US20140125190A1 - Stator of an electric motor - Google Patents

Stator of an electric motor Download PDF

Info

Publication number
US20140125190A1
US20140125190A1 US14/151,447 US201414151447A US2014125190A1 US 20140125190 A1 US20140125190 A1 US 20140125190A1 US 201414151447 A US201414151447 A US 201414151447A US 2014125190 A1 US2014125190 A1 US 2014125190A1
Authority
US
United States
Prior art keywords
stator
housing
stator core
rim
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/151,447
Inventor
Yvan Bourqui
Miha Furlan
Michael Watzek
David Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Electric SA
Original Assignee
Johnson Electric Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Electric Switzerland AG filed Critical Johnson Electric Switzerland AG
Priority to US14/151,447 priority Critical patent/US20140125190A1/en
Assigned to JOHNSON ELECTRIC SWITZERLAND AG reassignment JOHNSON ELECTRIC SWITZERLAND AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SAIA-BURGESS MURTEN AG
Assigned to JOHNSON ELECTRIC S.A. reassignment JOHNSON ELECTRIC S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON ELECTRIC SWITZERLAND AG
Publication of US20140125190A1 publication Critical patent/US20140125190A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a stator of an electric motor and to a method for manufacturing the same.
  • Stators of conventional motors which have an inner rotor and a wound outer stator, are typically made of single piece iron laminations stacked along the axial direction of the motor. Such constructions have a low number of pieces and high stator stability.
  • winding of coils on a stator core made of single-piece laminations is difficult and time-consuming due to the narrow opening remaining between the inner ends of adjacent teeth or poles of the stator core.
  • the limited possibilities for wire guidance does not allow optimization of the copper fill factor.
  • the copper fill factor relates to the percentage of the area for the windings within the stator core which is actually occupied by the windings. Generally, a higher fill factor, means better motor performance.
  • free space is required for the winding machine. The less free space there is the more difficult and time consuming the winding process.
  • Segmented stators have been used to overcome the above problems.
  • the coils are wound on individual stator segments prior to assembling them together to form the stator core.
  • one problem with segmented stators is how to combine the segments together and to fix the segments to the housing of the stator.
  • the present invention provides a method of manufacturing a stator of an electric motor, comprising: providing a stator core comprising a yoke and a plurality of inwardly extending poles; forming a stator winding by winding coils about the poles; placing the stator core within a housing that has a cross sectional area defined by an inner circumferential surface of the housing surrounding the yoke, slightly greater than the cross sectional area of the stator core defined by the yoke; and deforming portions of the housing to reduce the cross sectional area of the housing to cause the housing to grip the stator core to prevent rotational movement of the stator core relative to the housing.
  • the method further comprises: providing a plurality of spaces between the housing and the yoke when placing the stator core within the housing, and deforming the portions of the housing to at least partly fill the spaces.
  • the method further comprises: forming each individual stator segment by stamping laminations from sheet material, each lamination having a rim section and a pole section, and stacking and fixing together a predetermined number of laminations, the rim sections of the stacked laminations forming the rim and the poles sections of the stacked laminations forming the pole of the stator segment.
  • the method further comprises: forming a flat section in the outer edge of the rim section of at least some of the laminations before the laminations are stacked together to create the spaces between the yoke and the housing.
  • the method further comprises: arranging the segments with coils wound thereon around a mandrel before placing the segments into the housing; deforming the housing; and removing the mandrel after the housing has been deformed.
  • the method further comprises: forming the recesses as continuous axially extending slots and deforming the portions of the housing into ridges that extend radially into the recesses, thereby reducing the cross sectional area of the housing and causing the housing to grip the stator core.
  • the present invention provides a stator of an electric motor, comprising: a stator core comprising a yoke and a plurality of poles extending inwardly from the yoke; a winding formed by coils wound about the poles of the stator core; and a housing enclosing the stator core, wherein the housing grips the stator core and has at least one inwardly deformed portion that retains the stator core in the housing without rotational movement of the stator core relative to the housing.
  • a number of recesses are formed in an outer surface of the yoke, and the at least one deformed portion comprises protrusions extending inwardly from an inner surface of the housing and engaging respective recesses.
  • the stator core comprises a plurality of individual stator segments coupled to each other in a circumferential direction of the stator.
  • each stator segment forms a respective one of the recesses.
  • the recesses are slots, and the protrusions are continuous or discontinuous ridges.
  • each stator segment comprises a plurality of laminations stacked together, each lamination comprises a rim section and a pole section extending inwardly from the rim section, the stacked rim sections forming a rim of the segment, the rims of adjacent segments being arranged to form the yoke of the stator core, and the stacked pole sections of each segment forming one of the poles of the stator core.
  • each rim section has a notch in an outer edge thereof, the notches of each segment cooperatively forming one of the recesses of the yoke.
  • an interlock structure is formed between adjacent ends of adjacent segments.
  • the interlock structure comprises a coupling projection on one end of the rim of one segment and a coupling recess in the adjacent end of the rim of an adjacent segment, the coupling projection engaging with the coupling recess.
  • FIG. 1 is a cross sectional view of a stator of an electric motor in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a plan view of a segment of the stator of FIG. 1 ;
  • FIG. 3 shows two segments of the stator, insulated and wound, ready to be assembled
  • FIG. 4 shows six wound segments placed about a mandrel, ready to be assembled
  • FIG. 5 shows the assembly of FIG. 4 being fixed to a stator housing
  • FIG. 6 illustrates an assembled stator
  • FIG. 7 is a view similar to FIG. 5 , of a stator of an electric motor in accordance with an alternative embodiment of the present invention.
  • FIGS. 1 to 6 illustrate a stator for an electric motor in accordance with a first preferred embodiment of the present invention.
  • FIG. 6 shows the completed stator while
  • FIG. 1 shows a schematic plan view of the stator core 10 fitted inside a stator housing 60 .
  • the stator windings have been omitted for ease of understanding the construction of the stator.
  • FIGS. 2 to 5 schematically show different stages in the manufacture of the stator.
  • the stator comprises a stator core 10 , a winding 40 wound on the stator core 10 , and a housing 60 enclosing the stator core 10 and winding 40 .
  • the stator core 10 comprises a cylindrical yoke 12 and a plurality of poles 14 extending inwardly from the yoke 12 .
  • the inner ends of the poles 14 are disposed on a common circumference which surrounds a central hole.
  • the central hole is coaxial with the yoke 12 .
  • the housing 60 is made of magnetically conductive material, such as soft-magnetic iron, which allows the housing 60 to be a part of the magnetic circuit of the motor.
  • the stator core 10 is formed from a plurality of split individual segments 20 coupled in series in the circumferential direction thereof.
  • One segment is shown in FIG. 2 .
  • Each segment comprises a stack of a predetermined number of laminations 21 , fixed together by known means.
  • Each lamination 21 is stamped from sheet material such as sheet electrical steel, and comprises a rim section 22 and a pole section 24 extending inwardly from the rim section 22 .
  • the stacked rim sections 22 from a rim of the segment and the rim of adjacent segments 20 are coupled to each other to form the yoke 12 of the stator core 10 .
  • the stacked pole sections 24 of each segment 20 form one of the poles 14 of the stator core 10 .
  • a number of corresponding protrusions 18 are formed on the inner surface of the housing 60 and engage with a corresponding recess 16 , to thereby prevent the stator core 10 from rotating relative to the housing 60 in the circumferential direction of the housing 60 .
  • the recesses 16 are slots, and the protrusions 18 are ridges.
  • the protrusions 18 are formed by deforming the housing, in particular, by pressing the housing with tools to form grooves 64 in the side of the housing, as will be described in detail hereinafter.
  • the recesses 16 may be continuous or comprise a plurality of discontinuous sections.
  • the protrusions 18 may be continuous or discontinuous ridges to match the recesses or otherwise. The discontinuous ridges may resemble discrete bumps.
  • a dielectric frame 30 covers or partially covers the stacked pole sections 24 (poles 14 ) of each segment to insulate coils of the winding 40 from the stator core 10 .
  • Each pole has one coil wound over the dielectric frame.
  • the stator core 10 comprises six segments and the coils are connected into 3 phases with the two coils of each phase being connected in series as shown in FIG. 3 .
  • the two segments of each phase are arranged diametrically opposed. Alternative embodiments with a different number of segments are envisioned and possible.
  • the interface between adjacent segments may be a simple flat surface extending in a radial plane
  • the preferred embodiment has an interlock structure formed between adjacent ends of adjacent segments.
  • the interlock structure is a coupling projection 224 provided on one end of the stacked rim section 22 of one segment 20 and a coupling recess 226 formed in the adjacent end of the stacked rim section of the adjacent segment.
  • the projection 224 fits into and engages with the recess 226 .
  • each segment has a coupling projection 224 and a coupling recess 226 .
  • the interlock structure assists assembly.
  • the method of manufacturing the stator comprises the following steps. Providing a plurality of individual stator segments 20 , as shown in FIG. 2 . Placing a dielectric frame 30 on the pole of each segment 20 . Winding coils around the frame 30 on the pole of each segment. Where the coils of a phase are to be connected in series, the coils may be wound in phase lots meaning that the coils of a single phase are wound one after the other such that the coils are formed from a single continuous piece of wire.
  • the segments are coupled together or arranged about a mandrel 70 to form a cylindrical stator core 10 , as shown in FIG. 4 .
  • the segments may be fastened to a dedicated support (not shown) to keep the segments on the mandrel and axially aligned with each other.
  • the mandrel and segments are then placed inside a cylindrical housing 60 .
  • the housing has an inside diameter or cross sectional area slightly larger that the outside diameter or the cross sectional area of the stator core so that the stator core is easily placed into the mandrel.
  • the recesses 16 form spaces between the housing and the yoke.
  • the housing is then deformed by radially pressing tools into the housing at locations corresponding to the spaces. This forms grooves 64 in the outer surface of the housing and projections on the inner surface of the housing.
  • the projections 18 extend into the recesses and lock the housing to the stator core to prevent relative rotational movement.
  • the deforming step actually reduces the diameter of the housing causing the housing to grip the yoke of the stator core, thus fixing the stator core to the housing.
  • the housing now prevents the segments from separating from each other. After the stator is formed, the support and the mandrel 70 are removed.
  • the cross section of the housing 60 is not limited to a circle.
  • the cross section of the housing 60 may be polygonal, for example hexagonal.
  • the yoke of the stator core 10 has a shape substantially matching with the housing 60 .
  • the recesses 16 are replaced by flat sections 16 ′ formed in the otherwise arcuate outer surface of the segments.
  • portions of the housing 60 facing the spaces 17 are inwardly pressed to at least partly fill the corresponding spaces 17 and the cross sectional area of the housing 60 is reduced, which results in the housing 60 firmly gripping and retaining the stator core 10 therein without rotation movement relative to each other.
  • the inwardly deformed portions of the housing 60 become protrusions 18 which partly fill the corresponding spaces 17 and make contact with the corresponding flat sections 16 ′ of the yoke 12 .
  • the inwardly deformed portions of the housing 60 may fully fill the corresponding spaces.
  • the method of enclosing a wound stator core by a housing and then inwardly deforming portions of the housing to reduce the cross sectional area of the housing to cause the housing to firmly grip and retain the stator core therein as described above may also be used to make a stator having a stator core made of single-piece laminations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A stator for an electric motor has a stator core, a winding and a housing enclosing the stator core and winding. The stator core has a yoke and a plurality of poles extending inwardly from the yoke. The winding formed by coils wound about the poles of the stator core. The housing grips the stator core and has at least one inwardly deformed portion that retains the stator core in the housing and prevents rotational movement of the stator core relative to the housing.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of co-pending application Ser. No. 12/986,603, filed on Jan. 7, 2011, for which priority is claimed under 35 U.S.C. §120; and this application claims priority under 35 U.S.C. § 119(a) from Patent Application No. 201010002570.6 filed in The People's Republic of China on Jan. 8, 2010.
  • FIELD OF THE INVENTION
  • The present invention relates to a stator of an electric motor and to a method for manufacturing the same.
  • BACKGROUND OF THE INVENTION
  • Stators of conventional motors which have an inner rotor and a wound outer stator, are typically made of single piece iron laminations stacked along the axial direction of the motor. Such constructions have a low number of pieces and high stator stability. However, winding of coils on a stator core made of single-piece laminations is difficult and time-consuming due to the narrow opening remaining between the inner ends of adjacent teeth or poles of the stator core. Furthermore, the limited possibilities for wire guidance does not allow optimization of the copper fill factor. The copper fill factor relates to the percentage of the area for the windings within the stator core which is actually occupied by the windings. Generally, a higher fill factor, means better motor performance. However, free space is required for the winding machine. The less free space there is the more difficult and time consuming the winding process.
  • Segmented stators have been used to overcome the above problems. In segmented stators, the coils are wound on individual stator segments prior to assembling them together to form the stator core. However, besides the task of handling a larger number of stator segments, one problem with segmented stators is how to combine the segments together and to fix the segments to the housing of the stator.
  • The present invention aims to solve the above problem.
  • SUMMARY OF THE INVENTION
  • Accordingly, in one aspect thereof, the present invention provides a method of manufacturing a stator of an electric motor, comprising: providing a stator core comprising a yoke and a plurality of inwardly extending poles; forming a stator winding by winding coils about the poles; placing the stator core within a housing that has a cross sectional area defined by an inner circumferential surface of the housing surrounding the yoke, slightly greater than the cross sectional area of the stator core defined by the yoke; and deforming portions of the housing to reduce the cross sectional area of the housing to cause the housing to grip the stator core to prevent rotational movement of the stator core relative to the housing.
  • Preferably, the method further comprises: providing a plurality of spaces between the housing and the yoke when placing the stator core within the housing, and deforming the portions of the housing to at least partly fill the spaces.
  • Preferably, the method further comprises: forming a plurality of axially extending recesses in an outer surface of the yoke to create the spaces; deforming the portions of the housing by radially pressing the housing to form inwardly extending projections; and engaging the projections with the recesses.
  • Preferably, the method further comprises: forming the stator core from a plurality of individual stator segments, each segment having a rim forming a part of the yoke and a pole forming one of the poles of the stator; placing a dielectric frame on each pole; and winding the respective coil about the pole over the dielectric frame.
  • Preferably, the method further comprises: forming each individual stator segment by stamping laminations from sheet material, each lamination having a rim section and a pole section, and stacking and fixing together a predetermined number of laminations, the rim sections of the stacked laminations forming the rim and the poles sections of the stacked laminations forming the pole of the stator segment.
  • Preferably, the method further comprises: forming notches in the rim section of at least some of the laminations before the laminations are stacked together, to form the recesses in the yoke.
  • Alternatively, the method further comprises: forming a flat section in the outer edge of the rim section of at least some of the laminations before the laminations are stacked together to create the spaces between the yoke and the housing.
  • Preferably, the method further comprises: arranging the segments with coils wound thereon around a mandrel before placing the segments into the housing; deforming the housing; and removing the mandrel after the housing has been deformed.
  • Preferably, the method further comprises: forming the recesses as continuous axially extending slots and deforming the portions of the housing into ridges that extend radially into the recesses, thereby reducing the cross sectional area of the housing and causing the housing to grip the stator core.
  • According to a second aspect, the present invention provides a stator of an electric motor, comprising: a stator core comprising a yoke and a plurality of poles extending inwardly from the yoke; a winding formed by coils wound about the poles of the stator core; and a housing enclosing the stator core, wherein the housing grips the stator core and has at least one inwardly deformed portion that retains the stator core in the housing without rotational movement of the stator core relative to the housing.
  • Preferably, a number of recesses are formed in an outer surface of the yoke, and the at least one deformed portion comprises protrusions extending inwardly from an inner surface of the housing and engaging respective recesses.
  • Preferably, the stator core comprises a plurality of individual stator segments coupled to each other in a circumferential direction of the stator.
  • Preferably, each stator segment forms a respective one of the recesses.
  • Preferably, the recesses are slots, and the protrusions are continuous or discontinuous ridges.
  • Preferably, each stator segment comprises a plurality of laminations stacked together, each lamination comprises a rim section and a pole section extending inwardly from the rim section, the stacked rim sections forming a rim of the segment, the rims of adjacent segments being arranged to form the yoke of the stator core, and the stacked pole sections of each segment forming one of the poles of the stator core.
  • Preferably, each rim section has a notch in an outer edge thereof, the notches of each segment cooperatively forming one of the recesses of the yoke.
  • Preferably, an interlock structure is formed between adjacent ends of adjacent segments.
  • Preferably, the interlock structure comprises a coupling projection on one end of the rim of one segment and a coupling recess in the adjacent end of the rim of an adjacent segment, the coupling projection engaging with the coupling recess.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A preferred embodiment of the invention will now be described, by way of example only, with reference to figures of the accompanying drawings. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with a same reference numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.
  • FIG. 1 is a cross sectional view of a stator of an electric motor in accordance with a preferred embodiment of the present invention;
  • FIG. 2 is a plan view of a segment of the stator of FIG. 1;
  • FIG. 3 shows two segments of the stator, insulated and wound, ready to be assembled;
  • FIG. 4 shows six wound segments placed about a mandrel, ready to be assembled;
  • FIG. 5 shows the assembly of FIG. 4 being fixed to a stator housing;
  • FIG. 6 illustrates an assembled stator; and
  • FIG. 7 is a view similar to FIG. 5, of a stator of an electric motor in accordance with an alternative embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1 to 6 illustrate a stator for an electric motor in accordance with a first preferred embodiment of the present invention. FIG. 6 shows the completed stator while FIG. 1 shows a schematic plan view of the stator core 10 fitted inside a stator housing 60. The stator windings have been omitted for ease of understanding the construction of the stator. FIGS. 2 to 5 schematically show different stages in the manufacture of the stator.
  • The stator comprises a stator core 10, a winding 40 wound on the stator core 10, and a housing 60 enclosing the stator core 10 and winding 40. The stator core 10 comprises a cylindrical yoke 12 and a plurality of poles 14 extending inwardly from the yoke 12. The inner ends of the poles 14 are disposed on a common circumference which surrounds a central hole. The central hole is coaxial with the yoke 12. The housing 60 is made of magnetically conductive material, such as soft-magnetic iron, which allows the housing 60 to be a part of the magnetic circuit of the motor.
  • The stator core 10 is formed from a plurality of split individual segments 20 coupled in series in the circumferential direction thereof. One segment is shown in FIG. 2. Each segment comprises a stack of a predetermined number of laminations 21, fixed together by known means. Each lamination 21 is stamped from sheet material such as sheet electrical steel, and comprises a rim section 22 and a pole section 24 extending inwardly from the rim section 22. The stacked rim sections 22 from a rim of the segment and the rim of adjacent segments 20 are coupled to each other to form the yoke 12 of the stator core 10. The stacked pole sections 24 of each segment 20 form one of the poles 14 of the stator core 10. In this embodiment, the rim section 22 of the lamination 21 has an arcuate outer edge extending in the circumferential direction of the yoke 12 of the stator core 10, to give the yoke a circular circumference. Each rim section 22 has a notch 222 in the outer edge, aligned with the corresponding pole section 24 in the radial direction of the yoke 12. The notches 222 of the laminations 21, when stacked to form the segment 20, cooperatively form a recess 16 extending axially along the outer surface of the yoke.
  • A number of corresponding protrusions 18 are formed on the inner surface of the housing 60 and engage with a corresponding recess 16, to thereby prevent the stator core 10 from rotating relative to the housing 60 in the circumferential direction of the housing 60. In this embodiment, the recesses 16 are slots, and the protrusions 18 are ridges. Preferably the protrusions 18 are formed by deforming the housing, in particular, by pressing the housing with tools to form grooves 64 in the side of the housing, as will be described in detail hereinafter. The recesses 16 may be continuous or comprise a plurality of discontinuous sections. The protrusions 18 may be continuous or discontinuous ridges to match the recesses or otherwise. The discontinuous ridges may resemble discrete bumps.
  • A dielectric frame 30 covers or partially covers the stacked pole sections 24 (poles 14) of each segment to insulate coils of the winding 40 from the stator core 10. Each pole has one coil wound over the dielectric frame. In this embodiment, the stator core 10 comprises six segments and the coils are connected into 3 phases with the two coils of each phase being connected in series as shown in FIG. 3. The two segments of each phase are arranged diametrically opposed. Alternative embodiments with a different number of segments are envisioned and possible.
  • While the interface between adjacent segments may be a simple flat surface extending in a radial plane, the preferred embodiment has an interlock structure formed between adjacent ends of adjacent segments. Preferably, the interlock structure is a coupling projection 224 provided on one end of the stacked rim section 22 of one segment 20 and a coupling recess 226 formed in the adjacent end of the stacked rim section of the adjacent segment. The projection 224 fits into and engages with the recess 226. As shown in FIG. 2. preferably, each segment has a coupling projection 224 and a coupling recess 226. The interlock structure assists assembly.
  • The method of manufacturing the stator comprises the following steps. Providing a plurality of individual stator segments 20, as shown in FIG. 2. Placing a dielectric frame 30 on the pole of each segment 20. Winding coils around the frame 30 on the pole of each segment. Where the coils of a phase are to be connected in series, the coils may be wound in phase lots meaning that the coils of a single phase are wound one after the other such that the coils are formed from a single continuous piece of wire. Once the segments have been wound, they are coupled together or arranged about a mandrel 70 to form a cylindrical stator core 10, as shown in FIG. 4. Preferably, the segments may be fastened to a dedicated support (not shown) to keep the segments on the mandrel and axially aligned with each other. The mandrel and segments are then placed inside a cylindrical housing 60.
  • The housing has an inside diameter or cross sectional area slightly larger that the outside diameter or the cross sectional area of the stator core so that the stator core is easily placed into the mandrel. The recesses 16 form spaces between the housing and the yoke. The housing is then deformed by radially pressing tools into the housing at locations corresponding to the spaces. This forms grooves 64 in the outer surface of the housing and projections on the inner surface of the housing. The projections 18 extend into the recesses and lock the housing to the stator core to prevent relative rotational movement. The deforming step actually reduces the diameter of the housing causing the housing to grip the yoke of the stator core, thus fixing the stator core to the housing. At the same time the housing now prevents the segments from separating from each other. After the stator is formed, the support and the mandrel 70 are removed.
  • Understandably, the cross section of the housing 60 is not limited to a circle. The cross section of the housing 60 may be polygonal, for example hexagonal. The yoke of the stator core 10 has a shape substantially matching with the housing 60.
  • In the alternative embodiment shown in FIG. 7, the recesses 16 are replaced by flat sections 16′ formed in the otherwise arcuate outer surface of the segments. Before the deforming step, there are spaces 17 between the flat sections 16′ of the yoke 12 and the inner circumferential surface of the housing 60. During deformation, portions of the housing 60 facing the spaces 17 are inwardly pressed to at least partly fill the corresponding spaces 17 and the cross sectional area of the housing 60 is reduced, which results in the housing 60 firmly gripping and retaining the stator core 10 therein without rotation movement relative to each other. Preferably, the inwardly deformed portions of the housing 60 become protrusions 18 which partly fill the corresponding spaces 17 and make contact with the corresponding flat sections 16′ of the yoke 12. Alternatively, the inwardly deformed portions of the housing 60 may fully fill the corresponding spaces.
  • Understandably, the method of enclosing a wound stator core by a housing and then inwardly deforming portions of the housing to reduce the cross sectional area of the housing to cause the housing to firmly grip and retain the stator core therein as described above, may also be used to make a stator having a stator core made of single-piece laminations.
  • In the description and claims of the present application, each of the verbs “comprise”, “include”, “contain” and “have”, and variations thereof, are used in an inclusive sense, to specify the presence of the stated item but not to exclude the presence of additional items.
  • Although the invention is described with reference to one or more preferred embodiments, it should be appreciated by those skilled in the art that various modifications are possible. Therefore, the scope of the invention is to be determined by reference to the claims that follow.

Claims (17)

1. A stator of an electric motor, comprising:
a stator core comprising a yoke and a plurality of poles extending inwardly from the yoke;
a winding formed by coils wound about the poles of the stator core; and
a housing enclosing the stator core, wherein the housing grips the stator core and has at least one inwardly deformed portion that retains the stator core in the housing without rotational movement of the stator core relative to the housing.
2. The stator of claim 1, wherein a number of recesses are formed in an outer surface of the yoke, and the at least one deformed portion comprises protrusions extending inwardly from an inner surface of the housing and engaging respective recesses.
3. The stator of claim 2, wherein the stator core comprises a plurality of individual stator segments coupled to each other in a circumferential direction of the stator.
4. The stator of claim 3, wherein each stator segment forms a respective one of the recesses.
5. The stator of claim 4, wherein the recesses are slots, and the protrusions are continuous or discontinuous ridges.
6. The stator of claim 3, wherein each stator segment comprises a plurality of laminations stacked together, each lamination comprises a rim section and a pole section extending inwardly from the rim section, the stacked rim sections forming a rim of the segment, the rims of adjacent segments being arranged to form the yoke of the stator core, and the stacked pole sections of each segment forming one of the poles of the stator core.
7. The stator of claim 6, wherein each rim section has a notch in an outer edge thereof, the notches of each segment cooperatively forming one of the recesses of the yoke.
8. The stator of claim 3, wherein an interlocking structure is formed between adjacent ends of adjacent segments.
9. The stator of claim 8, wherein the interlocking structure comprises a coupling projection on one end of the rim of one segment and a coupling recess in the adjacent end of the rim of an adjacent segment, the coupling projection engaging with the coupling recess.
10. A stator of an electric motor, comprising:
a stator core comprising a plurality of individual segments each having a rim and a pole extending inwardly from the rim;
a winding formed by coils wound about the poles of the stator core; and
a housing enclosing and gripping the stator core,
wherein the housing has at least one inwardly deformed portion that retains the stator core in the housing without rotational movement of the stator core relative to the housing, the at least one inwardly deformed portion comprising at least one protrusion extending inwardly from an inner surface of the housing and at least one groove formed in an outer surface of the housing at a position corresponding to the at least one protrusion.
11. The stator of claim 10, wherein the stator core comprises six segments and the winding comprises six coils each wound on a corresponding segment, the six coils being connected into 3 phases each having two coils connected in series, the two coils of each phase being wound on two segments which are arranged diametrically opposed.
12. The stator of claim 10, wherein each segment forms a recess in an outer surface of the rim thereof, and the at least one deformed portion comprises a plurality of protrusions engaging respective recesses.
13. The stator of claim 12, wherein the recesses are slots, and the protrusions are continuous ridges.
14. The stator of claim 12, wherein the recesses are slots, and the protrusions are discontinuous ridges.
15. The stator of claim 10, wherein an interlocking structure is formed between adjacent ends of the rims of adjacent segments.
16. The stator of claim 15, wherein the interlocking structure comprises a coupling projection on one end of the rim of one segment and a coupling recess formed in the adjacent end of the rim of an adjacent segment, the coupling projection engaging with the coupling recess.
17. The stator of claim 10, wherein the at least one groove has two opposite axial ends each of which is spaced from a corresponding one of two opposite axial ends of the housing.
US14/151,447 2010-01-08 2014-01-09 Stator of an electric motor Abandoned US20140125190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/151,447 US20140125190A1 (en) 2010-01-08 2014-01-09 Stator of an electric motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010002570.6A CN102122868B (en) 2010-01-08 2010-01-08 Motor stator and manufacture method thereof
CN201010002570.6 2010-01-08
US12/986,603 US8689427B2 (en) 2010-01-08 2011-01-07 Stator of an electric motor
US14/151,447 US20140125190A1 (en) 2010-01-08 2014-01-09 Stator of an electric motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/986,603 Division US8689427B2 (en) 2010-01-08 2011-01-07 Stator of an electric motor

Publications (1)

Publication Number Publication Date
US20140125190A1 true US20140125190A1 (en) 2014-05-08

Family

ID=44251349

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/986,603 Expired - Fee Related US8689427B2 (en) 2010-01-08 2011-01-07 Stator of an electric motor
US14/151,447 Abandoned US20140125190A1 (en) 2010-01-08 2014-01-09 Stator of an electric motor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/986,603 Expired - Fee Related US8689427B2 (en) 2010-01-08 2011-01-07 Stator of an electric motor

Country Status (4)

Country Link
US (2) US8689427B2 (en)
JP (2) JP5876222B2 (en)
CN (1) CN102122868B (en)
DE (1) DE102011008092A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100158A1 (en) * 2011-01-11 2012-07-12 Denso Corporation Stator for rotating electrical machines and method of making same
KR20130035680A (en) * 2011-09-30 2013-04-09 삼성전기주식회사 Switched reluctance motor
CN102403820A (en) * 2011-11-17 2012-04-04 许晓华 Guiding structure of motor shell and stator
CN102403821A (en) * 2011-11-17 2012-04-04 许晓华 Guiding structure of motor shell and stator
DE102011086768A1 (en) * 2011-11-22 2013-05-23 Robert Bosch Gmbh Electric motor with a segmented stator
US20140015369A1 (en) * 2012-07-10 2014-01-16 Baker Hughes Incorporated Systems and Methods for Electric Motor Construction
JP6200720B2 (en) * 2013-01-28 2017-09-20 アスモ株式会社 Brushless motor and method for manufacturing brushless motor
US9806566B2 (en) 2012-08-30 2017-10-31 Asmo Co., Ltd. Brushless motor, stator, stator manufacturing method and brushless motor manufacturing method
JP2014050187A (en) * 2012-08-30 2014-03-17 Asmo Co Ltd Stator, manufacturing method of stator and brushless motor
JP6045300B2 (en) * 2012-08-30 2016-12-14 アスモ株式会社 Stator manufacturing method
JP6084040B2 (en) * 2013-01-10 2017-02-22 アスモ株式会社 Stator manufacturing method
TWI472129B (en) * 2012-11-21 2015-02-01 Ind Tech Res Inst Stator structure
JP6127794B2 (en) * 2013-07-18 2017-05-17 株式会社デンソー Rotating electric machine stator
JP6130257B2 (en) * 2013-07-19 2017-05-17 本田技研工業株式会社 Stator manufacturing apparatus and stator manufacturing method
DE102013216576A1 (en) * 2013-08-21 2015-02-26 Bühler Motor GmbH Stator core for an electronically commutated DC motor and method for manufacturing a stator
DE102014110073A1 (en) * 2014-07-17 2016-01-21 Pfeiffer Vacuum Gmbh vacuum pump
DE102014221427A1 (en) * 2014-10-22 2016-04-28 Robert Bosch Gmbh Device for mounting a stator in a housing
JP6402915B2 (en) * 2014-10-28 2018-10-10 パナソニックIpマネジメント株式会社 Brushless motor and electric tool
US20170229931A1 (en) * 2016-02-10 2017-08-10 Moog Inc. Motor lamination mitigating torque constant roll off
CN106849581A (en) * 2016-10-24 2017-06-13 瑞声科技(新加坡)有限公司 Permagnetic synchronous motor
TWI620399B (en) * 2016-12-19 2018-04-01 群光電能科技股份有限公司 Stator assembly and engaging type stator core
JP6826442B2 (en) * 2017-01-19 2021-02-03 本田技研工業株式会社 Stator
CN107061290A (en) * 2017-03-23 2017-08-18 佛山晓世科技服务有限公司 The fixing means and structure of a kind of motor and housing
CN107425619B (en) * 2017-08-28 2023-04-18 广东美芝制冷设备有限公司 Stator module, motor and compressor
CN111418131B (en) * 2017-12-07 2022-06-14 京瓷工业工具株式会社 Stator core
DE102018101000A1 (en) * 2018-01-17 2019-07-18 Ebm-Papst St. Georgen Gmbh & Co. Kg Drive devices Device
FR3087962B1 (en) * 2018-10-29 2022-01-14 Circor Ind BRUSHLESS DIRECT CURRENT ELECTRIC MOTOR WITH REDUCED COGGING TORQUE AND METHOD OF MANUFACTURING THEREOF
DK3745559T3 (en) * 2019-05-27 2022-06-07 Magnax Bv Stator til aksialfluxmaskine
FR3100093B1 (en) * 2019-08-21 2022-01-21 Valeo Systemes Dessuyage ASSEMBLY FOR ELECTRIC MOTOR, ELECTRIC MOTOR, ASSEMBLY METHOD AND ASSOCIATED CRIMPING TOOL
CA3153132A1 (en) * 2019-10-03 2021-04-08 Joseph L Dobmeier Electric motor with enhanced thermal characteristics
DE102021106186A1 (en) * 2021-03-15 2022-09-15 Ebm-Papst Mulfingen Gmbh & Co. Kg Modular, segmented stator package

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486435A (en) * 1946-06-21 1949-11-01 Harold B Rex Alternating current motor control
US4752707A (en) * 1986-02-06 1988-06-21 Morrill Wayne J Three-phase, one-third pitch motor
US5034670A (en) * 1989-04-21 1991-07-23 Mitsubishi Denki K.K. Control circuit for electromagnetic actuator
US6323574B1 (en) * 1998-09-29 2001-11-27 Toshiba Tec Kabushiki Kaisha Polyphase motor and polyphase motor system for driving the same
US20020134118A1 (en) * 2001-03-26 2002-09-26 Peachee C. Theodore Washing machine including a segmented stator switched reluctance motor
US6737785B2 (en) * 2002-05-20 2004-05-18 Emerson Electric Co. Method and apparatus for sealing an inner diameter of a segmented stator
US6744166B2 (en) * 2001-01-04 2004-06-01 Emerson Electric Co. End cap assembly for a switched reluctance electric machine
US20050200227A1 (en) * 2004-03-11 2005-09-15 Katsuhiro Fujishima Method for manufacturing motor yoke, motor yoke, and motor
JP2007259560A (en) * 2006-03-22 2007-10-04 Jtekt Corp Motor
US20080061645A1 (en) * 2006-09-11 2008-03-13 Jtekt Corporation Motor and electric pump
US7511399B2 (en) * 2004-02-14 2009-03-31 Robert Bosch Gmbh Stator assembly for an electrical machine
US7626304B2 (en) * 2005-10-12 2009-12-01 Panasonic Corporation Stator and motor, to which the stator is applied, and method of manufacturing the stator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050983B2 (en) * 1992-01-20 2000-06-12 株式会社東芝 Stator frame of rotating electric machine
US5567644A (en) * 1995-09-14 1996-10-22 Micron Technology, Inc. Method of making a resistor
JP3309243B2 (en) * 1996-02-22 2002-07-29 本田技研工業株式会社 Method and apparatus for assembling stator core
GB2310545B (en) * 1996-02-22 2000-04-19 Honda Motor Co Ltd Stator core and method and apparatus for assembling same
JP3424509B2 (en) 1997-07-10 2003-07-07 トヨタ自動車株式会社 Rotating electric machine stator
JP3860302B2 (en) * 1997-08-06 2006-12-20 日本電産シバウラ株式会社 Stator winding method and stator winding device
JP3704029B2 (en) * 2000-07-24 2005-10-05 三菱電機株式会社 Starting motor stator
JP2003158833A (en) * 2001-11-15 2003-05-30 Sankyo Seiki Mfg Co Ltd Motor stator and method of manufacturing it
JP4062938B2 (en) * 2002-03-07 2008-03-19 トヨタ自動車株式会社 Motor stator core assembly and method of assembling stator assembly
JP4036148B2 (en) * 2002-07-23 2008-01-23 株式会社豊田自動織機 Electric motor and electric compressor
CN100349360C (en) * 2002-10-31 2007-11-14 美国艾默生电气公司 Segmented stator with improved handling and winding characteristics and corresponding method
US7111380B2 (en) * 2002-10-31 2006-09-26 Emerson Electric Co. Method for forming an annular stator assembly
JP4444737B2 (en) 2003-06-24 2010-03-31 アスモ株式会社 Brushless motor and motor for power steering device
JP4269907B2 (en) * 2003-11-21 2009-05-27 株式会社豊田自動織機 Assembly method of stator core in hermetic electric compressor
JP3977351B2 (en) * 2004-04-22 2007-09-19 本田技研工業株式会社 Stator
JP2007043832A (en) 2005-08-03 2007-02-15 Asmo Co Ltd Manufacturing method of stator, brushless motor and yoke
JP2007043845A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Stator structure and manufacturing method thereof
JP2007129847A (en) * 2005-11-04 2007-05-24 Denso Corp Motor and fuel pump using the same
JP5008883B2 (en) 2006-03-23 2012-08-22 住友電気工業株式会社 Stator, stator core and stator core holding member
JP4807219B2 (en) * 2006-10-20 2011-11-02 トヨタ自動車株式会社 Stator core and rotating electric machine
JP2008199785A (en) 2007-02-13 2008-08-28 Toyota Motor Corp Stator core and rotary electric machine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486435A (en) * 1946-06-21 1949-11-01 Harold B Rex Alternating current motor control
US4752707A (en) * 1986-02-06 1988-06-21 Morrill Wayne J Three-phase, one-third pitch motor
US5034670A (en) * 1989-04-21 1991-07-23 Mitsubishi Denki K.K. Control circuit for electromagnetic actuator
US6323574B1 (en) * 1998-09-29 2001-11-27 Toshiba Tec Kabushiki Kaisha Polyphase motor and polyphase motor system for driving the same
US6744166B2 (en) * 2001-01-04 2004-06-01 Emerson Electric Co. End cap assembly for a switched reluctance electric machine
US20020134118A1 (en) * 2001-03-26 2002-09-26 Peachee C. Theodore Washing machine including a segmented stator switched reluctance motor
US6737785B2 (en) * 2002-05-20 2004-05-18 Emerson Electric Co. Method and apparatus for sealing an inner diameter of a segmented stator
US7511399B2 (en) * 2004-02-14 2009-03-31 Robert Bosch Gmbh Stator assembly for an electrical machine
US20050200227A1 (en) * 2004-03-11 2005-09-15 Katsuhiro Fujishima Method for manufacturing motor yoke, motor yoke, and motor
US7030525B2 (en) * 2004-03-11 2006-04-18 Asmo Co., Ltd. Method for manufacturing motor yoke, motor yoke, and motor
US7626304B2 (en) * 2005-10-12 2009-12-01 Panasonic Corporation Stator and motor, to which the stator is applied, and method of manufacturing the stator
JP2007259560A (en) * 2006-03-22 2007-10-04 Jtekt Corp Motor
US20080061645A1 (en) * 2006-09-11 2008-03-13 Jtekt Corporation Motor and electric pump

Also Published As

Publication number Publication date
US20110169367A1 (en) 2011-07-14
DE102011008092A1 (en) 2011-09-01
JP5876222B2 (en) 2016-03-02
CN102122868A (en) 2011-07-13
JP2016036255A (en) 2016-03-17
CN102122868B (en) 2016-06-29
JP2011142811A (en) 2011-07-21
US8689427B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
US8689427B2 (en) Stator of an electric motor
US9343934B2 (en) Electric motor
US8354769B2 (en) Rotating electrical machine and manufacturing method of a stator thereof
US7373711B2 (en) Motor armature manufacturing method
US20090102310A1 (en) Stator of motor
JP5557058B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP2011135640A (en) Insulator, and rotating electric machine and method of manufacturing the same
US9059611B2 (en) Stator core
US10230282B2 (en) Motor and stator thereof
US20180351417A1 (en) Rotating electric machine stator, rotating electric machine, and method for manufacturing rotating electric machine stator
US20020195900A1 (en) Stator with a radial winding and method for manufacturing same
US10833569B2 (en) Rotor core, rotor, motor, manufacturing method of rotor core, and manufacturing method of rotor
US20070267932A1 (en) Stator for inner rotor type rotating electric machine
EP1385257A2 (en) Method of making a stator for an electric machine
JP2012170295A (en) Stator of rotary electric machine and method of manufacturing the same
US20150076955A1 (en) Dual-out stator lamination for outer rotor motor
JP5376262B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP2010141965A (en) Stator, rotary electric machine, method of manufacturing the stator, and method of manufacturing the rotary electric machine
JP7271796B2 (en) Stator, rotating electrical machine, and manufacturing method for rotating electrical machine
WO2017038570A1 (en) Method for manufacturing armature, and armature
US20050258702A1 (en) Multiple winding coil shapes for increased slot fill
CN113572278A (en) Brushless motor stator and brushless motor
WO2024101340A1 (en) Insulation member, coil unit, stator, motor, and stator manufacturing method
RU2782441C2 (en) Stator of motor or electromagnetic generator with separate winding support latching on corresponding gear
JP2007104863A (en) Stator of abduction-type capacitor motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNSON ELECTRIC S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON ELECTRIC SWITZERLAND AG;REEL/FRAME:032237/0962

Effective date: 20140217

Owner name: JOHNSON ELECTRIC SWITZERLAND AG, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:SAIA-BURGESS MURTEN AG;REEL/FRAME:032235/0310

Effective date: 20110317

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION