US20140107565A1 - Intraocular irrigator-aspirator tip component - Google Patents
Intraocular irrigator-aspirator tip component Download PDFInfo
- Publication number
- US20140107565A1 US20140107565A1 US14/046,777 US201314046777A US2014107565A1 US 20140107565 A1 US20140107565 A1 US 20140107565A1 US 201314046777 A US201314046777 A US 201314046777A US 2014107565 A1 US2014107565 A1 US 2014107565A1
- Authority
- US
- United States
- Prior art keywords
- sleeve
- tip
- handpiece
- distal end
- aspiration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A61M1/0084—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
- A61M1/85—Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/77—Suction-irrigation systems
- A61M1/774—Handpieces specially adapted for providing suction as well as irrigation, either simultaneously or independently
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0204—Physical characteristics of the irrigation fluid, e.g. conductivity or turbidity
- A61M3/022—Volume; Flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M3/00—Medical syringes, e.g. enemata; Irrigators
- A61M3/02—Enemata; Irrigators
- A61M3/0279—Cannula; Nozzles; Tips; their connection means
- A61M3/0283—Cannula; Nozzles; Tips; their connection means with at least two inner passageways, a first one for irrigating and a second for evacuating
Definitions
- the present invention pertains to an improved irrigator-aspirator tip component of the type inserted into the lens capsule of an eye, such as for removing cortical material, washing, cleaning and/or polishing.
- a unitary, one-piece sleeve for an ophthalmic irrigator-aspirator instrument of the type having a handpiece with an aspiration opening through the distal end thereof and one or more irrigation openings adjacent to the aspiration opening.
- the instrument includes an elongated, narrow tip projecting from the handpiece distal end, such tip having an internal bore communicating with the handpiece aspiration opening and an aspiration port at or adjacent to a distal end of the tip.
- the novel sleeve has a proximate annular hub portion constructed and arranged to be manually connected to a distal end portion of the handpiece in a watertight fit, with the sleeve surrounding the full extent of the tip and the aspiration and irrigation openings of the handpiece.
- An intermediate portion of the sleeve forms a channel for an irrigation fluid between the exterior of the tip and the interior portion of the sleeve.
- the channel is in communication with the handpiece irrigation opening and an irrigation port adjacent to the distal end of the sleeve, for conveying the irrigation fluid through the channel and ejecting it from the irrigation port of the sleeve.
- the distal end portion of the sleeve is sized for manual connection over the distal portion of the tip in a watertight fit at a location between the sleeve irrigation port and the aspiration port of the tip.
- Such distal end portion of the sleeve has an aspiration port located to be in communication with the tip aspiration port.
- the sleeve proximate, intermediate, and distal portions are integral with each other and are formed of a resilient material that allows the sleeve to be manually stretched onto the handpiece and tip.
- the sleeve is intended to be a single use item for an ophthalmic procedure, but the tip is protected by the sleeve during use and can be reused.
- FIG. 1 is a top front perspective of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship;
- FIG. 2 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled
- FIG. 3 is a vertical axial section thereof with the parts shown in the positions of FIG. 2 ;
- FIG. 4 is a section corresponding to FIG. 3 but on a larger scale and with parts fully assembled;
- FIG. 4A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component of FIGS. 1-4 ;
- FIG. 5 is a top front perspective of a second embodiment of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship;
- FIG. 6 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled
- FIG. 7 is a vertical axial section thereof with the parts shown in the positions of FIG. 6 ;
- FIG. 8 is a section corresponding to FIG. 3 but on a larger scale and with parts fully assembled;
- FIG. 8A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component of FIGS. 5-8 ;
- FIG. 9 is a top front perspective of a modified form of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship;
- FIG. 10 is a fragmentary, enlarged, top plan thereof with the parts assembled
- FIG. 11 is a vertical axial section thereof with the parts shown in the positions of FIG. 10 ;
- FIG. 12 is a top front perspective of another modified form of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship;
- FIG. 13 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled
- FIG. 14 is a vertical axial section thereof with the parts shown in the positions of FIG. 13 ;
- FIG. 15 is a section corresponding to FIG. 14 but on a larger scale and with parts fully assembled.
- FIG. 15A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component of FIGS. 12-15 .
- an irrigation-aspiration handpiece 10 has a distal portion 12 adapted to receive a separate tip 14 which typically is surgical grade stainless steel or titanium.
- tip 14 is reusable and has an externally threaded proximate stem 16 for reception in the internally threaded bore 18 that opens at the distal end of the handpiece.
- FIGS. 2-4 show the tip 14 after it has been joined to the handpiece 10 .
- the tip 14 has an internal bore 17 that communicates with the central longitudinal bore 18 of the handpiece 10 .
- the handpiece is connected to a low pressure or vacuum source, such that aspiration is achieved through the distal end port 20 of the tip 16 as controlled by the user (typically a surgeon).
- the handpiece has an annular channel 22 for discharge of an irrigation liquid, such as to compensate for material aspirated through the tip 14 .
- a soft, resilient material such as silicone rubber
- the resilient sleeve 24 has a distal hub portion 26 with a wall diameter somewhat greater than the remainder of the sleeve for increased rigidity adjacent to a lip 28 in the area where the sleeve would typically be grasped by the surgeon or technician assembling the apparatus.
- the sleeve is tapered for ease in fitting the sleeve on and over the distal tip portion of the handpiece.
- the handpiece can be formed with an external thread 32 or a series of ribs to achieve a watertight fit of the sleeve on the handpiece.
- the diameter of an intermediate portion of the sleeve 24 gradually decreases along the length of the tip 14 , being sized to form an annular channel 34 which is in communication with the handpiece irrigation channel 22 .
- the wall thickness of the sleeve lessens to increase the overall flexibility of the sleeve in the area where it will protrude through a corneal incision.
- the distal end of the tip 14 has the end port 20 .
- the sleeve 24 has a distal end portion 36 that projects beyond the end port 20 , with an internal aspiration cavity 38 in communication therewith.
- the end portion 36 of the sleeve has an annular shoulder 40 to butt against the distal end of the tip 14 when the sleeve is inserted fully over the tip.
- An external aspiration port 42 is formed in the distal sleeve part 36 .
- port 42 extends obliquely, which is preferred, but it can be positioned at any desired location around the sleeve portion 36 .
- the wall thickness at the distal portion 36 is greater than the thickness where the sleeve fits over the tip 14 , for a somewhat less flexible but still soft tip that can be manipulated by the surgeon to a desired location.
- the fit of the sleeve around the distal end of the tip is very snug and watertight.
- one or more ports 44 are provided for expulsion of irrigation liquid close to the aspiration port but nevertheless spaced proximate therefrom.
- both ports will be positioned inside the cornea and usually inside the lens capsule.
- the distal part 36 of the sleeve is unsupported and should have sufficient rigidity that it does not collapse so as to block aspiration. Nevertheless, the part of the sleeve 24 proximate to the irrigation port 44 will be fitted through a small corneal slit, and should be sufficiently flexible to conform to the shape of the slit without unduly stretching or tearing the cornea.
- the sleeve is soft enough that the risk of tearing, cutting, or abrasion of eye tissue is reduced significantly.
- the sleeve protects the tip 14 from being damaged, such as by contact with other instruments during surgery.
- the sleeve can be a single-use item, allowing the aspiration tip to be used multiple times.
- FIGS. 5 to 8A correspond, respectively, to FIGS. 1 to 4A , but for a second representative embodiment of the present invention.
- the handpiece 10 is the same, including the distal portion 12 , central aspiration bore 18 , and annular irrigation channel 22 .
- the separate tip 14 ′ has the same threaded stem 16 for joining to the handpiece, but the distal end portion of the tip 14 ′ and the distal end portion of the sleeve 24 ′ are a little different.
- the distal end of the tip 14 ′ is closed, and the aspiration port 20 ′ opens through the side, very close to the distal end.
- the distal end portion 36 ′ of the resilient sleeve tightly embraces the closed end of the tip 14 ′ and the end portion on both sides of the port 20 ′ in a watertight fit.
- the sleeve 24 ′ has an aspiration port 42 ′ located to register with the tip port 20 ′ when the parts are assembled. Port 42 ′ can be smaller than port 20 ′ so that the hard and potentially sharp metal inner tip will not come in contact with delicate eye tissue during use.
- FIGS. 9-11 illustrate modifications that can be used with both embodiments to assist in obtaining the correct relative orientation.
- the tip 14 / 14 ′ is “clocked” to the handpiece 10 ′ so that the relative orientation will be the same each time one of the aspiration tips is connected. For example, in FIG. 9 the bend of the tip toward its distal end would always be oriented vertically upward.
- a registration mark (arrow 50 ) is formed on the exterior of the handpiece for reference, preferably on an enlarged extension 52 .
- Extension 52 has a flat annular face 54 from which the distal portion 12 ′ extends.
- Such portion 12 ′ has a pair of longitudinally spaced, circumferential ribs 32 ′ adjacent to the distal end of the handpiece.
- the sleeve 24 ′′ also has a registration mark (arrow 54 ) formed thereon. During assembly, the surgeon or technical assistant can manually pull the sleeve over the aspirator tip 14 / 14 ′ while keeping the registration marks in alignment, thereby assuring the correct relative orientation.
- the construction of the modified sleeve 24 ′′ and handpiece 10 ′ help assure that the sleeve will be fully stretched over the tip and handpiece to the desired degree, and no more.
- the proximate end of the sleeve will abut against the face 54 of the handpiece extension 52 , and, as seen in FIG. 11 , an internal rib 56 of the sleeve 24 ′′ is snugly received between the handpiece ribs 32 ′ when the desired fit is achieved.
- FIGS. 12 to 15A correspond, respectively, to FIGS. 1 to 4A , but for a third representative embodiment of the present invention.
- the handpiece 10 ′ is the same as previously described except for the distal portion 12 ′′′.
- the handpiece of the third embodiment still has the central aspiration bore 18 (see FIGS. 14 and 15 ) and annular irrigation channel 22 , and the bore and channel open through the distal end of the distal portion 12 ′′′.
- the outer periphery of the distal portion 12 ′′′ is configured for connection to a composite rigid tip component 60 .
- Tip component 60 has an internally threaded hub or base 62 for joining to the handpiece, such as by mating threads (external on the handpiece distal portion 12 ′′′ and internal in the hub or base 62 ).
- FIGS. 13 , 14 , and 15 show the hub or base 62 connected to the handpiece.
- the hub or base 62 can be formed of a rigid plastic material.
- the composite tip 60 includes a rigid (preferably surgical grade stainless steel or titanium) cannula 64 projecting distally from the hub or base 62 .
- the cannula is fixed in the base, such as by overmolding during manufacturing.
- the bore 66 of the cannula communicates with the aspiration bore 18 of the handpiece and can terminate at or near a distal port 68 .
- the hub or base 62 includes a distal protrusion or stem 70 .
- stem 70 has longitudinal passages 72 that communicate with the annular irrigation channel 20 of the handpiece.
- This embodiment includes a thin-walled resilient sleeve 24 ′′′ similar to the sleeves previously described.
- the proximate end portion (hub) 74 of sleeve 24 ′′′ can be fitted tightly over the stem 70 of the composite tip component 60 .
- an interior rib 76 at the proximate end of the sleeve can be received in a groove 78 at the proximate end of the stem for a reliable connection of the sleeve to the stem.
- the outer periphery of the stem can be a shape other than cylindrical and the proximate portion of the sleeve shaped the same.
- the stem and sleeve are approximately triangular in transverse cross section so the sleeve will be oriented correctly as it is slid on the stem prior to use of the IA instrument.
- the distal end of the rigid cannula opens through an end port 88 .
- the distal end portion of the resilient sleeve 24 ′′′ tightly embraces the tip of the cannula in a watertight fit.
- the sleeve 24 ′′′ has an aspiration port 80 in fluid communication with the bore of the cannula, and a nearby irrigation port 82 that communicates with the annular passage for irrigation liquid that flows from the handpiece.
- this embodiment shows an end port for the cannula
- the cannula and sleeve can be modified similar to the embodiment of FIGS. 6 to 8A for a side port application. Either way, it is intended that this embodiment of a composite tip and one-piece or unitary resilient sleeve be sold preassembled as a single use item for quick and reliable connection to a reusable handpiece. Both aspiration and irrigation are supported, and sterility is assured because the tip and sleeve are discarded after one use.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Surgery (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- External Artificial Organs (AREA)
- Surgical Instruments (AREA)
Abstract
An ophthalmic irrigator-aspirator has a handpiece with aspiration and irrigation openings through its distal end; and a narrow aspiration tip projecting distally. A flexible sleeve has an annular hub for watertight connection to the handpiece. The sleeve surrounds the full extent of the tip. An intermediate portion of the sleeve forms a channel for an irrigation fluid along the exterior of the tip to a port in the sleeve. The distal end of the sleeve is sized for a watertight connection over the distal portion of the tip. Such distal end of the sleeve has an aspiration port in communication with the tip aspiration port. The sleeve proximate, intermediate, and distal portions are integral with each other and are formed of a resilient material that allows the sleeve to be manually stretched onto the handpiece and tip.
Description
- This application claims the benefit of Provisional Application No. 61/759560, filed Feb. 1, 2013, and Provisional Application No. 61/710610, filed Oct. 5, 2012, the disclosures of which are hereby expressly incorporated by reference herein.
- The present invention pertains to an improved irrigator-aspirator tip component of the type inserted into the lens capsule of an eye, such as for removing cortical material, washing, cleaning and/or polishing.
- This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
- In accordance with the present invention, a unitary, one-piece sleeve is provided for an ophthalmic irrigator-aspirator instrument of the type having a handpiece with an aspiration opening through the distal end thereof and one or more irrigation openings adjacent to the aspiration opening. The instrument includes an elongated, narrow tip projecting from the handpiece distal end, such tip having an internal bore communicating with the handpiece aspiration opening and an aspiration port at or adjacent to a distal end of the tip. The novel sleeve has a proximate annular hub portion constructed and arranged to be manually connected to a distal end portion of the handpiece in a watertight fit, with the sleeve surrounding the full extent of the tip and the aspiration and irrigation openings of the handpiece. An intermediate portion of the sleeve forms a channel for an irrigation fluid between the exterior of the tip and the interior portion of the sleeve. The channel is in communication with the handpiece irrigation opening and an irrigation port adjacent to the distal end of the sleeve, for conveying the irrigation fluid through the channel and ejecting it from the irrigation port of the sleeve. The distal end portion of the sleeve is sized for manual connection over the distal portion of the tip in a watertight fit at a location between the sleeve irrigation port and the aspiration port of the tip. Such distal end portion of the sleeve has an aspiration port located to be in communication with the tip aspiration port. The sleeve proximate, intermediate, and distal portions are integral with each other and are formed of a resilient material that allows the sleeve to be manually stretched onto the handpiece and tip.
- The sleeve is intended to be a single use item for an ophthalmic procedure, but the tip is protected by the sleeve during use and can be reused.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
-
FIG. 1 is a top front perspective of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship; -
FIG. 2 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled; -
FIG. 3 is a vertical axial section thereof with the parts shown in the positions ofFIG. 2 ; -
FIG. 4 is a section corresponding toFIG. 3 but on a larger scale and with parts fully assembled; -
FIG. 4A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component ofFIGS. 1-4 ; -
FIG. 5 is a top front perspective of a second embodiment of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship; -
FIG. 6 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled; -
FIG. 7 is a vertical axial section thereof with the parts shown in the positions ofFIG. 6 ; -
FIG. 8 is a section corresponding toFIG. 3 but on a larger scale and with parts fully assembled; -
FIG. 8A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component ofFIGS. 5-8 ; -
FIG. 9 is a top front perspective of a modified form of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship; -
FIG. 10 is a fragmentary, enlarged, top plan thereof with the parts assembled; -
FIG. 11 is a vertical axial section thereof with the parts shown in the positions ofFIG. 10 ; -
FIG. 12 is a top front perspective of another modified form of an intraocular irrigator-aspirator tip component in accordance with the present invention with parts shown in exploded relationship; -
FIG. 13 is a corresponding perspective thereof on a somewhat larger scale showing some parts assembled; -
FIG. 14 is a vertical axial section thereof with the parts shown in the positions ofFIG. 13 ; -
FIG. 15 is a section corresponding toFIG. 14 but on a larger scale and with parts fully assembled; and -
FIG. 15A is a further enlarged, fragmentary, vertical section of the intraocular irrigator-aspirator tip component ofFIGS. 12-15 . - With reference to
FIG. 1 , an irrigation-aspiration handpiece 10 has adistal portion 12 adapted to receive aseparate tip 14 which typically is surgical grade stainless steel or titanium. In a representative embodiment,tip 14 is reusable and has an externally threadedproximate stem 16 for reception in the internally threadedbore 18 that opens at the distal end of the handpiece.FIGS. 2-4 show thetip 14 after it has been joined to thehandpiece 10. InFIG. 3 it can be seen that thetip 14 has aninternal bore 17 that communicates with the centrallongitudinal bore 18 of thehandpiece 10. At the proximate end, the handpiece is connected to a low pressure or vacuum source, such that aspiration is achieved through thedistal end port 20 of thetip 16 as controlled by the user (typically a surgeon). In addition, the handpiece has anannular channel 22 for discharge of an irrigation liquid, such as to compensate for material aspirated through thetip 14. - In accordance with the present invention, a one-piece or
unitary sleeve 24 of a soft, resilient material, such as silicone rubber, is provided for fitting tightly over thetip 14 and the distal end portion of thehandpiece 10 to which the tip has been joined. - With reference to
FIG. 4 , theresilient sleeve 24 has adistal hub portion 26 with a wall diameter somewhat greater than the remainder of the sleeve for increased rigidity adjacent to alip 28 in the area where the sleeve would typically be grasped by the surgeon or technician assembling the apparatus. At the proximate end, on theinternal face 30, the sleeve is tapered for ease in fitting the sleeve on and over the distal tip portion of the handpiece. The handpiece can be formed with anexternal thread 32 or a series of ribs to achieve a watertight fit of the sleeve on the handpiece. - The diameter of an intermediate portion of the
sleeve 24 gradually decreases along the length of thetip 14, being sized to form anannular channel 34 which is in communication with thehandpiece irrigation channel 22. Moving still farther in a distal direction, the wall thickness of the sleeve lessens to increase the overall flexibility of the sleeve in the area where it will protrude through a corneal incision. - The details of the distal-most portion of the
sleeve 24 andinner tip 14 are best seen inFIG. 4A . In this embodiment, the distal end of thetip 14 has theend port 20. Thesleeve 24 has adistal end portion 36 that projects beyond theend port 20, with aninternal aspiration cavity 38 in communication therewith. In the embodiment shown, theend portion 36 of the sleeve has anannular shoulder 40 to butt against the distal end of thetip 14 when the sleeve is inserted fully over the tip. Anexternal aspiration port 42 is formed in thedistal sleeve part 36. In the illustrated embodiment,port 42 extends obliquely, which is preferred, but it can be positioned at any desired location around thesleeve portion 36. The wall thickness at thedistal portion 36 is greater than the thickness where the sleeve fits over thetip 14, for a somewhat less flexible but still soft tip that can be manipulated by the surgeon to a desired location. The fit of the sleeve around the distal end of the tip is very snug and watertight. - Still referring to
FIG. 4A , one ormore ports 44 are provided for expulsion of irrigation liquid close to the aspiration port but nevertheless spaced proximate therefrom. Typically, during an intraocular procedure both ports will be positioned inside the cornea and usually inside the lens capsule. Thedistal part 36 of the sleeve is unsupported and should have sufficient rigidity that it does not collapse so as to block aspiration. Nevertheless, the part of thesleeve 24 proximate to theirrigation port 44 will be fitted through a small corneal slit, and should be sufficiently flexible to conform to the shape of the slit without unduly stretching or tearing the cornea. Whereas thetip 14 itself is very rigid and can have sharp edges that could tear delicate eye tissue with which they come into engagement, the sleeve is soft enough that the risk of tearing, cutting, or abrasion of eye tissue is reduced significantly. In addition, the sleeve protects thetip 14 from being damaged, such as by contact with other instruments during surgery. The sleeve can be a single-use item, allowing the aspiration tip to be used multiple times. -
FIGS. 5 to 8A correspond, respectively, toFIGS. 1 to 4A , but for a second representative embodiment of the present invention. Thehandpiece 10 is the same, including thedistal portion 12, central aspiration bore 18, andannular irrigation channel 22. Theseparate tip 14′ has the same threadedstem 16 for joining to the handpiece, but the distal end portion of thetip 14′ and the distal end portion of thesleeve 24′ are a little different. - As best seen in
FIG. 8A , the distal end of thetip 14′ is closed, and theaspiration port 20′ opens through the side, very close to the distal end. Thedistal end portion 36′ of the resilient sleeve tightly embraces the closed end of thetip 14′ and the end portion on both sides of theport 20′ in a watertight fit. Thesleeve 24′ has anaspiration port 42′ located to register with thetip port 20′ when the parts are assembled.Port 42′ can be smaller thanport 20′ so that the hard and potentially sharp metal inner tip will not come in contact with delicate eye tissue during use. - For both illustrated embodiments it is important that the
sleeve 24/24′ be fully inserted on thetip 14/14′, and for both embodiments it is important that the sleeve be correctly aligned or registered with the tip.FIGS. 9-11 illustrate modifications that can be used with both embodiments to assist in obtaining the correct relative orientation. - The
tip 14/14′ is “clocked” to thehandpiece 10′ so that the relative orientation will be the same each time one of the aspiration tips is connected. For example, inFIG. 9 the bend of the tip toward its distal end would always be oriented vertically upward. A registration mark (arrow 50) is formed on the exterior of the handpiece for reference, preferably on anenlarged extension 52.Extension 52 has a flatannular face 54 from which thedistal portion 12′ extends.Such portion 12′ has a pair of longitudinally spaced,circumferential ribs 32′ adjacent to the distal end of the handpiece. Thesleeve 24″ also has a registration mark (arrow 54) formed thereon. During assembly, the surgeon or technical assistant can manually pull the sleeve over theaspirator tip 14/14′ while keeping the registration marks in alignment, thereby assuring the correct relative orientation. - In addition, the construction of the modified
sleeve 24″ andhandpiece 10′ help assure that the sleeve will be fully stretched over the tip and handpiece to the desired degree, and no more. The proximate end of the sleeve will abut against theface 54 of thehandpiece extension 52, and, as seen inFIG. 11 , aninternal rib 56 of thesleeve 24″ is snugly received between thehandpiece ribs 32′ when the desired fit is achieved. -
FIGS. 12 to 15A correspond, respectively, toFIGS. 1 to 4A , but for a third representative embodiment of the present invention. Thehandpiece 10′ is the same as previously described except for thedistal portion 12′″. For example, the handpiece of the third embodiment still has the central aspiration bore 18 (seeFIGS. 14 and 15 ) andannular irrigation channel 22, and the bore and channel open through the distal end of thedistal portion 12′″. The outer periphery of thedistal portion 12′″ is configured for connection to a compositerigid tip component 60.Tip component 60 has an internally threaded hub orbase 62 for joining to the handpiece, such as by mating threads (external on the handpiecedistal portion 12′″ and internal in the hub or base 62).FIGS. 13 , 14, and 15 show the hub orbase 62 connected to the handpiece. - The hub or
base 62 can be formed of a rigid plastic material. Thecomposite tip 60 includes a rigid (preferably surgical grade stainless steel or titanium)cannula 64 projecting distally from the hub orbase 62. The cannula is fixed in the base, such as by overmolding during manufacturing. As seen inFIG. 15 , thebore 66 of the cannula communicates with the aspiration bore 18 of the handpiece and can terminate at or near adistal port 68. - As best seen in
FIGS. 13 and 14 , the hub orbase 62 includes a distal protrusion orstem 70. As seen inFIGS. 14 and 15 , stem 70 haslongitudinal passages 72 that communicate with theannular irrigation channel 20 of the handpiece. - This embodiment includes a thin-walled
resilient sleeve 24′″ similar to the sleeves previously described. The proximate end portion (hub) 74 ofsleeve 24′″ can be fitted tightly over thestem 70 of thecomposite tip component 60. As best seen inFIG. 15 , aninterior rib 76 at the proximate end of the sleeve can be received in agroove 78 at the proximate end of the stem for a reliable connection of the sleeve to the stem. For registration purposes, the outer periphery of the stem can be a shape other than cylindrical and the proximate portion of the sleeve shaped the same. In the illustrated embodiment the stem and sleeve are approximately triangular in transverse cross section so the sleeve will be oriented correctly as it is slid on the stem prior to use of the IA instrument. - As best seen in
FIG. 15A , the distal end of the rigid cannula opens through an end port 88. The distal end portion of theresilient sleeve 24′″ tightly embraces the tip of the cannula in a watertight fit. Thesleeve 24′″ has anaspiration port 80 in fluid communication with the bore of the cannula, and anearby irrigation port 82 that communicates with the annular passage for irrigation liquid that flows from the handpiece. - Although this embodiment shows an end port for the cannula, the cannula and sleeve can be modified similar to the embodiment of
FIGS. 6 to 8A for a side port application. Either way, it is intended that this embodiment of a composite tip and one-piece or unitary resilient sleeve be sold preassembled as a single use item for quick and reliable connection to a reusable handpiece. Both aspiration and irrigation are supported, and sterility is assured because the tip and sleeve are discarded after one use. - While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Claims (1)
1. A unitary, one-piece sleeve for an ophthalmic irrigator-aspirator instrument of the type having:
a handpiece with proximate and distal ends, the handpiece having an aspiration opening through the distal end thereof and one or more irrigation openings adjacent to the aspiration opening; and
an elongated, narrow tip projecting from the handpiece distal end, the tip having proximate and distal end portions and an internal bore communicating with the handpiece aspiration opening and an aspiration port at or adjacent to a distal end of the tip;
said sleeve comprising:
a proximate annular hub portion constructed and arranged to be manually connected to a distal end portion of the handpiece in a watertight fit and surrounding the aspiration and irrigation openings of the handpiece;
an intermediate portion surrounding the elongated tip of the instrument and forming an irrigation channel between the tip and an interior portion of the sleeve which channel is in communication with the handpiece irrigation opening, the intermediate sleeve portion having an irrigation port adjacent to a distal end thereof for ejection of an irrigation fluid therefrom; and
a distal end portion sized for manual connection over a distal portion of the tip in a watertight fit at a location distally of the sleeve irrigation port but proximate of the tip aspiration port, the sleeve distal end portion having an aspiration port located to be in communication with the tip aspiration port when the sleeve is connected over the distal portion of the tip; the sleeve proximate, intermediate, and distal portions being integral with each other and formed of a resilient material that allows the sleeve to be manually stretched onto the handpiece and tip, and enclosing the full extent of the tip.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/046,777 US20140107565A1 (en) | 2012-10-05 | 2013-10-04 | Intraocular irrigator-aspirator tip component |
US14/559,649 US9138347B2 (en) | 2012-10-05 | 2014-12-03 | Intraocular irrigator-aspirator tip component |
US14/856,359 US9387121B2 (en) | 2012-10-05 | 2015-09-16 | Intraocular irrigator-aspirator tip component |
US15/207,337 US10406275B2 (en) | 2012-10-05 | 2016-07-11 | Intraocular irrigator-aspirator tip component |
US16/557,709 US11097045B2 (en) | 2012-10-05 | 2019-08-30 | Intraocular irrigator-aspirator tip component |
US17/409,228 US20220152289A1 (en) | 2012-10-05 | 2021-08-23 | Intraocular irrigator-aspirator tip component |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261710610P | 2012-10-05 | 2012-10-05 | |
US201361759560P | 2013-02-01 | 2013-02-01 | |
US14/046,777 US20140107565A1 (en) | 2012-10-05 | 2013-10-04 | Intraocular irrigator-aspirator tip component |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/559,649 Continuation US9138347B2 (en) | 2012-10-05 | 2014-12-03 | Intraocular irrigator-aspirator tip component |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140107565A1 true US20140107565A1 (en) | 2014-04-17 |
Family
ID=50476011
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/046,777 Abandoned US20140107565A1 (en) | 2012-10-05 | 2013-10-04 | Intraocular irrigator-aspirator tip component |
US14/559,649 Active US9138347B2 (en) | 2012-10-05 | 2014-12-03 | Intraocular irrigator-aspirator tip component |
US14/856,359 Expired - Fee Related US9387121B2 (en) | 2012-10-05 | 2015-09-16 | Intraocular irrigator-aspirator tip component |
US15/207,337 Active 2034-08-02 US10406275B2 (en) | 2012-10-05 | 2016-07-11 | Intraocular irrigator-aspirator tip component |
US16/557,709 Active 2034-04-02 US11097045B2 (en) | 2012-10-05 | 2019-08-30 | Intraocular irrigator-aspirator tip component |
US17/409,228 Pending US20220152289A1 (en) | 2012-10-05 | 2021-08-23 | Intraocular irrigator-aspirator tip component |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/559,649 Active US9138347B2 (en) | 2012-10-05 | 2014-12-03 | Intraocular irrigator-aspirator tip component |
US14/856,359 Expired - Fee Related US9387121B2 (en) | 2012-10-05 | 2015-09-16 | Intraocular irrigator-aspirator tip component |
US15/207,337 Active 2034-08-02 US10406275B2 (en) | 2012-10-05 | 2016-07-11 | Intraocular irrigator-aspirator tip component |
US16/557,709 Active 2034-04-02 US11097045B2 (en) | 2012-10-05 | 2019-08-30 | Intraocular irrigator-aspirator tip component |
US17/409,228 Pending US20220152289A1 (en) | 2012-10-05 | 2021-08-23 | Intraocular irrigator-aspirator tip component |
Country Status (1)
Country | Link |
---|---|
US (6) | US20140107565A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328047A1 (en) * | 2014-05-19 | 2015-11-19 | Francis Y. Falck, Jr. | Cataract Removal Tool |
US20170312128A1 (en) * | 2016-04-29 | 2017-11-02 | Bausch & Lomb Incorporated | Ultrasonic Surgical Aspiration Needle Assembly with Molded Hub |
USD820441S1 (en) * | 2016-06-13 | 2018-06-12 | Integra Lifesciences Nr Ireland Limited | Surgical handpiece nosecone |
CN109513057A (en) * | 2018-11-07 | 2019-03-26 | 吉林大学 | A kind of negative pressure gastric lavage device for pediatrics |
US11324526B2 (en) | 2018-02-02 | 2022-05-10 | Calyxo, Inc. | Devices and methods for minimally invasive kidney stone removal by combined aspiration and irrigation |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140107565A1 (en) | 2012-10-05 | 2014-04-17 | Microsurgical Technology, Inc. | Intraocular irrigator-aspirator tip component |
WO2021051760A1 (en) * | 2019-09-18 | 2021-03-25 | 北京爱仁眼科门诊部有限公司 | Device for removing epithelial cells from lens equator |
CA3152443A1 (en) * | 2019-11-04 | 2021-05-14 | James Y. Chon | Irrigation sleeve for ophthalmic procedures |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188589A (en) * | 1991-10-10 | 1993-02-23 | Alcon Surgical, Inc. | Textured irrigating sleeve |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204328A (en) * | 1977-11-14 | 1980-05-27 | Kutner Barry S | Variable diameter aspirating tip |
US4652255A (en) | 1983-10-28 | 1987-03-24 | Miguel Martinez | Irrigating and aspirating handpiece for use in ophthalmic surgery |
US4983160A (en) * | 1985-09-27 | 1991-01-08 | Nestle S.A. | Rigid transparent fluid conduit for ophthalmic surgical irrigation |
US4764165A (en) * | 1986-07-17 | 1988-08-16 | Mentor O & O, Inc. | Ophthalmic aspirator-irrigator with valve |
US5151083A (en) | 1991-07-29 | 1992-09-29 | Fibra-Sonics, Inc. | Apparatus for eliminating air bubbles in an ultrasonic surgical device |
CA2071760A1 (en) | 1991-09-23 | 1993-03-24 | Alexander Ureche | Infusion sleeve for surgical ultrasonic apparatus |
US5547473A (en) | 1994-05-12 | 1996-08-20 | Syntec, Inc. | Pneumatic vitrectomy for retinal attachment |
US5873851A (en) * | 1996-08-28 | 1999-02-23 | Microsurgical Technology, Inc. | Ophthalmic irrigator-aspirator having a flexible outer cannula |
US5718677A (en) | 1997-02-14 | 1998-02-17 | Alcon Laboratories, Inc. | Soft aspriation tip |
US6428501B1 (en) | 2000-09-19 | 2002-08-06 | K2 Limited Partnership U/A/D | Surgical instrument sleeve |
US9233195B2 (en) * | 2008-09-24 | 2016-01-12 | Art, Limited | Composite irrigation/aspiration needle with ball tip |
US8267891B2 (en) * | 2008-12-18 | 2012-09-18 | Alcon Research, Ltd. | Gilled phacoemulsification irrigation sleeve |
US20140107565A1 (en) | 2012-10-05 | 2014-04-17 | Microsurgical Technology, Inc. | Intraocular irrigator-aspirator tip component |
-
2013
- 2013-10-04 US US14/046,777 patent/US20140107565A1/en not_active Abandoned
-
2014
- 2014-12-03 US US14/559,649 patent/US9138347B2/en active Active
-
2015
- 2015-09-16 US US14/856,359 patent/US9387121B2/en not_active Expired - Fee Related
-
2016
- 2016-07-11 US US15/207,337 patent/US10406275B2/en active Active
-
2019
- 2019-08-30 US US16/557,709 patent/US11097045B2/en active Active
-
2021
- 2021-08-23 US US17/409,228 patent/US20220152289A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188589A (en) * | 1991-10-10 | 1993-02-23 | Alcon Surgical, Inc. | Textured irrigating sleeve |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328047A1 (en) * | 2014-05-19 | 2015-11-19 | Francis Y. Falck, Jr. | Cataract Removal Tool |
US20170312128A1 (en) * | 2016-04-29 | 2017-11-02 | Bausch & Lomb Incorporated | Ultrasonic Surgical Aspiration Needle Assembly with Molded Hub |
WO2017189312A1 (en) * | 2016-04-29 | 2017-11-02 | Bausch & Lomb Incorporated | Ultrasonic surgical aspiration needle assembly with molded hub |
CN109069293A (en) * | 2016-04-29 | 2018-12-21 | 博士伦公司 | Ultrasonic surgery with molding hub aspirates needle assemblies |
US11484441B2 (en) * | 2016-04-29 | 2022-11-01 | Bausch & Lomb Incorporated | Ultrasonic surgical aspiration needle assembly with molded hub |
USD820441S1 (en) * | 2016-06-13 | 2018-06-12 | Integra Lifesciences Nr Ireland Limited | Surgical handpiece nosecone |
US11324526B2 (en) | 2018-02-02 | 2022-05-10 | Calyxo, Inc. | Devices and methods for minimally invasive kidney stone removal by combined aspiration and irrigation |
US12023059B2 (en) | 2018-02-02 | 2024-07-02 | Calyxo, Inc. | Devices and methods for minimally invasive kidney stone removal by combined aspiration and irrigation |
CN109513057A (en) * | 2018-11-07 | 2019-03-26 | 吉林大学 | A kind of negative pressure gastric lavage device for pediatrics |
Also Published As
Publication number | Publication date |
---|---|
US20200093978A1 (en) | 2020-03-26 |
US20150088056A1 (en) | 2015-03-26 |
US20160067088A1 (en) | 2016-03-10 |
US11097045B2 (en) | 2021-08-24 |
US20220152289A1 (en) | 2022-05-19 |
US9387121B2 (en) | 2016-07-12 |
US10406275B2 (en) | 2019-09-10 |
US20170157315A1 (en) | 2017-06-08 |
US9138347B2 (en) | 2015-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11097045B2 (en) | Intraocular irrigator-aspirator tip component | |
US7967775B2 (en) | Irrigation/aspiration tip | |
JP5475797B2 (en) | Plastic injection / suction tip at the distal end | |
US6902558B2 (en) | Aspirator tip | |
US8177777B2 (en) | Soft tip cannula and methods for use thereof | |
US4652255A (en) | Irrigating and aspirating handpiece for use in ophthalmic surgery | |
US4386927A (en) | Device to be utilized in extracapsular cataract surgery | |
EP4279042A3 (en) | Ophthalmic cutting instruments having integrated aspiration pump | |
ES2396984T3 (en) | Irrigation sleeve for phacoemulsification with non-circular holes | |
US10905462B2 (en) | Ophthalmic cannula and retaining feature therefor | |
US8545462B2 (en) | Patch for irrigation/aspiration tip | |
TW200835471A (en) | Trocar cannula system | |
US11684511B2 (en) | Irrigation and aspiration sleeve for phacoemulsification | |
WO2008060858A3 (en) | Phacoemulsification cannula with improved purchase | |
US20050159758A1 (en) | Ophthalmic irrigation-aspiration system | |
US7951136B2 (en) | Coupler wrench | |
WO2012083402A1 (en) | 180-degree cutting techniques | |
JP6238606B2 (en) | Ophthalmic surgical instrument and method of manufacturing an ophthalmic surgical instrument | |
US9943439B2 (en) | Irrigation sleeve and phacoemulsification needle with sleeve retention features | |
US20120323166A1 (en) | Phacoemulsification irrigation sleeve with an alignment mark | |
US20150374544A1 (en) | Surgical device having a compliant tip with a stepped opening | |
JP3194580U (en) | Suction | |
JP6164811B2 (en) | Ophthalmic surgical instruments | |
TWM578567U (en) | Surgical access assembly | |
ITRC20070001A1 (en) | ASPIRATION AND INFUSION INSTRUMENT FOR GLAUCOMA SURGERY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROSURGICAL TECHNOLOGY, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILJANEN, KENNETH J.;MAY, ROBERT;LAKS, LAWRENCE;SIGNING DATES FROM 20131023 TO 20131024;REEL/FRAME:031701/0122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |