US20140145285A1 - Solid-state imaging device and method for manufacturing the same - Google Patents

Solid-state imaging device and method for manufacturing the same Download PDF

Info

Publication number
US20140145285A1
US20140145285A1 US14/168,556 US201414168556A US2014145285A1 US 20140145285 A1 US20140145285 A1 US 20140145285A1 US 201414168556 A US201414168556 A US 201414168556A US 2014145285 A1 US2014145285 A1 US 2014145285A1
Authority
US
United States
Prior art keywords
pattern
state imaging
imaging device
lens
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/168,556
Inventor
Ken Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to US14/168,556 priority Critical patent/US20140145285A1/en
Publication of US20140145285A1 publication Critical patent/US20140145285A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to a solid-state imaging device, such as a charge-coupled device (CCD) image sensor and a complementary metal-oxide semiconductor (CMOS) image sensor, having shading-corrected on-chip lenses on a substrate provided with a plurality of pixels and a method for manufacturing the solid-state imaging device.
  • a solid-state imaging device such as a charge-coupled device (CCD) image sensor and a complementary metal-oxide semiconductor (CMOS) image sensor, having shading-corrected on-chip lenses on a substrate provided with a plurality of pixels and a method for manufacturing the solid-state imaging device.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • objective lenses placed in the camera bodies are generally of the inner focus type so that the autofocus speed can be increased. Accordingly, the eye-point distance has recently been considerably reduced from about 100 mm to around 30 mm, and is expected to be further reduced to less than about 15 mm.
  • FIGS. 9 and 10 are sectional views illustrating known solid-state imaging devices used in systems with different eye-point distances.
  • identical components are denoted by the same reference numerals.
  • each of the solid-state imaging devices includes a semiconductor substrate 1 , a plurality of light-receiving sections 1 a that form a pixel array on the semiconductor substrate 1 , and a shading film 2 provided on the pixel array.
  • the shading film 2 is patterned such that each of the light-receiving sections 1 a is exposed through an opening formed therein.
  • an on-chip lens 3 is formed integrally on each of the light-receiving sections 1 a.
  • the on-chip lens 3 positioned directly above the light-receiving section 1 a at the periphery of the pixel array can collect only a part of light obliquely incident on the light-receiving section 1 a. Therefore, a part of the incident light shown by the hatched area in FIG. 10 is incident on the shading film 2 instead of being received by the light-receiving section 1 a. This is called shading, and the degree of shading increases as the eye-point distance is reduced.
  • an on-chip lens array such as a planar on-chip lens array
  • a reduction scaling factor for example 0.999
  • the center of a light-receiving section of the pixel at the periphery of the pixel array is aligned with the center of the corresponding on-chip lens 3 along an optical axis.
  • the centering error caused by the exit pupil is corrected.
  • the above-described on-chip lenses are formed by the following method.
  • light transmitting material such as ultraviolet sensitive resin
  • FIG. 12B ultraviolet light is radiated through a mask 14 , so that the photoresist 12 is formed into a matrix pattern corresponding to the pixel array.
  • transferring is performed with a magnification obtained by multiplying the projection magnification of the exposure apparatus by the above-described scaling factor.
  • a heating process is performed so that the photoresist 12 is formed into hemispherical elements due to the surface tension thereof. This is called a thermal reflow process, and is used in common.
  • the above-described thermal reflow process is basically a thermal control process, and it is difficult to achieve good repeatability in mass production.
  • the magnification is multiplied by the scaling factor. Accordingly, a plurality of projection magnifications are used in the exposure step. Therefore, the process is complex and it is difficult to ensure the stability of the projection exposure apparatus.
  • An embodiment of the present invention provides a solid-state imaging device including a substrate having a plurality of pixels and a plurality of on-chip lenses arranged above the substrate, each on-chip lens having a lens surface formed by subjecting a transparent photosensitive film to exposure using a mask having a gradation pattern and development so that the lens surface serves to correct shading in accordance with the gradation pattern.
  • another embodiment of the present invention provides a method for manufacturing a solid state imaging device including a substrate provided with a plurality of pixels and a plurality of on-chip lenses arranged above the substrate.
  • the method includes the steps of exposing a transparent photosensitive film to light through a mask having a gradation pattern; and developing the transparent photosensitive film after exposure, thereby forming a lens surface that serves to correct shading in accordance with the gradation pattern.
  • each of the on-chip lenses has a lens surface formed by subjecting a transparent photosensitive film to exposure using a mask having a gradation pattern and development so that the lens surface serves to correct shading in accordance with the gradation pattern. Accordingly, a desired lens surface can be obtained in accordance with the gradation pattern of the mask. Therefore, compared to the known method using the scaling factor and the thermal reflow process, obliquely incident light can be reliably corrected by the lens surface optimized for each pixel. As a result, the light-receiving performance can be improved. In addition, since the thermal reflow process is not performed, the repeatability of the lens surface can be improved with a simple manufacturing process and a high-definition solid-state imaging device can be obtained.
  • the lens surface when defined by a surface function that varies in accordance with an image height, the lens surface can be optimized in accordance with the image height of each pixel. Accordingly, the obliquely incident light can be more reliably controlled.
  • the surface function defines a surface obtained by superimposing an inclination component on a spherical surface or a surface asymmetric about the center of the corresponding pixel, there is a large freedom in designing the lens shape.
  • the surface function defines a surface that causes a principal ray to perpendicularly enter an imaging element at the center thereof, the light-collecting efficiency an be effectively increased at each of the light-receiving sections.
  • the solid-state imaging device can be manufactured using a simple apparatus.
  • the solid state imaging device can be manufactured by a simple exposure process.
  • FIG. 1A is a sectional views illustrating a step of a method for forming on-chip lenses in a solid state imaging device according to an embodiment of the present invention
  • FIG. 1B is another sectional view illustrating another step of the method for forming on-chip lenses in a solid state imaging device according to an embodiment of the present invention
  • FIG. 2A is a diagram illustrating the shapes of the on-chip lenses formed by the method shown in FIGS. 1A and 1B ;
  • FIG. 2B is a schematic diagram illustrating a gray mask
  • FIG. 3A is a schematic diagram illustrating the shapes of the on-chip lenses that correct the incidence of light on imaging elements
  • FIG. 3B is a diagram illustrating the design of each of the on-chip lenses shown in FIG. 3A ;
  • FIG. 4 is a diagram illustrating the angular characteristic of light incident on a pixel array
  • FIG. 5A is a diagram illustrating an example of lens design according to the embodiment shown in FIGS. 1A and 1B ;
  • FIG. 5B is a diagram illustrating another example of lens design according to the embodiment shown in FIGS. 1A and 1B ;
  • FIG. 6 is a diagram illustrating the exposure characteristic of resist used in the embodiment
  • FIG. 7 is a table of the mask design solution according to the embodiment shown in FIGS. 1A and 1B ;
  • FIG. 8 is a diagram illustrating inclination components superimposed the on-chip lenses when the embodiment of the present invention is applied to a two-dimensional imaging device
  • FIG. 9 is a sectional view of a known solid-state imaging device included in a system having a long eye-point distance L 1 ;
  • FIG. 10 is a sectional view of a known solid-state imaging device included in a system having a short eye-point distance L 2 ;
  • FIG. 11 is a sectional view illustrating the case in which shading correction is applied to the solid state imaging device shown in FIG. 10 ;
  • FIG. 12A is a sectional view illustrating a step of a known on-chip lens forming process
  • FIG. 12B is a sectional view illustrating another step of the known on-chip lens forming process.
  • FIG. 12C is a sectional view illustrating another step of the known on-chip lens forming process.
  • photoresist such as ultraviolet sensitive resin
  • a so-called gray-tone mask so that the resist can be directly formed into elements having lens surfaces after exposure and development.
  • each lens can be formed to have a free-form surface and the shapes of the lenses can be changed individually.
  • the surface function of the on-chip lenses is changed toward the periphery of the pixel array. More specifically, an inclination component superimposed on a normal lens surface function is increased toward the periphery of the pixel array so that even when light is incident on the pixel array at a large angle in a peripheral region thereof, the principal ray of the incident light perpendicularly enters each light-receiving section at the center thereof. Accordingly, shading can be reliably corrected in accordance with the image height (distance from the center of the pixel array) of each pixel.
  • the on-chip lenses are formed without performing the thermal reflow process, the repeatability of the manufacturing process is increased.
  • the shape of the on-chip lenses is gradually changed toward the periphery of the pixel array, and shading is corrected by controlling the lens surface function of each lens instead of shifting the lens position using the scaling factor. Accordingly, the magnification of the exposure apparatus is not multiplied by the scaling factor, so that the process can be made simpler and the stability of the exposure apparatus can be increased.
  • the principal ray perpendicularly enters the light-receiving sections. Therefore, unlike the known structure in which the on-chip lenses are shifted using the scaling factor, the incident angle characteristic is uniform over the entire region of the pixel array, which provides ideal shading correction.
  • FIGS. 1A and 1B show sectional views illustrating a method for forming on-chip lenses included in a solid state imaging device according to an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams illustrating the shapes of the on-chip lenses formed by the method shown in FIGS. 1A and 1B .
  • FIG. 2A shows a schematic diagram illustrating an exposure process using a gray-tone mask
  • FIG. 2B shows a binary gray-tone mask and the intensity distribution of light that is transmitted therethrough.
  • photoresist 22 that serves as, for example, a photo-curable, transparent photosensitive film is disposed on a base substrate 20 .
  • full-plate exposure of ultraviolet light is performed using a gray-tone mask 24 .
  • development is performed so that the resist 22 is directly formed into elements having lens surfaces. Accordingly, on-chip lenses are formed without performing the thermal reflow process.
  • the gray-tone mask used in the present embodiment has a fine binary pattern including light transparent sections and nontransparent sections in each lens.
  • the transmitted light intensity is varied depending on the ratio of the area of the transparent sections to the area of the nontransparent sections (that is, the ratio of the area of space pattern elements to the area of line pattern elements). As shown in FIG. 2B , the transmitted light intensity is reduced in an area where nontransparent sections 242 are relatively thick, and is increased in an area where transparent sections 241 are relatively thick.
  • the light intensity distribution can be varied in each lens by continuously varying the ratio of the area of the nontransparent sections 242 to the area of the transparent sections 241 , and a desired exposure amount distribution can be set in the exposure step. Accordingly, elements having desired surface shapes can be obtained after developing the resist.
  • FIG. 3A a system shown in which light is incident on the on-chip lenses in the peripheral region of the pixel array is considered.
  • a plurality of light-receiving sections 34 forming a pixel array are provided on a semiconductor substrate 32 , and a shading film 36 is disposed on the light-receiving sections 34 .
  • on-chip lenses 30 are placed at positions separated from the light-receiving sections 34 by a predetermined distance.
  • the on-chip lens 30 corresponding to a light-receiving section 34 at an arbitrary image height i receives light with an F-number of 2.8 at an incident angle .theta..sub.i.
  • the on-chip lenses 30 are made of photosensitive resin with a refractive index n.
  • n refractive index
  • FIG. 3B when .theta. is small, the principal ray of the incident light can be caused to perpendicularly enter the corresponding light-receiving section using an on-chip lens combined with a prism having a deviation angle of .theta..sub.i/(n ⁇ 1). Accordingly, the on-chip lenses 30 are shaped as shown in FIG. 3A .
  • the incident angle characteristic is uniquely determined by the design of the lens system positioned in front of the imaging elements.
  • the vertical axis shows the incident angle of the principal ray and the horizontal axis shows the image height.
  • the incident angle characteristic varies depending on the zoom position.
  • the incident angle characteristic at an average middle position is used as a representative incident angle characteristic. Accordingly, the incident angle .theta..sub.i can be determined for each of the light-receiving sections 34 in accordance with the image height i.
  • the prism deviation angle for the light-receiving section 34 at the image height i is calculated as .theta..sub.i/(n ⁇ 1), and the inclination component of the surface function of the corresponding on-chip lens is thus determined.
  • the on-chip lens disposed at a position corresponding to the center of the pixel array is a 5 .mu.m square spherical lens with a radius of curvature r, a central thickness d, and a back focus of 5 .mu.m.
  • the on-chip lens corresponding to the light-receiving section at the center of the pixel array has a surface shown in FIG. 5B .
  • FIG. 5B shows light rays incident at 0 .degree. and 5.degree. It is clear from FIG. 5B that light incident at 5.degree. is displaced from the light-receiving section.
  • the surface function of the on-chip lens that causes light with the incident angle .theta..sub.i to perpendicularly enter the corresponding light-receiving section can be expressed as follows:
  • k is the conic constant
  • y is the distance from the lens center
  • c is the curvature, i.e., the reciprocal of the radius of curvature (r).
  • the on-chip lenses are designed by the above-described procedure, so that the surface function thereof gradually varies depending on the image height, as shown in FIG. 2A . Accordingly, the principal ray incident on each on-chip lens perpendicularly enters the corresponding light-receiving section at the center thereof. Therefore, shading is reliably corrected over the entire region of the imaging element.
  • the lens array shown in FIG. 2A is formed by full plate exposure by a semiconductor process shown in FIGS. 1A and 1B .
  • dose is the amount of exposure with the unit of [mJ/cm.sup.2].
  • a maximum pattern pitch of the gray mask is determined as follows:
  • the mask pattern does not form an image as long as the pitch is 487 nm or less.
  • the size of each on-chip lens is 5 .mu.m square and is relatively small, it is desirable to precisely control the shape thereof by using as many pattern elements as possible.
  • the pattern pitch is set to a value obtained by multiplying the size of each lens by (1/integer)
  • the desired amount of sag Z(y) for each y coordinate is calculated by Equation (1), and the distribution of the amount of exposure for obtaining the desired amount of sag Z(y) after development is calculated from the above-mentioned characteristic of residual thickness as follows:
  • FIG. 7 shows the table of the results obtained by Equation (3).
  • portion A a mask pattern element denoted by A in FIG. 2A (hereafter called portion A) where the amount of sag is at a minimum (that is, the element corresponding to the thinnest transparent section) provides minimum transmittance.
  • the amount of sag at the portion A is denoted as Z 0 .
  • the space size at this portion is set equal to the lower guaranteed limit in mask manufacturing.
  • the minimum space size of the mask is set to 500 nm (100 nm on the wafer), and the pattern element corresponding to the portion A includes a line of 316.7 nm and a space of 100 nm.
  • the transmittance (Tmin) of this pattern element is 5.76%.
  • T (y) Tmin .times. exp (Z (y) ⁇ A B) exp (Z 0 ⁇ A B) (4)
  • Equation (4) The space size for obtaining this transmittance is calculated using Equation (4) as follows:
  • FIG. 7 shows the design solutions of the mask (the space size at each space pattern center coordinate) under the following conditions:
  • the patterns for forming on-chip lenses at other image heights are also designed.
  • the mask pattern is transferred by exposure at the above-described amount of exposure (Dset), so that a desired shape can be obtained after development.
  • a one-dimensional lens array is described as an example of shading-corrected on-chip lenses.
  • the above-described method can also be applied to two-dimensional lens arrays included in solid-state imaging devices like CCD image sensors and CMOS image sensors.
  • inclination angles .theta.xi, .theta.yj are calculated for each on-chip lens (i, j) on the basis of the incidence angle characteristics determined by the camera-lens optical system disposed in front of the imaging elements, and then the desired surface function of each on-chip lens is determined.
  • the mask pattern is designed by a method similar to the above-described method for designing the one-dimensional gray scale mask pattern.
  • FIG. 8 is a diagram showing inclination components for pixels included in a single quadrant.
  • the arrows shown in each pixel denote inclination angles .theta.x and .theta.y.
  • the two-dimensional pattern may be formed as a contact-hole array or an island array (see, for example, Japanese Patent Application No. 2003-18439).
  • the mask pattern is designed using the residual thickness characteristic of the resin in open-frame exposure, as shown in FIG. 6 .
  • the mask pattern may also be designed using the residual thickness characteristic data obtained using a calibration mask formed of a gray-tone pattern (see, for example, Japanese Patent Application No. 2003-281489).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

A solid state imaging device includes a substrate having a plurality of pixels and a plurality of on-chip lenses arranged above the substrate, each on-chip lens having a lens surface formed by subjecting a transparent photosensitive film to exposure using a mask having a gradation pattern and development so that the lens surface serves to correct shading in accordance with the gradation pattern.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • The present application is a Continuation of application Ser. No. 12/408,459, filed on Mar. 20, 2009, which is a Continuation of application Ser. No. 11/284,050, filed on Nov. 21, 2005, now U.S. Pat. No. 7,525,733, issued on Apr. 28, 2009, and contains subject matter related to Japanese Patent Application Number JP 2004-341602 filed in the Japanese Patent Office on Nov. 26, 2004, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a solid-state imaging device, such as a charge-coupled device (CCD) image sensor and a complementary metal-oxide semiconductor (CMOS) image sensor, having shading-corrected on-chip lenses on a substrate provided with a plurality of pixels and a method for manufacturing the solid-state imaging device.
  • 2. Description of the Related Art
  • In video cameras or the like including solid-state imaging devices (refer to, for example, Japanese Unexamined Patent Application Publication No. 6-140609), objective lenses placed in the camera bodies are generally of the inner focus type so that the autofocus speed can be increased. Accordingly, the eye-point distance has recently been considerably reduced from about 100 mm to around 30 mm, and is expected to be further reduced to less than about 15 mm.
  • FIGS. 9 and 10 are sectional views illustrating known solid-state imaging devices used in systems with different eye-point distances. In the figures, identical components are denoted by the same reference numerals.
  • As shown in the figures, each of the solid-state imaging devices includes a semiconductor substrate 1, a plurality of light-receiving sections 1 a that form a pixel array on the semiconductor substrate 1, and a shading film 2 provided on the pixel array. The shading film 2 is patterned such that each of the light-receiving sections 1 a is exposed through an opening formed therein. In addition, an on-chip lens 3 is formed integrally on each of the light-receiving sections 1 a.
  • Referring to FIG. 9, when the solid-state imaging device having the above-described structure is used in a system having a long eye-point distance, incident light collected by the on-chip lenses 3 reaches the exposed surfaces of the corresponding light-receiving sections 1 a even in a peripheral region distant from the center of the pixel array.
  • However, if the eye-point distance of the system including the known solid state imaging device is reduced, the percentage of light that reaches the light-receiving sections 1 a is reduced in the peripheral region of the pixel array, which leads to sensitivity shading. More specifically, as shown in FIG. 10, the on-chip lens 3 positioned directly above the light-receiving section 1 a at the periphery of the pixel array can collect only a part of light obliquely incident on the light-receiving section 1 a. Therefore, a part of the incident light shown by the hatched area in FIG. 10 is incident on the shading film 2 instead of being received by the light-receiving section 1 a. This is called shading, and the degree of shading increases as the eye-point distance is reduced.
  • Accordingly, methods for correcting shading of the on-chip lenses have been suggested (refer to, for example, Japanese Unexamined Patent Application Publication No. 1-213079).
  • For example, an on-chip lens array, such as a planar on-chip lens array, is reduced around the effective pixel center by multiplying a reduction scaling factor (for example, 0.999), so that the horizontal displacement between the light-receiving section of each pixel and the corresponding on-chip lens is varied toward the periphery such that amount by which the light-collecting section is shifted from the light-receiving section toward the center is gradually increased.
  • Due to the above-described shading correction, as shown in FIG. 11, the center of a light-receiving section of the pixel at the periphery of the pixel array is aligned with the center of the corresponding on-chip lens 3 along an optical axis. Thus, the centering error caused by the exit pupil is corrected.
  • The above-described on-chip lenses are formed by the following method.
  • That is, first, as shown in FIG. 12A, photoresist 12 including light transmitting material, such as ultraviolet sensitive resin, is arranged on a base substrate 10. Then, as shown in FIG. 12B, ultraviolet light is radiated through a mask 14, so that the photoresist 12 is formed into a matrix pattern corresponding to the pixel array. In this step, transferring is performed with a magnification obtained by multiplying the projection magnification of the exposure apparatus by the above-described scaling factor. Then, as shown in FIG. 12C, a heating process is performed so that the photoresist 12 is formed into hemispherical elements due to the surface tension thereof. This is called a thermal reflow process, and is used in common.
  • SUMMARY OF THE INVENTION
  • However, the above-described thermal reflow process is basically a thermal control process, and it is difficult to achieve good repeatability in mass production.
  • In addition, in the patterning step for forming the on-chip lenses according to, for example, Japanese Unexamined Patent Application Publication No. 1-213079, the magnification is multiplied by the scaling factor. Accordingly, a plurality of projection magnifications are used in the exposure step. Therefore, the process is complex and it is difficult to ensure the stability of the projection exposure apparatus.
  • Accordingly, it is desirable to provide a solid-state imaging device having shading-corrected on-chip lenses that can be easily formed with high stability and improved repeatability compared to those formed by a thermal reflow process and a method for manufacturing the solid-state imaging device.
  • An embodiment of the present invention provides a solid-state imaging device including a substrate having a plurality of pixels and a plurality of on-chip lenses arranged above the substrate, each on-chip lens having a lens surface formed by subjecting a transparent photosensitive film to exposure using a mask having a gradation pattern and development so that the lens surface serves to correct shading in accordance with the gradation pattern.
  • In addition, another embodiment of the present invention provides a method for manufacturing a solid state imaging device including a substrate provided with a plurality of pixels and a plurality of on-chip lenses arranged above the substrate. The method includes the steps of exposing a transparent photosensitive film to light through a mask having a gradation pattern; and developing the transparent photosensitive film after exposure, thereby forming a lens surface that serves to correct shading in accordance with the gradation pattern.
  • In the solid-state imaging device and the method for manufacturing the solid state imaging device according to the embodiment of the present invention, each of the on-chip lenses has a lens surface formed by subjecting a transparent photosensitive film to exposure using a mask having a gradation pattern and development so that the lens surface serves to correct shading in accordance with the gradation pattern. Accordingly, a desired lens surface can be obtained in accordance with the gradation pattern of the mask. Therefore, compared to the known method using the scaling factor and the thermal reflow process, obliquely incident light can be reliably corrected by the lens surface optimized for each pixel. As a result, the light-receiving performance can be improved. In addition, since the thermal reflow process is not performed, the repeatability of the lens surface can be improved with a simple manufacturing process and a high-definition solid-state imaging device can be obtained.
  • In addition, when the lens surface is defined by a surface function that varies in accordance with an image height, the lens surface can be optimized in accordance with the image height of each pixel. Accordingly, the obliquely incident light can be more reliably controlled.
  • When the surface function defines a surface obtained by superimposing an inclination component on a spherical surface or a surface asymmetric about the center of the corresponding pixel, there is a large freedom in designing the lens shape. In addition, when the surface function defines a surface that causes a principal ray to perpendicularly enter an imaging element at the center thereof, the light-collecting efficiency an be effectively increased at each of the light-receiving sections.
  • In addition, when a so-called gray-tone mask, in particular a gray-tone mask having a simple binary pattern, is used as the mask having the gradation pattern, the solid-state imaging device can be manufactured using a simple apparatus. In addition, when full-plate exposure for all of the pixels is performed in the step of exposing the transparent photosensitive film, the solid state imaging device can be manufactured by a simple exposure process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a sectional views illustrating a step of a method for forming on-chip lenses in a solid state imaging device according to an embodiment of the present invention;
  • FIG. 1B is another sectional view illustrating another step of the method for forming on-chip lenses in a solid state imaging device according to an embodiment of the present invention;
  • FIG. 2A is a diagram illustrating the shapes of the on-chip lenses formed by the method shown in FIGS. 1A and 1B;
  • FIG. 2B is a schematic diagram illustrating a gray mask;
  • FIG. 3A is a schematic diagram illustrating the shapes of the on-chip lenses that correct the incidence of light on imaging elements;
  • FIG. 3B is a diagram illustrating the design of each of the on-chip lenses shown in FIG. 3A;
  • FIG. 4 is a diagram illustrating the angular characteristic of light incident on a pixel array;
  • FIG. 5A is a diagram illustrating an example of lens design according to the embodiment shown in FIGS. 1A and 1B;
  • FIG. 5B is a diagram illustrating another example of lens design according to the embodiment shown in FIGS. 1A and 1B;
  • FIG. 6 is a diagram illustrating the exposure characteristic of resist used in the embodiment;
  • FIG. 7 is a table of the mask design solution according to the embodiment shown in FIGS. 1A and 1B;
  • FIG. 8 is a diagram illustrating inclination components superimposed the on-chip lenses when the embodiment of the present invention is applied to a two-dimensional imaging device;
  • FIG. 9 is a sectional view of a known solid-state imaging device included in a system having a long eye-point distance L1;
  • FIG. 10 is a sectional view of a known solid-state imaging device included in a system having a short eye-point distance L2;
  • FIG. 11 is a sectional view illustrating the case in which shading correction is applied to the solid state imaging device shown in FIG. 10;
  • FIG. 12A is a sectional view illustrating a step of a known on-chip lens forming process;
  • FIG. 12B is a sectional view illustrating another step of the known on-chip lens forming process; and
  • FIG. 12C is a sectional view illustrating another step of the known on-chip lens forming process.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • According to an embodiment of the present invention, photoresist, such as ultraviolet sensitive resin, is exposed to ultraviolet light using a so-called gray-tone mask, so that the resist can be directly formed into elements having lens surfaces after exposure and development. This is based on the principle described in Japanese Patent Application No. 2003-18439, which has been applied by the inventors of the present invention. According to this principle, the light intensity distribution on the exposure surface is arbitrarily controlled using an exposure mask, thereby controlling the height distribution of the developed resist.
  • The above-described known on-chip lenses formed by the thermal reflow process are naturally limited to spherical lenses having a four-quadrant symmetry. In comparison, according to the present embodiment, each lens can be formed to have a free-form surface and the shapes of the lenses can be changed individually.
  • In order to correct the above-described shading, the surface function of the on-chip lenses is changed toward the periphery of the pixel array. More specifically, an inclination component superimposed on a normal lens surface function is increased toward the periphery of the pixel array so that even when light is incident on the pixel array at a large angle in a peripheral region thereof, the principal ray of the incident light perpendicularly enters each light-receiving section at the center thereof. Accordingly, shading can be reliably corrected in accordance with the image height (distance from the center of the pixel array) of each pixel.
  • According to the present embodiment, since the on-chip lenses are formed without performing the thermal reflow process, the repeatability of the manufacturing process is increased. The shape of the on-chip lenses is gradually changed toward the periphery of the pixel array, and shading is corrected by controlling the lens surface function of each lens instead of shifting the lens position using the scaling factor. Accordingly, the magnification of the exposure apparatus is not multiplied by the scaling factor, so that the process can be made simpler and the stability of the exposure apparatus can be increased.
  • In addition, in all of the pixels from the center of the pixel array to the periphery, the principal ray perpendicularly enters the light-receiving sections. Therefore, unlike the known structure in which the on-chip lenses are shifted using the scaling factor, the incident angle characteristic is uniform over the entire region of the pixel array, which provides ideal shading correction.
  • FIGS. 1A and 1B show sectional views illustrating a method for forming on-chip lenses included in a solid state imaging device according to an embodiment of the present invention. FIGS. 2A and 2B are diagrams illustrating the shapes of the on-chip lenses formed by the method shown in FIGS. 1A and 1B. FIG. 2A shows a schematic diagram illustrating an exposure process using a gray-tone mask, and FIG. 2B shows a binary gray-tone mask and the intensity distribution of light that is transmitted therethrough.
  • In the present embodiment, in order to simplify the explanation, a one-dimensional on-chip lens array and a one-dimensional pixel array will be described.
  • As shown in FIG. 1A, according to the present embodiment, photoresist 22 that serves as, for example, a photo-curable, transparent photosensitive film is disposed on a base substrate 20. Then, as shown in FIG. 1B, full-plate exposure of ultraviolet light is performed using a gray-tone mask 24. Then, development is performed so that the resist 22 is directly formed into elements having lens surfaces. Accordingly, on-chip lenses are formed without performing the thermal reflow process.
  • The gray-tone mask used in the present embodiment has a fine binary pattern including light transparent sections and nontransparent sections in each lens. The transmitted light intensity is varied depending on the ratio of the area of the transparent sections to the area of the nontransparent sections (that is, the ratio of the area of space pattern elements to the area of line pattern elements). As shown in FIG. 2B, the transmitted light intensity is reduced in an area where nontransparent sections 242 are relatively thick, and is increased in an area where transparent sections 241 are relatively thick. Thus, the light intensity distribution can be varied in each lens by continuously varying the ratio of the area of the nontransparent sections 242 to the area of the transparent sections 241, and a desired exposure amount distribution can be set in the exposure step. Accordingly, elements having desired surface shapes can be obtained after developing the resist.
  • Next, the lens shape used in the present embodiment will be described in detail below.
  • First, a system shown in FIG. 3A in which light is incident on the on-chip lenses in the peripheral region of the pixel array is considered. Referring to the figure, a plurality of light-receiving sections 34 forming a pixel array are provided on a semiconductor substrate 32, and a shading film 36 is disposed on the light-receiving sections 34. In addition, on-chip lenses 30 are placed at positions separated from the light-receiving sections 34 by a predetermined distance.
  • In the following discussion, it is assumed that the on-chip lens 30 corresponding to a light-receiving section 34 at an arbitrary image height i receives light with an F-number of 2.8 at an incident angle .theta..sub.i. In addition, it is also assumed that the on-chip lenses 30 are made of photosensitive resin with a refractive index n. As is understood from FIG. 3B, when .theta. is small, the principal ray of the incident light can be caused to perpendicularly enter the corresponding light-receiving section using an on-chip lens combined with a prism having a deviation angle of .theta..sub.i/(n−1). Accordingly, the on-chip lenses 30 are shaped as shown in FIG. 3A.
  • Next, it is assumed that light that enters the imaging device, such as a video camera, has an incident angle characteristic represented by the characteristic curve shown in FIG. 4. The incident angle characteristic is uniquely determined by the design of the lens system positioned in front of the imaging elements. In FIG. 4, the vertical axis shows the incident angle of the principal ray and the horizontal axis shows the image height. As the image height increases, the incident angle generally increases along the characteristic curve. When the field angle can be varied with a zoom lens or the like, the incident angle characteristic varies depending on the zoom position. In such a case, the incident angle characteristic at an average middle position is used as a representative incident angle characteristic. Accordingly, the incident angle .theta..sub.i can be determined for each of the light-receiving sections 34 in accordance with the image height i.
  • The prism deviation angle for the light-receiving section 34 at the image height i is calculated as .theta..sub.i/(n−1), and the inclination component of the surface function of the corresponding on-chip lens is thus determined.
  • For simplicity, it is assumed that the on-chip lens disposed at a position corresponding to the center of the pixel array is a 5 .mu.m square spherical lens with a radius of curvature r, a central thickness d, and a back focus of 5 .mu.m. Accordingly, the on-chip lens corresponding to the light-receiving section at the center of the pixel array (i=0) has a surface shown in FIG. 5B. FIG. 5B shows light rays incident at 0 .degree. and 5.degree. It is clear from FIG. 5B that light incident at 5.degree. is displaced from the light-receiving section.
  • The surface function of the on-chip lens that causes light with the incident angle .theta..sub.i to perpendicularly enter the corresponding light-receiving section can be expressed as follows:

  • ##EQU00001##

  • Z (y)=cy 2 1+1−(1+k) c2y2+y tan (.theta. i n−1)  (1)
  • where Z is the amount of sag, which is the depth from each lens center (y=0) in the Z direction, k is the conic constant, y is the distance from the lens center, and c is the curvature, i.e., the reciprocal of the radius of curvature (r).
  • FIG. 5A shows the result of ray tracing under the conditions k=0, n=1.5, .theta..sub.i=5.degree., d=1.66 .mu.m, and c=¼ (1 .mu.m). It is clear from the figure that even though light is incident at an angle, the principal ray perpendicularly enters the light-receiving section at the center thereof. Accordingly, the incident angle of the principal ray that travels toward the light-receiving section at each image height i is determined from the characteristic curve shown in FIG. 4, and the surface function of the on-chip lens for causing the principal ray to perpendicularly enter the light-receiving section at the center thereof is determined from Equation (1).
  • In the present embodiment, the on-chip lenses are designed by the above-described procedure, so that the surface function thereof gradually varies depending on the image height, as shown in FIG. 2A. Accordingly, the principal ray incident on each on-chip lens perpendicularly enters the corresponding light-receiving section at the center thereof. Therefore, shading is reliably corrected over the entire region of the imaging element.
  • Next, a mask for forming the on-chip lenses will be described below. In the present embodiment, the lens array shown in FIG. 2A is formed by full plate exposure by a semiconductor process shown in FIGS. 1A and 1B.
  • For simplicity of description, a case in which a one-dimensional lens array that is designed as described above is formed so as to correct shading will be explained below. In addition, it is assumed that a positive resist is used.
  • The conditions of the exposure apparatus include: the exposure wavelength 365 nm, NA=0.5, .sigma.=0.5, and the minimum projection magnification ⅕. Here, .sigma. is a coherence factor that is expressed as .sigma.=(illumination NA)/(projection lens NA). In addition, the initial resist thickness is set to 2 .mu.m, and the characteristic of thickness that remains after development versus the amount of exposure is expressed as Z=A+Bln (dose), where “dose” is the amount of exposure with the unit of [mJ/cm.sup.2]. In this example, the characteristic shown in FIG. 6, where A=2.7 and B=−0.45, is used.
  • Next, to avoid image formation, a maximum pattern pitch of the gray mask is determined as follows:

  • P min=.lamda. NA (1+.sigma.) (2) ##EQU00002##
  • Accordingly, when the above-mentioned optical conditions are used, the mask pattern does not form an image as long as the pitch is 487 nm or less. In addition, since the size of each on-chip lens is 5 .mu.m square and is relatively small, it is desirable to precisely control the shape thereof by using as many pattern elements as possible. In addition, since the pattern pitch is set to a value obtained by multiplying the size of each lens by (1/integer), the pattern pitch (P) is set to, for example, of 5000 nm/12=416.7 nm. In this case, each lens is formed by thirteen space pattern elements.
  • The desired amount of sag Z(y) for each y coordinate is calculated by Equation (1), and the distribution of the amount of exposure for obtaining the desired amount of sag Z(y) after development is calculated from the above-mentioned characteristic of residual thickness as follows:

  • 190 #EQU00003##

  • dose (y)=exp (Z (y)−A B)  (3)
  • FIG. 7 shows the table of the results obtained by Equation (3).
  • Next, it is assumed that a mask pattern element denoted by A in FIG. 2A (hereafter called portion A) where the amount of sag is at a minimum (that is, the element corresponding to the thinnest transparent section) provides minimum transmittance. The amount of sag at the portion A is denoted as Z0. The space size at this portion is set equal to the lower guaranteed limit in mask manufacturing. In the present embodiment, the minimum space size of the mask is set to 500 nm (100 nm on the wafer), and the pattern element corresponding to the portion A includes a line of 316.7 nm and a space of 100 nm. The transmittance (Tmin) of this pattern element is 5.76%. The amount of sag Z0 at this pattern element (pattern No. −1 in FIG. 7) is set to 300 nm. Accordingly, the amount of exposure (Dset) to be set in the actual exposure step using this mask is calculated as 14.7 mJ/0.0576=256 mJ/cm.sup.2.
  • In addition, the desired transmittance at each y coordinate is expressed as follows:

  • ##EQU00004##

  • T (y)=Tmin .times. exp (Z (y)−A B) exp (Z 0−A B)  (4)
  • The space size for obtaining this transmittance is calculated using Equation (4) as follows:

  • S(y)=P {square root over (T(y))}  (5)
  • where y is the product mP of the pattern pitch P and an integer m (where m=0, .+−.1, .+−.2, . . . , .+−.5, .+−.6).
  • FIG. 7 shows the design solutions of the mask (the space size at each space pattern center coordinate) under the following conditions:
  • Desired Shape
  • k=0, n=1.6, .theta..sub.i=5.degree., d=1.7 .mu.m, c=¼ (1 .mu.m)
  • Characteristic of Residual Thickness of Resist
  • A=2.72, B=−0.45
  • Tmin=0.0576
  • Z0=300 nm
  • Similarly, the patterns for forming on-chip lenses at other image heights are also designed.
  • The mask pattern is transferred by exposure at the above-described amount of exposure (Dset), so that a desired shape can be obtained after development.
  • In the above-described explanation, a one-dimensional lens array is described as an example of shading-corrected on-chip lenses. However, the above-described method can also be applied to two-dimensional lens arrays included in solid-state imaging devices like CCD image sensors and CMOS image sensors. In such a case, inclination angles .theta.xi, .theta.yj are calculated for each on-chip lens (i, j) on the basis of the incidence angle characteristics determined by the camera-lens optical system disposed in front of the imaging elements, and then the desired surface function of each on-chip lens is determined. Then, the mask pattern is designed by a method similar to the above-described method for designing the one-dimensional gray scale mask pattern.
  • FIG. 8 is a diagram showing inclination components for pixels included in a single quadrant. The arrows shown in each pixel denote inclination angles .theta.x and .theta.y. The two-dimensional pattern may be formed as a contact-hole array or an island array (see, for example, Japanese Patent Application No. 2003-18439).
  • In addition, according to the present embodiment, the mask pattern is designed using the residual thickness characteristic of the resin in open-frame exposure, as shown in FIG. 6. However, the mask pattern may also be designed using the residual thickness characteristic data obtained using a calibration mask formed of a gray-tone pattern (see, for example, Japanese Patent Application No. 2003-281489).
  • It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.

Claims (22)

What is claimed:
1. A method of manufacturing a solid-state imaging device, comprising the steps of:
forming a semiconductor substrate;
forming a pixel unit having a plurality of pixels in the substrate; and
forming a lens unit having a plurality of on-chip lenses on the substrate by a mask pattern including light transparent sections and nontransparent sections.
2. The method according to claim 1, wherein the mask pattern is a fine binary pattern.
3. The method according to claim 2, wherein the fine binary pattern is represented by a transmitted light intensity distribution which is varied in each lens by continuously varying the ratio of the area of the nontransparent sections to the area of the transparent sections.
4. The method according to claim 1, wherein the mask pattern has a gradation pattern.
5. The method according to claim 4, wherein the on-chip lens has a shading-corrected lens surface by the gradation pattern of the mask pattern.
6. The method according to claim 5, wherein the mask pattern has a minimum transparent ratio by a part of an amount of sag which is at a minimum.
7. The method according to claim 6, wherein the amount of sag is defined by a surface function of the surface lens.
8. The method according to claim 1, wherein the mask pattern is one-dimensional gray scale pattern.
9. The method according to claim 1, wherein the mask pattern is two-dimensional gray scale pattern.
10. The method according to claim 1, wherein the mask pattern is a binary gray-tone mask.
11. The method according to claim 10, wherein the binary gray-tone mask is formed by varying a transmitted light intensity distribution according to an image height.
12. A solid-state imaging device, comprising:
a semiconductor substrate;
a pixel unit having a plurality of pixels in the substrate; and
a lens unit having a plurality of on-chip lenses on the substrate being formed by a mask pattern including light transparent sections and nontransparent sections.
13. The solid-state imaging device according to claim 12, wherein the mask pattern is a fine binary pattern.
14. The solid-state imaging device according to claim 13, wherein the fine binary pattern is represented by a transmitted light intensity distribution which is varied in each lens by continuously varying the ratio of the area of the nontransparent sections to the area of the transparent sections.
15. The solid-state imaging device according to claim 12, wherein the mask pattern has a gradation pattern.
16. The solid-state imaging device according to claim 15, wherein the on-chip lens has a shading-corrected lens surface by the gradation pattern of the mask pattern.
17. The solid-state imaging device according to claim 16, wherein the mask pattern has a minimum transparent ratio by a part of an amount of sag which is at a minimum.
18. The solid-state imaging device according to claim 17, wherein the amount of sag is defined by a surface function of the surface lens.
19. The solid-state imaging device according to claim 12, wherein the mask pattern is one-dimensional gray scale pattern.
20. The solid-state imaging device according to claim 12, wherein the mask pattern is two-dimensional gray scale pattern.
21. The solid-state imaging device according to claim 12, wherein the mask pattern is a binary gray-tone mask.
22. The solid-state imaging device according to claim 21, wherein the binary gray-tone mask is formed by varying a transmitted light intensity distribution in accordance with an image height.
US14/168,556 2004-11-26 2014-01-30 Solid-state imaging device and method for manufacturing the same Abandoned US20140145285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/168,556 US20140145285A1 (en) 2004-11-26 2014-01-30 Solid-state imaging device and method for manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004341602A JP4882224B2 (en) 2004-11-26 2004-11-26 Method for manufacturing solid-state imaging device
JP2004-341602 2004-11-26
US11/284,050 US7525733B2 (en) 2004-11-26 2005-11-21 Solid-state imaging device and method for manufacturing the same
US12/408,459 US8675282B2 (en) 2004-11-26 2009-03-20 Solid-state imaging device and method for manufacturing the same
US14/168,556 US20140145285A1 (en) 2004-11-26 2014-01-30 Solid-state imaging device and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/408,459 Continuation US8675282B2 (en) 2004-11-26 2009-03-20 Solid-state imaging device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20140145285A1 true US20140145285A1 (en) 2014-05-29

Family

ID=36567123

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/284,050 Expired - Fee Related US7525733B2 (en) 2004-11-26 2005-11-21 Solid-state imaging device and method for manufacturing the same
US12/408,459 Expired - Fee Related US8675282B2 (en) 2004-11-26 2009-03-20 Solid-state imaging device and method for manufacturing the same
US14/168,556 Abandoned US20140145285A1 (en) 2004-11-26 2014-01-30 Solid-state imaging device and method for manufacturing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/284,050 Expired - Fee Related US7525733B2 (en) 2004-11-26 2005-11-21 Solid-state imaging device and method for manufacturing the same
US12/408,459 Expired - Fee Related US8675282B2 (en) 2004-11-26 2009-03-20 Solid-state imaging device and method for manufacturing the same

Country Status (4)

Country Link
US (3) US7525733B2 (en)
JP (1) JP4882224B2 (en)
CN (2) CN100479175C (en)
TW (1) TWI278994B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153331A (en) * 2006-12-15 2008-07-03 Toppan Printing Co Ltd Color solid-state imaging element, and manufacturing method thereof
KR100915758B1 (en) * 2007-11-19 2009-09-04 주식회사 동부하이텍 Method for Manufacturing An Image Sensor
KR100937656B1 (en) * 2007-11-26 2010-01-19 주식회사 동부하이텍 Semiconductor device and method for manufacturing the device
US9419035B2 (en) 2008-02-11 2016-08-16 Omnivision Technologies, Inc. Image sensor with color pixels having uniform light absorption depths
US8097890B2 (en) * 2008-02-11 2012-01-17 Omnivision Technologies, Inc. Image sensor with micro-lenses of varying focal lengths
JP5286821B2 (en) * 2008-02-22 2013-09-11 凸版印刷株式会社 Microlens array manufacturing method and density distribution mask
JP5269454B2 (en) * 2008-03-25 2013-08-21 株式会社東芝 Solid-state image sensor
US7897986B2 (en) * 2008-04-17 2011-03-01 Visera Technologies Company Limited Microlens array and image sensing device using the same
US20090305453A1 (en) * 2008-06-10 2009-12-10 Visera Technologies Company Limited Method of fabricating image sensor device
JP5310065B2 (en) * 2009-02-16 2013-10-09 株式会社ニコン Method for forming uneven shape, method for manufacturing optical element array, optical element array, and microlens array
JP5365353B2 (en) * 2009-06-08 2013-12-11 凸版印刷株式会社 Density distribution mask
JP2012064924A (en) * 2010-08-17 2012-03-29 Canon Inc Microlens array manufacturing method, solid state image pickup device manufacturing range, and solid state image pickup device
JP6175761B2 (en) * 2012-12-03 2017-08-09 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP5791664B2 (en) * 2013-06-28 2015-10-07 キヤノン株式会社 Optical element array and solid-state imaging device
JP6195369B2 (en) * 2013-11-13 2017-09-13 キヤノン株式会社 Solid-state imaging device, camera, and manufacturing method of solid-state imaging device
JP6409499B2 (en) * 2014-10-24 2018-10-24 大日本印刷株式会社 Pattern data production method and photomask
EP3171406B1 (en) * 2015-11-23 2019-06-19 ams AG Photodiode array
JP7038050B2 (en) * 2016-07-06 2022-03-17 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor, correction method, and electronic device
WO2018193986A1 (en) * 2017-04-17 2018-10-25 凸版印刷株式会社 Solid-state imaging element and method for manufacturing same
KR102111138B1 (en) * 2019-10-15 2020-05-15 (주)유티아이 Manufacturing Method of Flexible Cover Window
TW202310378A (en) 2021-08-06 2023-03-01 日商索尼半導體解決方案公司 Photodetector, manufacturing method for photodetector, and electronic device
CN117716503A (en) 2021-08-13 2024-03-15 索尼半导体解决方案公司 Imaging device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371397A (en) * 1992-10-09 1994-12-06 Mitsubishi Denki Kabushiki Kaisha Solid-state imaging array including focusing elements
US6518640B2 (en) * 1999-12-02 2003-02-11 Nikon Corporation Solid-state image sensor, production method of the same, and digital camera
US6777661B2 (en) * 2002-03-15 2004-08-17 Eastman Kodak Company Interlined charge-coupled device having an extended dynamic range
US7667286B2 (en) * 2004-09-01 2010-02-23 Panasonic Corporation Light-collecting device, solid-state imaging apparatus and method of manufacturing thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600250B2 (en) 1988-02-22 1997-04-16 ソニー株式会社 Solid-state imaging device and video camera
US5321249A (en) * 1991-10-31 1994-06-14 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device and method of manufacturing the same
US5310623A (en) * 1992-11-27 1994-05-10 Lockheed Missiles & Space Company, Inc. Method for fabricating microlenses
JP3551437B2 (en) 1992-10-29 2004-08-04 ソニー株式会社 Solid-state imaging device
KR0186067B1 (en) * 1993-08-06 1999-05-15 기타지마 요시토시 Gradation mask and its manufacture
US20020019305A1 (en) * 1996-10-31 2002-02-14 Che-Kuang Wu Gray scale all-glass photomasks
US6355399B1 (en) * 2000-01-18 2002-03-12 Chartered Semiconductor Manufacturing Ltd. One step dual damascene patterning by gray tone mask
CN1239925C (en) * 2000-07-31 2006-02-01 罗切斯特光电器件公司 Structure screen for controlled spreading of light
JP2002125156A (en) * 2000-08-11 2002-04-26 Nikon Corp Solid-state image pickup element and electronic camera
GB2368133A (en) * 2000-10-13 2002-04-24 Sharp Kk Polarisation conversion system, optical lens array and projection display system
US6402905B1 (en) * 2001-03-16 2002-06-11 4 Wave, Inc System and method for controlling deposition thickness using a mask with a shadow that varies along a radius of a substrate
CN100456483C (en) * 2002-09-20 2009-01-28 索尼株式会社 Solid state imaging device and production method therefor
JP4249459B2 (en) * 2002-10-22 2009-04-02 大日本印刷株式会社 IMAGING DEVICE AND METHOD FOR FORMING BENDING UNIT IN IMAGING DEVICE
US6638786B2 (en) * 2002-10-25 2003-10-28 Hua Wei Semiconductor (Shanghai ) Co., Ltd. Image sensor having large micro-lenses at the peripheral regions
KR100541028B1 (en) * 2003-07-21 2006-01-11 주식회사 옵토메카 Image sensor and method for fabricating the same
US7049168B2 (en) * 2004-05-28 2006-05-23 Stmicroelectronics Ltd. Image sensor comprising a pixel array having an optical element positioned relative to each pixel
US7068432B2 (en) * 2004-07-27 2006-06-27 Micron Technology, Inc. Controlling lens shape in a microlens array
JP4796287B2 (en) * 2004-08-06 2011-10-19 パナソニック株式会社 Solid-state imaging device
JP4546797B2 (en) * 2004-09-24 2010-09-15 パナソニック株式会社 Solid-state imaging device, manufacturing method thereof, and camera
US7450337B2 (en) * 2004-09-30 2008-11-11 Hitachi Global Storage Technologies Netherlands B.V. Apparatus and method for guiding bypass reentry flow through contraction and filter in a hard disk drive
KR100693927B1 (en) * 2005-02-03 2007-03-12 삼성전자주식회사 Method of manufacturing microlens, method of manufacturing microlens array and method of manufacturing image sensor
KR100710208B1 (en) * 2005-09-22 2007-04-20 동부일렉트로닉스 주식회사 CMOS image sensor and method for fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371397A (en) * 1992-10-09 1994-12-06 Mitsubishi Denki Kabushiki Kaisha Solid-state imaging array including focusing elements
US6518640B2 (en) * 1999-12-02 2003-02-11 Nikon Corporation Solid-state image sensor, production method of the same, and digital camera
US6777661B2 (en) * 2002-03-15 2004-08-17 Eastman Kodak Company Interlined charge-coupled device having an extended dynamic range
US7667286B2 (en) * 2004-09-01 2010-02-23 Panasonic Corporation Light-collecting device, solid-state imaging apparatus and method of manufacturing thereof

Also Published As

Publication number Publication date
JP4882224B2 (en) 2012-02-22
CN100479175C (en) 2009-04-15
US8675282B2 (en) 2014-03-18
US20090174020A1 (en) 2009-07-09
CN101488513B (en) 2013-01-02
JP2006156515A (en) 2006-06-15
TWI278994B (en) 2007-04-11
TW200625615A (en) 2006-07-16
US20060114570A1 (en) 2006-06-01
CN1783504A (en) 2006-06-07
CN101488513A (en) 2009-07-22
US7525733B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
US20140145285A1 (en) Solid-state imaging device and method for manufacturing the same
TWI299576B (en) Gapless microlens array and method of fabrication
US7375892B2 (en) Ellipsoidal gapless microlens array and method of fabrication
US20110234883A1 (en) Tetraform microlenses and method of forming the same
CA2557714A1 (en) Lens array and method for making same
CN110061018A (en) Full single-chip integration of the optical lens on optical sensor substrate
TW200917820A (en) Method of forming a microlens array and imaging device and system containing such a microlens array
CN104733482A (en) Solid-state Imaging Device And Manufacturing Method Of The Same, And Electronic Apparatus
KR102614907B1 (en) Image sensor and method to produce image sensor
JP2007193266A (en) Method of manufacturing microlens array and microlens substrate
JP4941233B2 (en) Solid-state imaging device and imaging apparatus using the same
JPH08116041A (en) Manufacture of solid-state image sensing device
US10916575B2 (en) Image sensor and method of manufacturing image sensor
CN101442066B (en) Method for manufacturing image sensor
JP2006235084A (en) Method of manufacturing microlens
JP2004296590A (en) Imaging device, and method of forming microlens therein
JP4941214B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2005252391A (en) Imaging apparatus
JP4941221B2 (en) Solid-state imaging device and imaging apparatus using the same
JP4998227B2 (en) SOLID-STATE IMAGING ELEMENT, MANUFACTURING METHOD THEREOF, AND IMAGING DEVICE USING THIS SOLID-STATE IMAGING ELEMENT

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE