US20140102594A1 - Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds - Google Patents
Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds Download PDFInfo
- Publication number
- US20140102594A1 US20140102594A1 US14/052,867 US201314052867A US2014102594A1 US 20140102594 A1 US20140102594 A1 US 20140102594A1 US 201314052867 A US201314052867 A US 201314052867A US 2014102594 A1 US2014102594 A1 US 2014102594A1
- Authority
- US
- United States
- Prior art keywords
- oxidation
- metallic
- metallic contacts
- indium
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title description 9
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 49
- 230000003647 oxidation Effects 0.000 claims abstract description 40
- 238000002161 passivation Methods 0.000 claims abstract description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 13
- 238000006388 chemical passivation reaction Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 33
- 239000001257 hydrogen Substances 0.000 abstract description 25
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 25
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 7
- 231100000331 toxic Toxicity 0.000 abstract description 4
- 230000002588 toxic effect Effects 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 2
- 238000004381 surface treatment Methods 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 35
- 229910052738 indium Inorganic materials 0.000 description 33
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 32
- 239000002184 metal Substances 0.000 description 27
- 239000010410 layer Substances 0.000 description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 24
- 229910000679 solder Inorganic materials 0.000 description 22
- 239000007789 gas Substances 0.000 description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 2
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- FXYGHKTWVGLQJG-UHFFFAOYSA-N [Sb].[Cu].[Sn] Chemical compound [Sb].[Cu].[Sn] FXYGHKTWVGLQJG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000002140 antimony alloy Substances 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- JWVAUCBYEDDGAD-UHFFFAOYSA-N bismuth tin Chemical compound [Sn].[Bi] JWVAUCBYEDDGAD-UHFFFAOYSA-N 0.000 description 1
- NSAODVHAXBZWGW-UHFFFAOYSA-N cadmium silver Chemical compound [Ag].[Cd] NSAODVHAXBZWGW-UHFFFAOYSA-N 0.000 description 1
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- LWUVWAREOOAHDW-UHFFFAOYSA-N lead silver Chemical compound [Ag].[Pb] LWUVWAREOOAHDW-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/20—Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2310/00—Treatment by energy or chemical effects
- B32B2310/14—Corona, ionisation, electrical discharge, plasma treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0008—Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/038—Post-treatment of the bonding area
- H01L2224/0381—Cleaning, e.g. oxide removal step, desmearing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/113—Manufacturing methods by local deposition of the material of the bump connector
- H01L2224/1133—Manufacturing methods by local deposition of the material of the bump connector in solid form
- H01L2224/11334—Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/118—Post-treatment of the bump connector
- H01L2224/1183—Reworking, e.g. shaping
- H01L2224/11831—Reworking, e.g. shaping involving a chemical process, e.g. etching the bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/1354—Coating
- H01L2224/13599—Material
- H01L2224/136—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81009—Pre-treatment of the bump connector or the bonding area
- H01L2224/8101—Cleaning the bump connector, e.g. oxide removal step, desmearing
- H01L2224/81011—Chemical cleaning, e.g. etching, flux
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81009—Pre-treatment of the bump connector or the bonding area
- H01L2224/8101—Cleaning the bump connector, e.g. oxide removal step, desmearing
- H01L2224/81013—Plasma cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81053—Bonding environment
- H01L2224/81054—Composition of the atmosphere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01032—Germanium [Ge]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01042—Molybdenum [Mo]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01051—Antimony [Sb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01073—Tantalum [Ta]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Definitions
- This invention relates to the interconnect bonding of electrical, optical and/or mechanical components to form a three-dimensional multi-chip hybrid assembly. More specifically, it relates to the surface preparation of metallic contacts on the surface of flip-chip components to improve process throughput, yield, and reliability of the subsequent electrical and/or mechanical connection.
- Metallic contact flip-chip interconnect bonding has been successfully used for many years to provide mechanical and/or electrical connection between two or more electrical, optical, and-or mechanical components.
- An example of the flip-chip interconnect would be the face-to-face indium bump bonding of an optical detector chip to its corresponding readout integrated circuit (ROIC) chip to form an infrared detector focal plane assembly.
- ROIC readout integrated circuit
- Many other types of 3-dimensional hybrid assemblies utilize similar metallic connection schemes. It is understood in the industry that removal of native oxidation from the surface of the metallic contacts prior to bonding results in a much improved electrical and/or mechanical interconnection by removing the relatively thick and tough indium oxide layer from the contacts, thus allowing metal-to-metal bonding without the impediment of the tough oxide layer at the interface. This elimination of interfacial oxide also improves ohmic contact between the two surfaces by eliminating the non-conducting or semiconducting metal-oxide interfacial layer.
- Example drawbacks of acid chemical etching include the potential for liquid-borne or airborne contamination of the devices, handling damage to delicate chips, a residue of acid etchant on the surface of the components which can lead to reliability problems, cost of chemicals and their subsequent disposal, a slow process turnaround time, usage of toxic and dangerous chemicals, the need for corrosion-resistant etching hardware and enclosures, high maintenance requirements, the need for toxic/corrosive exhaust provisions, and unwanted chemical reactions between the etchant and other surface features of the chips.
- Example drawbacks of vacuum plasma etching for oxide removal include expensive vacuum plasma equipment, slow process turnaround time, potential for plasma damage to the components by hot electrons, ions, and high kinetic energy atoms, back-sputtering of unwanted metals from vacuum chamber components or from the substrate itself onto the substrate being cleaned, expensive and time-consuming maintenance requirements of the required equipment, and a higher level of operator proficiency and training needed to run sophisticated vacuum plasma systems.
- these methods only very temporarily remove oxidation from the metallic contacts, since the oxide regrows rapidly when exposed to air after the oxide reduction process. If the bonding cannot be performed in a very short period of time, and/or if the bonding is performed at elevated temperature, the regrown oxide inhibits bonding of the metallic contacts. The thicker the layer of regrown oxidation, the more compression and deformation of the contacts are required to obtain even marginal metal-to-metal cold welding.
- Prior art also teaches deposition of an oxidation-inhibiting layer on the deoxidized surface, but that layer must be removed prior to bonding.
- the removal of the passivating layer would normally involve the use of a vacuum chamber or confinement chamber to facilitate the chemical reaction and also to slow the re-oxidation process. These chambers impose additional time, expense, bulk, and complexity to the bonding process and equipment.
- This invention consists of a process method which utilizes a combination of relatively simple and inexpensive “off-the-shelf” equipment and specific chemistry to remove oxidation from certain metallic contact surfaces with a very rapid dry process which does not require a vacuum or containment chamber, or toxic gasses/chemicals, and does not damage sensitive electronic circuits or components. Additionally, the process creates a passivation layer on the surface of the metallic contact which inhibits further oxidation while allowing rapid and complete bonding—even many hours after surface treatment, without having to remove the passivation layer.
- the process utilizes a room-ambient plasma applicator with an activated chemical reducing agent such as hydrogen gas, an activated chemical passivation agent such as nitrogen gas, and inert gasses. Specific ranges of process parameters such as power, gas flow rates, flow ratios, proximity, temperature, and dwell time which accomplish the above-stated goals are specified herein.
- activated chemical reducing agent includes, but is not limited to, one or more of the following: hydrogen gas, hydrogen forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds), and carbon monoxide.
- activated chemical passivation agent includes, but is not limited to, one or more of the following: nitrogen, nitrogen forming gas, such as hydrogen/nitrogen mixture, ammonia or other nitrogen-containing mixture.
- FIG. 1 shows a cross sectional view of an array of metallic contacts situated on a substrate
- FIG. 2 shows a cross sectional view of an atmospheric-ambient plasma head subjecting the metallic contacts to an activated gaseous agent
- FIG. 3 shows a cross sectional view of the array of treated metallic contacts bonded to a second substrate
- FIG. 4 shows a cross sectional view of an alternate bonding capability of the surface preparation technique with two metallic-contact arrays
- FIG. 5 shows a cross sectional view of an atmospheric-ambient plasma head subjecting metallic contacts of a first array to an activated gaseous agent
- FIG. 6 shows a cross sectional view of a solder jet head applying solder balls to the metallic contacts of the first array
- FIG. 7 shows a cross sectional view of an atmospheric-ambient plasma head subjecting the solder balls to an activated gaseous agent
- FIG. 8 shows a cross sectional view of an atmospheric-ambient plasma head subjecting metallic contacts of a second array to an activated gaseous agent
- FIG. 9 shows a cross sectional view of the metallic contacts of the first array aligned with the solder balls and the metallic contacts of the first array.
- FIG. 10 shows a cross sectional view of a bond formed between the metallic contacts of the second array and the solder balls and the metallic contacts of the first array.
- the present invention relates to a method for preparing and bonding surfaces, such as metallic contacts, by the sequential or concurrent application of a reducing agent and a passivation agent to remove an oxidation layer from the surfaces and then generate a passivated layer on the surfaces to prevent the subsequent formation of oxides on the surfaces.
- an “agent”, such as a reducing agent or a passivation agent, is defined as a member, or species, of one or more groups, or genuses, of elements, chemicals or chemical compounds or mixtures thereof in a gaseous form suitable for application to the surfaces to be treated and providing the desired effect on the surfaces to be treated, such as the removal of oxides from the surfaces or the passivation of the surfaces to prevent the subsequent formation of oxides thereon.
- FIG. 1 shows an array of metallic contacts 1 situated on a substrate 2 .
- the metallic contacts 1 have an oxide layer 3 such as grown by exposure to air (native oxide) or by exposure to activated oxygen such as from a plasma or ozone asher.
- a room-ambient plasma source 4 atmospheric-ambient plasma head
- activated gaseous agent or agents 5 which chemically reduce and/or remove the oxidation on the surface of the metallic contacts 1 and create a chemically altered surface 6 on the metallic contacts 1 which inhibits subsequent oxidation.
- This process may be performed at room temperature, or at an elevated or reduced temperature, as may be desired to alter the kinetics of the chemical reaction.
- FIG. 3 shows a subsequent method step of bonding of the treated metallic contacts 1 to a second substrate, which in this figure is shown to have corresponding contact pads 8 as well as a plain surface 7 .
- the bonding process as described herein may occur at room temperature or elevated temperature, for example up to 250 degrees C. and higher, depending upon the materials chosen for the contacts 1 and the opposing contact pads 8 and plain surface 7 .
- FIG. 4 demonstrates an alternative bonding capability of this surface preparation technique wherein two metallic-contact arrays are subject to the inventive method of surface preparation including ambient-atmosphere plasma treatment, as seen in FIG. 2 , and are then bonded to each other.
- the term bond can refer to “flip-chip” bonds, cold weld bonds, compression bonds, and soldered connections.
- the resulting interface 12 between the opposing contacts 1 is mechanically and electrically robust as a result of the taught method of ambient-atmosphere plasma treatment.
- This invention describes the joint use of known de-oxidation chemistry, known nitride passivation chemistry, known room-ambient plasma sources, and known metallic contact materials, which when used in combination and under certain process conditions and parameters, provide exceptionally thorough and successful surface preparation of metallic contacts for subsequent bonding.
- activated reducing gas of hydrogen is supplied by a room-ambient plasma source by plasma activation of a reducing agent or agents, such as hydrogen gas or other hydrogen-containing gas such as forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds).
- a reducing agent or agents such as hydrogen gas or other hydrogen-containing gas such as forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds.
- nitrogen from either nitrogen gas or a nitrogen containing gas such as forming gas (hydrogen/nitrogen mixture) or ammonia
- forming gas hydrogen/nitrogen mixture
- ammonia is simultaneously present in the plasma for the specific purpose of passivation of the surface by converting the metal of the newly de-oxidized metal surface to a metal nitride by the following chemical reaction:
- an activated chemical reducing agent such as activated hydrogen
- an activated chemical passivation agent such as activated nitrogen
- a sufficient gas flow rate out of the aperture of the plasma source combined with a close proximity of the aperture to the surface of the contact serves to purge room-ambient oxygen from the reaction region and lead to the formation of nearly pure metal-nitride without significant oxygen contained in the metal-nitride film created.
- An inert carrier agent such as a gas from atomic group Villa such as Helium, Neon, Argon, or Xenon, can be used to enhance the striking, maintenance and effectiveness of the plasma, although the inert carrier gas is not strictly required for the desired chemical reactions taking place.
- the inert carrier gas should, for example, be a readily ionizable gas to excite the other gasses for high chemical reactivity.
- An additional benefit of the inert carrier gas is to increase the total gas flow out of the plasma head aperture, thus helping to purge the local reaction space of room air which would otherwise increase oxygen content in the grown metal-nitride film.
- the flow of inert gas can functionally permit an increase in the gap between the aperture of the plasma source and the surface of the metallic contacts to be treated while still maintaining a local environment sufficiently purged of ambient oxygen.
- contact metal is critical to the success of the process, as some metal elements and alloys do not form stable, thin nitrides.
- desirable elemental contact metals are: Indium, Gallium, Aluminum, Tin, Lead, Copper, Silver, Bismuth, Molybdenum, Tantalum, Tungsten, Nickel, Titanium, Antimony, Zinc, and Gold. All of these metals form conductive, stable or semi-stable metal-nitrides which will inhibit subsequent oxidation for a useable period of time.
- the passivation layers formed from these metal-nitrides are known to be mechanically non-robust such that modest deformation of the passivation layer during the bonding process exposes significant native metal for bonding.
- alloys comprising the above metals will also benefit when surface oxidation is replaced with nitridation employing the disclosed method.
- desirable alloys comprising two or more of these metals include but are not limited to: Lead-Tin alloy, Indium-Silver alloy, Tin-Antimony-Copper alloy, Gold-Tin alloy, Aluminum-Copper alloy, and Tin-Antimony alloy.
- a further benefit of utilizing nitridation as a passivation layer is that the nitrides of all of the metals and alloys discussed above are electrically conductive. As such, even if the metal-nitride passivation layer is not completely disintegrated during bonding by compression as is possible on the surface of hard metals like titanium or nickel for example, the metal-nitride layer will conduct electrical current and therefore will be beneficial in electrical connections.
- the temperature of the contacts during the reducing and/or passivation processes can have a significant effect on the kinetics of the reactions.
- Higher temperature will increase the rate at which the activated reducing agent reacts with the surface oxide to convert it back to native metal.
- higher temperature can significantly decrease the process time required to reduce all of the oxide from the surface.
- the native oxide is self-limiting to a thickness of approximately 30-50 Angstroms, so complete removal of the oxidation can be accomplished in a few seconds even at room temperature.
- Contact metal temperature will also affect the growth kinetics of the passivating nitride.
- higher temperatures will promote a thicker metal-nitride surface layer growth. This may be desirable, or undesirable, depending on the metal(s) involved and what the user wishes to accomplish with the passivation layer.
- Higher contact temperature could have a negative affect if employing a sequential reduction/passivation process, in that more oxidation is likely to occur in the dwell period after the reduction process but before the passivation process. This would result in more oxygen being incorporated into the passivation layer, potentially decreasing its effectiveness.
- contact temperature selection requires consideration of the particular metals involved and the desired ultimate surface passivation characteristics. Therefore, numerous combinations of contact temperature are possible within the purview of this invention method.
- a preferred embodiment of this invention for treating contacts such as indium contact bumps utilizes a commercially available room-ambient plasma source that is capable of being mechanically scanned above the surface of metallic contacts (indium contact bumps) of an infrared detector die and the metallic contacts (indium contact bumps) of a readout integrated circuit die (ROIC), as shown in FIG. 2 .
- a commercially available room-ambient plasma source that is capable of being mechanically scanned above the surface of metallic contacts (indium contact bumps) of an infrared detector die and the metallic contacts (indium contact bumps) of a readout integrated circuit die (ROIC), as shown in FIG. 2 .
- hydrogen, nitrogen and helium gasses flow through the plasma source at flow rates of 0.05, 0.1, and 10 standard liters per minute (LPM), respectively.
- Electrical power at 70 watts is applied to the plasma source to create a plasma (gas having activated atoms) within the plasma source.
- the plasma source is scanned one or more times across the surface of both the infrared detector die and the ROIC die at a velocity of 1.2 cm per second with a 1.0 millimeter gap between the aperture of the plasma source and the die, with both die at room temperature.
- chemically activated atoms (radicals) of hydrogen and nitrogen gasses are expelled from the aperture of the plasma source and react chemically with the indium contact bumps on the surfaces of both of the die.
- the activated hydrogen reducing agents react with the oxide on the surface of the indium contact bumps and convert the indium oxide to metallic indium and volatile water vapor.
- activated nitrogen atoms are available to react with the freshly converted metallic indium on the surface of the indium contact bump to convert it to a thin passivation layer of indium nitride, which covers the surface of the indium contact bumps.
- This indium nitride passivation layer is very thin—on the order of 2-3 mono-layers—but is enough to inhibit the metallic indium of the bump from oxidizing, thus acting as a passivation layer to indium oxidation.
- the infrared detector die and ROIC die remain passivated against oxidation for several hours (up to several days).
- the two die are placed in a flip-chip bonding apparatus, aligned, and bonded together by compression, with or without elevated temperature (refer to FIG. 4 ).
- the extremely thin indium nitride layer which has been passivating the surface of the indium contact bump is readily disintegrated by even slight deformation of indium during bonding compression, allowing native indium metal in opposing contact bumps to come into contact and “cold weld” into a mechanically and electrically robust single indium column.
- the compression bond can be performed at elevated temperatures, as high as 200 degrees C. (or above), such that less compression force is required, without significant oxidation of the indium bump surfaces.
- Variations in gas flows, gas flow ratios, power levels, scan speed, temperature, and spacing between the plasma source and array/metallic contacts produced similarly successful bonding results, indicating that the disclosed process can be successfully performed using parameters other than those described above.
- the hydrogen flow rate was varied between 0.005 and 0.5 LPM
- the nitrogen flow rate was varied between 0.01 and 5 LPM
- the helium flow rate was varied between 1.0 and 30 LPM
- the power applied to the plasma source was varied between 20 and 200 watts
- the scan rate was varied between 0.1 and 15 cm per second
- the spacing between the plasma source and array/metallic contacts was varied between 0.5 and 5 cm
- chip temperature between 25° C. and 160° C.
- hydrogen-generating gaseous agents such as forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds), or non-hydrogen-containing reducing gaseous agents such as carbon monoxide, can be utilized as the reducing agent; and other nitrogen-generating gaseous agents such as forming gas (hydrogen/nitrogen mixture), or ammonia can be utilized as the passivating agent.
- forming gas hydrogen/argon or hydrogen/nitrogen mixture
- ammonia hydrogen sulfide
- methane and similar hydrogen-containing organic compounds
- non-hydrogen-containing reducing gaseous agents such as carbon monoxide
- pre-mixing of reducing and passivating gaseous agents in a broad range of ratios and supplying the mixed gaseous agents in these fixed ratios from a single gas source has resulted in successful bonding and therefore such gaseous agent mixture ratios also fall under the scope of this invention.
- pre-mixing hydrogen and nitrogen gaseous agents in the ratios of between 0.0001 and 10.0 and the utilization thereof in the above described embodiment have proven successful in improving bond quality.
- room-ambient plasma source Selection of the room-ambient plasma source is driven by the requirements of the substrates and contact metals to be treated.
- substrates that are sensitive to high energy electrons or ionized atoms with kinetic energy (for example, silicon CMOS circuitry or infrared detector materials)
- a confined glow-discharge plasma head such as the “Atomflo” series from SurFX, LLC is desirable.
- arc discharge-type ambient plasma heads, plasma torches or corona discharge heads could be used.
- Any type of room-ambient plasma head such as “Labeltech” by Tantek A/S, or Dyne-e-Mite 3-D treater by Enercon industries is considered to come within the scope of this invention.
- test die pairs with arrays of indium bumps were subjected to the above described process method in which the activated reagent gasses were simultaneously applied to the arrays of indium bumps.
- the test die were then bonded together (indium-to-indium as illustrated in FIG. 4 ) as described above and subsequently the die were pulled apart to determine the quality of the bond between the indium bumps.
- Optical microscope and SEM images were evaluated to confirm that the indium bumps from facing die had bonded together exceptionally well—to the point that separation of the bonded bumps resulted in a classic pointed tensile rupture—and showed no signs of the pre-bond interface between the indium bumps of the two die.
- ellipsometer readings (an extremely sensitive measure of surface oxidation) were first taken on indium coupons immediately after being subjected to the activated reducing and passivating gaseous agents as disclosed in the method, and then ellipsometer readings were taken again over the next 50 hours. The subsequent ellipsometer readings over 50 hours remained virtually unchanged from the initial ellipsometer reading, indicating that the nitridized surfaces were stable and resisted subsequent oxidation.
- the above steps were repeated using the sequential process (de-oxidation scan followed a few seconds later by nitridation/passivation scan) instead of simultaneously conducting the de-oxidation and the nitridation/passivation scans.
- the pull-test showed nearly equivalent tensile rupture—indicating that the sequential process is slightly inferior to the simultaneous process but is also a viable method for contact preparation.
- the disclosed method was performed on a pair of dissimilar die: one die had an array of indium bumps and the other die had a flat titanium metallic contact pad (shown as the pad 9 in FIG. 3 ). Perfect tensile rupture was observed upon pulling the dissimilar die apart, and substantial indium was left adhered to the titanium metallic contact pads. This indicates that the inventive process is equally applicable to bump-on-pad contact configurations. This method was again repeated using nickel contact pads instead of titanium metallic pads and resulted in similar observations. When the above described sample pairs were bonded without the inventive method of surface preparation, virtually zero adhesion was observed between the samples.
- the disclosed method was performed on a pair of dissimilar die: one die had an array of indium bumps and the other die had a plain non-metallic (silicon dioxide) surface (as shown at interface 10 in FIG. 3 ). Perfect tensile rupture was observed upon pulling the two dissimilar die apart, and a substantial amount of indium was left adhered to the silicon dioxide surface. This indicates that the process is equally applicable to bump-on-non-metallic contact configurations. In further tests, equivalent results were obtained when bonding indium to a plain silicon surface and to a silicon nitride surface.
- the metallic contacts are subjected to the inventive ambient-atmosphere plasma treatment in the manner described above to reduce and/or remove the oxidation on the surface of the metallic contacts and create a chemically altered surface on the metallic contacts, which inhibits subsequent oxidation.
- the altered surfaces of the contacts are soldered to one or more metallic elements in the manner described below.
- solder In the state of the art, it is known to couple two metallic elements together by melting and directing a flow of a filler metal to the joint between the elements.
- This filler metal is know as solder and is commonly formed from combinations of tin-lead, tin-zinc, lead-silver, cadmium-silver, zinc-aluminum, tin-silver, tin-bismuth, etc. depending on the function of the joint.
- soldering generally flux is applied to the surfaces of the metallic elements to be joined, after which heat and solder are applied, causing the solder to melt and be drawn into the joint by capillary action and bond to the materials to be joined.
- the flux is used to facilitate the flow of solder between the two metallic elements as well as prevent oxidation of the metallic elements and/or the solder. Oxidation on the metallic elements to be coupled may severely reduce the effectiveness of the connection.
- FIGS. 5-9 illustrate another preferred embodiment utilizing the ambient-atmosphere plasma treatment in a soldering application to treat an array of contacts, such as on a ball-grid array.
- the room-ambient plasma source 4 is scanned across the surface of a first substrate 13 and an array of oxidized metallic contacts 14 , subjecting the metallic contacts 14 to activated gaseous agents 5 to chemically reduce and/or remove the oxidation 3 from, and create a chemically altered surface 6 on, the metallic contacts 14 , such that the metallic contacts 14 are protected from subsequent oxidation.
- solder balls 16 are applied to the treated metallic contacts 14 by a solder jet head 15 such as the MJ-SF solderjet head by MicroFab Technologies, Inc ( FIG. 6 ).
- the molten solder balls 16 adhere and wet instantly to the altered surface 6 on the metallic contacts 14 without the need for flux.
- the soldering balls 16 can be subsequently treated, as seen in FIG. 7 , by subjecting the solder balls 16 to the activated gaseous agents 5 to chemically reduce and/or remove the oxidation 3 from, and create a chemically altered surface 17 on, the solder balls 16 , such that solder balls 16 are protected from subsequent oxidation.
- a second array of metallic contacts 19 is treated in the same manner in which the array of metallic contacts 14 was treated. That is, a substrate 18 and the second array of metallic contacts 19 , being supported thereby, are scanned one or more times by the room-ambient plasma source 4 to subject the metallic contacts 19 to the activated gaseous agents 5 which chemically reduces and/or removes the oxidation 3 on the metallic contacts 19 and creates a chemically altered surface 6 , such that the metallic contacts 19 are protected from subsequent oxidation.
- the substrate 18 and the second array of metallic contacts 19 are properly aligned with the first substrate 13 and the solder balls 16 and a compression force 20 is then applied to one or both of the substrates 13 and 18 to join the array of metallic contacts 14 and the second array of metallic contacts 19 and form a bond therebetween utilizing the solder balls 16 .
- bonding of the prepared solder balls 16 to the prepared second array of metallic contacts 19 as described above completes the “flip-chip” solder bond without the use of flux.
- the surface preparation of the mating surfaces is so receptive to bonding that the flip-chip bond can be performed at temperatures either below or above the melting point of the solder (for example between 20 degrees C. and 250 degrees C.). In either case, the surface passivation created by the taught method inhibits oxidation for an extended period to facilitate bonding.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Wire Bonding (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
A method of removing oxidation from certain metallic contact surfaces utilizing a combination of relatively simple and inexpensive off-the-shelf equipment and specific chemistry. The method being a very rapid dry process which does not require a vacuum or containment chamber, or toxic gasses/chemicals, and does not damage sensitive electronic circuits or components. Additionally, the process creates a passivation layer on the surface of the metallic contact which inhibits further oxidation while allowing rapid and complete bonding, even many hours after surface treatment, without having to remove the passivation layer. The process utilizes a room-ambient plasma applicator with hydrogen, nitrogen, and inert gasses.
Description
- This application claims priority from U.S. Provisional Application No. 61/227,063 which was filed on Jul. 20, 2009.
- This invention relates to the interconnect bonding of electrical, optical and/or mechanical components to form a three-dimensional multi-chip hybrid assembly. More specifically, it relates to the surface preparation of metallic contacts on the surface of flip-chip components to improve process throughput, yield, and reliability of the subsequent electrical and/or mechanical connection.
- Metallic contact flip-chip interconnect bonding has been successfully used for many years to provide mechanical and/or electrical connection between two or more electrical, optical, and-or mechanical components. An example of the flip-chip interconnect would be the face-to-face indium bump bonding of an optical detector chip to its corresponding readout integrated circuit (ROIC) chip to form an infrared detector focal plane assembly. Many other types of 3-dimensional hybrid assemblies utilize similar metallic connection schemes. It is understood in the industry that removal of native oxidation from the surface of the metallic contacts prior to bonding results in a much improved electrical and/or mechanical interconnection by removing the relatively thick and tough indium oxide layer from the contacts, thus allowing metal-to-metal bonding without the impediment of the tough oxide layer at the interface. This elimination of interfacial oxide also improves ohmic contact between the two surfaces by eliminating the non-conducting or semiconducting metal-oxide interfacial layer.
- Various prior art methods of oxide removal have been devised including acid chemical etching as taught by Schulte and Olson in U.S. Pat. No. 4,865,245 to improve hybridization cold-welds, and vacuum plasma etching of the metallic contacts prior to hybrid bonding. Each of these methods has specific drawbacks. Example drawbacks of acid chemical etching include the potential for liquid-borne or airborne contamination of the devices, handling damage to delicate chips, a residue of acid etchant on the surface of the components which can lead to reliability problems, cost of chemicals and their subsequent disposal, a slow process turnaround time, usage of toxic and dangerous chemicals, the need for corrosion-resistant etching hardware and enclosures, high maintenance requirements, the need for toxic/corrosive exhaust provisions, and unwanted chemical reactions between the etchant and other surface features of the chips. Example drawbacks of vacuum plasma etching for oxide removal include expensive vacuum plasma equipment, slow process turnaround time, potential for plasma damage to the components by hot electrons, ions, and high kinetic energy atoms, back-sputtering of unwanted metals from vacuum chamber components or from the substrate itself onto the substrate being cleaned, expensive and time-consuming maintenance requirements of the required equipment, and a higher level of operator proficiency and training needed to run sophisticated vacuum plasma systems.
- Additionally, and very significantly, these methods only very temporarily remove oxidation from the metallic contacts, since the oxide regrows rapidly when exposed to air after the oxide reduction process. If the bonding cannot be performed in a very short period of time, and/or if the bonding is performed at elevated temperature, the regrown oxide inhibits bonding of the metallic contacts. The thicker the layer of regrown oxidation, the more compression and deformation of the contacts are required to obtain even marginal metal-to-metal cold welding.
- Prior art also teaches deposition of an oxidation-inhibiting layer on the deoxidized surface, but that layer must be removed prior to bonding. This poses two problems: 1) equipment and process time required to remove the oxidation inhibiting layer are costly and time-consuming; and 2) once the oxidation inhibiting layer is removed, the surface is once again subject to re-oxidation prior to the bonding. To offset these drawbacks, the removal of the passivating layer would normally involve the use of a vacuum chamber or confinement chamber to facilitate the chemical reaction and also to slow the re-oxidation process. These chambers impose additional time, expense, bulk, and complexity to the bonding process and equipment.
- What is needed is a rapid, non-damaging, inexpensive, simple process for metallic oxide removal which also produces a modified surface that inhibits the regrowth of oxide while at the same time not hindering bonding ability, so that it need not be removed prior to bonding; thus forming electrically and/or mechanically robust interconnect bonds.
- This invention consists of a process method which utilizes a combination of relatively simple and inexpensive “off-the-shelf” equipment and specific chemistry to remove oxidation from certain metallic contact surfaces with a very rapid dry process which does not require a vacuum or containment chamber, or toxic gasses/chemicals, and does not damage sensitive electronic circuits or components. Additionally, the process creates a passivation layer on the surface of the metallic contact which inhibits further oxidation while allowing rapid and complete bonding—even many hours after surface treatment, without having to remove the passivation layer. The process utilizes a room-ambient plasma applicator with an activated chemical reducing agent such as hydrogen gas, an activated chemical passivation agent such as nitrogen gas, and inert gasses. Specific ranges of process parameters such as power, gas flow rates, flow ratios, proximity, temperature, and dwell time which accomplish the above-stated goals are specified herein.
- As referenced within this specification, the term “activated chemical reducing agent” includes, but is not limited to, one or more of the following: hydrogen gas, hydrogen forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds), and carbon monoxide.
- As referenced within this specification, the term “activated chemical passivation agent” includes, but is not limited to, one or more of the following: nitrogen, nitrogen forming gas, such as hydrogen/nitrogen mixture, ammonia or other nitrogen-containing mixture.
- An example of the present invention will be described below with reference to the accompanying drawings, in which:
-
FIG. 1 shows a cross sectional view of an array of metallic contacts situated on a substrate; -
FIG. 2 shows a cross sectional view of an atmospheric-ambient plasma head subjecting the metallic contacts to an activated gaseous agent; -
FIG. 3 shows a cross sectional view of the array of treated metallic contacts bonded to a second substrate; -
FIG. 4 shows a cross sectional view of an alternate bonding capability of the surface preparation technique with two metallic-contact arrays; -
FIG. 5 shows a cross sectional view of an atmospheric-ambient plasma head subjecting metallic contacts of a first array to an activated gaseous agent; -
FIG. 6 shows a cross sectional view of a solder jet head applying solder balls to the metallic contacts of the first array; -
FIG. 7 shows a cross sectional view of an atmospheric-ambient plasma head subjecting the solder balls to an activated gaseous agent; -
FIG. 8 shows a cross sectional view of an atmospheric-ambient plasma head subjecting metallic contacts of a second array to an activated gaseous agent; -
FIG. 9 shows a cross sectional view of the metallic contacts of the first array aligned with the solder balls and the metallic contacts of the first array; and -
FIG. 10 shows a cross sectional view of a bond formed between the metallic contacts of the second array and the solder balls and the metallic contacts of the first array. - The present invention relates to a method for preparing and bonding surfaces, such as metallic contacts, by the sequential or concurrent application of a reducing agent and a passivation agent to remove an oxidation layer from the surfaces and then generate a passivated layer on the surfaces to prevent the subsequent formation of oxides on the surfaces. For purposes of the present invention and the following descriptions of the invention, an “agent”, such as a reducing agent or a passivation agent, is defined as a member, or species, of one or more groups, or genuses, of elements, chemicals or chemical compounds or mixtures thereof in a gaseous form suitable for application to the surfaces to be treated and providing the desired effect on the surfaces to be treated, such as the removal of oxides from the surfaces or the passivation of the surfaces to prevent the subsequent formation of oxides thereon.
-
FIG. 1 shows an array ofmetallic contacts 1 situated on asubstrate 2. Themetallic contacts 1 have anoxide layer 3 such as grown by exposure to air (native oxide) or by exposure to activated oxygen such as from a plasma or ozone asher. InFIG. 2 , a room-ambient plasma source 4 (atmospheric-ambient plasma head) is scanned across the surface of the array subjecting the oxidizedmetallic contacts agents 5 which chemically reduce and/or remove the oxidation on the surface of themetallic contacts 1 and create a chemically alteredsurface 6 on themetallic contacts 1 which inhibits subsequent oxidation. This process may be performed at room temperature, or at an elevated or reduced temperature, as may be desired to alter the kinetics of the chemical reaction. The nature and method of generation of these activated gaseous agents, and their application and effect on the surface of themetallic contacts 1, are a subject of this patent.FIG. 3 shows a subsequent method step of bonding of the treatedmetallic contacts 1 to a second substrate, which in this figure is shown to have corresponding contact pads 8 as well as aplain surface 7. The bonding process as described herein may occur at room temperature or elevated temperature, for example up to 250 degrees C. and higher, depending upon the materials chosen for thecontacts 1 and the opposing contact pads 8 andplain surface 7. Theinterface altered surfaces 6 of themetallic contacts 1 and the opposing contact pad 8 or theplain surface 7, respectively, is a key result of this patent in that thealtered surfaces 6 of thecontacts 1 are receptive to mechanical and electrical bonding with the opposing contact pad 8 and theplain surface 7, since inhibiting oxide has been removed and is not present, and thealtered contact surface 6 does not inhibit or frustrate bonding.FIG. 4 demonstrates an alternative bonding capability of this surface preparation technique wherein two metallic-contact arrays are subject to the inventive method of surface preparation including ambient-atmosphere plasma treatment, as seen inFIG. 2 , and are then bonded to each other. As used herein, the term bond can refer to “flip-chip” bonds, cold weld bonds, compression bonds, and soldered connections. Theresulting interface 12 between theopposing contacts 1 is mechanically and electrically robust as a result of the taught method of ambient-atmosphere plasma treatment. - This invention describes the joint use of known de-oxidation chemistry, known nitride passivation chemistry, known room-ambient plasma sources, and known metallic contact materials, which when used in combination and under certain process conditions and parameters, provide exceptionally thorough and successful surface preparation of metallic contacts for subsequent bonding.
- Surface oxidation of metallic (“Me” in the reactions cited below) contacts must be removed and prevented from re-growing if optimum metal-to-metal bonding is to be achieved. Chemically activated reducing agents, such as hydrogen in this example, are known to remove metallic oxidation by reducing the oxide to metal and water by the following chemical reaction:
-
MexOy +y2H→xMe+yH2O; for example: 2(In2O3)+12H→2In+6H2O - In this example, activated reducing gas of hydrogen is supplied by a room-ambient plasma source by plasma activation of a reducing agent or agents, such as hydrogen gas or other hydrogen-containing gas such as forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds). In addition to hydrogen, nitrogen from either nitrogen gas or a nitrogen containing gas such as forming gas (hydrogen/nitrogen mixture) or ammonia, is simultaneously present in the plasma for the specific purpose of passivation of the surface by converting the metal of the newly de-oxidized metal surface to a metal nitride by the following chemical reaction:
-
XMe+YN→MexNy; for example: In+N→InN - The simultaneous presence of an activated chemical reducing agent such as activated hydrogen and an activated chemical passivation agent such as activated nitrogen leads to an immediate nitridation of the exposed pure metal, as it is being reduced by the chemically activated hydrogen, before it can react with oxygen from the surrounding ambient environment. A sufficient gas flow rate out of the aperture of the plasma source combined with a close proximity of the aperture to the surface of the contact serves to purge room-ambient oxygen from the reaction region and lead to the formation of nearly pure metal-nitride without significant oxygen contained in the metal-nitride film created. An inert carrier agent, such as a gas from atomic group Villa such as Helium, Neon, Argon, or Xenon, can be used to enhance the striking, maintenance and effectiveness of the plasma, although the inert carrier gas is not strictly required for the desired chemical reactions taking place. The inert carrier gas should, for example, be a readily ionizable gas to excite the other gasses for high chemical reactivity. An additional benefit of the inert carrier gas is to increase the total gas flow out of the plasma head aperture, thus helping to purge the local reaction space of room air which would otherwise increase oxygen content in the grown metal-nitride film. Thus, the flow of inert gas can functionally permit an increase in the gap between the aperture of the plasma source and the surface of the metallic contacts to be treated while still maintaining a local environment sufficiently purged of ambient oxygen.
- Selection of contact metal is critical to the success of the process, as some metal elements and alloys do not form stable, thin nitrides. Examples of desirable elemental contact metals are: Indium, Gallium, Aluminum, Tin, Lead, Copper, Silver, Bismuth, Molybdenum, Tantalum, Tungsten, Nickel, Titanium, Antimony, Zinc, and Gold. All of these metals form conductive, stable or semi-stable metal-nitrides which will inhibit subsequent oxidation for a useable period of time. Also, the passivation layers formed from these metal-nitrides are known to be mechanically non-robust such that modest deformation of the passivation layer during the bonding process exposes significant native metal for bonding. Additionally, alloys comprising the above metals will also benefit when surface oxidation is replaced with nitridation employing the disclosed method. Examples of desirable alloys comprising two or more of these metals include but are not limited to: Lead-Tin alloy, Indium-Silver alloy, Tin-Antimony-Copper alloy, Gold-Tin alloy, Aluminum-Copper alloy, and Tin-Antimony alloy.
- A further benefit of utilizing nitridation as a passivation layer is that the nitrides of all of the metals and alloys discussed above are electrically conductive. As such, even if the metal-nitride passivation layer is not completely disintegrated during bonding by compression as is possible on the surface of hard metals like titanium or nickel for example, the metal-nitride layer will conduct electrical current and therefore will be beneficial in electrical connections.
- Additional benefits of this combination of equipment, agents, metals and parameters are: (1) that the de-oxidation/passivation process can be accomplished very quickly—a matter of ten seconds or less per die or array of metallic contacts, and (2) the compact size of a room-ambient plasma source allows this process to be integrated with the flip chip process equipment with little or no additional manufacturing space being required (although integration with the flip chip equipment is not necessary to enjoy the other benefits of this method).
- Due to the short process time and compact size of the apparatus, it is also possible to achieve similar process benefits with a sequential process where one scan (or series of scans) of the plasma source performs the de-oxidation/reduction process and a subsequent scan (or series of scans) performs the nitridation/passivation process before excessive oxidation can occur. While this sequential process is less desirable because of a finite amount of oxidation which can form on the surface of the metallic contacts in the time period between the de-oxidation/reduction and nitridation/passivation, it still holds substantial benefit over all other methods in the prior art, and is therefore included in this disclosure.
- The temperature of the contacts during the reducing and/or passivation processes can have a significant effect on the kinetics of the reactions. Higher temperature, for example, will increase the rate at which the activated reducing agent reacts with the surface oxide to convert it back to native metal. In the case of thicker native oxides, such as can exist on copper contacts for example, higher temperature can significantly decrease the process time required to reduce all of the oxide from the surface. Conversely, in the case of indium contact metal, the native oxide is self-limiting to a thickness of approximately 30-50 Angstroms, so complete removal of the oxidation can be accomplished in a few seconds even at room temperature. Contact metal temperature will also affect the growth kinetics of the passivating nitride. For example, higher temperatures will promote a thicker metal-nitride surface layer growth. This may be desirable, or undesirable, depending on the metal(s) involved and what the user wishes to accomplish with the passivation layer. Higher contact temperature could have a negative affect if employing a sequential reduction/passivation process, in that more oxidation is likely to occur in the dwell period after the reduction process but before the passivation process. This would result in more oxygen being incorporated into the passivation layer, potentially decreasing its effectiveness. In practice of the sequential process, it is certainly possible to use different temperatures for reduction and passivation, respectively. Summarizing then, contact temperature selection requires consideration of the particular metals involved and the desired ultimate surface passivation characteristics. Therefore, numerous combinations of contact temperature are possible within the purview of this invention method.
- A preferred embodiment of this invention for treating contacts such as indium contact bumps, utilizes a commercially available room-ambient plasma source that is capable of being mechanically scanned above the surface of metallic contacts (indium contact bumps) of an infrared detector die and the metallic contacts (indium contact bumps) of a readout integrated circuit die (ROIC), as shown in
FIG. 2 . Prior to the scan, hydrogen, nitrogen and helium gasses flow through the plasma source at flow rates of 0.05, 0.1, and 10 standard liters per minute (LPM), respectively. Electrical power at 70 watts is applied to the plasma source to create a plasma (gas having activated atoms) within the plasma source. Once the plasma has become stable, the plasma source is scanned one or more times across the surface of both the infrared detector die and the ROIC die at a velocity of 1.2 cm per second with a 1.0 millimeter gap between the aperture of the plasma source and the die, with both die at room temperature. As the plasma source is scanned across the surfaces of the die, chemically activated atoms (radicals) of hydrogen and nitrogen gasses are expelled from the aperture of the plasma source and react chemically with the indium contact bumps on the surfaces of both of the die. The activated hydrogen reducing agents react with the oxide on the surface of the indium contact bumps and convert the indium oxide to metallic indium and volatile water vapor. Simultaneously, activated nitrogen atoms are available to react with the freshly converted metallic indium on the surface of the indium contact bump to convert it to a thin passivation layer of indium nitride, which covers the surface of the indium contact bumps. This indium nitride passivation layer is very thin—on the order of 2-3 mono-layers—but is enough to inhibit the metallic indium of the bump from oxidizing, thus acting as a passivation layer to indium oxidation. Once treated, the infrared detector die and ROIC die remain passivated against oxidation for several hours (up to several days). During this period, according to one embodiment, the two die are placed in a flip-chip bonding apparatus, aligned, and bonded together by compression, with or without elevated temperature (refer toFIG. 4 ). The extremely thin indium nitride layer which has been passivating the surface of the indium contact bump is readily disintegrated by even slight deformation of indium during bonding compression, allowing native indium metal in opposing contact bumps to come into contact and “cold weld” into a mechanically and electrically robust single indium column. Alternatively, the compression bond can be performed at elevated temperatures, as high as 200 degrees C. (or above), such that less compression force is required, without significant oxidation of the indium bump surfaces. - Variations in gas flows, gas flow ratios, power levels, scan speed, temperature, and spacing between the plasma source and array/metallic contacts produced similarly successful bonding results, indicating that the disclosed process can be successfully performed using parameters other than those described above. For example, the hydrogen flow rate was varied between 0.005 and 0.5 LPM, the nitrogen flow rate was varied between 0.01 and 5 LPM, the helium flow rate was varied between 1.0 and 30 LPM, the power applied to the plasma source was varied between 20 and 200 watts, the scan rate was varied between 0.1 and 15 cm per second, and the spacing between the plasma source and array/metallic contacts was varied between 0.5 and 5 cm, and chip temperature between 25° C. and 160° C. While a flow ratio of 0.1:1.0:10 of hydrogen, nitrogen and helium, respectively, and at room temperature, gave the best bonding results, a wide range of ratios covering the range of flows cited above, provided benefit to the bonding process, as did a wide range of chip temperatures. The span of successful parameters is quite broad which makes it readily clear that the concept of the invention operates over a wide range of parameters; thus the scope of the invention includes significant deviations from the above-described embodiment. Also, the concept of this invention extends beyond the utilization of pure hydrogen gas as the activated chemical reducing agent and pure nitrogen gas as the activated chemical passivating agent. Other hydrogen-generating gaseous agents such as forming gas (hydrogen/argon or hydrogen/nitrogen mixture), ammonia, hydrogen sulfide, methane (and similar hydrogen-containing organic compounds), or non-hydrogen-containing reducing gaseous agents such as carbon monoxide, can be utilized as the reducing agent; and other nitrogen-generating gaseous agents such as forming gas (hydrogen/nitrogen mixture), or ammonia can be utilized as the passivating agent. These other gaseous agents that are capable of providing reducing and passivating activated chemistry to the metallic contact surface also fall under the scope of this invention. Additionally, pre-mixing of reducing and passivating gaseous agents in a broad range of ratios and supplying the mixed gaseous agents in these fixed ratios from a single gas source has resulted in successful bonding and therefore such gaseous agent mixture ratios also fall under the scope of this invention. For example, pre-mixing hydrogen and nitrogen gaseous agents in the ratios of between 0.0001 and 10.0 and the utilization thereof in the above described embodiment have proven successful in improving bond quality.
- Selection of the room-ambient plasma source is driven by the requirements of the substrates and contact metals to be treated. For substrates that are sensitive to high energy electrons or ionized atoms with kinetic energy (for example, silicon CMOS circuitry or infrared detector materials), a confined glow-discharge plasma head such as the “Atomflo” series from SurFX, LLC is desirable. However, in less-sensitive situations, arc discharge-type ambient plasma heads, plasma torches or corona discharge heads could be used. Any type of room-ambient plasma head such as “Labeltech” by Tantek A/S, or Dyne-e-Mite 3-D treater by Enercon industries is considered to come within the scope of this invention.
- With the method described herein, test die pairs with arrays of indium bumps were subjected to the above described process method in which the activated reagent gasses were simultaneously applied to the arrays of indium bumps. The test die were then bonded together (indium-to-indium as illustrated in
FIG. 4 ) as described above and subsequently the die were pulled apart to determine the quality of the bond between the indium bumps. Optical microscope and SEM images were evaluated to confirm that the indium bumps from facing die had bonded together exceptionally well—to the point that separation of the bonded bumps resulted in a classic pointed tensile rupture—and showed no signs of the pre-bond interface between the indium bumps of the two die. Additionally, ellipsometer readings (an extremely sensitive measure of surface oxidation) were first taken on indium coupons immediately after being subjected to the activated reducing and passivating gaseous agents as disclosed in the method, and then ellipsometer readings were taken again over the next 50 hours. The subsequent ellipsometer readings over 50 hours remained virtually unchanged from the initial ellipsometer reading, indicating that the nitridized surfaces were stable and resisted subsequent oxidation. On the same day but utilizing different samples, the above steps were repeated using the sequential process (de-oxidation scan followed a few seconds later by nitridation/passivation scan) instead of simultaneously conducting the de-oxidation and the nitridation/passivation scans. Although ellipsometer readings showed some oxidation of the indium surfaces, the pull-test showed nearly equivalent tensile rupture—indicating that the sequential process is slightly inferior to the simultaneous process but is also a viable method for contact preparation. - Additionally, on the same day, the disclosed method was performed on a pair of dissimilar die: one die had an array of indium bumps and the other die had a flat titanium metallic contact pad (shown as the
pad 9 inFIG. 3 ). Perfect tensile rupture was observed upon pulling the dissimilar die apart, and substantial indium was left adhered to the titanium metallic contact pads. This indicates that the inventive process is equally applicable to bump-on-pad contact configurations. This method was again repeated using nickel contact pads instead of titanium metallic pads and resulted in similar observations. When the above described sample pairs were bonded without the inventive method of surface preparation, virtually zero adhesion was observed between the samples. - It is readily anticipated that pad-on-pad configurations of the above-listed metals and alloys will exhibit comparable bonding success when treated with the disclosed method; and therefore fall under the purview of this invention.
- And finally, the disclosed method was performed on a pair of dissimilar die: one die had an array of indium bumps and the other die had a plain non-metallic (silicon dioxide) surface (as shown at
interface 10 inFIG. 3 ). Perfect tensile rupture was observed upon pulling the two dissimilar die apart, and a substantial amount of indium was left adhered to the silicon dioxide surface. This indicates that the process is equally applicable to bump-on-non-metallic contact configurations. In further tests, equivalent results were obtained when bonding indium to a plain silicon surface and to a silicon nitride surface. While demonstrated on silicon dioxide, silicon, and silicon nitride surfaces, it is anticipated that similar robust bonds could be created with other non-metallic surfaces including but not limited to: gallium arsenide, indium phosphide, indium-gallium arsenide, germanium, mercury-cadmium-telluride, indium antimonide, and oxides or nitrides thereof. Therefore these too fall under the purview of this invention. Likewise, samples of indium-silver alloy were treated with the taught method and bonded extremely well to treated titanium, nickel, indium, silicon, silicon nitride, and silicon dioxide surfaces. Therefore, alloy compositions as described above also fall under the purview of this invention. - In another preferred embodiment the metallic contacts are subjected to the inventive ambient-atmosphere plasma treatment in the manner described above to reduce and/or remove the oxidation on the surface of the metallic contacts and create a chemically altered surface on the metallic contacts, which inhibits subsequent oxidation. Following such treatment, the altered surfaces of the contacts are soldered to one or more metallic elements in the manner described below.
- In the state of the art, it is known to couple two metallic elements together by melting and directing a flow of a filler metal to the joint between the elements. This filler metal is know as solder and is commonly formed from combinations of tin-lead, tin-zinc, lead-silver, cadmium-silver, zinc-aluminum, tin-silver, tin-bismuth, etc. depending on the function of the joint. In known methods of soldering, generally flux is applied to the surfaces of the metallic elements to be joined, after which heat and solder are applied, causing the solder to melt and be drawn into the joint by capillary action and bond to the materials to be joined. In the known soldering processes the flux is used to facilitate the flow of solder between the two metallic elements as well as prevent oxidation of the metallic elements and/or the solder. Oxidation on the metallic elements to be coupled may severely reduce the effectiveness of the connection.
- In distinction from the known methods of soldering, by creating a passivation layer on the metallic contacts with the inventive method of preparing the surfaces of metallic contacts, oxidation and the effects caused thereby are minimized. As a result, it is now not necessary to utilize flux when connecting or bonding two metallic elements by soldering.
-
FIGS. 5-9 illustrate another preferred embodiment utilizing the ambient-atmosphere plasma treatment in a soldering application to treat an array of contacts, such as on a ball-grid array. As seen inFIG. 5 , the room-ambient plasma source 4 is scanned across the surface of afirst substrate 13 and an array of oxidizedmetallic contacts 14, subjecting themetallic contacts 14 to activatedgaseous agents 5 to chemically reduce and/or remove theoxidation 3 from, and create a chemically alteredsurface 6 on, themetallic contacts 14, such that themetallic contacts 14 are protected from subsequent oxidation. After the array ofmetallic contacts 14 has been treated,solder balls 16 are applied to the treatedmetallic contacts 14 by asolder jet head 15 such as the MJ-SF solderjet head by MicroFab Technologies, Inc (FIG. 6 ). Themolten solder balls 16 adhere and wet instantly to the alteredsurface 6 on themetallic contacts 14 without the need for flux. Once thesoldering balls 16 are attached to the array ofmetallic contacts 14, they can be subsequently treated, as seen inFIG. 7 , by subjecting thesolder balls 16 to the activatedgaseous agents 5 to chemically reduce and/or remove theoxidation 3 from, and create a chemically alteredsurface 17 on, thesolder balls 16, such thatsolder balls 16 are protected from subsequent oxidation. - A second array of
metallic contacts 19, as illustrated inFIG. 8 , is treated in the same manner in which the array ofmetallic contacts 14 was treated. That is, asubstrate 18 and the second array ofmetallic contacts 19, being supported thereby, are scanned one or more times by the room-ambient plasma source 4 to subject themetallic contacts 19 to the activatedgaseous agents 5 which chemically reduces and/or removes theoxidation 3 on themetallic contacts 19 and creates a chemically alteredsurface 6, such that themetallic contacts 19 are protected from subsequent oxidation. Although the steps of reducing and/or removing the oxidation from and creating a chemically altered surface on the solder balls and the metallic contacts are described above as occurring simultaneously, it is possible to achieve the noted benefits by treating the surfaces in a sequential process where one scan (or series of scans) of the plasma source performs the de-oxidation/reduction process and a subsequent scan (or series of scans) performs the nitridation/passivation process before excessive oxidation can occur. Subsequently, as illustrated inFIGS. 9 and 10 , thesubstrate 18 and the second array ofmetallic contacts 19 are properly aligned with thefirst substrate 13 and thesolder balls 16 and acompression force 20 is then applied to one or both of thesubstrates metallic contacts 14 and the second array ofmetallic contacts 19 and form a bond therebetween utilizing thesolder balls 16. In a beneficial manner, bonding of theprepared solder balls 16 to the prepared second array ofmetallic contacts 19 as described above completes the “flip-chip” solder bond without the use of flux. Additionally, the surface preparation of the mating surfaces is so receptive to bonding that the flip-chip bond can be performed at temperatures either below or above the melting point of the solder (for example between 20 degrees C. and 250 degrees C.). In either case, the surface passivation created by the taught method inhibits oxidation for an extended period to facilitate bonding. - It is to be understood that the present invention should not be limited to the above described embodiments, but may be practiced in various forms within the scope of the present invention.
Claims (2)
1. A method of preparing metallic contacts for interconnect bonding, the method comprising the steps of:
applying an activated chemical reducing agent, via a room-ambient plasma applicator, to at least a first metallic contact supported by a substrate, to remove oxidation from the first metallic contact; and
applying an activated chemical passivation agent, via the room-ambient plasma applicator, to the first metallic contact to create a passivation layer on the first metallic contact to inhibit oxidation of the first metallic contact.
2.-20. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/052,867 US20140102594A1 (en) | 2009-07-20 | 2013-10-14 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22706309P | 2009-07-20 | 2009-07-20 | |
US12/837,751 US8567658B2 (en) | 2009-07-20 | 2010-07-16 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
US14/052,867 US20140102594A1 (en) | 2009-07-20 | 2013-10-14 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/837,751 Continuation US8567658B2 (en) | 2009-07-20 | 2010-07-16 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140102594A1 true US20140102594A1 (en) | 2014-04-17 |
Family
ID=43464449
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/837,751 Active - Reinstated 2031-03-14 US8567658B2 (en) | 2009-07-20 | 2010-07-16 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
US14/052,867 Abandoned US20140102594A1 (en) | 2009-07-20 | 2013-10-14 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/837,751 Active - Reinstated 2031-03-14 US8567658B2 (en) | 2009-07-20 | 2010-07-16 | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds |
Country Status (2)
Country | Link |
---|---|
US (2) | US8567658B2 (en) |
WO (1) | WO2012009612A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4183894A1 (en) * | 2021-11-18 | 2023-05-24 | TE Connectivity Germany GmbH | Method for surface treatment of an electrical contact element and contact element |
US12317757B2 (en) | 2018-10-11 | 2025-05-27 | SeeQC, Inc. | System and method for superconducting multi-chip module |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011023509A (en) * | 2009-07-15 | 2011-02-03 | Renesas Electronics Corp | Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used in the same |
US8163094B1 (en) * | 2009-07-23 | 2012-04-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method to improve indium bump bonding via indium oxide removal using a multi-step plasma process |
FR2964112B1 (en) * | 2010-08-31 | 2013-07-19 | Commissariat Energie Atomique | TREATMENT BEFORE BONDING A CU-OXIDE MIXED SURFACE BY PLASMA CONTAINING NITROGEN AND HYDROGEN |
DE102010053214A1 (en) * | 2010-12-03 | 2012-06-06 | Evonik Degussa Gmbh | Process for the hydrogen passivation of semiconductor layers |
US8268675B2 (en) * | 2011-02-11 | 2012-09-18 | Nordson Corporation | Passivation layer for semiconductor device packaging |
CN104425289B (en) * | 2013-09-11 | 2017-12-15 | 先进科技新加坡有限公司 | Utilize the crystal grain erecting device and method of the mixed gas excited |
KR20170106300A (en) | 2014-11-12 | 2017-09-20 | 온토스 이큅먼트 시스템즈 | Simultaneous Hydrophilization of Photoresist Surface and Metal Surface Preparation: Methods, Systems, and Products |
WO2017031258A1 (en) | 2015-08-17 | 2017-02-23 | Ontos Equipment Systems | Epitaxial growth using atmospheric plasma preparation steps |
US10910901B2 (en) * | 2015-11-05 | 2021-02-02 | Globe Motors, Inc. | Wound stator with insulation system forming a wire guide for a winding operation |
US11217550B2 (en) * | 2018-07-24 | 2022-01-04 | Xilinx, Inc. | Chip package assembly with enhanced interconnects and method for fabricating the same |
US10727267B2 (en) * | 2018-09-12 | 2020-07-28 | Sensors Unlimited, Inc. | Interconnect bump structures for photo detectors |
CN113690150A (en) * | 2021-08-24 | 2021-11-23 | 安徽光智科技有限公司 | A method for flip-chip bonding of devices |
WO2025018984A1 (en) * | 2023-07-17 | 2025-01-23 | Surfx Technologies Llc | Atmospheric pressure plasma removal of oxidation from metallic contacts for improved electrical and mechanical bonding |
DE102023121708B4 (en) * | 2023-08-14 | 2025-04-30 | Infineon Technologies Ag | METHOD FOR PRODUCING A SUBSTRATE |
CN118888564B (en) * | 2024-09-29 | 2024-12-20 | 山西创芯光电科技有限公司 | Preparation method of indium column array with regular shape |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4865245A (en) * | 1987-09-24 | 1989-09-12 | Santa Barbara Research Center | Oxide removal from metallic contact bumps formed on semiconductor devices to improve hybridization cold-welds |
US6471115B1 (en) * | 1990-02-19 | 2002-10-29 | Hitachi, Ltd. | Process for manufacturing electronic circuit devices |
FR2735053B1 (en) * | 1995-06-09 | 1997-07-25 | Air Liquide | METHOD AND DEVICE FOR WAVE BRAZING INCORPORATING DRY FLUXING OPERATION |
US5928527A (en) * | 1996-04-15 | 1999-07-27 | The Boeing Company | Surface modification using an atmospheric pressure glow discharge plasma source |
US6277725B1 (en) * | 1999-07-07 | 2001-08-21 | United Microelectronics Corp. | Method for fabricating passivation layer on metal pad |
US6586323B1 (en) * | 2000-09-18 | 2003-07-01 | Taiwan Semiconductor Manufacturing Company | Method for dual-layer polyimide processing on bumping technology |
US6712260B1 (en) * | 2002-04-18 | 2004-03-30 | Taiwan Semiconductor Manufacturing Company | Bump reflow method by inert gas plasma |
US20040018715A1 (en) * | 2002-07-25 | 2004-01-29 | Applied Materials, Inc. | Method of cleaning a surface of a material layer |
US6962835B2 (en) * | 2003-02-07 | 2005-11-08 | Ziptronix, Inc. | Method for room temperature metal direct bonding |
US7079370B2 (en) * | 2003-04-28 | 2006-07-18 | Air Products And Chemicals, Inc. | Apparatus and method for removal of surface oxides via fluxless technique electron attachment and remote ion generation |
US8153510B2 (en) * | 2009-05-01 | 2012-04-10 | Power Gold LLC | Semiconductor bond pad patterns and method of formation |
-
2010
- 2010-07-16 US US12/837,751 patent/US8567658B2/en active Active - Reinstated
-
2011
- 2011-07-15 WO PCT/US2011/044137 patent/WO2012009612A2/en active Application Filing
-
2013
- 2013-10-14 US US14/052,867 patent/US20140102594A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
Uner et al., "Application of Atmospheric Plasma to Various Steps in Integrated Circuit Packaging", 3rd Annual Semiconductor Packaging Symposium, 2000, pg. 1-7. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12317757B2 (en) | 2018-10-11 | 2025-05-27 | SeeQC, Inc. | System and method for superconducting multi-chip module |
EP4183894A1 (en) * | 2021-11-18 | 2023-05-24 | TE Connectivity Germany GmbH | Method for surface treatment of an electrical contact element and contact element |
Also Published As
Publication number | Publication date |
---|---|
US8567658B2 (en) | 2013-10-29 |
US20110011531A1 (en) | 2011-01-20 |
WO2012009612A2 (en) | 2012-01-19 |
WO2012009612A3 (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8567658B2 (en) | Method of plasma preparation of metallic contacts to enhance mechanical and electrical integrity of subsequent interconnect bonds | |
US6863209B2 (en) | Low temperature methods of bonding components | |
JP4663165B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2786700B2 (en) | Method and apparatus for manufacturing semiconductor integrated circuit device | |
TW462904B (en) | Method to manufacture components, their applications, workpiece placed in the air, and the vacuum treatment chamber | |
US7993971B2 (en) | Forming a 3-D semiconductor die structure with an intermetallic formation | |
Takata et al. | Effects of solvents in the polyethylene glycol series on the bonding of copper joints using Ag2O paste | |
US7321140B2 (en) | Magnetron sputtered metallization of a nickel silicon alloy, especially useful as solder bump barrier | |
US20080078145A1 (en) | Manufacturing process and apparatus therefor utilizing reducing gas | |
US7829195B2 (en) | Fluorination pre-treatment of heat spreader attachment indium thermal interface material | |
JP3400408B2 (en) | Flip chip mounting method | |
US11424217B2 (en) | Soldering a conductor to an aluminum layer | |
JP2001060602A (en) | Flip chip mounting structure and manufacturing method thereof | |
US20110014785A1 (en) | Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used in said method | |
JP5210496B2 (en) | Manufacturing method of semiconductor device | |
CN112654453B (en) | Method for manufacturing bonded structure | |
Gan et al. | Effect of electromigration on intermetallic compound formation in Pb-free solder-Cu interfaces | |
Wang et al. | Silver microstructure control for fluxless bonding success using Ag-In system | |
US5956573A (en) | Use of argon sputtering to modify surface properties by thin film deposition | |
Kim et al. | Very High-Temperature Joints Between Si and Ag–Copper Substrate Made at Low Temperature Using InAg System | |
JP4577130B2 (en) | Manufacturing method of semiconductor device | |
Su et al. | High Throughput Void-Free Soldering with Pneumatic Reflow Method in Lead-Free Solder Die Attach | |
JP4434106B2 (en) | Manufacturing method of semiconductor device | |
JP2005026612A (en) | Semiconductor device | |
WO2019097979A1 (en) | Semiconductor substrate and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |