US20140134498A1 - Separator media for electrochemical cells - Google Patents

Separator media for electrochemical cells Download PDF

Info

Publication number
US20140134498A1
US20140134498A1 US14/078,663 US201314078663A US2014134498A1 US 20140134498 A1 US20140134498 A1 US 20140134498A1 US 201314078663 A US201314078663 A US 201314078663A US 2014134498 A1 US2014134498 A1 US 2014134498A1
Authority
US
United States
Prior art keywords
nonwoven sheet
pore size
separator
medium
polymeric fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/078,663
Inventor
Hyun Sung Lim
Pankaj Arora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US14/078,663 priority Critical patent/US20140134498A1/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIM, HYUN SUNG, ARORA, PANKAJ
Publication of US20140134498A1 publication Critical patent/US20140134498A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • H01M2/162
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/11Flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • D04H3/166Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion the filaments being flash-spun
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/54Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur dioxide; with sulfurous acid or its salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • H01M2/145
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • This invention relates to the field of separators for electrochemical cells, and in particular alkaline batteries.
  • Alkaline batteries have become increasingly more popular because of their high energy density. As such, these batteries are increasingly used in applications normally reserved for the traditional lead-acid battery systems.
  • the battery separators are located between the positive and negative plates so as to provide, (1) a separation between the electrodes of opposite charge, (2) an electrolyte reservoir, (3) a uniform electrolyte distribution across the electrode surface so as to permit uniform current density and (4) a space for electrode expansion.
  • Battery separators used in alkaline batteries at present are commonly formed of a polyolefin, preferably polypropylene, polyamide or nylon non-woven sheet.
  • NiMH nickel metal hydride
  • the “ammonia-shuttle” has major influence on the self-discharge.
  • the nitrogen containing impurities in Ni electrode are oxidized to form nitrate which migrate through the separator to the cathode.
  • the nitrate is reduced to ammonia at the cathode.
  • the ammonia again passes through the separator and reaches the nickel electrode and the shuttle is completed.
  • the present invention is directed to a separator medium for electrochemical cell, where a electrochemical cell can be a battery or a capacitor.
  • the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m 2 /g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
  • the present invention is directed to a separator medium for alkaline batteries, and in particular nickel metal hydride batteries.
  • the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m 2 /g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
  • the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur.
  • the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • MD machine direction
  • the invention is further directed to a process for producing a separator medium for electrochemical cells.
  • the invention is still further directed to an electrochemical cell wherein the cell is an alkaline battery comprising separator medium that further comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m 2 /g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and wherein the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • MD machine direction
  • polymer as used herein, generally includes but is not limited to, homopolymers, copolymers (such as for example, block, graft, random and alternating copolymers), terpolymers, etc., and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic, and random symmetries.
  • polyolefin as used herein, is intended to mean any of a series of largely saturated polymeric hydrocarbons composed only of carbon and hydrogen.
  • Typical polyolefins include, but are not limited to, polyethylene, polypropylene, polymethylpentene, and various combinations of the monomers ethylene, propylene, and methylpentene.
  • polyethylene as used herein is intended to encompass not only homopolymers of ethylene, but also copolymers wherein at least 85% of the recurring units are ethylene units such as copolymers of ethylene and alpha-olefins.
  • Preferred polyethylenes include low-density polyethylene, linear low-density polyethylene, and linear high-density polyethylene.
  • a preferred linear high-density polyethylene has an upper limit melting range of about 130° C. to 140° C., a density in the range of about 0.941 to 0.980 gram per cubic centimeter, and a melt index (as defined by ASTM D-1238-57T Condition E) of between 0.1 and 100, and preferably less than 4.
  • polypropylene as used herein is intended to embrace not only homopolymers of propylene but also copolymers where at least 85% of the recurring units are propylene units.
  • Preferred polypropylene polymers include isotactic polypropylene and syndiotactic polypropylene.
  • nonwoven sheet as used herein means a structure of individual fibers or threads that are positioned in a random manner to form a planar material without an identifiable pattern, as in a knitted fabric.
  • plexifilament as used herein means a three-dimensional integral network or web of a multitude of thin, ribbon-like, film-fibril elements of random length. Typically, these have a mean film thickness of less than about 4 micrometers and a median fibril width of less than about 25 micrometers. The average film-fibril cross sectional area if mathematically converted to a circular area would yield an effective diameter between about 1 micrometer and 25 micrometers. In plexifilamentary structures, the film-fibril elements intermittently unite and separate at irregular intervals in various places throughout the length, width and thickness of the structure to form a continuous three-dimensional network.
  • “Sulfonation” refers to chemical binding of sulfur containing moieties to at least a fraction of the polymer that the fiber comprises. Sulfonation can be carried out by any method known to one of skill in the art. For example, sulfonation can be carried out using the vapor phase surface sulfonation of webs described in U.S. Pat. No. 3,684,554. The basic process involves contacting the dry polymer web with continuous blast of gaseous SO 3 (2-15% volume in dry inert gas) that can run continuously at high speed (100-200 ft/sec). The sulfonated polymer web can be rinsed with DI water. Sulfonation may also be carried out by the process of U.S. Pat. No. 6,403,265 using concentrated sulfuric acid.
  • the present invention overcomes the problems inherent in the currently used separators and provides a wettable sheet material with the desired tensile strength, ammonia absorption characteristic, electrolyte absorption and electrical resistance properties which is usable in alkaline batteries.
  • An object of the present invention is therefore to provide a wettable sheet material useful as a separator in alkaline batteries.
  • Another object of the present invention is to provide a sheet material which is wettable by electrolyte and has good electrolyte absorption and ammonia absorption in an alkaline battery system.
  • the present invention is therefore directed to a separator medium for alkaline batteries, and in particular nickel metal hydride batteries.
  • the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m 2 /g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
  • the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur.
  • the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • MD machine direction
  • the polymeric fibers may comprise polymers selected from the group consisting of polyolefins, polyesters, polyamides, polyaramids, polysulfones, polyimides, fluorinated polymers and combinations thereof.
  • the polymers may be selected from the group consisting of polyethylene, polypropylene, polybutylene and polymethylpentene.
  • Suitable polymers for use in the alkaline battery separator also include aliphatic polyamide, semi-aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polysulfone, polyvinylidene fluoride, polymethyl pentene, polyphenylene sulfide, polyacetyl, polyacrylonitrile, polyurethane, aromatic polyamide and blends, mixtures and copolymers thereof.
  • Polymers that are especially suitable for use in the alkaline battery separator include polyvinyl alcohol, cellulose, aliphatic polyamide and polysulfone.
  • the polymeric fibers can be plexifilamentary fiber strands.
  • the polymeric fibers may furthermore have non-circular cross sections.
  • the nonwoven sheet is a uniaxially stretched nonwoven sheet where the stretching has taken place in the machine direction.
  • the nonwoven sheet may furthermore have a surface area of about 0.5 to about 1.0 m 2 /g.
  • the nonwoven sheet consists of fibers that have a number average fiber diameter greater than 1 micrometer for 100% of the fibers.
  • the nonwoven sheet may have an ammonia trapping of 0.20 mmole/g and a machine direction tensile strength retention of at least 16 Newtons/centimeter (N/cm.)
  • the invention is further directed to a process for producing a separator medium for electrochemical cells.
  • the process comprises the steps of:
  • the process for producing a separator medium may further comprise sulfonating the nonwoven sheet after bonding the stretched web.
  • the invention is further directed to an electrochemical cell wherein the cell is an alkaline battery comprising separator medium that further comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m 2 /g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and wherein the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • MD machine direction
  • the battery can be an alkaline primary battery, e.g., Zinc-Manganese Oxide or Zn—MnO 2 battery in which the anode is zinc and the cathode is manganese oxide (MnO 2 ), or Zinc-Air battery in which the anode is zinc and the cathode is air, or it can be an alkaline secondary battery, e.g., a Nickel Cadmium battery in which the anode is cadmium and the cathode is Nickel oxy-hydroxide (NiOOH), Nickel Zinc or Ni—Zn battery in which the anode is zinc and the cathode is NiOOH, Nickel Metal Hydride (NiMH) battery in which the anode is metal hydride (e.g.
  • LaNi 5 and the cathode is NiOOH or Nickel-Hydrogen or NiH 2 battery in which the anode is hydrogen (H 2 ) and the cathode is NiOOH.
  • Other types of alkaline batteries include Zinc/Mercuric Oxide in which the anode is zinc, and the cathode is mercury oxide (HgO), Cadmium/Mercuric Oxide in which the anode is cadmium and the cathode is mercury oxide, Zinc/Silver Oxide in which the anode is zinc and the cathode is silver oxide (AgO), Cadmium/Silver Oxide in which the anode is cadmium and the cathode is silver oxide. All of these battery types use 30-40% potassium hydroxide as the electrolyte.
  • the alkaline battery of this embodiment of the invention can include a separator having an ionic resistance of less than about 300 milliohms-cm 2 , preferably less than 200 milliohms-cm 2 , most preferably less than 100 mohms-cm 2 , as measured in 35% potassium hydroxide electrolyte solution at 1 KHz.
  • the separators may be preferable to coat the separators with surfactants prior to forming into a battery in order to improve the wettability and wicking properties in 30-40% KOH electrolyte.
  • the surfactant is one that is stable in a strong alkaline environment, such as an ionic surfactant.
  • the separators can undergo acrylic acid grafting to improve the wettability of separators.
  • Ionic Resistance in KOH electrolyte is a measure of a separator's resistance to the flow of ions, and was determined as follows. Samples were cut into small pieces (1′′ ⁇ 1′′) and soaked in 35% potassium hydroxide overnight to ensure thorough wetting. Samples were sandwiched between two Teflon® shims with a 1 cm 2 window exposing the sample. The sandwich of Teflon® shims and sample was placed in a resistance cell having two platinum electrodes such that the window was facing the two electrodes. The resistance was measured at 1 KHz using an HP milliohmeter. The measurement was repeated without any separator between the Teflon® shims. The difference between the two readings is the resistance (milliohms) of the sample. The separator resistance is then multiplied by the area of the electrodes (1 cm 2 in this case) and the results are reported in milliohms-cm 2 .
  • Basis Weight was determined by ASTM D-3776, which is hereby incorporated by reference and reported in g/m 2 .
  • Fiber Diameter was determined as follows. Ten scanning electron microscope (SEM) images at 5,000 ⁇ magnification were taken of each fine fiber layer sample. The diameter of eleven (11) clearly distinguishable fine fibers were measured from the photographs and recorded. Defects were not included (i.e., lumps of fine fibers, polymer drops, intersections of fine fibers). The average (mean) fiber diameter for each sample was calculated.
  • Thickness was determined by ASTM D1777, which is hereby incorporated by reference, and is reported in mils and converted to micrometers.
  • Mean Flow Pore Size was measured according to ASTM Designation E 1294-89, “Standard Test Method for Pore Size Characteristics of Membrane Filters Using Automated Liquid Porosimeter” which approximately measures pore size characteristics of membranes with a pore size diameter of 0.05 ⁇ m to 300 ⁇ m by using automated bubble point method from ASTM Designation F 316 using a capillary flow porosimeter (model number CFP-34RTF8A-3-6-L4, Porous Materials, Inc. (PMI), Ithaca, N.Y.).
  • Tensile Strength was measured according to ASTM D5035-95, “Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)” and was reported in kg/cm 2 .
  • BET Branaur, Emmet and Teller
  • the ammonia trapping capacity was measured by ASTM D7129-09 “Standard test method for determination of ammonia trapping in a grafted battery separator”. The test measures amount of ammonia retained by separator when a predetermined amount of separator and ammonia hydroxide are conditioned under a controlled temperature for a day.
  • the % sulfur on the sulfonated samples was measured by Micro-Analysis, Inc, (Wilmington Del.) Sulfur analyses are performed by one of two procedures.
  • samples are weighed on an electronic microbalance and then introduced into the autoanalyzer which is maintained under a positive pressure with the carrier gas of helium.
  • Dynamic flash combustion takes place at approximately 1400° C. in an oxygen atmosphere.
  • Quantitative combustion is achieved by passing the mixture of gases over tungstic anhydride on alumina to remove any fluorine and then over the oxidizing agent tungstic anhydride. The mixture is then passed over copper to remove excess oxygen and to reduce the oxides of nitrogen to elemental nitrogen.
  • the resulting mixture is directed to the chromatographic column containing Perapak PQS which is maintained at a constant temperature in the range 60° C.-80° C., and the individual components are separated and sulfur is eluted as sulfur dioxide.
  • the sulfur dioxide is measured with a thermal conductivity detector whose signal feeds to a computer for data processing.
  • the products of combustion in a CHNS analysis are CO 2 , H 2 O, NO x , and SO x .
  • the gases which are carried through the system by the helium carrier, are swept through the oxidation tube packed with WO 3 and copper.
  • the copper removes excess oxygen to complete the conversion to SO 2 .
  • Oxides of Nitrogen are reduced to N 2 .
  • the gas mixture is swept through the H 2 O infrared detection cell, and then passed through a water trap where H 2 O is removed.
  • the remaining gaseous mixture is then passed through SO 2 , and CO 2 IR cells, respectively.
  • SO 2 , and CO 2 are then removed and N 2 is passed through a thermal conductivity detector.
  • the signals are fed to a computer for data processing.
  • Examples 1 and 2 representing nonwoven sheets of the present invention were made from flash spinning technology as disclosed in U.S. Pat. No. 7,744,989, incorporated herein by reference with additional thermal stretching prior to sheet bonding.
  • Unbonded nonwoven sheets were flash spun from a 20 weight percent concentration of high density polyethylene having a melt index of 0.7 g/10 min (measured according to ASTM D-1238 at 190° C. and 2.16 kg load) in a spin agent of 60 weight percent normal pentane and 40 weight percent cyclopentane.
  • the unbonded nonwoven sheets of Examples 1 and 2 were stretched and whole surface bonded.
  • Example 1 was calendered under nip pressure at 500 PLI and Example 2 was made without the calendering.
  • Comparative Example A was Tyvek® 1056D (available from DuPont of Wilmington, Del.), a commercial flash spun nonwoven sheet product of basis weight 54.4 gsm. The sheet physical properties are given in Tables 1 and 2.
  • Comparative Example B was prepared similarly to Examples 1 and 2, except without the sheet stretching.
  • the unbonded nonwoven sheet was whole surface bonded as disclosed in U.S. Pat. No. 7,744,989. Each side of the sheet was run over a smooth steam roll at 359 kPa steam pressure and at a speed of 91 m/min.
  • Comparative Examples C and D are commercial Spunbond-Meltblown-Spunbond (SMS) laminated products purchased from Midwest Filtration Co. Cincinnati, Ohio and Comparative Example E is a commercial nonwoven made of Polypropylene and is used as a separator for NiMH batteries.
  • SMS Spunbond-Meltblown-Spunbond
  • Tables 1 and 2 show how examples of this invention compared to the comparative examples that were tested. Data in Tables 1 and 2 are for samples that were not sulfonated.
  • Table 3 shows the results obtained before and after sulfonation. Examples 1-1 and 2-1 demonstrated superior ammonia trapping ability after sulfonation with only a small loss in tensile strength.
  • Example 1 0 0 38.8
  • Example 1-1 3.62 0.1679 25.7
  • Example 2 0 0 40.7
  • Example 2-1 2.02 0.4479 37.6 Comparative 0.0 0.0 22.1
  • Example C Comparative 1.5 0.176 9.9
  • Example C-1 Comparative 0.0 0.00 41.3
  • Example D Comparative 3.1 0.13 15.7
  • Example D-1

Abstract

A separator medium for electrochemical cells that contains at least one nonwoven sheet of polymeric fibers. The nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size. The sheet may be sulfonated to a level of 0.67% and demonstrates superior tensile properties after sulfonation and relative to previously known separators.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to the field of separators for electrochemical cells, and in particular alkaline batteries.
  • 2. Description of the Related Art
  • Alkaline batteries have become increasingly more popular because of their high energy density. As such, these batteries are increasingly used in applications normally reserved for the traditional lead-acid battery systems.
  • In order to achieve extended battery life and efficiency in alkaline systems, the use of battery separators is required. The battery separators are located between the positive and negative plates so as to provide, (1) a separation between the electrodes of opposite charge, (2) an electrolyte reservoir, (3) a uniform electrolyte distribution across the electrode surface so as to permit uniform current density and (4) a space for electrode expansion.
  • Battery separators used in alkaline batteries at present are commonly formed of a polyolefin, preferably polypropylene, polyamide or nylon non-woven sheet.
  • One of the major deficiencies in nickel metal hydride (NiMH) battery systems is their high rate of self-discharge, that is, continuously losing their charge during storage. The “ammonia-shuttle” has major influence on the self-discharge. The nitrogen containing impurities in Ni electrode are oxidized to form nitrate which migrate through the separator to the cathode. The nitrate is reduced to ammonia at the cathode. The ammonia again passes through the separator and reaches the nickel electrode and the shuttle is completed.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a separator medium for electrochemical cell, where a electrochemical cell can be a battery or a capacitor. In one embodiment, the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
  • The present invention is directed to a separator medium for alkaline batteries, and in particular nickel metal hydride batteries. In one embodiment, the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size. In a further embodiment, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur. In a further embodiment, the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • The invention is further directed to a process for producing a separator medium for electrochemical cells.
  • The invention is still further directed to an electrochemical cell wherein the cell is an alkaline battery comprising separator medium that further comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and wherein the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • DETAILED DESCRIPTION
  • Applicants specifically incorporate the entire contents of all cited references in this disclosure. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
  • Definitions
  • The term “polymer” as used herein, generally includes but is not limited to, homopolymers, copolymers (such as for example, block, graft, random and alternating copolymers), terpolymers, etc., and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic, and random symmetries.
  • The term “polyolefin” as used herein, is intended to mean any of a series of largely saturated polymeric hydrocarbons composed only of carbon and hydrogen. Typical polyolefins include, but are not limited to, polyethylene, polypropylene, polymethylpentene, and various combinations of the monomers ethylene, propylene, and methylpentene.
  • The term “polyethylene” as used herein is intended to encompass not only homopolymers of ethylene, but also copolymers wherein at least 85% of the recurring units are ethylene units such as copolymers of ethylene and alpha-olefins. Preferred polyethylenes include low-density polyethylene, linear low-density polyethylene, and linear high-density polyethylene. A preferred linear high-density polyethylene has an upper limit melting range of about 130° C. to 140° C., a density in the range of about 0.941 to 0.980 gram per cubic centimeter, and a melt index (as defined by ASTM D-1238-57T Condition E) of between 0.1 and 100, and preferably less than 4.
  • The term “polypropylene” as used herein is intended to embrace not only homopolymers of propylene but also copolymers where at least 85% of the recurring units are propylene units. Preferred polypropylene polymers include isotactic polypropylene and syndiotactic polypropylene.
  • The term “nonwoven sheet” as used herein means a structure of individual fibers or threads that are positioned in a random manner to form a planar material without an identifiable pattern, as in a knitted fabric.
  • The term “plexifilament” as used herein means a three-dimensional integral network or web of a multitude of thin, ribbon-like, film-fibril elements of random length. Typically, these have a mean film thickness of less than about 4 micrometers and a median fibril width of less than about 25 micrometers. The average film-fibril cross sectional area if mathematically converted to a circular area would yield an effective diameter between about 1 micrometer and 25 micrometers. In plexifilamentary structures, the film-fibril elements intermittently unite and separate at irregular intervals in various places throughout the length, width and thickness of the structure to form a continuous three-dimensional network.
  • “Sulfonation” refers to chemical binding of sulfur containing moieties to at least a fraction of the polymer that the fiber comprises. Sulfonation can be carried out by any method known to one of skill in the art. For example, sulfonation can be carried out using the vapor phase surface sulfonation of webs described in U.S. Pat. No. 3,684,554. The basic process involves contacting the dry polymer web with continuous blast of gaseous SO3 (2-15% volume in dry inert gas) that can run continuously at high speed (100-200 ft/sec). The sulfonated polymer web can be rinsed with DI water. Sulfonation may also be carried out by the process of U.S. Pat. No. 6,403,265 using concentrated sulfuric acid.
  • Description
  • The present invention overcomes the problems inherent in the currently used separators and provides a wettable sheet material with the desired tensile strength, ammonia absorption characteristic, electrolyte absorption and electrical resistance properties which is usable in alkaline batteries.
  • An object of the present invention is therefore to provide a wettable sheet material useful as a separator in alkaline batteries. Another object of the present invention is to provide a sheet material which is wettable by electrolyte and has good electrolyte absorption and ammonia absorption in an alkaline battery system.
  • The present invention is therefore directed to a separator medium for alkaline batteries, and in particular nickel metal hydride batteries. In one embodiment, the medium comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size. In a further embodiment, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur. In a further embodiment, the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • The polymeric fibers may comprise polymers selected from the group consisting of polyolefins, polyesters, polyamides, polyaramids, polysulfones, polyimides, fluorinated polymers and combinations thereof. When the polymeric fibers are made from polyolefin the polymers may be selected from the group consisting of polyethylene, polypropylene, polybutylene and polymethylpentene.
  • Suitable polymers for use in the alkaline battery separator also include aliphatic polyamide, semi-aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polysulfone, polyvinylidene fluoride, polymethyl pentene, polyphenylene sulfide, polyacetyl, polyacrylonitrile, polyurethane, aromatic polyamide and blends, mixtures and copolymers thereof. Polymers that are especially suitable for use in the alkaline battery separator include polyvinyl alcohol, cellulose, aliphatic polyamide and polysulfone.
  • The polymeric fibers can be plexifilamentary fiber strands. The polymeric fibers may furthermore have non-circular cross sections.
  • In a further embodiment, the nonwoven sheet is a uniaxially stretched nonwoven sheet where the stretching has taken place in the machine direction. The nonwoven sheet may furthermore have a surface area of about 0.5 to about 1.0 m2/g.
  • In a still further embodiment the nonwoven sheet consists of fibers that have a number average fiber diameter greater than 1 micrometer for 100% of the fibers.
  • The nonwoven sheet may have an ammonia trapping of 0.20 mmole/g and a machine direction tensile strength retention of at least 16 Newtons/centimeter (N/cm.)
  • The invention is further directed to a process for producing a separator medium for electrochemical cells. The process comprises the steps of:
      • (i) Flash spinning a solution of 12% to 24% by weight polyethylene in a spin agent consisting of a mixture of normal pentane and cyclopentane at a spinning temperature from about 205° C. to 220° C. to form plexifilamentary fiber strands and collecting the plexifilamentary fiber strands into an unbonded web;
      • (ii) Uniaxially stretching the unbonded web in the machine direction between heated draw rolls at a temperature between about 124° C. and about 154° C., positioned between about 5 cm and about 30 cm apart and stretched between about 3% and 25% to form the stretched web; and
      • (iii) Bonding the stretched web between heated bonding rolls at a temperature between about 124° C. and about 154° C. to form a nonwoven sheet wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and
      • a maximum pore size that is more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
  • The process for producing a separator medium may further comprise sulfonating the nonwoven sheet after bonding the stretched web.
  • The invention is further directed to an electrochemical cell wherein the cell is an alkaline battery comprising separator medium that further comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and wherein the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
  • The battery can be an alkaline primary battery, e.g., Zinc-Manganese Oxide or Zn—MnO2 battery in which the anode is zinc and the cathode is manganese oxide (MnO2), or Zinc-Air battery in which the anode is zinc and the cathode is air, or it can be an alkaline secondary battery, e.g., a Nickel Cadmium battery in which the anode is cadmium and the cathode is Nickel oxy-hydroxide (NiOOH), Nickel Zinc or Ni—Zn battery in which the anode is zinc and the cathode is NiOOH, Nickel Metal Hydride (NiMH) battery in which the anode is metal hydride (e.g. LaNi5) and the cathode is NiOOH or Nickel-Hydrogen or NiH2 battery in which the anode is hydrogen (H2) and the cathode is NiOOH. Other types of alkaline batteries include Zinc/Mercuric Oxide in which the anode is zinc, and the cathode is mercury oxide (HgO), Cadmium/Mercuric Oxide in which the anode is cadmium and the cathode is mercury oxide, Zinc/Silver Oxide in which the anode is zinc and the cathode is silver oxide (AgO), Cadmium/Silver Oxide in which the anode is cadmium and the cathode is silver oxide. All of these battery types use 30-40% potassium hydroxide as the electrolyte.
  • The alkaline battery of this embodiment of the invention can include a separator having an ionic resistance of less than about 300 milliohms-cm2, preferably less than 200 milliohms-cm2, most preferably less than 100 mohms-cm2, as measured in 35% potassium hydroxide electrolyte solution at 1 KHz.
  • In some embodiments of the invention, it may be preferable to crosslink the polymeric fine fibers in order to maintain the porous structure and improve the structural integrity of the separator in the electrolyte.
  • In some embodiments of the invention, it may be preferable to coat the separators with surfactants prior to forming into a battery in order to improve the wettability and wicking properties in 30-40% KOH electrolyte. The surfactant is one that is stable in a strong alkaline environment, such as an ionic surfactant. Alternatively, the separators can undergo acrylic acid grafting to improve the wettability of separators.
  • EXAMPLES
  • Test Methods
  • Ionic Resistance in KOH electrolyte is a measure of a separator's resistance to the flow of ions, and was determined as follows. Samples were cut into small pieces (1″×1″) and soaked in 35% potassium hydroxide overnight to ensure thorough wetting. Samples were sandwiched between two Teflon® shims with a 1 cm2 window exposing the sample. The sandwich of Teflon® shims and sample was placed in a resistance cell having two platinum electrodes such that the window was facing the two electrodes. The resistance was measured at 1 KHz using an HP milliohmeter. The measurement was repeated without any separator between the Teflon® shims. The difference between the two readings is the resistance (milliohms) of the sample. The separator resistance is then multiplied by the area of the electrodes (1 cm2 in this case) and the results are reported in milliohms-cm2.
  • Basis Weight was determined by ASTM D-3776, which is hereby incorporated by reference and reported in g/m2.
  • Porosity was calculated by dividing the basis weight of the sample in g/m2 by the polymer density in g/cm3 and by the sample thickness in micrometers and multiplying by 100 and subsequently subtracting from 100%, i.e., percent porosity=100−basis weight/(density×thickness)×100.
  • Fiber Diameter was determined as follows. Ten scanning electron microscope (SEM) images at 5,000× magnification were taken of each fine fiber layer sample. The diameter of eleven (11) clearly distinguishable fine fibers were measured from the photographs and recorded. Defects were not included (i.e., lumps of fine fibers, polymer drops, intersections of fine fibers). The average (mean) fiber diameter for each sample was calculated.
  • Thickness was determined by ASTM D1777, which is hereby incorporated by reference, and is reported in mils and converted to micrometers.
  • Mean Flow Pore Size was measured according to ASTM Designation E 1294-89, “Standard Test Method for Pore Size Characteristics of Membrane Filters Using Automated Liquid Porosimeter” which approximately measures pore size characteristics of membranes with a pore size diameter of 0.05 μm to 300 μm by using automated bubble point method from ASTM Designation F 316 using a capillary flow porosimeter (model number CFP-34RTF8A-3-6-L4, Porous Materials, Inc. (PMI), Ithaca, N.Y.). Individual samples (8, 20 or 30 mm diameter) were wetted with low surface tension fluid (1,1,2,3,3,3-hexafluoropropene, or “Galwick,” having a surface tension of 16 dyne/cm). Each sample was placed in a holder, and a differential pressure of air was applied and the fluid removed from the sample. The differential pressure at which wet flow is equal to one-half the dry flow (flow without wetting solvent) is used to calculate the mean flow pore size using supplied software.
  • Tensile Strength was measured according to ASTM D5035-95, “Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)” and was reported in kg/cm2.
  • Surface Area was measure using a BET method. Branaur, Emmet and Teller (BET) theory relates the amount of gas adsorption on a solid surface to surface area. One gram of sample was placed in a sample chamber and placed in liquid nitrogen to be degassed under vacuum. After any surface adsorbed gases have been removed from the sample surface, nitrogen is introduced to the sample. The volume of nitrogen consumed by surface adsorption is measured and related to surface area.
  • The ammonia trapping capacity was measured by ASTM D7129-09 “Standard test method for determination of ammonia trapping in a grafted battery separator”. The test measures amount of ammonia retained by separator when a predetermined amount of separator and ammonia hydroxide are conditioned under a controlled temperature for a day.
  • Four different levels of sulfonation on the stretch bonded nonwoven webs were carried out using the vapor phase surface sulfonation of webs described in U.S. Pat. No. 3,684,554, issued Aug. 15, 1972. The basic process involves contacting the dry polymer web with continuous blast of gaseous SO3 (2-15% volume in dry inert gas) that can run continuously at high speed (100-200 ft/sec). The sulfonated polymer web was rinsed with DI water.
  • The % sulfur on the sulfonated samples was measured by Micro-Analysis, Inc, (Wilmington Del.) Sulfur analyses are performed by one of two procedures. In the Carlo Erba 1108 Sulfur Autoanalyzer, samples are weighed on an electronic microbalance and then introduced into the autoanalyzer which is maintained under a positive pressure with the carrier gas of helium. Dynamic flash combustion takes place at approximately 1400° C. in an oxygen atmosphere. Quantitative combustion is achieved by passing the mixture of gases over tungstic anhydride on alumina to remove any fluorine and then over the oxidizing agent tungstic anhydride. The mixture is then passed over copper to remove excess oxygen and to reduce the oxides of nitrogen to elemental nitrogen. The resulting mixture is directed to the chromatographic column containing Perapak PQS which is maintained at a constant temperature in the range 60° C.-80° C., and the individual components are separated and sulfur is eluted as sulfur dioxide. The sulfur dioxide is measured with a thermal conductivity detector whose signal feeds to a computer for data processing.
  • Using the LECO CHNS.932 analyzer, the products of combustion in a CHNS analysis are CO2, H2O, NOx, and SOx. The gases, which are carried through the system by the helium carrier, are swept through the oxidation tube packed with WO3 and copper. The copper removes excess oxygen to complete the conversion to SO2. Oxides of Nitrogen are reduced to N2. The gas mixture is swept through the H2O infrared detection cell, and then passed through a water trap where H2O is removed.
  • The remaining gaseous mixture is then passed through SO2, and CO2 IR cells, respectively. The SO2, and CO2 are then removed and N2 is passed through a thermal conductivity detector. The signals are fed to a computer for data processing.
  • Examples 1 and 2 representing nonwoven sheets of the present invention were made from flash spinning technology as disclosed in U.S. Pat. No. 7,744,989, incorporated herein by reference with additional thermal stretching prior to sheet bonding. Unbonded nonwoven sheets were flash spun from a 20 weight percent concentration of high density polyethylene having a melt index of 0.7 g/10 min (measured according to ASTM D-1238 at 190° C. and 2.16 kg load) in a spin agent of 60 weight percent normal pentane and 40 weight percent cyclopentane. The unbonded nonwoven sheets of Examples 1 and 2 were stretched and whole surface bonded. The sheets were run between pre-heated rolls at 146° C., two pairs of bond rolls at 146° C., one roll for each side of the sheet, and backup rolls at 146° C. made by formulated rubber that meets Shore A durometer of 85-90 and two chill rolls. Examples 1 and 2were stretched 20% between two pre-heated rolls with 10 cm span length at a rate 30.5 m/min at bonding temperature of 146° C. Example 1 was calendered under nip pressure at 500 PLI and Example 2 was made without the calendering. Comparative Example A was Tyvek® 1056D (available from DuPont of Wilmington, Del.), a commercial flash spun nonwoven sheet product of basis weight 54.4 gsm. The sheet physical properties are given in Tables 1 and 2.
  • Comparative Example B was prepared similarly to Examples 1 and 2, except without the sheet stretching. The unbonded nonwoven sheet was whole surface bonded as disclosed in U.S. Pat. No. 7,744,989. Each side of the sheet was run over a smooth steam roll at 359 kPa steam pressure and at a speed of 91 m/min.
  • Comparative Examples C and D are commercial Spunbond-Meltblown-Spunbond (SMS) laminated products purchased from Midwest Filtration Co. Cincinnati, Ohio and Comparative Example E is a commercial nonwoven made of Polypropylene and is used as a separator for NiMH batteries.
  • Tables 1 and 2 show how examples of this invention compared to the comparative examples that were tested. Data in Tables 1 and 2 are for samples that were not sulfonated.
  • TABLE 1
    Basis Weight Thickness (μm) Porosity (%)
    Sample (grams/meter2) @10 KPa (calculated)
    Example 1 37.3 91.4 57.5%
    Example 2 40.7 182.9 76.8%
    Comparative 54.2 172.7 67.2%
    Example A
    Comparative 54.6 234.3 75.7%
    Example B
    Comparative 61.0 381.2 83.3%
    Example C
    Comparative 88.1 491.7 81.3%
    Example D
    Comparative 63.8 144.2 53.8%
    Example E
  • TABLE 2
    Maximum Maximum
    Minimum Mean Maximum Pore Size/ Pore Size/ Surface
    Pore Size Pore Size Pore Size Mean Minimum Area
    Sample (μm) (μm) (μm) Pore Size Pore Size (m2g)
    Example 1 0.5 3.4 12.0 3.5 22.0 1.15
    Example 2 0.6 8.3 22.6 2.7 37.7 0.72
    Comparative 0.2 2.1 7.4 3.5 38.4 4.80
    Example A
    Comparative 0.4 2.9 10.0 3.4 22.9 3.43
    Example B
    Comparative 6.5 9.8 20.7 2.1 3.2 0.41
    Example C
    Comparative 4.3 7.7 23.7 3.1 5.6 0.47
    Example D
    Comparative 3.4 13.3 36.1 2.7 10.5 0.22
    Example E
  • Table 3 shows the results obtained before and after sulfonation. Examples 1-1 and 2-1 demonstrated superior ammonia trapping ability after sulfonation with only a small loss in tensile strength.
  • TABLE 3
    Sulfur content Ammonia trapping MD Tensile
    Sample (%) (mmole/g) Strength (N/cm)
    Example 1 0 0 38.8
    Example 1-1 3.62 0.1679 25.7
    Example 2 0 0 40.7
    Example 2-1 2.02 0.4479 37.6
    Comparative 0.0 0.0 22.1
    Example C
    Comparative 1.5 0.176 9.9
    Example C-1
    Comparative 0.0 0.00 41.3
    Example D
    Comparative 3.1 0.13 15.7
    Example D-1

Claims (15)

1. A separator medium for electrochemical cells comprising at least one nonwoven sheet comprising polymeric fibers, wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when the polymeric fibers are not subjected to sulfonation.
2. (canceled)
3. The separator medium of claim 1, wherein the polymeric fibers comprise polymers selected from the group consisting of polyolefins, polyesters, polyamides, polyaramids, polysulfones, polyimides, fluorinated polymers and combinations thereof.
4. The separator medium of claim 3, wherein the polymeric fibers are made from polyolefin polymers selected from the group consisting of polyethylene, polypropylene, polybutylene and polymethylpentene.
5. The separator medium of claim 1, wherein the polymeric fibers have non-circular cross sections.
6. The separator medium of claim 1, wherein the polymeric fibers are plexifilamentary fiber strands.
7. The separator medium of claim 1, wherein the nonwoven sheet is a uniaxially stretched nonwoven sheet in the machine direction.
8. The separator medium of claim 1, wherein the nonwoven sheet has a surface area of about 0.5 to about 1.0 m2/g.
9. The separator medium of claim 1, wherein the nonwoven sheet consists of fibers that have a number average fiber diameter greater than 1 micrometer for 100% of the fibers.
10. The separator medium of claim 1, wherein the nonwoven sheet has an ammonia trapping capacity of 0.20 mmole/g and a machine direction tensile strength retention of at least 16 newtons/centimeter (N/cm).
11. The separator medium of claim 1, wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
12. A process for producing a separator medium for electrochemical cells comprising:
flash spinning a solution of 12% to 24% by weight polyethylene in a spin agent consisting of a mixture of normal pentane and cyclopentane at a spinning temperature from about 205° C. to 220° C. to form plexifilamentary fiber strands and collecting the plexifilamentary fiber strands into an unbonded web;
uniaxially stretching the unbonded web in the machine direction between heated draw rolls at a temperature between about 124° C. and about 154° C., positioned between about 5 cm and about 30 cm apart and stretched between about 3% and 25% to form the stretched web; and
bonding the stretched web between heated bonding rolls at a temperature between about 124° C. and about 154° C. to form a nonwoven sheet wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and a maximum pore size that is more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size.
13. The process for producing the separator medium of claim 12, further comprising sulfonating the nonwoven sheet after bonding the stretched web.
14. An electrochemical cell of claim 1, wherein the cell is either a battery or a capacitor.
15. An electrochemical cell wherein the cell is an alkaline battery comprising separator medium that further comprises at least one nonwoven sheet comprising polymeric fibers wherein the nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and wherein the nonwoven sheet has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size, the polymeric fibers are sulfonated and contain at least 0.67% by weight of sulfur and wherein the separator retains at least 70% of its machine direction (MD) tensile strength relative to the medium when it is not subjected to sulfonation.
US14/078,663 2012-11-14 2013-11-13 Separator media for electrochemical cells Abandoned US20140134498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/078,663 US20140134498A1 (en) 2012-11-14 2013-11-13 Separator media for electrochemical cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261726168P 2012-11-14 2012-11-14
US14/078,663 US20140134498A1 (en) 2012-11-14 2013-11-13 Separator media for electrochemical cells

Publications (1)

Publication Number Publication Date
US20140134498A1 true US20140134498A1 (en) 2014-05-15

Family

ID=49627132

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/442,412 Abandoned US20160276640A1 (en) 2012-11-14 2013-11-08 Separator media for electrochemical cells
US14/078,663 Abandoned US20140134498A1 (en) 2012-11-14 2013-11-13 Separator media for electrochemical cells
US15/931,732 Pending US20200274122A1 (en) 2012-11-14 2020-05-14 Separator media for electrochemical cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/442,412 Abandoned US20160276640A1 (en) 2012-11-14 2013-11-08 Separator media for electrochemical cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/931,732 Pending US20200274122A1 (en) 2012-11-14 2020-05-14 Separator media for electrochemical cells

Country Status (6)

Country Link
US (3) US20160276640A1 (en)
EP (1) EP2920830B1 (en)
JP (1) JP6358711B2 (en)
KR (5) KR20210024209A (en)
CN (1) CN104969381B (en)
WO (1) WO2014078186A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014501B2 (en) 2014-03-22 2018-07-03 Hollingsworth & Vose Company Battery separators having a low apparent density
CN108574080A (en) * 2018-07-06 2018-09-25 江苏卓高新材料科技有限公司 A kind of diaphragm preprocess method and device
WO2019055792A1 (en) 2017-09-15 2019-03-21 Spectrum Brands, Inc. Separator for alkaline cells
US10270074B2 (en) 2015-02-19 2019-04-23 Hollingsworth & Vose Company Battery separators comprising chemical additives and/or other components
CN110055680A (en) * 2019-05-10 2019-07-26 上海纳旭实业有限公司 The preparation method and product of nano cellulose composite film and application
CN111566842A (en) * 2017-09-26 2020-08-21 斯瓦蒙卢森堡有限责任公司 Alkaline battery separator with controlled pore size
EP3828323A1 (en) * 2015-06-11 2021-06-02 DuPont Safety & Construction, Inc. Plexifilamentary film-fibril strands of polymer
US11128014B2 (en) * 2017-02-10 2021-09-21 Daramic, Llc Separators with fibrous mat, lead acid batteries using the same, and methods and systems associated therewith
US11353513B2 (en) * 2014-06-20 2022-06-07 Duracell U.S. Operations, Inc. Primary alkaline battery with integrated in-cell resistances
CN115449906A (en) * 2022-08-30 2022-12-09 福建成东新材料科技有限公司 Preparation method of polymethylpentene spun monofilament
WO2023220354A1 (en) * 2022-05-13 2023-11-16 Hollingsworth & Vose Company Thermal insulation materials for batteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305947B (en) * 2016-04-25 2022-01-04 松下知识产权经营株式会社 Battery and battery system
JP6925784B2 (en) * 2016-05-31 2021-08-25 日本バイリーン株式会社 Alkaline battery separator and its manufacturing method
CN107904944B (en) * 2017-11-10 2018-10-16 青岛大学 A kind of preparation method of improved polyalkene non-woven membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147804A1 (en) * 2003-01-23 2006-07-06 Daiwabo Co., Ltd. Separator material and method of producing the same, and alkali secondary battery separator

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684554A (en) 1969-06-02 1972-08-15 Dow Chemical Co Method for the vapor phase surface sulfonation of plastic webs
JPS54140941A (en) * 1978-04-26 1979-11-01 Mitsui Petrochemical Ind Method of producing battery separator
WO1988010330A1 (en) * 1987-06-20 1988-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Reticulate polypropylene fibers, process for their production, and reticulate fiber nonwoven fabric
TW204377B (en) * 1989-07-12 1993-04-21 Asahi Chemical Ind
US5830603A (en) * 1993-09-03 1998-11-03 Sumitomo Electric Industries, Ltd. Separator film for a storage battery
JPH07122258A (en) * 1993-10-27 1995-05-12 Mitsubishi Paper Mills Ltd Nonwoven fabric for alkaline battery separator and its manufacture
JP4291794B2 (en) * 1998-11-16 2009-07-08 大和紡績株式会社 Battery separator and battery using the same
JP3430455B2 (en) * 1999-04-02 2003-07-28 東洋紡績株式会社 Alkaline battery separator
JP2000294218A (en) * 1999-04-02 2000-10-20 Toyobo Co Ltd Separator for alkaline battery
DE60038842D1 (en) 1999-04-02 2008-06-26 Toyo Boseki Battery separator, manufacturing process and alkaline battery
CN1221688C (en) 1999-10-18 2005-10-05 纳幕尔杜邦公司 Flash-spun sheet material
ES2374814T3 (en) * 2002-06-14 2012-02-22 Toray Industries, Inc. POROUS MEMBRANE AND MANUFACTURING PROCEDURE OF A POROUS MEMBRANE.
US20050029695A1 (en) * 2002-09-25 2005-02-10 Weinberg Mark Gary Surface-modified plexifilamentary structures, and compositions therefor
JP4759239B2 (en) * 2003-09-17 2011-08-31 ダイワボウホールディングス株式会社 Battery separator and method for producing the same
JP4639620B2 (en) * 2004-03-29 2011-02-23 トヨタ自動車株式会社 Alkaline storage battery
JP2011198632A (en) * 2010-03-19 2011-10-06 Nippon Kodoshi Corp Battery separator and secondary battery
JP5100718B2 (en) * 2009-08-04 2012-12-19 パナソニック株式会社 Prismatic nickel metal hydride storage battery
AU2013235001A1 (en) * 2012-03-22 2014-09-18 E. I. Du Pont De Nemours And Company Method for recovering hydrocarbon fluids from a hydraulic fracturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147804A1 (en) * 2003-01-23 2006-07-06 Daiwabo Co., Ltd. Separator material and method of producing the same, and alkali secondary battery separator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014501B2 (en) 2014-03-22 2018-07-03 Hollingsworth & Vose Company Battery separators having a low apparent density
US11353513B2 (en) * 2014-06-20 2022-06-07 Duracell U.S. Operations, Inc. Primary alkaline battery with integrated in-cell resistances
US11892513B2 (en) 2014-06-20 2024-02-06 Duracell U.S. Operations, Inc. Primary alkaline battery with integrated in-cell resistances
US11500026B2 (en) 2014-06-20 2022-11-15 Duracell U.S. Operations, Inc. Primary alkaline battery with integrated in-cell resistances
US10270074B2 (en) 2015-02-19 2019-04-23 Hollingsworth & Vose Company Battery separators comprising chemical additives and/or other components
EP3828323A1 (en) * 2015-06-11 2021-06-02 DuPont Safety & Construction, Inc. Plexifilamentary film-fibril strands of polymer
US11261543B2 (en) 2015-06-11 2022-03-01 Dupont Safety & Construction, Inc. Flash spinning process
US11128014B2 (en) * 2017-02-10 2021-09-21 Daramic, Llc Separators with fibrous mat, lead acid batteries using the same, and methods and systems associated therewith
EP3682490A4 (en) * 2017-09-15 2021-07-28 Energizer Brands, LLC Separator for alkaline cells
WO2019055792A1 (en) 2017-09-15 2019-03-21 Spectrum Brands, Inc. Separator for alkaline cells
US11670823B2 (en) 2017-09-15 2023-06-06 Energizer Brands, Llc Separator for alkaline cells
US11811086B2 (en) 2017-09-26 2023-11-07 Swm Luxembourg Sarl Alkaline battery separators having controlled pore size
CN111566842A (en) * 2017-09-26 2020-08-21 斯瓦蒙卢森堡有限责任公司 Alkaline battery separator with controlled pore size
CN108574080A (en) * 2018-07-06 2018-09-25 江苏卓高新材料科技有限公司 A kind of diaphragm preprocess method and device
CN110055680A (en) * 2019-05-10 2019-07-26 上海纳旭实业有限公司 The preparation method and product of nano cellulose composite film and application
WO2023220354A1 (en) * 2022-05-13 2023-11-16 Hollingsworth & Vose Company Thermal insulation materials for batteries
CN115449906A (en) * 2022-08-30 2022-12-09 福建成东新材料科技有限公司 Preparation method of polymethylpentene spun monofilament

Also Published As

Publication number Publication date
WO2014078186A1 (en) 2014-05-22
KR20230004962A (en) 2023-01-06
JP6358711B2 (en) 2018-07-18
US20200274122A1 (en) 2020-08-27
EP2920830A1 (en) 2015-09-23
KR20200067926A (en) 2020-06-12
KR20210024209A (en) 2021-03-04
US20160276640A1 (en) 2016-09-22
KR102146811B1 (en) 2020-08-21
KR20150084842A (en) 2015-07-22
CN104969381A (en) 2015-10-07
CN104969381B (en) 2017-07-11
JP2015536550A (en) 2015-12-21
KR20210118212A (en) 2021-09-29
KR102221467B1 (en) 2021-03-02
EP2920830B1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
US20200274122A1 (en) Separator media for electrochemical cells
US7112389B1 (en) Batteries including improved fine fiber separators
KR101374434B1 (en) Electrochemical double layer capacitors including improved nanofiber separators
US20080305389A1 (en) Batteries with permanently wet-able fine fiber separators
KR20140058443A (en) Single-layer lithium ion battery separator
Wang et al. Polyvinyl alcohol/Lyocell dual-layer paper-based separator for primary zinc-air batteries
US20070160902A1 (en) Alkaline storage battery
EP0710994A2 (en) Battery separator comprising a non-woven web of polyolefinic, grafted fibers
Lee et al. High temperature resistant electrospun nanofibrous meta-aramid separators for lithium ion batteries
JP2006269384A (en) Separator for alkaline battery
US20090122466A1 (en) Electrochemical capacitors
JP2014120607A (en) Separator for power storage device

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIM, HYUN SUNG;ARORA, PANKAJ;SIGNING DATES FROM 20131219 TO 20140218;REEL/FRAME:032291/0778

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION