby a vicious circle may be at work. Because p19−/− mice produce less IL-17 and TGF-β showed a non-essential role in Th17 activation and/or maintenance against fungi, it is conceivable that IL-23 acts as a proximal mediator of IL-17. In this scenario, the uncontrolled fungal growth may perpetuate the activation of pathogenic Th17 cells implicating concomitant activation of nonprotective Th2 cells.
- One interesting observation in this study was that although microbial stimuli may be a major inducer of IL-23 secretion, adaptive immune processes may also modulate its production. In support of this we have provided evidence that IL-23 secretion by DC was dramatically increased in the presence of T cells, a finding suggesting that activated T cells may provide a positive feedback loop for further induction of IL-23.
- The above considerations may help to accommodate fungi, either commensals or ubiquitous, within the immune homeostasis and its dysregulation. If the ability to subvert the inflammatory program through the activation of the IL-23/IL-17 axis may eventually lead to immune dysregulation, their ability to activate T reg cells, integral and essential components of protective immunity to either Candida or Aspergillus (Romani & Puccetti (2006)), may represent a mechanism whereby dysregulated immunity is prevented. In this regard, a functional antagonism between Th17 and T reg cells has been described (Bettelli & Kuchroo (2005) J. Exp. Med. 201:169), including the inhibitory role of IL-10 in the development of IL-17-producing cells in vivo. Kullberg et al. (2006) J. Exp. Med. 203:2485. It is possible therefore that a reciprocal pathway for the generation of Th17 and T reg cells may also take place in fungal infections. We have found no evidence of CD4+CD25+ T reg cell activation in p35−/− mice after infection, a finding suggesting that Th17 and T reg cells are mutually exclusive. CD4+CD25+ T reg cells were instead observed in p19−/− mice, despite a significant decrease of IL-10 production, which is consistent with the ability of IL-23 to up-regulate IL-10 production by T cells. Vanden Eijnden et al. (2005) Eur. J. Immunol. 35:469-475.
- Another important observation of the present study is that the IL-23/IL-17-dependent pathway may provide some antifungal resistance in condition of IFN-γ deficiency, through a p35-dependent pathway. That IL-23 may serve a protective role in condition of IL-12 deficiency has already been reported in chronic cryptococcosis (Kleinschek et al. (2006) J. Immunol. 176:1098), mycobacterial infection (Khader et al. (2005) J. Immunol. 175:788) and acute pulmonary Klebsiella pneumoniae infection (Happel et al. (2005) Infect. Immun. 73:5782), where the protection correlated with an ability of IL-23 to activate antigen-specific IFN-γ-producing CD4+T cells, independently of IL-12p70, and to recruit PMN mediating pathogen clearance. Happel et al. (2005) J. Exp. Med. 202:761. As a matter of fact, in experimental Helicobacter hepaticus-induced colitis, IL-23 has clearly been shown to drive both IFN-γ- and IL-17-producing cells. Kullberg et al. (2006). Our results seem to suggest a further level of cross-regulation between the Th1 and the Th17 pathways in infections that implicates a p35-dependent pathway in the action of IL-23. Ultimately, the ability of IL-23 to process initial inflammatory danger signals before the onset of the appropriate immune effector functions dominated by the IL-12-dependent axis (McKenzie et al. (2006)) is consistent with antagonist as well as collaborative activities between this pair of cytokines.
- Collectively, the data presented in this study demonstrate a previously undefined role for the IL-23-dependent Th17 lineage in fungal infections that has important implications for mechanisms of host defense, immune homeostasis and immunity to fungi. Moreover, they show a molecular connection between the failure to resolve inflammation and lack of antifungal immune resistance. The current results suggest strategies for immune therapy of fungal infections that attempt to limit inflammation to stimulate an effective immune response.
- Antagonists of IL-23 include any substance or method capable of inhibiting one or more biological activities of IL-23. Such activities include binding to the IL-23 (comprising p19 and p40 subunits), IL-23 receptor (comprising IL-23R and IL-12Rβ1 subunits) and promotion and maintenance of Th17 cells. Antagonists may comprise, e.g., small molecules, antibodies or antibody fragments, peptide mimetics, aptamers (e.g. as disclosed in U.S. Patent Application Publication No. 2006-0193821), soluble receptor derived from on the extracellular region of a subunit of the IL-23 receptor, and nucleic acid based antagonists.
- Nucleic acid-based antagonists of IL-23 include antisense nucleic acids and siRNA directed to the IL-23p19 gene or the IL-23R gene. For general siRNA methodology, see WO 2006/06060598. See also Arenz and Schepers (2003) Naturwissenschaften 90:345; Sazani and Kole (2003) J. Clin. Invest. 112:481; Pirollo et al. (2003) Pharmacol. Therapeutics 99:55; Wang et al. (2003) Antisense Nucl. Acid Drug Devel. 13:169. Antisense and siRNA molecules can be designed based on the known sequences of human IL-23p19 and IL-23R mRNA. mRNA and amino acid sequences for human IL-23p19 are found at GenBank Accession Nos. NM—016584 and NP—057668, respectively. cDNA and amino acid sequences for human IL-23R are found at GenBank Accession Nos. AF461422 and AAM44229, respectively. The invention also provides compositions for RNA interference.
- Methods of producing and using siRNA are disclosed, e.g., at U.S. Pat. No. 6,506,559 (WO 99/32619); U.S. Pat. No. 6,673,611 (WO 99/054459); U.S. Pat. No. 7,078,196 (WO 01/75164); U.S. Pat. No. 7,071,311 and PCT publications WO 03/70914; WO 03/70918; WO 03/70966; WO 03/74654; WO 04/14312; WO 04/13280; WO 04/13355; WO 04/58940; WO 04/93788; WO 05/19453; WO 05/44981; WO 03/78097. U.S. patents are listed with related PCT publications. Exemplary methods of using siRNA in gene silencing and therapeutic treatment are disclosed at PCT publications WO 02/096927 (VEGF and VEGF receptor); WO 03/70742 (telomerase); WO 03/70886 (protein tyrosine phosphatase type IVA (Prl3)); WO 03/70888 (Chk1); WO 03/70895 and WO 05/03350 (Alzheimer's disease); WO 03/70983 (protein kinase C alpha); WO 03/72590 (Map kinases); WO 03/72705 (cyclin D); WO 05/45034 (Parkinson's disease). Exemplary experiments relating to therapeutic uses of siRNA have also been disclosed at Zender et al. (2003) Proc. Nat'l. Acad. Sci. (USA) 100:7797; Paddison et al. (2002) Proc. Nat'l. Acad. Sci. (USA) 99:1443; and Sah (2006) Life Sci. 79:1773. siRNA molecules are also being used in clinical trials, e.g., of chronic myeloid leukemia (CML) (ClinicalTrials.gov Identifier: NCT00257647) and age-related macular degeneration (AMD) (ClinicalTrials.gov Identifier: NCT00363714).
- Although the term “siRNA” is used herein to refer to molecules used to induce gene silencing via the RNA interference pathway (Fire et al. (1998) Nature 391:806), such siRNA molecules need not be strictly polyribonucleotides, and may instead contain one or more modifications to the nucleic acid to improve its properties as a therapeutic agent. Such agents are occasionally referred to as “siNA” for short interfering nucleic acids. Although such changes may formally move the molecule outside the definition of a “ribo”nucleotide, such molecules are nonetheless referred to as “siRNA” molecules herein. Other variants of nucleic acids used to induce gene silencing via the RNA interference pathway include short hairpin RNAs (“shRNA”), for example as disclosed in U.S. Pat. Application Publication No. 20060115453. Nucleic acid-based inhibitors may be delivered, e.g., by transformation with a recombinant vector such as a plasmid or a virus (e.g. as naked DNA), or by gene therapy with any of known gene therapy vector (e.g. adeno-associated virus (AAV), adenovirus, a retrovirus or a lentivirus). Nucleic acids may be delivered by transformation, electroporation, biolistic bombardment or other methods known in the art.
- Antibody antagonists of IL-23 for use in the compositions and methods of the present invention include antibodies to IL-23 and antibodies to IL-23 receptor. Exemplary antagonist antibodies to IL-23 include the anti-human IL-23p19 antibodies, and fragments thereof, as disclosed in commonly-assigned U.S. Provisional Patent Application Nos. 60/891,409 and 60/891,413 (both filed 23 Feb. 2007), in U.S. Patent Application Publication Nos. 2007-0009526 and 2007-0048315, and in International Patent Publication Nos. WO 2007/076524, WO 2007/024846 and WO 2007/147019. Antibody antagonists to IL-23 also include antibodies that bind to the IL-12p40 subunit when that subunit is bound to IL-23p19, but not when it is bound to IL-12p35. See, e.g., U.S. Patent Application Publication No. 2005-0137385 and U.S. Pat. No. 7,252,971. Exemplary antagonist antibodies to IL-23 include anti-human IL-23 receptor antibodies, e.g. anti-IL-23R antibodies, and fragments thereof. Exemplary antagonist antibodies to IL-23R are disclosed in commonly-assigned U.S. Provisional Patent Application No. 60/892,104 (filed 28 Feb. 2007) and 60/945,183 (filed 20 Jun. 2007). Antagonists of IL-23 also include bispecific antibodies.
- Regions of increased antigenicity can be used for antibody generation. Regions of increased antigenicity of human p19 occur, e.g., at amino acids 16-28; 57-87; 110-114; 136-154; and 182-186 of GenBank AAQ89442 (gi:37183284). Regions of increased antigenicity of human IL-23R occur, e.g., at amino acids 22-33; 57-63; 68-74; 101-112; 117-133; 164-177; 244-264; 294-302; 315-326; 347-354; 444-473; 510-530; and 554-558 of GenBank AAM44229 (gi: 21239252). Analysis was by a Parker plot using Vector NTI® Suite (Informax, Inc., Bethesda, Md.). The present invention also provides an IL-23 antagonist that is a soluble receptor, i.e., comprising an extracellular region of IL-23R, e.g., amino acids 1-353 of GenBankAAM44229, or a fragment thereof, where the extracellular region or fragment thereof specifically binds to IL-23. Mouse IL-23R is GenBank NP—653131 (gi:21362353). Muteins and variants are contemplated, e.g., pegylation or mutagenesis to remove or replace deamidating Asn residues.
- Additional potential methods of antagonizing the activity of IL-23 for use in the methods and compositions of the present invention include administering filamentous hemagglutinin (FHA) (WO 2006/109195) and vaccinating to generate an immune response against IL-23 (WO 2005/058349).
- In one embodiment, an antagonist of an IL-17 producing (Th17) cell encompasses a reagent that specifically modulates the activity of a Th17 cell, e.g., without substantial influence on the activity of, e.g., a naïve T cell, Th1-type T cell, TH2-type T cell, epithelial cell, and/or endothelial cell. The reagent can modulate expression or activity of, e.g., a transcription factor (e.g. RORγt) or adhesion protein, of the IL-17 producing cell. In addition, an antagonist of IL-23, TGF-β, or IL-6 may decrease the creation and survival of Th17 cells, and an antagonist of IL-17 may decrease the inflammatory effects (e.g. neutrophil recruitment) of such cells.
- Monoclonal, polyclonal, and humanized antibodies can be prepared (see, e.g., Sheperd and Dean (eds.) (2000) Monoclonal Antibodies, Oxford Univ. Press, New York, N.Y.; Kontermann and Dubel (eds.) (2001) Antibody Engineering, Springer-Verlag, New York; Harlow and Lane (1988) Antibodies A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 139-243; Carpenter, et al. (2000) J. Immunol. 165:6205; He et al. (1998) J. Immunol. 160:1029; Tang et al. (1999) J. Biol. Chem. 274:27371; Baca et al. (1997) J. Biol. Chem. 272:10678; Chothia et al. (1989) Nature 342:877; Foote and Winter (1992) J. Mol. Biol. 224:487; U.S. Pat. No. 6,329,511). Fully human antibodies may also be prepared, in which the entirety of the antibody sequence is derived from human germline sequences. Such fully human antibodies may be prepared from transgenic animals engineered to express human immunoglobulin genes, or by methods such as phage display and the like. See, e.g., Lonberg (2005) Nature Biotechnol. 23:1117; Vaughan et al. (1998) Nature Biotechnol. 16:535. Antibody fragments include Fab, Fab′, Fab′-SH, Fv, single-chain Fv (scFv), F(ab′)2, and a diabodies. Pluckthun (1994) T
HE PHARMACOLOGY OF MONOCLONAL ANTIBODIES , vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315; Holliger and Hudson (2005) Nature Biotechnol. 23:1126-1136. - The antibodies of the present invention also include antibodies with modified (or blocked) Fc regions to provide altered effector functions. See, e.g., U.S. Pat. No. 5,624,821; WO 2003/086310; WO 2005/120571; WO 2006/0057702; Presta (2006) Adv. Drug Delivery Rev. 58:640-656. Such modification can be used to enhance or suppress various reactions of the immune system, with possible beneficial effects in diagnosis and therapy. Alterations of the Fc region include amino acid changes (substitutions, deletions and insertions), glycosylation or deglycosylation, and adding multiple Fc. Changes to the Fc can also alter the half-life of antibodies in therapeutic antibodies, and a longer half-life would result in less frequent dosing, with the concomitant increased convenience and decreased use of material. Altered effector functions may be achieved by introducing specific mutations in the Fc portion of IgG1, e.g. by altering Asn297, e.g. to Ala or Gln (N297A or N297Q). See Presta (2005) J. Allergy Clin. Immunol. 116:731 at 734-35. Effector functions may also be changed by selecting different constant domains. For example, if a particular intended use of an antibody (or fragment) of the present invention were to call for altered effector functions, a heavy chain constant domain other than IgG1 may be used. Although IgG1 antibodies provide for long half-life and for effector functions, such as complement activation and antibody-dependent cellular cytotoxicity (ADCC), such activities may not be desirable for all uses of the antibody. In such instances an IgG4 constant domain, for example, may be used. Altered effector functions are of particular relevance in the case of antibodies to IL-23 receptor (e.g. to IL-23R), since in one embodiment (not the only embodiment) the goal is not to induce killing of cells expressing IL-23 receptor, but instead merely to block IL-23 signaling in such cells. In this embodiment, the goal is to shift Th cells from the Th17 lineage toward the Th1 lineage, in which case cell killing would be unproductive.
- Purification of antigen is not necessary for the generation of antibodies. Immunization can be performed by DNA vector immunization, see, e.g., Wang et al. (1997) Virology 228:278. Alternatively, animals can be immunized with cells bearing the antigen of interest. Splenocytes can then be isolated from the immunized animals, and the splenocytes can fused with a myeloma cell line to produce a hybridoma (Meyaard et al. (1997) Immunity 7:283; Wright et al. (2000) Immunity 13:233; Preston et al. (1997) Eur. J. Immunol. 27:1911). Resultant hybridomas can be screened for production of the desired antibody by functional assays or biological assays, that is, assays not dependent on possession of the purified antigen. Immunization with cells may prove superior for antibody generation than immunization with purified antigen (Kaithamana et al. (1999) J. Immunol. 163:5157).
- Antibody to antigen and ligand to receptor binding properties can be measured, e.g., by surface plasmon resonance (Karlsson et al. (1991) J. Immunol. Methods 145:229; Neri et al. (1997) Nat. Biotechnol. 15:1271; Jonsson et al. (1991) Biotechniques 11:620) or by competition ELISA (Friguet et al. (1985) J. Immunol. Methods 77:305; Hubble (1997) Immunol. Today 18:305). Antibodies can be used for affinity purification to isolate the antibody's target antigen and associated bound proteins. See, e.g., Wilchek et al. (1984) Meth. Enzymol. 104:3.
- Antibodies will usually bind with at least a KD of about 10−6 M, typically at least 10−7 M, more typically at least 10−8 M, preferably at least about 10−9 M, and more preferably at least 10−10 M, and most preferably at least 10−11 M. See, e.g., Presta et al. (2001) Thromb. Haemost. 85:379; Yang et al. (2001) Crit. Rev. Oncol. Hematol. 38:17; Carnahan et al. (2003) Clin. Cancer Res. (Suppl.) 9:3982s.
- Soluble receptors comprising the extracellular domain of IL-23R are useful in the compositions and methods of the present invention. Soluble receptors can be prepared and used according to standard methods. See, e.g., Jones et al. (2002) Biochim. Biophys. Acta 1592:251; Prudhomme et al. (2001) Expert Opinion Biol. Ther. 1:359; Fernandez-Botran (1999) Crit. Rev. Clin. Lab Sci. 36:165-224.
- In one embodiment the compositions and methods of the present invention require antagonism of IL-23 and not antagonism of IL-12. There are currently several potential therapeutic agents under development that target the IL-12p40 subunit of both IL-12 and IL-23 that would block the activity of both IL-23 and IL-12. Such agents would not be suitable for use in this embodiment of the compositions and methods of the present invention since they would inhibit the robust IL-12-mediated Th1 response that the invention is intended to promote. Although it is in principle possible to develop an agent that binds to IL-12p40 only in the context of IL-23 but not in the context of IL-12 (see U.S. Patent Application Publication No. 2005-0137385 and U.S. Pat. No. 7,252,971), it is likely that the majority of agents targeting IL-12p40 will inhibit IL-12 and thus not be suitable for the present invention. The same argument applies with the shared receptor subunit of IL-23 and IL-12, IL-12Rβ1. Although it is in principle possible to develop an agent that binds to IL-12Rβ1 only in the context of IL-23 receptor but not in the context of IL-12 receptor, it is likely that the majority of agents targeting IL-12Rβ1 will inhibit IL-12 receptor and thus not be suitable for the present invention. In contrast, agents that bind to and antagonize subunits specific to IL-23 or its receptor, i.e. p19 and IL-23R, respectively, are likely to be specific inhibitors of IL-23 rather than IL-12, and thus more suitable for use in the compositions and methods of the present invention.
- Whether a potential therapeutic agent specifically inhibits IL-23 rather than IL-12 may be determined by any method known in the art. For example a potential IL-23-specific antagonist may be tested for its ability to block the binding of IL-23 to its receptor, or IL-12 to its receptor. Such blocking assays may be performed in solution (e.g. by fluorescence-activated cell sorting) or on a solid support (e.g. by enzyme-linked immunosorbent assay—ELISA). IL-23 and IL-12 receptor blocking can also be measured in a bioassay, such as a Ba/F3 cell proliferation assay. See e.g. Ho et al. (1995) Mol. Cell. Biol. (1995) 15:5043. In such binding assays, the potency and specificity of a potential IL-23 antagonist may be expressed as an IC50, or the concentration of the potential antagonist necessary to achieve a 50% reduction in IL-23 binding (or biological activity dependent on binding) under a given set of assay conditions. A lower IC50 indicates a more effective antagonist. The IL-23 specificity of a potential antagonist may be expressed as the ratio of the IC50 for inhibition of binding of IL-12 to its receptor to the IC50 for inhibition of binding of IL-23 to its receptor (IC50IL-12/IC50IL-23). In various embodiments a potential IL-23 specific antagonist is considered to be IL-23 specific if this ratio (IC50IL-12/IC50IL-23) is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more. In preferred embodiments the levels of IL-23 and IL-12 used in inhibition assays are adjusted to ensure that at least one, and preferably both of the IL-23 and IL-12 assays, are performed in the linear dose response concentration range.
- IL-23 and IL-12 also have different biological functions that may be used to determine specificity of antagonism. In contrast to IL-12, IL-23 preferentially stimulates memory as opposed to naïve T cell populations in both human and mouse. IL-23 activates a number of intracellular cell-signaling molecules, e.g., Jak2, Tyk2, Stat1, Stat2, Stat3, and Stat4. IL-12 activates this same group of molecules, but Stat4 response to IL-23 is relatively weak, while Stat4 response to IL-12 is strong. Oppmann et al. (2000); Parham et al. (2002) J. Immunol. 168:5699.
- A potential IL-23-specific antagonist may also be tested for its ability to inhibit the amplification and survival of Th1 and Th17 cells by IL-12 and IL-23. An IL-23-specific antagonist will preferentially inhibit the IL-23-mediated amplification and survival of Th17 cells, but not the IL-12-mediated amplification and survival of Th1 cells. Th17 cells characteristically secrete IL-17 whereas Th1 cells characteristically secrete IFN-γ. Data from an exemplary Th1/Th17 assay is found at
FIG. 2 of Langrish et al. (2005) J. Exp. Med. 201:233, which demonstrates that IL-23 promotes amplification and survival of IL-17 producing CD4+ T cells, whereas IL-12 promotes amplification and survival of IFN-γ-producing CD4+ T cells. In one embodiment of the present invention, an agent is considered to be an “IL-23-specific” antagonist (relative to IL-12) when it is able to inhibit IL-23-mediated amplification and survival of Th17 cells, while not inhibiting IL-12-mediated amplification and survival of Th1 cells Inhibition of Th17/Th1 cell proliferation can be expressed as an IC50, or the concentration of the agent necessary to achieve a 50% reduction in the activity of IL-23 in promoting the amplification and survival of a particular T cell subset producing IL-17 or IFN-γ under a given set of assay conditions. An exemplary assay is provided at Example 13. The potency of an IL-23 antagonist in a bioassay like the one described in Example 13 may be expressed as the IC50IL-23, i.e. the concentration of antagonist needed to reduce the activity of IL-23 to 50% of its uninhibited value. An analogous IC50IL-12 may be determined for IL-12 and its activity in promoting production of IFN-γ producing cells. The IL-23-specificity of the antagonist can then be expressed as the ratio IC50IL-12/IC50IL-23. In various embodiments, the IC50IL-12/IC50IL-23 ratio for a validated IL-23-specific antagonist is 1.5, 2, 3, 4, 5, 7, 10, 15, 20, 50, 100 or more. - Production of IL-17A and IFN-γ may be measured by intracellular cytokine flow cytometry by fluorescence activated cell sorting (FACS® analysis) with fluorescent reagents that bind to the cytokines, essentially as described in Langrish et al. (2005). It is important to define the threshold level of IL-17A or IFN-γ in a live CD4′ T cell for that cell to be considered “IL-17 producing” or “IFN-γ producing.” In one embodiment the threshold level is defined as the level at which 5% of live CD4′ T cells are “IL-17 producing” or “IFN-γ producing” in a control sample of untreated cells. Exemplary untreated cells include draining lymph node (DLN) cells isolated from SJL mice (The Jackson Laboratories, Bar Harbor, Me., USA) immunized with proteolipid protein (PLP) cultured in the presence of PLP.
- To prepare pharmaceutical or sterile compositions including an antagonist of IL-23, the antagonist is admixed with a pharmaceutically acceptable carrier or excipient, see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack Publishing Company, Easton, Pa. (1984). Formulations of therapeutic agents may be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions or suspensions (see, e.g., Hardman, et al. (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y.; Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y.; Avis, et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY; Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage Forms Tablets, Marcel Dekker, NY; Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage Forms Disperse Systems, Marcel Dekker, NY; Weiner and Kotkoskie (2000) Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, N.Y.).
- The route of administration is by, e.g., topical or cutaneous application, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems or an implant. Injection of gene transfer vectors into the central nervous system has been described. See, e.g., Cua et al. (2001) J. Immunol. 166:602; Sidman et al. (1983) Biopolymers 22:547; Langer et al. (1981) J. Biomed. Mater. Res. 15:167; Langer (1982) Chem. Tech. 12:98; Epstein et al. (1985) Proc. Natl. Acad. Sci. USA 82:3688; Hwang et al. (1980) Proc. Natl. Acad. Sci. USA 77:4030; U.S. Pat. Nos. 6,350,466 and 6,316,024.
- Selecting an administration regimen for a therapeutic agent depends on several factors, including the serum or tissue turnover rate of the agent, the level of symptoms, the immunogenicity of the agent, and the accessibility of the target cells in the biological matrix. Preferably, an administration regimen maximizes the amount of therapeutic agent delivered to the patient consistent with an acceptable level of side effects. Accordingly, the amount of agent delivered depends in part on the particular entity and the severity of the condition being treated. Guidance in selecting appropriate doses of antibodies, cytokines, and small molecules are available. See, e.g., Wawrzynczak (1996) Antibody Therapy, Bios Scientific Pub. Ltd, Oxfordshire, UK; Kresina (ed.) (1991) Monoclonal Antibodies, Cytokines and Arthritis, Marcel Dekker, New York, N.Y.; Bach (ed.) (1993) Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases, Marcel Dekker, New York, N.Y.; Baert et al. (2003) New Engl. J. Med. 348:601; Milgrom et al. (1999) New Engl. J. Med. 341:1966; Slamon et al. (2001) New Engl. J. Med. 344:783; Beniaminovitz et al. (2000) New Engl. J. Med. 342:613; Ghosh et al. (2003) New Engl. J. Med. 348:24; Lipsky et al. (2000) New Engl. J. Med. 343:1594.
- Antibodies, antibody fragments, and cytokines can be provided by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. Doses may be provided intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscularly, intracerebrally, intraspinally, or by inhalation. In various embodiments the mode of administration is selected based on the primary locus of infection, e.g. the lung or GI tract.
- A preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects. A total weekly dose is generally at least about 0.05 μg/kg, 0.2 μg/kg, 0.5 μg/kg, 1 μg/kg, 10 μg/kg, 100 μg/kg, 0.2 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 10 mg/kg, 25 mg/kg, or 50 mg/kg. See, e.g., Yang et al. (2003) New Engl. J. Med. 349:427; Herold et al. (2002) New Engl. J. Med. 346:1692; Liu et al. (1999) J. Neurol. Neurosurg. Psych. 67:451; Portielji et al. (2003) Cancer Immunol. Immunother. 52:133. The desired dose of a small molecule therapeutic, e.g., a peptide mimetic, natural product, or organic chemical, is about the same as for an antibody or polypeptide, on a moles/kg basis.
- An effective amount for a particular patient may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects, see, e.g., Maynard et al. (1996) A Handbook of SOPs for Good Clinical Practice, Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice, Urch Publ., London, UK.
- Typical veterinary, experimental, or research subjects include monkeys, dogs, cats, rats, mice, rabbits, guinea pigs, horses, and humans.
- Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects. Important diagnostic measures include those of symptoms of, e.g., the infection or infection levels. Preferably, a biologic to be used is derived from the same species as the animal targeted for treatment, or is modified to mimic a protein derived from the same species (e.g. humanized antibodies), thereby minimizing a humoral response to the reagent.
- Methods for co-administration or treatment with a second therapeutic agent, e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation, are well known in the art. See, e.g., Hardman et al. (eds.) (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed., McGraw-Hill, New York, N.Y.; Poole and Peterson (eds.) (2001) Pharmacotherapeutics for Advanced Practice:A Practical Approach, Lippincott, Williams & Wilkins, Phila., PA; Chabner and Longo (eds.) (2001) Cancer Chemotherapy and Biotherapy, Lippincott, Williams & Wilkins, Phila., PA. An effective amount of therapeutic will decrease the symptoms typically by at least 10%; usually by at least 20%; preferably at least about 30%; more preferably at least 40%, and most preferably by at least 50%.
- The invention further provides use of antagonists of IL-23 or IL-23R, or both, in the manufacture of a medicament for the treatment of an infectious disease, including but not limited to a condition selected from the group consisting of a fungal infection, a persistent fungal infection, candidiasis, CMC, aspergillosis, cryptococcosis, a viral infection, a persistent viral infection, HIV infection, HBV infection, HCV infection, a baceterial infection, mycobacterial infection, an M. tuberculosis infection, an M. bovis infection and an M. leprae infection. In some embodiments, the medicament may comprise one or more additional therapeutic agents. In other embodiments the medicament of the present invention may be used in conjunction with one or more other therapeutic agents.
- The invention further provides anti-idiotypic antibodies directed to therapeutic anti-IL-23 or anti-IL-23R antibodies of the present invention. An anti-idiotypic antibody is an antibody that recognizes unique determinants generally associated with the antigen-binding region of another antibody. The anti-idiotypic antibody can be prepared by immunizing an animal of the same species and genetic type (e.g., mouse strain) as the source of the original anti-IL-23 antibody with the anti-IL-23 antibody or a CDR containing region thereof. The immunized animal then generates antibodies to the idiotypic determinants of the immunizing antibody to produce an anti-idiotypic antibody. The anti-idiotypic antibody may also be used as an immunogen to induce an immune response in yet another animal, producing a so-called “anti-anti-Id antibody.”
- Anti-idiotypic antibodies may be used, for example, to determine the level of a therapeutic anti-IL-23 (or anti-IL-23R) antibody in a subject, e.g. in a bodily fluid (e.g. blood) of a subject undergoing anti-IL-23 therapy. Determination of the level of anti-IL-23 (or anti-IL-23R) antibody in a subject may be useful in maintaining a desired level of anti-IL-23 antibody in a subject since dosing may be modified in response to such determinations. Dosing may be increased or decreased (in frequency and/or amount per administration) to obtain a circulating level of anti-IL-23 antibody within a desired range of values. The desirable range may be determined by medical practitioners by methods typical in the art, and may depend on the therapeutic index for the anti-IL-23 (or anti-IL-23R) antibody or fragment thereof.
- An anti-idiotypic antibody may be supplied in a form suitable for easy detection, including antibodies with polypeptide tags (e.g. the FLAG® tag), or coupled to dyes, isotopes, enzymes, and metals. See, e.g., Le Doussal et al. (1991) New Engl. J. Med. 146:169; Gibellini et al. (1998) J. Immunol. 160:3891; Hsing and Bishop (1999) New Engl. J. Med. 162:2804; Everts et al. (2002) New Engl. J. Med. 168:883. Various assay formats exist, such as radioimmunoassays (RIA), ELISA, and lab on a chip. U.S. Pat. Nos. 6,176,962 and 6,517,234.
- This invention further provides antagonists of IL-23 in kits for use in treatment of subjects (human or non-human) suffering from infections, such as chronic bacterial, mycobacterial, viral and fungal infections. In one embodiment, the kit comprises a compartment for containing an antagonist of IL-23, the antagonist of IL-23 itself (such as an antibody), and optionally instructions for use, one or more additional therapeutic agent or agents, and one or more medical devices for administration (e.g. a syringe or a disposable injector such as the Redipen™ injector device). The antagonist of IL-23 may be any of the agents described herein, including but not limited to, anti-p19 antibodies or p19-binding fragments thereof, anti-IL-23R antibodies or IL-23R-binding fragments thereof, or soluble IL-23R fragments.
- The one or more additional therapeutic agents include, but are not limited to, non-steroidal anti-inflammatories (NSAIDS), steroids, IL-12 or an agonist thereof, and antagonists of cytokines such as IL-17A, IL-17F, TGF-13, IL-6, or their respective receptors. Antagonists for cytokines include antibodies that bind to the cytokine, its subunits, or its receptor. Although not all antibodies that bind to cytokines or their receptors are necessarily antagonists, such antagonist activity can readily be assessed by techniques commonly known in the art, such as a bioassay or receptor binding assay. Nucleic acid and amino acid sequences for various (human) cytokines and receptors are known, including IL-17A (NM—002190, NP—002181), IL-17F (NM—052872, NP—443104); IL-17RA (NM—014339, NP—055154); IL-17RC (transcript variants NM—153461, NM—153460, NM—032732, and their respective translations).
- The invention further provides kits comprising anti-idiotypic antibodies directed to therapeutic anti-IL-23 (or anti-IL-23R) antibodies of the present invention. In one embodiment, the kit comprises a compartment for containing the anti-idiotypic antibody, the anti-idiotypic antibody itself, and optionally instructions for use, one or more detection reagents, one or more devices for detection of the anti-idiotypic antibody (such as a microtiter plate), and one or more samples of the anti-IL-23 antibodies to be detected (or other positive control).
- A prolonged asymptomatic preclinical period often occurs prior to the development of tuberculosis. Thus, IL-23 and IL-23R antagonist therapy can be commenced upon analysis of various diagnostic markers of TB. Patients exhibiting a positive tuberculin test or Mantoux test (see, e.g., Dale and Federman (2002)), as compared to normal non-infected patients, can be given IL-23 or IL-23R antagonist therapy to prevent the further growth of mycobacteria, or to clear an existing non-pathological infection. Patients with high levels of mycobacterium in biological samples, e.g., BAL, may also benefit from IL-23 and IL-23R antagonist therapy to prevent the further growth of mycobacteria and clear bacterial burdens in the lungs. Similar treatment may be used for patients having high mycobacterial DNA or RNA levels in clinical samples or a positive niacin test in culture. Also envisioned is the use of IL-23 and IL-23R antagonists in conjunction with pathologically symptomatic TB infections to lessen or clear bacterial burdens.
- Bacterial infections that may be treated using the methods and compositions of the present invention include, but are not limited to, those caused by: Staphylococcus aureus, Staphylococcus epidermidis; Streptococcus pneumoniae; Streptococcus agalactiae; Streptococcus pyogenes; Enterococcus spp.; Bacillus anthracis; Bacillus cereus; Bifidobacterium bifidum; Lactobacillus spp.; Listeria monocytogenes; Nocardia spp.; Rhodococcus equi (coccobacillus); Erysipelothrix rhusiopathiae Corynebacterium diptheriae; Propionibacterium acnes; Actinomyces spp.; Clostridium botulinum; Clostridium difficile; Clostridium perfringens; Clostridium tetani; Mobiluncus spp., Peptostreptococcus spp.; Neisseria gonorrhoeae; Neisseria meningitides; Moraxella catarrhalis; Veillonella spp.; Actinobacillus actinomycetemcomitans; Acinetobacter baumannii; Bordetella pertussis; Brucella spp.; Campylobacter spp.; Capnocytophaga spp.; Cardiobacterium hominis; Eikenella corrodens; Francisella tularensis; Haemophilus ducreyi; Haemophilus influenzae; Helicobacter pylori; Kingella kingae; Legionella pneumophila; Pasteurella multocida; Klebsiella granulomatis; Citrobacter spp., Enterobacter spp.; Escherichia coli; Klebsiella pneumoniae; Proteus spp.; Salmonella enteriditis; Salmonella typhi; Shigella spp.; Serratia marcescens; Yersinia enterocolitica; Yersinia pestis; Aeromonas spp.; Plesiomonas shigelloides; Vibrio cholerae; Vibrio parahaemolyticus; Vibrio vulnificus; Acinetobacter spp.; Flavobacterium spp.; Pseudomonas aeruginosa; Burkholderia cepacia; Burkholderia pseudomallei; Xanthomonas maltophilia or Stenotrophomonas maltophila; Bacteroides fragilis; Bacteroides spp.; Prevotella spp.; Fusobacterium spp.; Spirillum minus; Borrelia burgdorferi; Borrelia recurrentis; Bartonella henselae; Chlamydia trachomatis; Chlamydophila pneumoniae; Chlamydophila psittaci; Coxiella burnetii; Ehrlichia chaffeensis; Anaplasma phagocytophilum; Legionella spp.; Leptospira spp.; Rickettsia rickettsii; Orientia tsutsugamushi; Treponema pallidum.
- Mycobacterial infections that may be treated using the methods and compositions of the present invention include, but are not limited to, those caused by: M abscessus, M. africanum, M. asiaticum, Mycobacterium avium complex (MAC), M. avium paratuberculosis, M. bovis, M. chelonae, M. fortuitum, M. gordonae, M. haemophilum, M. intracellulare, M. kansasii, M. lentiflavum, M. leprae, M liflandii, M. malmoense, M. marinum, M. microti, M. phlei, M. pseudoshottsii, M. scrofulaceum, M. shottsii, M. smegmatis, M. triplex, M. tuberculosis, M. ulcerans, M. uvium, and M. xenopi.
- The methods and compositions of the present invention may also be used to treat fungal conditions, including but not limited to, histoplasmosis, coccidioidomycosis, blastomycosis, aspergillosis, penicilliosis, candidiasis and cryptococcosis. Risk factors for mycoses include blood and marrow transplant, solid-organ transplant, major surgery (especially gastrointestinal surgery), AIDS, neoplastic disease, advanced age, immunosuppressive therapy, and prematurity in infants.
- Fungal pathogens causing infections (and clinical syndromes) that may be treated using the methods and compositions of the present invention include, but are not limited to, Candida albicans (thrush, vaginal candidiasis, esophageal candidiasis), Cryptococcus neoformans (meningitis), Histoplasma capsulatum (disseminated infection with fever and weight loss), Coccidioides immitis (diffuse and focal pulmonary disease), Blastomyces dermatitidis (localized pulmonary disease and disseminated infection, including meningitis), Aspergillus fumigatus (pulmonary disease with fever, cough, and hemoptysis), and Penicillium marneffei (fever alone or with pulmonary infiltrates, lymphadenopathy, or cutaneous lesions). The methods and compositions of the present invention may also be used to treat infections with Candida species C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, C. guilliermondii, and C. rugosa. The preceding fungal pathogens (and clinical syndromes) are commonly associated with HIV infection.
- The methods and compositions of the present invention may also be used to treat infections with Candida species such as C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, C. guilliermondii, and C. rugosa. The methods and compositions of the present invention may also be used to treat infections with Aspergillus species such as A. flavus, A. niger, A. ustus and A. terreus. Additional fungal pathogens include Fusarium species (e.g. F. moniliforme, F. solani, F. oxysporum) and Scedosporium species (e.g. S. apiosperum, S. prolificans). Additional fungal diseases include zygomycoses caused by species of Rhizopus (e.g. R. oryzae, R. arrhizus), Rhizomucor, Absidia, Cunninghamella.
- Antagonists of IL-23 and IL-23R may be used alone or in conjunction with agents intended to enhance a Th1 response (e.g. IL-12 or agonists thereof) or inhibit a Th17 response (e.g. TGF-β antagonists; IL-6 antagonists; IL-17A and/or IL-17F antagonists), or both. Agonists and antagonists of the receptors for these cytokines may also be used. Such agents may include antibodies and antigen-binding fragments thereof, small molecules, siRNA and antisense nucleic acids. Antagonists of IL-23 and IL-23R may also be used in conjunction with anti-inflammatory agents, such as corticosteroids, e.g. prednisone.
- The IL-17 antagonist may inhibit the expression of IL-17A, IL-17F, IL-17RA or IL-17RC or may inhibit IL-17 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction. In some preferred embodiments, the IL-17 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-17A, IL-17F, IL-17RA or IL-17RC. In one particularly preferred embodiment, the IL-17 antagonist is a monoclonal antibody that specifically binds to IL-17A. Exemplary antagonist antibodies to IL-17A include the anti-human IL-17A antibodies, and fragments thereof, disclosed in commonly-assigned U.S. patent application Ser. No. 11/836,318 (filed 9 Aug. 2007), and in WO 2006/013107 and WO 2006/054059. In another embodiment the IL-17 antagonist comprises a bispecific antibody.
- In one embodiment the IL-23 antagonist comprises a bispecific antibody that binds to and inhibits the activity of IL-23. Such bispecific antibodies may bind to IL-23p19 or IL-23R, and may also bind to the IL-17A, IL-17F, IL-17RA, IL-17RC. In other embodiments the IL-23 antagonist is a bispecific antibody that binds to IL-23p19 and IL-17 and inhibits the activity of IL-23 and IL-17. See, e.g., WO 2007/147019. Alternatively, IL-23 and IL-17 antagonist bispecific antibodies may bind to either IL-23 receptor (e.g. IL-23R) or IL-17 receptor (IL-17RA or IL-17RC), respectively, provided that they are antagonist antibodies. Bispecific antibodies that antagonize both IL-17 and IL-23 activity can be produced by any technique known in the art. For example, bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305:537-39. Alternatively, bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan et al. (1985) Science 229:81. Bifunctional antibodies can also be prepared by disulfide exchange, production of hybrid-hybridomas (quadromas), by transcription and translation to produce a single polypeptide chain embodying a bispecific antibody, or transcription and translation to produce more than one polypeptide chain that can associate covalently to produce a bispecific antibody. The contemplated bispecific antibody can also be made entirely by chemical synthesis. The bispecific antibody may comprise two different variable regions, two different constant regions, a variable region and a constant region, or other variations.
- Antagonists of IL-23 and IL-23R may be used alone or co-administered with known antibacterials, such as isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, ciprofloxacin, and ofloxacin. Additional antibacterial agents include, but are not limited to, alatrofloxacin, azithromycin, baclofen, benzathine penicillin, cinoxacin, clarithromycin, clofazimine, cloxacillin, demeclocycline, dirithromycin, doxycycline, erythromycin, ethionamide, furazolidone, grepafloxacin, imipenem, levofloxacin, lorefloxacin, moxifloxacin HCl, nalidixic acid, nitrofurantoin, norfloxacin, ofloxacin, rifabutin, rifapentine, sparfloxacin, spiramycin, sulphabenzamide, sulphadoxine, sulphamerazine, ulphacetamide, sulphadiazine, sulphafurazole, sulphamethoxazole, sulphapyridine, tetracycline, trimethoprim, trovafloxacin, and vancomycin.
- The methods and compositions of the present invention may be used to treat persistent viral infections, including but not limited to infections caused by HBV, HCV, HIV, human papillomavirus (HPV). Such chronic infections represent a failure of the immune response to eradicate the infection. Antagonists of IL-23 and IL-23R may be used alone or in conjunction with other antiviral agents, including but not limited to, abacavir, acyclovir, amantadine, amprenavir, delavirdine, didanosine, efavirenz, famciclovir, indinavir, an interferon alfa, ribavirin, lamivudine, nelfinavir, nevirapine, oseltamivir, penciclovir, ribavirin, ritonavir, saquinavir, stavudine, valacyclovir, zalcitabine, zanamivir, zidovudine (azidodeoxythymidine, AZT). Preferred interferon alfa agents include pegylated interferon alfa 2a and pegylated interferon 2b. Exemplary forms of interferon alpha are discussed in U.S. Pat. No. 6,923,966. The IL-23 antagonist may also be used in combination with viral specific agents, such as HCV protease or HCV polymerase inhibitors for chronic HCV infection, and CCR5 antagonists for chronic HIV infection.
- Antagonists of IL-23 and IL-23R may also be used in conjunction with a therapeutic vaccine, e.g. gp120-depleted whole killed virus for HIV infection, a recombinant E1 protein for HCV infection, and viral E6 and E7 oncoproteins for HPV infection. See Berzofsky et al. (2004). Such therapeutic vaccines include DNA vaccines or viral vectors, optionally administered in a heterologous priming and boosting regimen in which a DNA vaccine is followed by a viral vector vaccine. Berzofsky et al. (2004).
- Antagonists of IL-23 and IL-23R may be used alone or in conjunction with other antifungal agents, including but not limited to, posaconazole, fluconazole (U.S. Pat. No. 4,404,216), voriconazole, itraconazole (U.S. Pat. No. 4,267,179), ketoconazole (U.S. Pat. Nos. 4,144,346 and 4,223,036), liarozole, irtemazol, clotrimazole, miconazole, econazole, butoconazole, oxiconazole, sulconazole, tioconazole, and terconazole, substituted thiazoles, thiadiazole, oxadiazole, caspofungin, amphotericin B, nystatin, pimaricin, flucytosine (5-fluorocytosine), naftifine, terbinafine, butenafine, thiocarbonate tolnaftate, griseofulvin, amiodarone, ciclopirox, sulbentine, amorolfine, clioquinol, gentian violet, potassium iodide, sodium thiosulfate, carbol-fuchsin solution, and the echinocandins (e.g. caspofungin acetate, micafungin and anidulafungin).
- The IL-23 and IL-23R antagonists of the present invention may be used in combination with standard antifungal agents at their usual dosages when used as single agents, or at lower dosages if there is any synergistic enhancement in efficacy when the drugs are used together. Fluconazole may be administered, e.g., at 400-800 mg/day. Voriconazole may be administered at 4 mg/kg bid. Itraconazole may be administered at 200-600 mg/day. Amphotericin B desoxycholate (D-AmB) may be administered at 0.5-1 mg/kg/day. General guidance as to the types of agents and treatment regimens that may be combined with the compositions and methods of the present invention may be found in practice guidelines published by the Infectious Diseases Society of America (IDSA) at Pappas et al. (2004) Clin. Infect. Dis. 38:161 (candidiasis) and Stevens et al. (2000) Clin. Infect. Dis. 30:696 (aspergillosis). Practice guidelines for the treatment of tuberculosis are found at International Standards for Tuberculosis Care, published Mar. 22, 2006 and endorsed by the IDSA.
- In some embodiments of the present invention the subject having an infection, or suspected to have an infection, has been previously treated for the infection using other methods or compositions (i.e. not methods or compositions of the present invention). The previous treatment may include treatment with any of the antimicrobial agents, antibiotics, antifungal agents, antiviral agents disclosed herein, or any other treatment method or composition.
- In some embodiments the subject will have a formal diagnosis of infection, optionally with an identification of the etiological agent, but in other embodiments the subject may not have a formal diagnosis, or may have a partial diagnosis limiting but not fully identifying the etiological agent. In other embodiments the subject is only suspected of having an infection. In other embodiments the subject is at risk of having or acquiring an infection, e.g. the subject is undergoing immunosuppressive therapy, is at risk of acquiring a fungal infection because of AIDS, etc. In some embodiments the subject having an infection, or suspected to have an infection, or at risk of having or acquiring an infection, is immunocompromised, e.g. due to AIDS, chemotherapy, transplant, old age.
- Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.
- Standard methods in molecular biology are described (Maniatis et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Sambrook and Russell (2001) Molecular Cloning, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Wu (1993) Recombinant DNA, Vol. 217, Academic Press, San Diego, Calif.). Standard methods also appear in Ausbel et al. (2001) Current Protocols in Molecular Biology, Vols. 1-4, John Wiley and Sons, Inc. New York, N.Y., which describes cloning in bacterial cells and DNA mutagenesis (Vol. 1), cloning in mammalian cells and yeast (Vol. 2), glycoconjugates and protein expression (Vol. 3), and bioinformatics (Vol. 4).
- Methods for protein purification including immunoprecipitation, chromatography, electrophoresis, centrifugation, and crystallization are described. Coligan et al. (2000) Current Protocols in Protein Science, Vol. 1, John Wiley and Sons, Inc., New York. Chemical analysis, chemical modification, post-translational modification, production of fusion proteins, glycosylation of proteins are described. See, e.g., Coligan, et al. (2000) Current Protocols in Protein Science, Vol. 2, John Wiley and Sons, Inc., New York; Ausubel, et al. (2001) Current Protocols in Molecular Biology, Vol. 3, John Wiley and Sons, Inc., NY, N.Y., pp. 16.0.5-16.22.17; Sigma-Aldrich, Co. (2001) Products for Life Science Research, St. Louis, Mo.; pp. 45-89; Amersham Pharmacia Biotech (2001) BioDirectory, Piscataway, N.J., pp. 384-391). Production, purification, and fragmentation of polyclonal and monoclonal antibodies is described. Coligan et al. (2001) Current Protcols in Immunology, Vol. 1, John Wiley and Sons, Inc., New York; Harlow and Lane (1999) Using Antibodies, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Harlow and Lane (1998). Standard techniques for characterizing ligand/receptor interactions are available. See, e.g., Coligan et al. (2001) Current Protcols in Immunology, Vol. 4, John Wiley, Inc., New York.
- Methods for flow cytometry, including fluorescence activated cell sorting (FACS), are available (see, e.g., Owens et al. (1994) Flow Cytometry Principles for Clinical Laboratory Practice, John Wiley and Sons, Hoboken, N.J.; Givan (2001) Flow Cytometry, 2nd ed.; Wiley-Liss, Hoboken, N.J.; Shapiro (2003) Practical Flow Cytometry, John Wiley and Sons, Hoboken, N.J.). Fluorescent reagents suitable for modifying nucleic acids, including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g., as diagnostic reagents, are available (Molecular Probes (2003) Catalogue, Molecular Probes, Inc., Eugene, Oreg.; Sigma-Aldrich (2003) Catalogue, St. Louis, Mo.).
- Standard methods of histology of the immune system are described. See, e.g., Muller-Harmelink (ed.) (1986) Human Thymus: Histopathology and Pathology, Springer Verlag, New York, N.Y.; Hiatt et al. (2000) Color Atlas of Histology, Lippincott, Williams, and Wilkins, Phila, Pa.; Louis, et al. (2002) Basic Histology: Text and Atlas, McGraw-Hill, New York, N.Y.
- Software packages and databases for determining, e.g., antigenic fragments, leader sequences, protein folding, functional domains, glycosylation sites, and sequence alignments, are available. See, e.g., GenBank, Vector NTI® Suite (Informax, Inc, Bethesda, Md.); GCG Wisconsin Package (Accelrys, Inc., San Diego, Calif.); DeCypher® (TimeLogic Corp., Crystal Bay, Nev.); Menne, et al. (2000) Bioinformatics 16: 741-742; Menne et al. (2000) Bioinformatics Applications Note 16:741; Wren et al. (2002) Comput. Methods Programs Biomed. 68:177; von Heijne (1983) Eur. J. Biochem. 133:17; von Heijne (1986) Nucleic Acids Res. 14:4683.
- Mouse strains for the study of fungal infections were obtained as follows. Female C57BL/6 and BALB/c mice, 8-10 wk old, were purchased from Charles River (Calco, Italy). Homozygous IL-12p35-, IL-23p19- or IL-12p40-deficient mice (hereafter referred to as p35−/−, p19−/− and p40−/−, respectively), TLR-2-, TLR-4-, MyD88- or TRIF-deficient mice (hereafter referred to as TLR-2−/−, TLR-4−/−, MyD88−/− or TRIF−/−) mice on C57BL/6 background were bred under specific pathogen-free conditions at the Animal Facility of Perugia University, Perugia, Italy. Breeding pairs of IFN-γ−/−/p35−/− mice, on BALB/c background, were provided by Dr. M. Colombo (Istituto Tumori, Milan, Italy). IFN-γ−/− and IL-4−/− mice, on BALB/c background, were also bred at the Animal Facility of Perugia University. Experiments were performed according to the Italian Approved Animal Welfare Assurance A-3143-01.
- Fungal infections and their treatments were studied as follows. The origin and characteristics of the C. albicans strain used in this study have already been described. Bacci et al. (2002) J. Immunol. 168:2904. For gastrointestinal infection, 108 Candida cells were injected intragastrically and quantification of fungal growth was expressed as CFU per organ (mean±SE) as described. Bacci et al. (2002). For the intravenous infection, mice received different amounts of the fungus in 0.5 ml, intravenously. The strain of A. fumigatus and the culture conditions were as described. Montagnoli et al. (2006) J. Immunol. 176:1712. Mice received two doses of 2×107 Aspergillus resting conidia intranasally. Fungi were suspended in endotoxin-free solutions (Detoxi-gel, Pierce, Rockford, Ill.) at <1.0 EU/ml, as determined by the Limulus amebocyte lysate (LAL) method. Fungal growth was quantified by the chitin assay, with results expressed as micrograms of glucosamine/organ. For histology, tissues were excised and immediately fixed in formalin, and sections (3-4 μm) of paraffin-embedded tissues were stained with periodic acid-Schiff reagent and examined. Bacci et al. (2002); Montagnoli et al. (2006). Infected animals were treated with 200 μg of p19-neutralizing Ab (Belladonna et al. (2006) Cytokine 34:161) or IL-17A-neutralizing mAb (TC11-18H10, PharMingen, San Diego, Calif.) administered i.p. five hours after infection. A total of 1 mg of purified anti-TGF-β1, -β2, -β3 mAb □(2G7) (Lucas et al. (1990) J. Immunol. 145:1415) was administered i.p. 5 and 24 h after the infection. Control mice were injected with PBS because no differences were observed between PBS-treated and isotype control-treated (each treatment) animals (n>6 for each group).
- Cells were purified as follows. Gr-1+ CD11b+ polymorphonuclear neutrophils (PMN, >98% pure on FACS analysis) were isolated from the peritoneal cavity of mice by magnetic-activating sorting using Ly-6G MicroBeads and MidiMacs (Miltenyi Biotech, Bergisch Gladbach, Germany). CD4+ T cells were purified from the mesenteric lymph nodes (MLN), thoracic lymph nodes (TLN) and spleens by magnetic-activated sorting using CD4 MicroBeads and MidiMacs (Miltenyi Biotech). DC were obtained from bone marrow cells cultured in Iscove's modified medium in the presence of 150 U/ml mouse rGM-CSF (Sigma-Aldrich, St. Louis, Mo.) and 75 U/ml rIL-4 (R&D Systems, Minneapolis, Minn.) for 7 days to obtain CD11b+ DC or 200 ng/ml FLT3-L (R&D Systems) for 9 days to obtain FL-DC. Romani et al. (2006) Blood 108:2265. Splenic DC (>99% CD11c+ and <0.1% CD3+) consisting of 90-95% CD8-, 5-10% CD8+, and 1-5% B220+ cells) were purified by magnetic activated sorting using CD11c MicroBeads and MidiMacs (Miltenyi Biotech). Zymosan from Saccharomyces cerevisiae (10 μg/ml, Sigma-Aldrich), ultra-pure LPS from Salmonella minnesota Re 595 (10 μg/ml, Labogen, Rho, Milan, Italy) and CpG oligonucleotides 2006 (CpGODN, 0.06 μM) were used as described. Bellocchio et al. (2004) J. Immunol. 173:7406.
- DC cells were pulsed and cultured as follows. DC were exposed to live unopsonized fungi, with and without 10 ng/ml cytokines (from R&D Systems; Space Import-Export srl, Milan, Italy; and BD Biosciences-PharMingen, San Diego, Calif.) or neutralizing antibodies (10 μg/ml), at a 1:1 cell:fungus ratio, as described. Bacci et al. (2002); Montagnoli et al. (2006). Cells were harvested for RT-PCR at 12 h of culture, and supernatants were assessed for cytokine contents by ELISA. Splenic CD4+T cells (106/ml) were cultured in flat-bottomed 96-well plates in the presence of 5×105 Candida-pulsed splenic DC for 5 days, with and without neutralizing antibodies (10 μg/ml), before cytokines quantification in culture supernatants. Unfractionated MLN or TLN cells were cultured with inactivated fungi as described (Montagnoli et al. (2006); Montagnoli et al. (2002) J. Immunol. 169:6298) before cytokine determination in
culture supernatants 5 days later. - Assays of PMN phagocytosis of unopsonized Candida yeasts or Aspergillus conidia, and fungicidal activity, were conducted as described. Bellocchio et al. (2004). Results are expressed as the percentage of CFU inhibition (mean±SE). PMN were exposed to varying concentrations of IL-17 or IL-23 or to 50 ng/ml IFN-γ±IL-23/IL-17 (100 ng/ml) for 12 h before western blotting for IDO or for 60 min before the addition of fungi for an additional 60 min for studies of fungicidal activity and MMP9/MPO (mouse myeloperoxidase) determination. Gelatin zymography was performed as described. Bellocchio et al. (2004). Gelatinolytic activity of matrix metalloproteinase 9 (MMP9) was determined by scanning the lysis band in the 72-kD area. For MPO determination, samples were probed with rabbit polyclonal anti-human MPO Ab (Calbiochem, San Diego, Calif.) and visualized using electrochemiluminescence (ECL) (Amersham Pharmacia Biotech, Piscataway, N.J.).
-
Indoleamine 2,3-dioxygenase (IDO) was detected by immunoblotting with rabbit polyclonal IDO-specific antibody, as described. Bozza et al. (2005). The positive control consisted of IDO-expressing MC24 transfectants and the negative control was mock-transfected MC22 cells. - Cytokines were quantified by real-time RT-PCR, ELISA and ELISPOT assays, as follows. Real-time RT-PCR was performed using the iCycler iQ® detection system (Bio-Rad, Hercules, Calif.) and SYBR® Green chemistry (Finnzymes Oy, Espoo, Finland). Cells were lysed and total RNA was extracted using RNeasy Mini Kit (QIAGEN S.p.A., Milano, Italy) and was reverse transcribed with Sensiscript Reverse Transcriptase (QIAGEN) according to the manufacturer's directions. PCR primers were obtained from Invitrogen (Carlsbad, Calif.). The PCR primers used were:
- forward primer, 5′-CACCCTTGCCCTCCTAAACC (SEQ ID NO: 1), and
- reverse primer, 5′-CAAGGCACAGGGTCATCATC (SEQ ID NO: 2), for mouse IL-12p35;
- forward primer, 5′-CCAGCAGCTCTCTCGGAATC (SEQ ID NO: 3), and
-
reverse primer 5′-TCATATGTCCCGCTGGTGC (SEQ ID NO: 4), for mouse IL-23p19; - forward primer, 5′-CTTCTTAACAGCACGTCCTGG (SEQ ID NO: 5), and
-
reverse primer 5′-GGTCTCAGATCTCGCAGGTCA (SEQ ID NO: 6), for IL-12Rβ2; - forward primer, 5′-TGAAAGAGACCCTACATCCCTTGA (SEQ ID NO: 7), and
-
reverse primer 5′-CAGAAAATTGGAAGTTGGGATATGTT (SEQ ID NO: 8), for IL-23R; - forward primer, 5′-CGCAAAGACCTGTATGCCAAT (SEQ ID NO: 9), and
- reverse primer, 5′-GGGCTGTGATCTCCTTCTGC (SEQ ID NO: 10) for mouse γ-actin.
- PCR amplification of the housekeeping γ-actin gene was performed for each sample (triplicates) to control for sample loading and allow normalization between samples as per the manufacturer's instructions (Applied Biosystems, Foster City, Calif.). Water controls were included to ensure specificity. The thermal profile for SYBR® Green real time PCR was at 95° C. for 3 min, followed by 40 cycles of denaturation for 15 s at 95° C. and an annealing/extension step of 1 min at 60° C. Each data point was examined for integrity by analysis of the amplification plot. The mRNA-normalized data were expressed as relative cytokine mRNA in treated cells compared to that of mock-infected cells. Cytokine content was assessed by enzyme-linked immunosorbent assays (R&D Systems and, for IL-23, eBioscience, Societa Italianá Chimici, Rome, Italy) on tissue homogenates or supernatants of cultured cells. The detection limits (pg/ml) of the assays were <16 for IL-12p70, <30 for IL-23, <10 for IFN-γ, <3 for IL-10, <10 for IL-17 and <4,6 for TGF-β1. AID EliSpot assay kits (Amplimedical, Buttigliera Alta, Turin, Italy) were used on purified MLN CD4+ T cells co-cultured with Candida-pulsed DC for 3 days to enumerate cytokine-producing cells.
- Statistical analysis of the data was performed as follows. The log-rank test was used for paired data analysis of the Kaplan-Meier survival curves. Student's t-test or analysis of variance (ANOVA) and Bonferroni's test were used to determine the statistical significance of differences in organ clearance and in vitro assays. Significance was defined asp <0.05. The data reported are either from one representative experiment out of three independent experiments or pooled from three to five experiments. The in vivo groups consisted of 6-8 mice/group.
- To evaluate the contribution of the IL-23/IL-17 pathway to C. albicans infection, we compared p19−/−, p35−/−, p40−/− and C57BL/6 mice for susceptibility to gastrointestinal infection in terms of survival, fungal growth, and tissue pathology, as well as for parameters of inflammatory and adaptive Th1/Th17 immunity. The results (
FIGS. 1A-E ) showed that resistance to candidiasis was severely impaired in p35−/− mice, more than 50% of which succumbed to the infection (FIG. 1A ) with an elevated fungal growth in the stomach (FIG. 1B ). In contrast, the ability to restrict the fungal growth was greatly increased in p19−/− mice as compared to C57BL/6 mice three and ten days after the infection. Notably, p40−/− mice, deficient in both IL-12 and IL-23, were less susceptible than p35−/− mice and more susceptible than p19−/− mice to candidiasis, emphasizing the differential roles of IL-12 for control of Candida. Mencacci et al. (1998) J. Immunol. 161:6228. Similar results were observed after intravenous infection of p35−/− and p19−/− mice, with a mean survival time (MST) of 6±2 versus 20±3 days (5×105 fungal cell inoculum), and 4±2 versus 15±3 days (106 fungal cell inoculum), respectively. Histopathological examination of the stomach revealed the presence of parakeratosis, acanthosis and limited inflammatory reaction in C57BL/6, p19−/− or p40−/− mice, although p40−/−, and in particular p19−/− mice, showed infiltrates of mononuclear cells. In contrast, numerous fungal hyphae were present in the keratinized layer in association with a massive infiltrate of PMN, signs of epithelial necrosis and prominent acanthosis in the stomach of p35−/− mice. These results suggest that the IL-23 and IL-12 pathways have divergent roles in candidiasis. - To correlate these findings with IL-12/Th1 and IL-23/Th17 immune responses, mice were assessed for p35, p19, IL-12Rβ2 and IL-23R mRNA expression in MLN one or three days after the infection (
FIG. 1C ), and frequencies of IFN-γ-, IL-4- or IL-17-producing CD4+ cells in MLN at day seven after infection (FIG. 1D ). We found increased levels p35 and IL-12Rβ2, and numbers of IFN-γ+ cells, in p19−/− mice compared to C57BL/6 mice demonstrating augmented IL-12/Th1 responses in the absence of IL-23. In contrast, levels of p19 and IL-23R and number of IL-17-producing cells were enhanced in mice lacking IL-12 (p35−/−). Expectedly, the number of IL-4-producing cells was also considerably enhanced in p35−/− mice. These data demonstrate a predominant Th1 response promoted by IL-12 and limited by IL-23 in wild-type C57BL/6 mice. IL-12 suppresses IL-23 and IL-17 production, and vice versa—IL-23 inhibits IL-12 and IFN-γ □ production—indicating cross-regulation of IL-23/Th17 and IL-12/Th1 pathways. These data suggest that an elevated IL-23/Th17 response renders mice highly susceptible to candidiasis. - To determine whether, similar to candidiasis, the activation of the IL-23/IL-17 pathway correlates with susceptibility to aspergillosis, p19−/−, p35−/−, p40−/− or C57BL/6 mice were assessed for susceptibility to pulmonary aspergillosis and parameters of inflammatory and adaptive Th1/Th17 immunity. The results (
FIG. 2A ) show that the fungal burden was reduced in p35−/− mice, and to an even greater extent in p19−/− mice, suggesting that IL-12, and especially IL-23, inhibit control of (i.e. promote) Aspergillus infection. Histopathological examination of the lung revealed the presence of a mild inflammatory pathology in C57BL/6, p40−/− or p19−/− mice, characterized by few infiltrates of inflammatory mononuclear cells scattered in an otherwise intact lung parenchyma. Although the number of infiltrating mononuclear cells was higher in p19−/− mice, no signs of parenchyma destruction were observed. In contrast, a massive infiltration of PMN (about 8-10 fold increase of Gr1+CD11c-PMN) was present in the lungs of p35−/− mice associated with signs of extensive interstitial pneumonia. Similar to infection with Candida, expression of IL-12 and IL-23 and their respective receptors were crossregulated, with upregulation of p35 and IL-12Rβ2 in TLN of p19−/− mice, and upregulation of p19 and IL-23R in TLN of p35−/− mice, compared to C57BL/6 mice (FIG. 2B ). In contrast, absence of both IL-12 and IL-23 in p40−/− mice did not significantly alter expression of p35 and p19 or their receptors IL-12Rβ2 and IL-23R. Moreover, number of IFN-γ+ and IL-17+ producing CD4+ T cells was increased in p19−/− and p35−/− mice, respectively, at day 7 after infection (data not shown). In the lung, the levels of IL-12p70 were much higher in p19−/− (554±44 pg/ml) than in C57BL/6 mice (68±8 pg/ml), and IL-23 could be detected only in p35−/− mice (79±11). IL-17 was increased in p35−/− mice (246±17 pg/ml) compared to C57BL/6 mice (37±7 pg/ml). These data suggest that a heightened IL-23/IL-17-dependent inflammatory response is also associated with susceptibility to aspergillosis. - To study the role of IL-17 in susceptibility to fungal infections, we treated mice with an anti-IL-17 neutralizing antibody shortly after fungal infection. Blockade of IL-17 greatly increased resistance to both C. albicans and A. fumigatus, as judged by a decreased fungal growth (
FIG. 3A ), tissue inflammation and PMN infiltration (data not shown) in the relevant target organs. Resistance was associated with an increased frequency of IFN-γ+Th1 cells and a decreased frequency of Th17 cells, resulting in reduced amounts of IL-17 secreted by MLN cells (FIG. 3B ). Similarly, neutralization of IL-23 by antibody increased resistance to fungal infection and Th1 development and confirm our data obtained in p19−/− mice (FIG. 3B ). These results clearly demonstrate that the IL-23/IL-17 pathway confers susceptibility to fungal infection by inhibition of protective Th1 immunity. - Recent results suggest that TGF-β together with IL-6 promotes Th17 development. Bettelli and Kuchroo (2005) J. Exp. Med. 201:169; Mangan et al. (2006) Nature 441:231; Veldhoen et al. (2006) Immunity 24:179. We assessed the effect of TGF-β on Th cell development and fungal control in mice by treatment with TGF-β-neutralizing antibody. Notably, TGF-β inhibition did not affect development of IL-17 producing cells during both C. albicans and A. fumigatus infection (
FIG. 3B ), and a slight but significant reduction in fungal burden was observed only in mice with Aspergillus but not with Candida (FIG. 3A ) but in neither infection was activation of CD4+Th17 cells affected by treatment. Because TGF-β neutralization effectively reduced TGF-β production in infections (from 46 to 24 pg/ml in the stomach and from 36 to 15 pg/ml in the lung), we conclude that TGF-β plays a minor role in Th17-mediated susceptibility to fungal infection. - The above data would suggest that one possible mechanism through which the IL-23/IL-17 axis determines susceptibility to fungal infections relies on the relative ability to restrain protective Th1 responses. To formally prove it, blockade of IL-23 was done under conditions of either heightened (IL-4−/− mice) or deficient (IFN-γ−/− mice) Th1 reactivity. Mice were intragastrically infected with C. albicans and subjected to IL-23 blockade by means of neutralizing antibodies. Consistent with prior publications (Romani et al. (1992) J. Exp. Med. 176:19; Cenci et al. (1998) J. Immunol. 161:3543), the fungal load was lower in IL-4−/− and higher in IFN-γ−/− mice compared to BALB/c mice, demonstrating the importance of IFN-γ for control of infection. Similar to WT mice, blockade of IL-23 greatly decreased the fungal burden in the stomach of IL-4−/− mice (
FIG. 3C ) and concomitantly increased the IL-12p70/IFN-γ production in MLN (data not shown), suggesting that both the Th2 and IL-23/Th17 pathway additively antagonize protective antifungal responses. Surprisingly, the elevated fungal burden in IFN-γ−/− mice was further increased upon neutralization of IL-23 (FIG. 3C ), which resulted in decreased IL-23 production (229 versus 21 pg/ml) IL-17 production (279 versus 95 pg/ml) in anti-IL-23 treated mice. Thus, IL-23 can have a protective role in fungal infection in the absence of IFN-γ. However, IL-23 has the opposite effect in the absence of IL-12p70, or in the absence of both IL-12p70 and IFN-γ, □□ as demonstrated by reduced fungal burden upon neutralization of IL-23 in p35−/− or doubly deficient IFN-γ−/−/p35−/− mice (FIG. 3C ). These data suggest that the protective role of IL-23 in the absence of IFN-γ is mediated by IL-12p70. Notably, a moderate protective role of IL-23 in the absence of IL-12p70 was also observed in tuberculosis, where IL-23 partially replaced IL-12p70 in the induction of protective IFN-γ-producing CD4+ T cells. Khader et al. (2005). - It has already been shown that IL-23 is produced by human DC in response to Aspergillus in vitro. Gafa et al. (2006) Infect. Immun. 74:1480. We evaluated here whether IL-23 is produced by DC in response to C. albicans and how it relates to the production of IL-12 and IL-10, two cytokines essentially required for the induction of protective tolerance to the fungus. Romani & Puccetti (2006).
- For this purpose, we generated bone marrow derived DCs in the presence of either GM-CSF (GM-DC) or Flt3-L (FL-DC), which share characteristics of myeloid DC and plasmacytoid DC, respectively. Although FL-DC encompasses populations equivalent to mixtures of freshly harvested splenic CD8+, CD8− and B220+LyC6+ plasmacytoid DC (Naik et al. (2005) J. Immunol. 174:6592), we have recently demonstrated that the functional activity of FL-DC resides in plasmacytoid DC or in the combination of CD8− and CD8+ DC. Romani et al. (2006) Blood 108:2265. DC were stimulated in vitro with yeasts or hyphae of the fungus and assessed for cytokine mRNA expression and production. Zymosan and LPS were used as positive controls of GM-DC and CpG-ODN as a positive control of FL-DC.
- The results showed a dichotomy in the cytokine expression and production by the two subsets of DC subsets in response to the fungus. RT-PCR analysis revealed that p19 mRNA expression only increased in GM-DC in response to yeasts more than hyphae; p35 mRNA expression slightly increased in GM-DC in response to yeasts but, similar to IL-10, greatly increased in FL-DC exposed to hyphae (
FIG. 4A ). The measurement of actual cytokine production in culture supernatants confirmed that IL-23 was produced by GM-DC in response to yeasts, particularly at high fungus:DC ratios, as well as to zymosan or LPS (FIG. 4B ). The maximum level of IL-23 production was observed at 12 h of incubation (FIG. 4B ), and declined thereafter (data not shown). Conversely, both IL-12p70 and IL-10 were mainly produced by FL-DC stimulated with Candida hyphae, LPS or CpG-ODN for 12 h (FIG. 4B ) and continued to be elevated thereafter (data not shown). Together, these data suggest that IL-23 is produced by myeloid DC in response to the fungus, particularly in condition of high level fungal growth and earlier than other directive cytokines. The ability of distinct DC subsets to produce directive cytokines in response to Candida may thus condition their antifungal immunity in vivo. As a matter of fact, as already shown for Aspergillus (Romani et al. (2006) Blood 108:2265), Candida-pulsed FL-DC conferred protection and Candida-pulsed GM-DC exacerbated the infection upon adoptive transfer into recipient mice with candidiasis. - To verify whether IL-12p70 and IL-23 production are cross-regulated in response to the fungus, we measured IL-12p70 and IL-23 secretion by splenic DC from p19−/−, p35−/− and C57BL/6 control mice after exposure to either IL-12p70 or IL-23, or the corresponding neutralizing antibodies.
FIG. 4C shows that IL-12p70 and IL-23 are indeed cross-regulated as the production of IL-12p70 was higher in p19−/− DC and that of IL-23 higher in p35−/− DC as compared to WT DC. Moreover, the exposure to either IL-12p70 or IL-23 significantly decreased IL-23 or IL-12p70 secretion, respectively, by WT DC and the reverse was true in condition of IL-12 or IL-23 neutralization (FIG. 4D ). Because RT-PCR revealed that unstimulated DC express both cytokine receptors (data not shown), these data suggest the existence of a paracrine loop by which IL-12p70 and IL-23 production by DC is reciprocally regulated. - To define the possible TLR-dependency of IL-23 production in response to fungi, we measured IL-23 production in response to yeasts or conidia by GM-DC generated from TLR-2 −/− or TLR-4−/− mice as well as from MyD88−/− and TRIF−/− mice. Akira and Takeda (2004) Nat. Rev. Immunol. 4:499.
FIG. 5A shows that both TLR2 and TLR4 are essential for IL-23 production by signaling through MyD88, but not TRIF. Notably, IL-23 appeared to be promoted even in the absence of the TRIF. Therefore, IL-23 is produced by conventional DC in response to fungi through the TLR/MyD88-dependent inflammatory pathway. - To define whether T cells may also regulate IL-23 production, we assessed levels of IL-23 produced in supernatants of DC cultured with CD4+T cells. The results clearly showed that IL-23 production was-up-regulated in cultures of T cells stimulated with Candida pulsed-DC from C57BL/6 and particularly p35−/− mice (
group 3 vsgroup 6,FIG. 5B ), a finding suggesting that activated T cells may provide a positive feedback loop for amplification of IL-23 production. In addition, the results of criss-cross experiments confirmed that IL-23-producing DC were necessary and sufficient to activate IL-17-producing cells (groups 7 and 8). Furthermore, neutralization of IL-23 by mAb added to co-cultures of DC and T cells inhibited IL-17 production (group 4 versusgroup 5,FIG. 5C ), whereas TGF-β □ neutralization affected IFN-γ (group 1 versus group 3) but not IL-17 production (group 4 versus group 6). - PMN are essential in the initiation and execution of the acute inflammatory response to fungi. Romani (2004). The finding that PMN were abundantly recruited to sites of infections, together with early fungal growth in p35−/− mice, led us to hypothesize that the IL-23/IL-17-dependent pathway could adversely affect the anti-fungal effector functions of PMN. We evaluated therefore the fungicidal activity of PMN from either p19−/− or p35−/− mice, and from WT mice cultured with recombinant IL-23 or IL-17 in the absence or presence of IFN-γ. The killing activity was significantly increased in p19−/− PMN and decreased in p35−/− mice as compared to C57BL/6 PMN (
FIG. 6A ). Before exposing PMN to these cytokines, we verified whether, similar to IL-17R (Yao et al. (1995) Immunity 3:811-821), IL-23R was also expressed on murine PMN. Quantitative RT-PCR revealed that unstimulated PMN express IL-23R, whose expression was further increased after stimulation with LPS (data not shown), a finding suggesting that PMN are also responsive to IL-23. - Exposure to either cytokine impaired the killing activity of WT PMN in a dose-dependent manner (
FIG. 6B ) in the absence and presence of IFN-γ (FIG. 6C ). Therefore, IL-23 and IL-17 negatively regulated the antifungal effector functions of PMN, which may account for the failure of p35−/− mice to efficiently restrict fungal growth. Thus, although IL-17 is a potent chemoattractant for PMN (Ye et al. (2001) J. Exp. Med. 194:519) such that decreased influx of peripheral PMN to infected organs accounted for the high susceptibility of IL-17AR-deficient mice to candidiasis (Huang et al. (2004) J. Infect. Dis. 190:624), our results also point to a detrimental effect for IL-17 on PMN function. - We have already shown that IFN-γ-mediated IDO activation negatively regulates the inflammatory program of PMN against Candida, such that IDO blockade resulted in the promotion of an inflammatory state of PMN. Bozza et al. (2005). MMP-9 and MPO are typical inflammatory markers that have been proposed to be activated by IL-17. Kolls and Linden (2004) Immunity 21:467. Therefore we evaluated the effects of both IL-23 and IL-17 on C. albicans induced MMP-9, MPO and IFN-γ-mediated IDO production. Both IL-23 and, in particular, IL-17 increased MMP-9 and MPO considerably (
FIG. 6D ). IDO expression and inflammatory response of WT PMN. In contrast, both cytokines completely antagonized the induction of IDO by IFN-γ (FIG. 6E ). Interestingly, the number of apoptotic PMN was significantly decreased upon the exposure to both IL-23 and IL-17 (data not shown), suggesting that these cytokines also enhance PMN viability. This could be a further mechanism by which inflammation is perpetuated by the Th17 pathway. Therefore, the ability to subvert the inflammatory program of PMN along with the increased net proteolytic load in inflamed tissues may account for the inflammatory pathology associated with Th17 cell activation in fungal infections. - In vitro studies using murine draining lymph node (DLN) cells have demonstrated that eliminating IL-23 inhibits or eliminates IL-17 producing cells, while adding IL-23 generates or stimulates IL-17 secretion, as determined by fluorescence activated cell sorting (FACS®) analysis. See WO 2004/071517, Langrish et al. (2005) J. Exp. Med. 201:233. See also Aggarwal et al. (2003) J. Biol. Chem. 278:1910. In these experiments, DLN cells were treated with cytokine or antibodies for 5 days. Cells were isolated from antigen-primed normal wild type mice, and cultured in the presence of either rIL-12 or rIL-23. Analysis of the CD4′ T cells in the DLN cultures demonstrated that IL-12 promoted the development of IFN-γ producing cells, with loss of the IL-17 producing population. In contrast, IL-23 promoted the development of IL-17 producing cells, with loss of the IFN-γ producing population. Anti-p19 antibodies reduced IL-17 production but did not affect IFN-γ levels, whereas anti-p35 antibodies did not change IL-17 production. Taken together these results showed that IL-23 selectively promotes the development of IL-17 producing CD4′ T cells.
- This difference in the biological activities of IL-23 and IL-12 is used to assess the potency and specificity of potential IL-23 antagonists, relative to IL-12, as follows.
- The baseline data on IL-23 and IL-12 activity in the absence of a potential IL-23-specific antagonist are obtained as follows. Normal wild type SJL mice are immunized (s.c.) with proteolipid peptide (PLP) emulsified in complete Freund's adjuvant, and with (i.v.) pertussis toxin. Draining lymph nodes are removed at
day 9 post-immunization, and mononuclear cells are either assessed for intracellular IFN-γ and IL-17 production right away (as described below), or isolated and cultured in the presence of PLP plus either rIL-12 or rIL-23 for 5 days. Cells are stimulated for 3 hours with PMA (50 ng/ml)/ionomycin (500 ng/ml) in the presence of Golgi-plug for 4 h, then surface stained for CD4, permeabilized, and intracellular stained for IFN-γ and IL-17. Flow cytometry plots are gated on alive CD4′ T cells. - The effects of IL-23 and IL-12 are evaluated relative to the control cells that were not cytokine treated. Typically, IL-23 treated cells will exhibit an increased percentage of IL-17 producing cells with no increase in IFN-γ producing cells, whereas IL-12 treated cells will exhibit an increased percentage of IFN-γ producing cells with no increase (or even a decrease) in IL-12 producing cells.
- The potency and specificity of a potential IL-23-specific antagonist is determined by performing the same experiment in the presence of the antagonist, or preferably at a series of concentrations of antagonist. An IL-23 specific antagonist will inhibit the activity of IL-23 (i.e. the antagonist will decrease the percentage of IL-17 producing cells that would otherwise be induced by IL-23), but not substantially reduce the activity of IL-12. An agent that inhibits the activity of IL-12 or both IL-12 and IL-23 is not an IL-23-specific antagonist.
- Optionally, a positive control may be included in which a known anti-p19 antagonist antibody is used to specifically inhibit the activity of IL-23.
- A method of demonstrating the efficacy of the compositions and methods of the present invention in the treatment of mycobacterial infections is provided. C57BL/6 mice are infected with mycobacteria as follows. Theracys-BCG Live (Aventis Pasteur, Inc., Swiftwater, Pa.), a freeze-dried preparation of the Connaught strain of Bacille Calmette and Guerin and attenuated strain of M. bovis, is reconstituted as recommended by the manufacturer. The reconstituted bacteria are brought to a concentration of approximately 6×107 cfu/mL in 10% glycerol saline. Aliquots are diluted to appropriate concentration in 0.02% Tween-80/0.9% saline prior to injection into mice.
- Six to eight week old female C57BL/6 mice are infected intravenously via the lateral tail vein with approximately 3.5×105 cfu of BCG. Mice are given 1 mg of the appropriate monoclonal antibody (e.g. isotype control, anti IL-23p19, or anti IL-23R) in 0.9% saline, administered subcutaneously, one day prior to mycobacteria infection and again 1-2 weeks post mycobacteria infection. Mice are sacrificed at appropriate time points after infection by CO2 narcosis.
- The sacrificed BCG infected mice are analyzed as follows. Blood is purged from the lungs by perfusing RPMI 1640 through the right ventricle of the heart after the inferior vena cava is severed. The left lung, the lower right liver lobe, and half the spleen are aseptically removed. The tissues are homogenized in 0.9% NaCl/0.02
% Tween 80 with a Mini-Bead Beater-8 homogenizer (BioSpec Products, Bartlesville, Okla.). Viable mycobacteria are quantitated by plating 10-fold serial dilutions of organ homogenates onto 7H10 Middlebrook agar plates (Becton Dickinson, Sparks, Md.). Colony-forming units (CFU) are manually counted after two weeks of incubation at 37° C. A statistically significant decrease in bacterial burden (as measured by CFU) in animals treated with anti-IL-23 antibodies (e.g. anti-IL-23p19 antibodies or anti-IL-23R antibodies) as compared with control mice (e.g. isotype control) is evidence of efficacious treatment of mycobacterial infection.
Claims (31)
1. A method of treating a subject having a chronic infection selected from the group consisting of a viral infection, a fungal infection and a bacterial infection, comprising administering an effective amount of an antagonist of IL-23.
2. (canceled)
3. The method of claim 1 wherein the chronic infection is a fungal infection.
4. The method of claim 3 , wherein the fungal infection is selected from the group consisting of candidiasis, aspergillosis, cryptococcosis and onychomycosis.
5-9. (canceled)
10. The method of claim 1 wherein the chronic infection is a mycobacterial infection.
11. (canceled)
12. The method of claim 10 wherein the mycobacterial infection is TB.
13-15. (canceled)
16. The method of claim 1 wherein the chronic infection is a viral infection caused by a virus selected from the group consisting of HIV, HPV, HBV and HCV.
17-20. (canceled)
21. A method of enhancing a Th1 immune response in a subject having a chronic infection comprising administering an antagonist of IL-23.
22. The method of claim 21 wherein the enhanced Th1 immune response comprises a 2-fold or greater increase in the percentage of CD4+ T cells expressing IFN-γ compared with the percentage of CD4+ T cells expressing IFN-γ prior to administering said antagonist of IL-23.
23. The method of claim 21 wherein the enhanced Th1 immune response comprises a 2-fold or greater decrease in the percentage of CD4+ T cells expressing IL-17 compared with the percentage of CD4+ T cells expressing IL-17 prior to administering said antagonist of IL-23.
24. (canceled)
25. The method of claim 1 further comprising administering at least one of an antagonist of IL-17A, IL-6 or TGF-β.
26-28. (canceled)
29. The method of claim 1 , wherein the antagonist of IL-23 is a binding compound that binds to IL-23p19.
30. The method of claim 1 , wherein the antagonist of IL-23 is a binding compound that binds to IL-23R.
31. The method of claim 29 wherein the binding compound is an antibody or antigen binding fragment thereof.
32. (canceled)
33. The method of claim 31 wherein the binding compound is an antibody fragment selected from the group consisting of Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′)2, a single chain antibody, and a diabody.
34. The method of claim 31 wherein the antibody is a humanized or fully human antibody or antigen binding fragment thereof.
35-38. (canceled)
39. The method of claim 1 wherein the antagonist of IL-23 is an siRNA or an antisense nucleic acid.
40-41. (canceled)
42. The method of claim 1 wherein the subject having the infection is immune compromised.
43-50. (canceled)
51. The method of claim 30 wherein the binding compound is an antibody or antigen binding fragment thereof.
52. The method of claim 51 wherein the binding compound is an antibody fragment selected from the group consisting of Fab, Fab′, Fab′-SH, Fv, scFv, F(ab′)2, a single chain antibody, and a diabody.
53. The method of claim 51 wherein the antibody is a humanized or fully human antibody or antigen binding fragment thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/065,171 US20140147442A1 (en) | 2007-02-12 | 2013-10-28 | Use of il-23 antagonists for treatment of infection |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88947507P | 2007-02-12 | 2007-02-12 | |
PCT/US2008/001717 WO2008153610A2 (en) | 2007-02-12 | 2008-02-08 | Use of il-23 antagonists for treatment of infection |
US52500310A | 2010-04-30 | 2010-04-30 | |
US14/065,171 US20140147442A1 (en) | 2007-02-12 | 2013-10-28 | Use of il-23 antagonists for treatment of infection |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/525,003 Continuation US8586035B2 (en) | 2007-02-12 | 2008-02-08 | Use of IL-23 antagonists for treatment of infection |
PCT/US2008/001717 Continuation WO2008153610A2 (en) | 2007-02-12 | 2008-02-08 | Use of il-23 antagonists for treatment of infection |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140147442A1 true US20140147442A1 (en) | 2014-05-29 |
Family
ID=40130357
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/525,003 Expired - Fee Related US8586035B2 (en) | 2007-02-12 | 2008-02-08 | Use of IL-23 antagonists for treatment of infection |
US14/065,171 Abandoned US20140147442A1 (en) | 2007-02-12 | 2013-10-28 | Use of il-23 antagonists for treatment of infection |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/525,003 Expired - Fee Related US8586035B2 (en) | 2007-02-12 | 2008-02-08 | Use of IL-23 antagonists for treatment of infection |
Country Status (13)
Country | Link |
---|---|
US (2) | US8586035B2 (en) |
EP (1) | EP2064246B1 (en) |
JP (2) | JP5320301B2 (en) |
CN (1) | CN101668775B (en) |
AU (1) | AU2008262544B2 (en) |
BR (1) | BRPI0807487A8 (en) |
CA (1) | CA2677835A1 (en) |
CL (1) | CL2008000418A1 (en) |
MX (1) | MX2009008617A (en) |
NZ (2) | NZ578955A (en) |
TW (1) | TWI426918B (en) |
WO (1) | WO2008153610A2 (en) |
ZA (1) | ZA200906126B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018067520A3 (en) * | 2016-10-04 | 2019-05-31 | Pop Test Oncology Llc | Therapeutic agents and methods: |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI426918B (en) * | 2007-02-12 | 2014-02-21 | Merck Sharp & Dohme | Use of il-23 antagonists for treatment of infection |
EP2254998B1 (en) * | 2008-02-28 | 2015-12-23 | Argos Therapeutics, Inc. | Transient expression of immunomodulatory polypeptides for the prevention and treatment of autoimmune disease, allergy and transplant rejection |
WO2010027767A1 (en) * | 2008-08-27 | 2010-03-11 | Schering Corporation | Engineered anti-il-23r antibodies |
JO3244B1 (en) | 2009-10-26 | 2018-03-08 | Amgen Inc | Proteins bind to human IL-23 antigens |
AU2011323426B2 (en) | 2010-11-04 | 2016-09-29 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
EP2661445A2 (en) * | 2011-01-04 | 2013-11-13 | Universität Zürich | Modulators of il-12 and/or il-23 for the prevention or treatment of alzheimer's disease |
US8492386B2 (en) | 2011-10-21 | 2013-07-23 | Abbvie Inc. | Methods for treating HCV |
US8466159B2 (en) | 2011-10-21 | 2013-06-18 | Abbvie Inc. | Methods for treating HCV |
JP5677646B2 (en) | 2011-10-21 | 2015-02-25 | アッヴィ・インコーポレイテッド | DAA combination therapy (eg, with ABT-072 or ABT-333) for use in the treatment of HCV |
US8853176B2 (en) | 2011-10-21 | 2014-10-07 | Abbvie Inc. | Methods for treating HCV |
ES2908474T3 (en) | 2012-05-03 | 2022-04-29 | Boehringer Ingelheim Int | Anti-IL-23p19 antibodies |
ES2729603T3 (en) | 2012-06-27 | 2019-11-05 | Merck Sharp & Dohme | IL-23 anti-human crystalline antibodies |
UA117466C2 (en) | 2012-12-13 | 2018-08-10 | Мерк Шарп Енд Доме Корп. | STABLE COMPOSITION IN THE VIEW OF AN ANTIBODY ANTIBODY TO IL-23p19 |
US10406218B2 (en) * | 2014-04-09 | 2019-09-10 | La Jolla Institute For Allergy And Immunology | Specific and unique T cell responses and molecular signatures for the treatment and diagnosis of Mycobacterium tuberculosis |
WO2016014775A1 (en) | 2014-07-24 | 2016-01-28 | Boehringer Ingelheim International Gmbh | Biomarkers useful in the treatment of il-23a related diseases |
PH12017500370B1 (en) | 2014-09-03 | 2023-12-06 | Boehringer Ingelheim Int | Compound targeting il-23a and tnf-alpha and uses thereof |
CN105420238A (en) * | 2015-09-08 | 2016-03-23 | 中国农业科学院兰州兽医研究所 | Sequence siRNA-136 achieving targeted inhibition of mouse interleukin-17A gene |
CA3022119A1 (en) | 2016-04-28 | 2017-11-02 | Emory University | Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto |
SG11201909955XA (en) | 2017-05-02 | 2019-11-28 | Merck Sharp & Dohme | Formulations of anti-lag3 antibodies and co-formulations of anti-lag3 antibodies and anti-pd-1 antibodies |
JOP20190260A1 (en) | 2017-05-02 | 2019-10-31 | Merck Sharp & Dohme | Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof |
EP3634405A4 (en) * | 2017-05-12 | 2021-06-09 | The Regents of The University of California | Methods for detecting dysbiosis and treating subjects with dysbiosis |
CN108743603B (en) * | 2018-06-22 | 2020-06-30 | 山东省千佛山医院 | Antifungal product with ribavirin used alone or in combination with fluconazole and application thereof |
JP7503056B6 (en) | 2018-11-07 | 2024-07-16 | メルク・シャープ・アンド・ドーム・エルエルシー | Co-formulation of anti-LAG3 and anti-PD-1 antibodies |
US20220000944A1 (en) * | 2018-11-09 | 2022-01-06 | The Ritsumeikan Trust | Agent for controlling sebaceous glands |
AU2020409124A1 (en) * | 2019-12-20 | 2022-06-30 | Novarock Biotherapeutics, Ltd. | Anti-interleukin-23 p19 antibodies and methods of use thereof |
CN112500490B (en) * | 2020-10-14 | 2022-05-03 | 华南农业大学 | F (ab) of anti-levofloxacin antibody2Fragment, preparation method and application thereof |
CN118873519A (en) * | 2024-08-22 | 2024-11-01 | 首都医科大学附属北京胸科医院 | Application of naftifine in the prevention of Mycobacterium fortuitum infection |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586035B2 (en) * | 2007-02-12 | 2013-11-19 | Merck Sharp & Dohme Corp. | Use of IL-23 antagonists for treatment of infection |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4144346A (en) | 1977-01-31 | 1979-03-13 | Janssen Pharmaceutica N.V. | Novel 1-(1,3-dioxolan-2-ylmethyl)-1H-imidazoles |
US4267179A (en) | 1978-06-23 | 1981-05-12 | Janssen Pharmaceutica, N.V. | Heterocyclic derivatives of (4-phenylpiperazin-1-yl-aryloxymethyl-1,3-dioxolan-2-yl)methyl-1H-imidazoles and 1H-1,2,4-triazoles |
DE3262386D1 (en) | 1981-06-06 | 1985-03-28 | Pfizer Ltd | Antifungal agents, processes for their preparation, and pharmaceutical compositions containing them |
EE03748B1 (en) * | 1996-09-12 | 2002-06-17 | Merck & Co., Inc. | A pneumocandin derivative for use in the treatment of fungal diseases |
PE20000183A1 (en) | 1997-07-25 | 2000-03-11 | Schering Corp | MAMMAL CYTOKINES AND RELATED REAGENTS |
US6492497B1 (en) * | 1999-04-30 | 2002-12-10 | Cambridge Antibody Technology Limited | Specific binding members for TGFbeta1 |
AU5305300A (en) | 1999-06-01 | 2000-12-18 | Schering Corporation | Mammalian receptor proteins; related reagents and methods |
DE60038304T3 (en) | 1999-09-09 | 2017-04-06 | Merck Sharp & Dohme Corp. | INTERLEUKIN-12 P40 AND INTERLEUKIN-B30. COMBINATIONS OF IT. ANTIBODY. USES IN PHARMACEUTICAL COMPOSITIONS |
HUP0302339A3 (en) | 2000-05-10 | 2011-01-28 | Schering Corp | Mammalian receptor subunit proteins, related reagents and methods |
AUPR381601A0 (en) * | 2001-03-19 | 2001-04-12 | Monash University | Method of treating respiratory conditions |
CN1531440A (en) * | 2001-05-09 | 2004-09-22 | - | Pharmaceutical composition for preventing or treating Th1 and Th2 cell-related diseases by regulating Th1/Th2 ratio |
EP1576011B1 (en) * | 2002-10-30 | 2009-08-12 | Genentech, Inc. | Inhibition of il-17 production |
NZ541898A (en) * | 2003-03-10 | 2008-07-31 | Schering Corp | Uses of IL-23 antagonists for the manufacture of a medicament for the treatment of tumors |
JP2007526208A (en) * | 2003-04-11 | 2007-09-13 | メディミューン,インコーポレーテッド | Methods for treating or preventing respiratory symptoms |
WO2004101750A2 (en) * | 2003-05-09 | 2004-11-25 | Centocor, Inc. | IL-23p40 SPECIFIC IMMUNOGLOBULIN DERIVED PROTEINS, COMPOSITIONS, METHODS AND USES |
EP2784084B2 (en) | 2003-07-08 | 2023-10-04 | Novartis Pharma AG | Antagonist antibodies to IL-17A/F heterologous polypeptides |
GB0329146D0 (en) | 2003-12-16 | 2004-01-21 | Glaxosmithkline Biolog Sa | Vaccine |
WO2005079837A1 (en) * | 2004-02-17 | 2005-09-01 | Schering Corporation | Methods of modulating il-23 activity; related reagents |
US20060193821A1 (en) | 2004-03-05 | 2006-08-31 | Diener John L | Aptamers to the human IL-12 cytokine family and their use as autoimmune disease therapeutics |
GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
AR051444A1 (en) | 2004-09-24 | 2007-01-17 | Centocor Inc | PROTEINS DERIVED FROM IL-23P40 SPECIFIC IMMUNOGLOBULIN, COMPOSITIONS, EPITHOPES, METHODS AND USES |
GB0425569D0 (en) | 2004-11-19 | 2004-12-22 | Celltech R&D Ltd | Biological products |
GB0507561D0 (en) | 2005-04-14 | 2005-05-18 | Trinity College Dublin | Modulation of an immune response by filamentous haemagglutinin |
SI2452694T1 (en) * | 2005-06-30 | 2019-05-31 | Janssen Biotech, Inc. | Anti-IL-23 antibodies, compositions, methods and uses |
BRPI0615018A2 (en) * | 2005-08-25 | 2011-04-26 | Lilly Co Eli | anti-il-23 antibodies, or antigen binding portion thereof, composition containing the same and said use |
PL1931710T3 (en) | 2005-08-31 | 2017-06-30 | Merck Sharp & Dohme Corp. | Engineered anti-il-23 antibodies |
SI1971366T1 (en) | 2005-12-29 | 2014-10-30 | Janssen Biotech, Inc. | Human anti-il-23 antibodies, compositions, methods and uses |
AU2007260787A1 (en) | 2006-06-13 | 2007-12-21 | Zymogenetics, Inc | IL-17 and IL-23 antagonists and methods of using the same |
US7846443B2 (en) | 2006-08-11 | 2010-12-07 | Schering Corporation | Antibodies to IL-17A |
SG178804A1 (en) | 2007-02-23 | 2012-03-29 | Schering Corp | Engineered anti-il-23p19 antibodies |
ES2708988T3 (en) | 2007-02-23 | 2019-04-12 | Merck Sharp & Dohme | Anti-IL-23p19 antibodies obtained by genetic engineering |
BRPI0807991A2 (en) | 2007-02-28 | 2014-06-17 | Schering Corp | PREPARED ANTI-IL-23R ANTIBODIES. |
WO2010027767A1 (en) | 2008-08-27 | 2010-03-11 | Schering Corporation | Engineered anti-il-23r antibodies |
-
2008
- 2008-02-05 TW TW097104700A patent/TWI426918B/en not_active IP Right Cessation
- 2008-02-08 CN CN200880010208.4A patent/CN101668775B/en not_active Expired - Fee Related
- 2008-02-08 MX MX2009008617A patent/MX2009008617A/en active IP Right Grant
- 2008-02-08 US US12/525,003 patent/US8586035B2/en not_active Expired - Fee Related
- 2008-02-08 NZ NZ578955A patent/NZ578955A/en not_active IP Right Cessation
- 2008-02-08 CL CL2008000418A patent/CL2008000418A1/en unknown
- 2008-02-08 WO PCT/US2008/001717 patent/WO2008153610A2/en active Application Filing
- 2008-02-08 CA CA002677835A patent/CA2677835A1/en not_active Abandoned
- 2008-02-08 JP JP2009549119A patent/JP5320301B2/en not_active Expired - Fee Related
- 2008-02-08 BR BRPI0807487A patent/BRPI0807487A8/en not_active IP Right Cessation
- 2008-02-08 AU AU2008262544A patent/AU2008262544B2/en not_active Ceased
- 2008-02-08 NZ NZ599827A patent/NZ599827A/en not_active IP Right Cessation
- 2008-02-08 EP EP08714214.7A patent/EP2064246B1/en active Active
-
2009
- 2009-09-03 ZA ZA200906126A patent/ZA200906126B/en unknown
-
2012
- 2012-10-18 JP JP2012230578A patent/JP2013014624A/en active Pending
-
2013
- 2013-10-28 US US14/065,171 patent/US20140147442A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586035B2 (en) * | 2007-02-12 | 2013-11-19 | Merck Sharp & Dohme Corp. | Use of IL-23 antagonists for treatment of infection |
Non-Patent Citations (1)
Title |
---|
Kalim et al (Molecular Immunology Vol. 53, pp 274-282, 2013) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018067520A3 (en) * | 2016-10-04 | 2019-05-31 | Pop Test Oncology Llc | Therapeutic agents and methods: |
US11040037B2 (en) | 2016-10-04 | 2021-06-22 | Pop Test Oncology Llc | Therapeutic agents and methods |
Also Published As
Publication number | Publication date |
---|---|
BRPI0807487A8 (en) | 2016-02-10 |
TWI426918B (en) | 2014-02-21 |
AU2008262544B2 (en) | 2014-01-16 |
JP2010518087A (en) | 2010-05-27 |
TW200902062A (en) | 2009-01-16 |
ZA200906126B (en) | 2010-06-30 |
EP2064246A2 (en) | 2009-06-03 |
WO2008153610A2 (en) | 2008-12-18 |
NZ578955A (en) | 2012-06-29 |
JP2013014624A (en) | 2013-01-24 |
NZ599827A (en) | 2013-11-29 |
BRPI0807487A2 (en) | 2015-09-01 |
WO2008153610A3 (en) | 2009-03-19 |
AU2008262544A1 (en) | 2008-12-18 |
CA2677835A1 (en) | 2008-12-18 |
EP2064246B1 (en) | 2013-05-22 |
JP5320301B2 (en) | 2013-10-23 |
MX2009008617A (en) | 2009-10-14 |
CL2008000418A1 (en) | 2008-11-14 |
CN101668775B (en) | 2014-05-07 |
US8586035B2 (en) | 2013-11-19 |
US20100291084A1 (en) | 2010-11-18 |
CN101668775A (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8586035B2 (en) | Use of IL-23 antagonists for treatment of infection | |
US11505612B2 (en) | Method of treating diseases using an IL-17 receptor antibody formulation | |
JP7404256B2 (en) | Use of anti-IL-36R antibodies for the treatment of generalized pustular psoriasis | |
JP5337055B2 (en) | Combination therapy for the treatment of immune disorders | |
US20090092604A1 (en) | Method for the Treatment of Multiple Sclerosis by Inhibiting IL-17 Activity | |
US20110002928A1 (en) | Uses of Mammalian Cytokine; Related Reagents | |
KR20190138806A (en) | Treatment of Inflammatory Diseases with C5A Activity Inhibitors | |
Paton | Tildrakizumab: monoclonal antibody against IL-23p19 for moderate to severe psoriasis | |
US9919048B2 (en) | Targeting of interleukin-1 and -18 signaling in treatment of septic shock | |
CN113348178A (en) | PSMP antagonists for the treatment of fibrotic diseases of the lung, kidney or liver | |
HK1167104A (en) | Combination therapy for treatment of immune disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |