US20140102987A1 - Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof - Google Patents

Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof Download PDF

Info

Publication number
US20140102987A1
US20140102987A1 US13/893,653 US201313893653A US2014102987A1 US 20140102987 A1 US20140102987 A1 US 20140102987A1 US 201313893653 A US201313893653 A US 201313893653A US 2014102987 A1 US2014102987 A1 US 2014102987A1
Authority
US
United States
Prior art keywords
particles
product
petroleum
plant based
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/893,653
Other languages
English (en)
Inventor
Zaki Yusuf
Bandar FADHEL
Ahamd D. HAMMAD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority to US13/893,653 priority Critical patent/US20140102987A1/en
Assigned to SAUDI ARABIAN OIL COMPANY reassignment SAUDI ARABIAN OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FADHEL, Bandar, HAMMAD, AHMAD D., YUSUF, ZAKI
Publication of US20140102987A1 publication Critical patent/US20140102987A1/en
Priority to US14/708,659 priority patent/US9592488B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/10Devices for removing the material from the surface
    • E02B15/101Means floating loosely on the water absorbing the oil

Definitions

  • This invention relates to completely biodegradable, hydrophobic, oleophilic plant based materials which are useful in adsorption of crude oil, and other petroleum products, especially from spills in water. More particularly, it relates to plant particles (date palm tree particles, e.g.), which have had their normally hydrophilic surfaces modified by non-paraffin lipid materials, resulting in hydrophobic particles which are oleophilic and selectively adsorb oil and repel water.
  • Plant based materials are well known as oil adsorbing materials. Their efficacy, however, is hindered when the oil material to be adsorbed is combined with water.
  • the chemical composition of plant materials is such that they are hydrophilic, and will adsorb water more readily than petroleum products. Further, when these plant materials adsorb water, they become heavy and sink.
  • Banerjee et al. fatty acids are grafted onto plant materials, using H 2 SO 4 as the catalyst, whereas the invention, as will be seen herein, involves physical coating without the use of a grafting catalyst.
  • the preferred coating materials of Banerjee et al. are low molecular weight lipids which are liquid at room temperature, as compared to the preferred materials of the invention, which are animal fats and solid at room temperature. Also, Banerjee et al.
  • U.S. Pat. No. 5,492,881 to Diamond describes various products which can be sued to absorb hydrocarbon, such as oil. Cellulose materials are treated to render products hydrophobic and oleophilic. Options include the incorporation of microbes, a fire retardant, low ash content (1%), and incorporation of paraffin. Removal of spilled petroleum products using bacteria is an inherently slow process because of the biological reaction. Such is not a feature of the present invention.
  • U.S. Pat. No. 4,072,794 to Tomita et al. coats fibers with paraffin, and also includes latex in the composition. Latex is not biodegradable, in contrast to the invention described herein.
  • U.S. Pat. No. 4,172,039 to Akiyama describes use of coir dust, i.e., material from coconut fruit.
  • Coir dust has different porosity from the materials of the invention.
  • the difference in composition requires the use of a containment means in using the coir based product, in contrast to the invention described herein.
  • the invention relates to plant materials, coated directly with lipid materials, to render them hydrophobic, and useful as adsorbents for oil and petroleum products, both in the presence of water, and when “dry.”
  • the present invention utilizes inexpensive materials, e.g., trimmings or other waste materials, from plant sources.
  • the plant source is the date palm tree.
  • the trunks of date palm trees are composed of large amounts of lignocellulose, which is itself composed of lignin, cellulose, and hemi-celluloses.
  • the building blocks of lignin are phenyl propanoid units, while hexoses and pentoses make up cellulose and hemi-cellulose.
  • the biopolymers have strong affinity for water molecules. When water attaches to these polymers via hydrogen bonding, the materials become very poor adsorbents for oil and other petroleum products.
  • the particles of the invention are made from plant materials, preferably date palm tree derived materials, e.g., trimmings or other waste products from the tree. These trimmings are referred to by one author as “petiole” or as “karab” in Arabic. See Agoudjil, et al., Energy and Buildings, 43:491-497 (2011), incorporated by reference. Alternatively, one may refer to the petioles of the tree; Material from the trunk are also preferred, although “karab” will be exemplified herein.
  • the karab is gathered, it is treated to remove any moisture therefrom. Preferably, this is done by drying the material in an oven at a temperature sufficient to drive off the water, but insufficient to damage or to char the lignocellulose. Once dried, the material is treated to yield particles of the desired size. These may range from about 0.1 to about 10 mm; however, it has been found that producing particles with an average diameter of less than 1 mm greatly increases the cost of manufacture, while also increasing the available surface area for oil adsorption. In balancing cost and surface area for adsorption, diameters of from 1-5 mm are preferred.
  • the particle compositions contain from about 10% to about 30% ash.
  • the size of the particles is important because by decreasing the average diameter, the surface area of a given sample of particles increases, which facilitates oil uptake capacity.
  • is fluid density
  • is surface tension of the fluid
  • is the contact angle between the particle surface and the fluid
  • r is the capillary radius of the pore.
  • solvent extracted lipids is preferred, because when long chain, molecules, which are semi-solid in nature are used, even in pure, dissolved form, the process of coating the particles can result in non-homogeneous, non-uniform products, resulting from the uneven process of solidification during the coating.
  • an advantage of using solvent extraction is the ability to control the removal of the solvent, with pure uniform application of the extracted lipids.
  • the raw fat used may be any available animal fat. Bovine, ovine, and other source animals may be used.
  • Animal fat was used as the source of the materials used to coat the particles.
  • Samples of the animal fat were placed in the thimbles of two different Soxhlet extractors with two different solvents and two parallel extractions were carried out.
  • To elaborate i.e., either hexane or petroleum ether, was placed in a still pot of a Soxhlet setup, in a manner well known to one of ordinary skill in the art. This resulted in selected extraction of lipids from the solid animal fat, into the liquid solvents. This was continued for different lengths of time (up to four hours) to obtain saturated solutions for optimum coating.
  • Solvents into which fats were dissolved were separated from the two different (parallel) Soxhlet extractions, and portions of the particulate trimmings were mixed together with each of the solvents in two different Rotavap vessels. Sufficient solvent was used to completely submerge the particles in two separate rotary evaporators (Rotavap) device. The materials were mixed this way so that particles could be uniformly coated, with the condenser of the device operating at a start temperature below that of the boiling point of the solvent so as to avoid premature vaporization.
  • the resulting coated particles were hydrophobic, which was shown by placing 3 g of coated particles, and 3 g of uncoated particles, in separate, equal portions of water. After ten minutes, the uncoated particles had adsorbed the water, while the coated particles did not. Also, they remained afloat with minimal or no adsorption of water. Similar tests were carried out with stirring of the water for five minutes. The results were promising. Similar experiments were carried out for overnight in stagnant water to test water repellency. These tests also showed very encouraging results.
  • the plant material particles preferably have a diameter of from about 1 mm to about 5 mm, and are preferably from date palm trees.
  • the petiole or karab of the date palm tree is the preferred source of the particles, but material such as waste from the tree trunks may also be used.
  • the lipids used to coat the particles are obtained by dissolving animal fats into a solvent, such as petroleum ether. While pure, liquid lipids may be used, it is preferred to use lipids dissolved in a solvent because, upon evaporation of the solvent, the lipids coat the particles more completely and evenly than pure lipids do.
  • a solvent such as petroleum ether.
  • the lipids When the lipids are obtained from dissolved animal fats, the resulting product will not be a “pure” lipid, but a mixture of different triglycerides.
  • a triglyceride always contain a glycerol moiety, having bound there to three fatty acid molecules. These molecules may be the same, or different.
  • Fatty acid composition of different animal fats are well known, as evidenced by, e.g., Hilditch, et al, “Sheep Body Fats,” (1941), incorporated by reference.
  • the fatty acids are saturated, and unsaturated hexadecanoic and octadecanoic acids, such as palmitic, oleic, stearic, and linoleic acids.
  • the compositions will vary from animal to animal, but the triglyceride molecules will generally contain at least 50 and preferably at least 55 carbon atoms. Also see Weber, et al, Fuel 94: 262-269 (2012), incorporated by reference.
  • containment means are not required; rather they serve as a convenience to the user.
  • containment means are not required; rather they serve as a convenience to the user.
  • the distinction is important because other plant based materials, due to their porosity and other facts must be placed in containment means, as they are not buoyant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
US13/893,653 2012-10-17 2013-05-14 Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof Abandoned US20140102987A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/893,653 US20140102987A1 (en) 2012-10-17 2013-05-14 Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof
US14/708,659 US9592488B2 (en) 2012-10-17 2015-05-11 Process for preparing lipid coated particles of plant material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261714906P 2012-10-17 2012-10-17
US13/893,653 US20140102987A1 (en) 2012-10-17 2013-05-14 Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/708,659 Division US9592488B2 (en) 2012-10-17 2015-05-11 Process for preparing lipid coated particles of plant material

Publications (1)

Publication Number Publication Date
US20140102987A1 true US20140102987A1 (en) 2014-04-17

Family

ID=48576521

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/893,653 Abandoned US20140102987A1 (en) 2012-10-17 2013-05-14 Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof
US14/708,659 Active 2033-05-30 US9592488B2 (en) 2012-10-17 2015-05-11 Process for preparing lipid coated particles of plant material

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/708,659 Active 2033-05-30 US9592488B2 (en) 2012-10-17 2015-05-11 Process for preparing lipid coated particles of plant material

Country Status (5)

Country Link
US (2) US20140102987A1 (zh)
EP (1) EP2908943B1 (zh)
CN (1) CN104812478B (zh)
IN (1) IN2015DN01683A (zh)
WO (1) WO2014062237A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023781B2 (en) 2016-04-13 2018-07-17 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10240411B1 (en) 2018-03-22 2019-03-26 Saudi Arabian Oil Company Trimodal hybrid loss prevention material (LPM) for preventative and curative loss control
US10259982B2 (en) 2016-07-12 2019-04-16 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10266742B1 (en) 2018-02-06 2019-04-23 Saudi Arabian Oil Company ARC hybrid particle mix for seal and plug quality enhancement
US10336930B2 (en) 2016-12-19 2019-07-02 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10392549B2 (en) 2016-08-31 2019-08-27 Saudi Arabian Oil Company Date tree trunk-based fibrous loss circulation materials
US10457846B2 (en) 2015-11-17 2019-10-29 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US10479920B2 (en) 2017-05-30 2019-11-19 Saudi Arabian Oil Company Date tree trunk and rachis-based superfine fibrous materials for seepage loss control
US10487253B2 (en) 2016-11-08 2019-11-26 Saudi Arabian Oil Company Date tree spikelet-based additive for mechanical reinforcement of weak and unstable lost circulation material (LCM) seals/plugs
US10513647B2 (en) 2016-06-30 2019-12-24 Saudi Arabian Oil Company Flaky date fruit cap for moderate to severe loss control
US10781354B2 (en) 2016-06-30 2020-09-22 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10800960B2 (en) 2016-09-27 2020-10-13 Saudi Arabian Oil Company Date tree leaflet-based flaky lost circulation material
US11041347B1 (en) 2020-04-07 2021-06-22 Saudi Arabian Oil Company Composition and method of manufacturing of whole and ground date palm seed lost circulation material (LCM)
US11136487B2 (en) 2020-02-25 2021-10-05 Saudi Arabian Oil Company Date seed-based chips lost circulation material
US11254851B2 (en) 2020-06-25 2022-02-22 Saudi Arabian Oil Company Vulcanized rubber and date tree based lost circulation material (LCM) blend
US11434404B2 (en) 2016-04-13 2022-09-06 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US11713407B2 (en) 2016-06-30 2023-08-01 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US11975886B2 (en) 2018-03-27 2024-05-07 Ella Cecelia Allgor Device for storage and disposal of waste oil and grease

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110393949A (zh) * 2019-06-24 2019-11-01 舟山市质量技术监督检测研究院 一种超疏水超亲油聚氨酯海绵材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027652A (en) * 1997-04-04 2000-02-22 Fybx Environmental, Inc. Process for sorbing liquids using tropical fibers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172039A (en) * 1975-03-14 1979-10-23 Ikeda Bussan Company Limited Oil absorbers and method of using them
JPS5275682A (en) 1975-12-19 1977-06-24 Agency Of Ind Science & Technol Oil adsorbent
US4444148A (en) 1981-08-24 1984-04-24 Cattus Limited Waste receptacles having odor barriers
US5492881A (en) 1994-03-25 1996-02-20 Diamond; Charles M. Sorbent system
WO2005063309A2 (en) * 2003-12-19 2005-07-14 Bki Holding Corporation Fibers of variable wettability and materials containing the fibers
JP5054921B2 (ja) * 2004-02-05 2012-10-24 太陽化学株式会社 多孔質シリカを含有する吸着能付与剤
AT503198B1 (de) * 2006-01-25 2008-10-15 Commerzialbank Mattersburg Im Verfahren zur herstellung eines ölbindemittels und danach hergestellte ölbindemittel
GB201105961D0 (en) * 2011-04-08 2011-05-18 Univ Surrey Oil absorbent composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027652A (en) * 1997-04-04 2000-02-22 Fybx Environmental, Inc. Process for sorbing liquids using tropical fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ahmad et al, The use of date palm as a potential adsorbent for wastewater treatment: a review, 12-2011, Environmental Science Pollution Research, vol. 19, pages 1464-1484. *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060008B2 (en) 2015-11-17 2021-07-13 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US10457846B2 (en) 2015-11-17 2019-10-29 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US10883033B2 (en) 2015-11-17 2021-01-05 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US11434404B2 (en) 2016-04-13 2022-09-06 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10087353B2 (en) 2016-04-13 2018-10-02 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10759984B2 (en) 2016-04-13 2020-09-01 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10023781B2 (en) 2016-04-13 2018-07-17 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10544345B2 (en) 2016-06-30 2020-01-28 Saudi Arabian Oil Company Flaky date fruit CAP for moderate to severe loss control
US11370953B2 (en) 2016-06-30 2022-06-28 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10800959B2 (en) 2016-06-30 2020-10-13 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10781354B2 (en) 2016-06-30 2020-09-22 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US11713407B2 (en) 2016-06-30 2023-08-01 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US11046878B2 (en) 2016-06-30 2021-06-29 Saudi Arabian Oil Company Flaky date fruit cap for moderate to severe loss control
US11046879B2 (en) 2016-06-30 2021-06-29 Saudi Arabian Oil Company Flaky date fruit cap for moderate to severe loss control
US10513647B2 (en) 2016-06-30 2019-12-24 Saudi Arabian Oil Company Flaky date fruit cap for moderate to severe loss control
US10519357B2 (en) 2016-06-30 2019-12-31 Saudi Arabian Oil Company Flaky date fruit cap for moderate to severe loss control
US10934465B2 (en) 2016-07-12 2021-03-02 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10954424B2 (en) 2016-07-12 2021-03-23 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10934466B2 (en) 2016-07-12 2021-03-02 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10259982B2 (en) 2016-07-12 2019-04-16 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10870787B2 (en) 2016-08-31 2020-12-22 Saudi Arabian Oil Company Date tree trunk-based fibrous loss circulation materials
US10392549B2 (en) 2016-08-31 2019-08-27 Saudi Arabian Oil Company Date tree trunk-based fibrous loss circulation materials
US11053423B2 (en) 2016-09-27 2021-07-06 Saudi Arabian Oil Company Date tree leaflet-based flaky lost circulation material
US10800960B2 (en) 2016-09-27 2020-10-13 Saudi Arabian Oil Company Date tree leaflet-based flaky lost circulation material
US10487253B2 (en) 2016-11-08 2019-11-26 Saudi Arabian Oil Company Date tree spikelet-based additive for mechanical reinforcement of weak and unstable lost circulation material (LCM) seals/plugs
US10988658B2 (en) 2016-12-19 2021-04-27 Saudi Arabian Oil Company Date tree waste-based trinary fibrous mix for moderate to severe loss control
US10494558B2 (en) 2016-12-19 2019-12-03 Saudi Arabian Oil Company ARC fiber trio-date tree waste-based trinary fibrous mix for moderate to severe loss control
US10808160B2 (en) 2016-12-19 2020-10-20 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10336930B2 (en) 2016-12-19 2019-07-02 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10414965B2 (en) 2016-12-19 2019-09-17 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10767096B2 (en) 2016-12-19 2020-09-08 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10479920B2 (en) 2017-05-30 2019-11-19 Saudi Arabian Oil Company Date tree trunk and rachis-based superfine fibrous materials for seepage loss control
US10597575B2 (en) 2017-05-30 2020-03-24 Saudi Arabian Oil Company Date tree trunk and rachis-based superfine fibrous materials for seepage loss control
US10329470B1 (en) 2018-02-06 2019-06-25 Saudi Arabian Oil Company Hybrid particle mix for seal and plug quality enhancement
US10731068B2 (en) 2018-02-06 2020-08-04 Saudi Arabian Oil Company Hybrid particle mix for seal and plug quality enhancement
US10767095B2 (en) 2018-02-06 2020-09-08 Saudi Arabian Oil Company Hybrid particle mix for seal and plug quality enhancement
US10323170B1 (en) 2018-02-06 2019-06-18 Saudi Arabian Oil Company Hybrid particle mix for seal and plug quality enhancement
US10266742B1 (en) 2018-02-06 2019-04-23 Saudi Arabian Oil Company ARC hybrid particle mix for seal and plug quality enhancement
US10895119B2 (en) 2018-03-22 2021-01-19 Saudi Arabian Oil Company Hybrid loss prevention material (LPM) for preventive and curative loss control
US10895118B2 (en) 2018-03-22 2021-01-19 Saudi Arabian Oil Company Hybrid loss prevention material (LPM) for preventive and curative loss control
US10240411B1 (en) 2018-03-22 2019-03-26 Saudi Arabian Oil Company Trimodal hybrid loss prevention material (LPM) for preventative and curative loss control
US11975886B2 (en) 2018-03-27 2024-05-07 Ella Cecelia Allgor Device for storage and disposal of waste oil and grease
US11136487B2 (en) 2020-02-25 2021-10-05 Saudi Arabian Oil Company Date seed-based chips lost circulation material
US11041347B1 (en) 2020-04-07 2021-06-22 Saudi Arabian Oil Company Composition and method of manufacturing of whole and ground date palm seed lost circulation material (LCM)
US11254851B2 (en) 2020-06-25 2022-02-22 Saudi Arabian Oil Company Vulcanized rubber and date tree based lost circulation material (LCM) blend

Also Published As

Publication number Publication date
CN104812478B (zh) 2017-10-13
EP2908943B1 (en) 2018-09-05
EP2908943A1 (en) 2015-08-26
CN104812478A (zh) 2015-07-29
US20150251156A1 (en) 2015-09-10
US9592488B2 (en) 2017-03-14
WO2014062237A1 (en) 2014-04-24
IN2015DN01683A (zh) 2015-07-03

Similar Documents

Publication Publication Date Title
US9592488B2 (en) Process for preparing lipid coated particles of plant material
Peng et al. Cellulose-based materials in wastewater treatment of petroleum industry
DE60107122T2 (de) Veränderung der Wasserfreundlichkeit und-feindlichkeit der natürlichen organischen Stoffe durch den Vorgang des oxydativen thermochemischen Dörrens
GB2489764A (en) Method of preparing an oil absorbent composition
Saeed et al. Heavy metals capture from water sludge by kenaf fibre activated carbon in batch adsorption
Astuti et al. Preparation of activated carbon from mangrove propagule waste by H3PO4 activation for Pb2+ adsorption
Sanz-Santos et al. Enhanced removal of neonicotinoid pesticides present in the Decision 2018/840/EU by new sewage sludge-based carbon materials
Ji et al. Corn cob modified by lauric acid and ethanediol for emulsified oil adsorption
Oulkhir et al. Biosorption of a cationic dye using raw and functionalized Chenopodium quinoa pericarp biomass after saponin glycosides extraction
El-Zawahry et al. Functionalization of the aquatic weed water hyacinth Eichhornia crassipes by using zinc oxide nanoparticles for removal of organic dyes effluent
Tesfaye et al. Valorisation of waste chicken feathers: Green oil sorbent
Akpomie et al. Treatment of motor oil-contaminated water via sorption onto natural organic lignocellulosic waste: thermodynamics, kinetics, isotherm, recycling, and reuse
Van Nam et al. Esterified durian peel adsorbents with stearic acid for spill removal
RU2420579C2 (ru) Способ иммобилизации клеток микроорганизмов в сорбент, используемый для очистки нефтезагрязнений
Jagadeesan et al. The bio-adsorption competence of tailor made lemon grass adsorbents on oils: An in-vitro approach
Mohammad et al. Synthesis of activated carbons from water hyacinth biomass and its application as adsorbents in water pollution control
Alrozi et al. Removal of organic fractions from landfill leachate by casuarina equisetifolia activated carbon: Characteristics and adsorption mechanisms
US20120048807A1 (en) Adsorbent Product for the Removal of Hydrocarbon Pollutants, and Method for Removing Hydrocarbon Pollution, In Particular at the Surface of the Water, Using Said Product
Chattopadhyay et al. Oil spill cleanup by textiles
RU2808571C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПОЛИМЕРНОГО МАТЕРИАЛА НА ОСНОВЕ КОЛЛАГЕНСОДЕРЖАЩЕГО СЫРЬЯ С МАГНИТНЫМИ НАНОЧАСТИЦАМИ ОКСИДА Fe (II, III) ДЛЯ УСТРАНЕНИЯ РАЗЛИВОВ НЕФТЕПРОДУКТОВ
Kesraoui et al. Non linear modelisation of dyes removal from aqueous solution by using sorption onto Luffa cylindrica fibers
Rahman A novel low-cost plant-based adsorbent from Red Oak (Quercus rubra) Acorns for wastewater treatment: Kinetic study on removal of dye from aqueous solution
Osemeahon et al. Removal of crude oil from aqueous medium by sorption on Sterculis setigera
RU2340393C2 (ru) Способ получения сорбентов для жидких углеводородов
RU2805655C1 (ru) Порошкообразный магнитный сорбент для сбора нефти

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAUDI ARABIAN OIL COMPANY, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUSUF, ZAKI;FADHEL, BANDAR;HAMMAD, AHMAD D.;REEL/FRAME:030565/0472

Effective date: 20130519

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION