US20140099216A1 - Free piston type torsion drive compressor - Google Patents

Free piston type torsion drive compressor Download PDF

Info

Publication number
US20140099216A1
US20140099216A1 US14/118,581 US201214118581A US2014099216A1 US 20140099216 A1 US20140099216 A1 US 20140099216A1 US 201214118581 A US201214118581 A US 201214118581A US 2014099216 A1 US2014099216 A1 US 2014099216A1
Authority
US
United States
Prior art keywords
piston
motor
compressor
torsion
compressor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/118,581
Inventor
Edo B. Wissink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Original Assignee
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO filed Critical Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Assigned to NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO reassignment NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Wissink, Edo B.
Publication of US20140099216A1 publication Critical patent/US20140099216A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/004Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by two single acting piston motors, each acting in one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/003Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00 free-piston type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids

Definitions

  • the invention relates to a free piston type compressor.
  • the invention further relates to an air conditioning system.
  • the invention further relates to a heat pump or liquid pump.
  • the free piston type torsion drive compressor comprises a first piston and a second piston interconnected with a torsion body and elastic bending elements, said first piston and said second piston being driven by a first motor and a second motor by applying force in opposite circumferential directions, so that in use the first piston and second piston displace along a displacement direction wherein the said motors drive the first piston and the second piston in the circumferential direction transversal to the displacement direction.
  • the compressor according to the invention comprises two opposite moving pistons which are adapted to move with substantially the same speed. More in particular, it is found that when the pistons are connected with elastic elements a rotational displacement of the pistons is translated into axial displacement accurately.
  • a free piston type compressor/pump it may comprise the first piston and the second piston, positioned in opposite sides and both connected to a torsion body and elastic bending elements.
  • the torsion body may comprise a central torsion rod encircled by a set of elastic bending elements for controlling the axial displacement.
  • the pistons are driven by the motor(s) which causes them to rotate with alternating direction with a frequency, which is equal to the natural frequency of the mechanical assembly of the pistons and the torsion body.
  • the motor(s) drive the motion by applying driving force in circumference direction. This means the motor(s) takes care for continuous natural torsion vibration.
  • the elastic elements, also connected to the piston convert this alternating rotational displacement in an alternating axial displacement of the piston, which may also be referred to as ‘a piston stroke’. Accordingly, movement of the piston has a rotating component (the driving direction) and an axial component (the stroke). The speed of rotation is higher than the axial speed. Pistons move in axially opposite directions during operation. During operation the torsion body and the elastic bending elements undergo an elastic deformation. In Future embodiments the torsion bar and the elastic bending elements may be integrated.
  • First embodiment is the use of two motors. Each piston is directly driven by its own motor and the piston is an integrated part of the electromotor, called the rotor.
  • second embodiment of the drive system is the use of single central positioned motor. The motor is positioned in between the pistons.
  • the first motor and the second motor may be adapted to rotate with the same frequency having the opposite phases. This results in an opposite axial movement of the pistons.
  • This technical measure is based on the insight that when the first motor and the second motor are adapted to rotate with the same frequency having the opposite phases for both translation and rotation, the overall vibration of the compressor is very small.
  • the motor is positioned centrally between the pistons, whereby each motor side is provided with its own torsion bar and elastic bending elements connected to the piston.
  • the first piston and the second piston are adapted to rotate with the same frequency having synchronous phases. Both pistons move in opposite phase to the central motor. This results in an opposite axial movement of the pistons.
  • the stroke of the compressor is mechanically controlled, which is advantageous. More in particular, it is found that the speed of rotation of the compressor according to the invention is much higher that the speed of translation. Accordingly, a relatively small motor(s) may be used. This may substantially reduce the manufacturing costs of the compressor according to the invention.
  • the torsion based compressor may have the following additional advantages:
  • the motors of the compressor according to the invention may be adapted to deliver a substantially limited force or energy for compensating for the energy loss of the compression process. Accordingly, the efficiency of the compressor of the invention is increased.
  • the compressor comprises two opposite interconnected pistons, where each piston is also part of the electromotor, the rotor.
  • a first connection element is a torsion body provided in the centre to control the torsion stiffness.
  • An exemplar embodiment is given in FIG. 2 .
  • a second connection element may comprise a set of flexible rods, required to control the axial movement of the pistons.
  • Flexible rods may be provided to transform the rotation to a controlled translation in accordance with the invention.
  • FIG. 4 shows the torsion drive system positioned in a cylinder liner with the static parts of the motors (windings).
  • the air conditioning system comprises a free piston type compressor according to any one of the preceding claims.
  • FIG. 1 presents in a schematic way an embodiment of the compressor according to the invention, having a central positioned motor.
  • FIG. 2 presents in a schematic way an embodiment of the compressor with integrated motors, showing the torsion body.
  • FIG. 3 presents in a schematic way an embodiment of the compressor with integrated motors, showing the movement of the piston controlled by a set of flexible rods.
  • FIG. 4 presents schematically a complete design of the torsion drive compressor according to a further aspect of the invention.
  • FIG. 1 presents in a schematic way an embodiment of the compressor with a central positioned motor.
  • the compressor 10 according to the invention comprises a first free piston 2 a and a second free piston 2 b interconnected by a torsion body 3 a and 3 b, and elastic bending element 4 a and 4 b to the central electromotor 5 .
  • the driving force is applied transversely to the direction of the expected displacement D of the first free piston and the second free piston.
  • the capacity of such compressor may easily be adjusted by adjusting the vibration amplitude, by changing driving power/amplitude of the torsion vibration.
  • the movement of the pistons 2 a, 2 b in the direction D is enabled by opposite driving directions of the motor
  • the motor 5 rotates with a substantially the same frequency having the opposite phases of the pistons.
  • the motors thus couple the driving force to the pistons via the torsion body 3 a, 3 b.
  • the torsion rods are implemented from a material which undergoes elastic deformation when driven by the motor.
  • the opposite phase of the motor with the piston enables a well-balanced design.
  • Dead volume reduces the volumetric efficiency, especially at high compression ratios.
  • a principal disadvantage of a linear motor known from the prior art is that it has to change direction instead of continued rotation.
  • the motor is directly coupled to the piston, so the translation speed equals the piston speed.
  • the average speed of the piston of a refrigeration compressor is low, typically 2 m/s for a small commercially available compressor up to 5.5 m/s for a large industrial compressor.
  • a free piston type torsion drive compressor (or pump) is provided, wherein the dead volume is mechanically controlled and wherein the engine speed of the electromotor exceeds the piston speed.
  • the principle of the torsion drive is based on the reduction of the length of a straight flexible elements in X-direction, when it is loaded.
  • the pistons When two pistons are connected by a straight flexible element, the pistons create a sliding guide which allows substantially no rotation. Loading causes bending of the flexible (elastic) element. Loading gives vertical displacement ⁇ y and an axial displacement ⁇ x, which is a second order effect. This has a number of advantageous properties:
  • the torsion drive technology uses the elastic properties of dynamically loaded components. At maximum capacity the material stress is found to be well below the fatigue limit. This means that the elastic elements and the torsion bar have substantially unlimited lifetime.
  • the technology can be combined with common valve plates. It is also mentioned that the lifetime of the compressor is not limited by the frequency of the start/stop cycles.
  • FIGS. 2-4 More details on operation of the free piston type torsion drive compressor (or pump) are given in FIGS. 2-4 .
  • FIGS. 2 , 3 and 4 present in a schematic way an embodiment of the compressor having integrated electro motors.
  • the pistons are part of the electromotor, the rotors.
  • the pistons are connected by a torsion bar in the center, see 23 , which may be encircled by a set of elastic rods 33 required to control the displacement of both pistons 21 , 22 in FIG. 2 or 31 a , 31 b in FIG. 3 , respectively.
  • the first free piston 21 and the second free piston 22 are interconnected by a torsion body 23 , which may be implemented as an elastic torsion spring. It will be appreciated that other per se known embodiments of an elastic spring may be used. For the clarity reasons the complete motors driving the torsion body are not depicted.
  • the free pistons 21 , 22 when the alternating driving force is applied to the torsion body 23 the free pistons 21 , 22 will rotate to and fro and translate back and forth along the translation direction D which is substantially parallel to the longitudinal axis L of the compressor 20 .
  • FIG. 3 shows the sets of elastic rods controlling the movement of the pistons.
  • view 30 a a shortening of the compressor is illustrated upon the elastic bending of the rods 33 driven by the torsion force by the electromotor on the pistons.
  • the free pistons will rotate and translate in the opposite directions as is depicted by the respective arrows.
  • FIG 30 c a second shortened condition of the compressor is shown when the free pistons 31 a, 31 b are driven by the torsion force of the electro motors in opposite direction with respect to the direction shown in view 30 a.
  • the weight of the piston, or more particularly, the torsion inertia of the pistons, and the stiffness of the torsion bar are selected so that the natural torsion vibrating frequency equals about 50 Hz. This substantially improves operating parameters of the device according to the invention.
  • FIG. 4 presents schematically a complete design of the torsion drive compressor 40 according to a further aspect of the invention.
  • the torsion bar 47 is cooperating with the elastic elements 45 .
  • the compressor has a fully symmetrical design in both the static and the dynamic modes.
  • the compressor comprises two integrated oscillating electromotors, wherein the piston is arranged as a rotor with integrated permanent magnets 48 .
  • the stator windings are schematically given by 41 .
  • the motors may be canned motors.
  • the stator windings are physically separated from the refrigerant/liquid by a cylinder liner. This has an advantage that in the case of application as compressor, it is suitable for operating with different refrigerants, including ammonia.
  • the cylinder liner 43 encloses all moving components, except the valve plates 49 .
  • the cylinder liner is part of the hermetically sealed outer shell of the compressor.
  • the compressor according to the invention may operate with a refrigeration capacity of 0.5 to 5 kW. This corresponds to a compressor with an effective length of 500 mm and a piston diameter of 65mm.
  • the compressor is hermetic, oil free, compatible with all refrigerants and has a step less capacity from 0 to 100%. This combination is very useful for application with natural refrigerants and enables new combinations of technologies, gas compression and sorption cycles.
  • the torsion drive compressor is able to increase the efficiency of the compressor itself and of an overall system using the compressor.
  • the low internal friction, the step less capacity control, the absence of a frequency controller and other part load losses gives a significantly improved energetic efficiency of the compressor.
  • the efficiency of the system will be increased by the used of a natural refrigerant like ammonia and the absence of oil. As oil free system has the following positive effects”
  • hybrid heat pimps based on vapor compression and absorption technology. Sorption cycles do not function properly with oil circulating in the system, so the absence of oil is advantageous.
  • the hybrid pump may be used to increase efficiency and application range of the compressor. As it may use two independent energy sources (electric and heat), it is easier for heat pumps of the type discussed above to handle peak loads.

Abstract

The invention relates to a free piston type compressor 10 according to the invention comprises a first free piston 2 a and a second free piston 2 b interconnected by a torsion body 3 a and 3 b, and elastic bending element 4 a and 4 b to the central electromotor 5. In accordance with the invention the driving force is applied transversely to the direction of the expected displacement D of the first free piston and the second free piston.

Description

    FIELD OF THE INVENTION
  • The invention relates to a free piston type compressor. The invention further relates to an air conditioning system. The invention further relates to a heat pump or liquid pump.
  • BACKGROUND OF THE INVENTION
  • An embodiment of a free piston type compressor is known from U.S. Pat. No. 5,275,542. In the known compressor the piston and a driving linear electromotor are connected by a shaft.
  • The known free piston type compressor has the following disadvantages:
      • piston movement is not controlled mechanically;
      • speed of the electromotor is limited to the speed of the compression piston. Accordingly, a relative large and thus expensive motor is required to deliver a sufficient force to the piston;
      • motor and compression piston move simultaneously in the same direction which may induce considerable vibration.
    SUMMARY OF THE INVENTION
  • It is an object of the invention to provide an improved free piston compressor. In particular, it is an object of the invention to provide a free piston compressor which is substantially vibration free.
  • To this end the free piston type torsion drive compressor according to the invention comprises a first piston and a second piston interconnected with a torsion body and elastic bending elements, said first piston and said second piston being driven by a first motor and a second motor by applying force in opposite circumferential directions, so that in use the first piston and second piston displace along a displacement direction wherein the said motors drive the first piston and the second piston in the circumferential direction transversal to the displacement direction.
  • It is found that when the free piston is driven by a torsion body the resulting construction is substantially vibration-free due to the fact that the compressor according to the invention comprises two opposite moving pistons which are adapted to move with substantially the same speed. More in particular, it is found that when the pistons are connected with elastic elements a rotational displacement of the pistons is translated into axial displacement accurately.
  • In an exemplary embodiments of a free piston type compressor/pump it may comprise the first piston and the second piston, positioned in opposite sides and both connected to a torsion body and elastic bending elements. Accordingly, the torsion body may comprise a central torsion rod encircled by a set of elastic bending elements for controlling the axial displacement.
  • During operation the pistons are driven by the motor(s) which causes them to rotate with alternating direction with a frequency, which is equal to the natural frequency of the mechanical assembly of the pistons and the torsion body. The motor(s) drive the motion by applying driving force in circumference direction. This means the motor(s) takes care for continuous natural torsion vibration. The elastic elements, also connected to the piston convert this alternating rotational displacement in an alternating axial displacement of the piston, which may also be referred to as ‘a piston stroke’. Accordingly, movement of the piston has a rotating component (the driving direction) and an axial component (the stroke). The speed of rotation is higher than the axial speed. Pistons move in axially opposite directions during operation. During operation the torsion body and the elastic bending elements undergo an elastic deformation. In Future embodiments the torsion bar and the elastic bending elements may be integrated.
  • There are two possibilities to drive the system. First embodiment is the use of two motors. Each piston is directly driven by its own motor and the piston is an integrated part of the electromotor, called the rotor. In the second embodiment of the drive system is the use of single central positioned motor. The motor is positioned in between the pistons.
  • In the first embodiment the first motor and the second motor may be adapted to rotate with the same frequency having the opposite phases. This results in an opposite axial movement of the pistons. This technical measure is based on the insight that when the first motor and the second motor are adapted to rotate with the same frequency having the opposite phases for both translation and rotation, the overall vibration of the compressor is very small.
  • In the second embodiment, the motor is positioned centrally between the pistons, whereby each motor side is provided with its own torsion bar and elastic bending elements connected to the piston. The first piston and the second piston are adapted to rotate with the same frequency having synchronous phases. Both pistons move in opposite phase to the central motor. This results in an opposite axial movement of the pistons.
  • In addition, it is found that the stroke of the compressor is mechanically controlled, which is advantageous. More in particular, it is found that the speed of rotation of the compressor according to the invention is much higher that the speed of translation. Accordingly, a relatively small motor(s) may be used. This may substantially reduce the manufacturing costs of the compressor according to the invention.
  • More in particular, the torsion based compressor may have the following additional advantages:
      • the motor power may be completely independent from the compression control; the energy delivered by the motor is used to control the amplitude of the torsional vibration. Increasing the amplitude gives an increased compressor power. Stroke of the piston increases, while the top dead centre remains unchanged;
      • the rotor of the electromotor may be integrated in the piston.
  • Accordingly, the motors of the compressor according to the invention may be adapted to deliver a substantially limited force or energy for compensating for the energy loss of the compression process. Accordingly, the efficiency of the compressor of the invention is increased.
  • An embodiment of the invention with an integrated motor will be discussed in more detail with reference to FIG. 2, FIG. 3 and FIG. 4. In this embodiment the compressor comprises two opposite interconnected pistons, where each piston is also part of the electromotor, the rotor. A first connection element is a torsion body provided in the centre to control the torsion stiffness. An exemplar embodiment is given in FIG. 2. A second connection element may comprise a set of flexible rods, required to control the axial movement of the pistons. An exemplary embodiment is discussed with reference to FIG. 3. Flexible rods may be provided to transform the rotation to a controlled translation in accordance with the invention. FIG. 4 shows the torsion drive system positioned in a cylinder liner with the static parts of the motors (windings).
  • It is found to be advantageous to implement the torsion body because the motion is not directly dependent on the characteristics of the electromotor.
  • The air conditioning system according to the invention comprises a free piston type compressor according to any one of the preceding claims.
  • These and other aspects of the invention will be discussed with reference to drawings wherein like reference signs correspond to like elements. It will be appreciated that the drawings are presented for illustrative purposes only and may not be used for limiting the scope of the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 presents in a schematic way an embodiment of the compressor according to the invention, having a central positioned motor.
  • FIG. 2 presents in a schematic way an embodiment of the compressor with integrated motors, showing the torsion body.
  • FIG. 3 presents in a schematic way an embodiment of the compressor with integrated motors, showing the movement of the piston controlled by a set of flexible rods.
  • FIG. 4 presents schematically a complete design of the torsion drive compressor according to a further aspect of the invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 presents in a schematic way an embodiment of the compressor with a central positioned motor. The compressor 10 according to the invention comprises a first free piston 2 a and a second free piston 2 b interconnected by a torsion body 3 a and 3 b, and elastic bending element 4 a and 4 b to the central electromotor 5. In accordance with the invention the driving force is applied transversely to the direction of the expected displacement D of the first free piston and the second free piston.
  • The capacity of such compressor may easily be adjusted by adjusting the vibration amplitude, by changing driving power/amplitude of the torsion vibration.
  • The movement of the pistons 2 a, 2 b in the direction D is enabled by opposite driving directions of the motor In a particular embodiment, the motor 5 rotates with a substantially the same frequency having the opposite phases of the pistons. The motors thus couple the driving force to the pistons via the torsion body 3 a, 3 b. The torsion rods are implemented from a material which undergoes elastic deformation when driven by the motor. The opposite phase of the motor with the piston enables a well-balanced design.
  • It will be appreciated that in the known conventional free piston designs the piston is directly coupled to the translating electromotor. This has at least two disadvantages: the absence of mechanical piston control and the engine speed that equals the piston speed.
  • For the compressor efficiency it is very important to have an accurate and fixed top dead centre position, to minimize the dead volume losses. Dead volume reduces the volumetric efficiency, especially at high compression ratios.
  • Due to absence of transmission between the electromotor and the piston, the relative large compression forces of the piston are directly transmitted to the electromotor, so it has a large negative impact on the size of electromotor. Given the required electromotor power, the size can be reduced by increasing its speed.
  • A principal disadvantage of a linear motor known from the prior art is that it has to change direction instead of continued rotation. For a conventionally known free piston design the motor is directly coupled to the piston, so the translation speed equals the piston speed. The average speed of the piston of a refrigeration compressor is low, typically 2 m/s for a small commercially available compressor up to 5.5 m/s for a large industrial compressor.
  • In accordance with the invention, an aspect of which has been illustrated with reference to FIG. 1, a free piston type torsion drive compressor (or pump) is provided, wherein the dead volume is mechanically controlled and wherein the engine speed of the electromotor exceeds the piston speed.
  • The principle of the torsion drive is based on the reduction of the length of a straight flexible elements in X-direction, when it is loaded. When two pistons are connected by a straight flexible element, the pistons create a sliding guide which allows substantially no rotation. Loading causes bending of the flexible (elastic) element. Loading gives vertical displacement Δy and an axial displacement Δx, which is a second order effect. This has a number of advantageous properties:
      • a high transmission ratio Δy/Δx may be enabled;
      • the pistons mode symmetrically, therefore they are balanced;
      • there is an accurate mechanical top dead position.
  • The torsion drive technology uses the elastic properties of dynamically loaded components. At maximum capacity the material stress is found to be well below the fatigue limit. This means that the elastic elements and the torsion bar have substantially unlimited lifetime. The technology can be combined with common valve plates. It is also mentioned that the lifetime of the compressor is not limited by the frequency of the start/stop cycles.
  • More details on operation of the free piston type torsion drive compressor (or pump) are given in FIGS. 2-4.
  • FIGS. 2, 3 and 4 present in a schematic way an embodiment of the compressor having integrated electro motors. The pistons are part of the electromotor, the rotors. The pistons are connected by a torsion bar in the center, see 23, which may be encircled by a set of elastic rods 33 required to control the displacement of both pistons 21, 22 in FIG. 2 or 31 a, 31 b in FIG. 3, respectively.
  • In a particular embodiment of FIG. 2 depicting the compressor 20 according to the invention, the first free piston 21 and the second free piston 22 are interconnected by a torsion body 23, which may be implemented as an elastic torsion spring. It will be appreciated that other per se known embodiments of an elastic spring may be used. For the clarity reasons the complete motors driving the torsion body are not depicted.
  • In accordance with the invention when the alternating driving force is applied to the torsion body 23 the free pistons 21, 22 will rotate to and fro and translate back and forth along the translation direction D which is substantially parallel to the longitudinal axis L of the compressor 20.
  • FIG. 3 shows the sets of elastic rods controlling the movement of the pistons. In view 30 a a shortening of the compressor is illustrated upon the elastic bending of the rods 33 driven by the torsion force by the electromotor on the pistons. The free pistons will rotate and translate in the opposite directions as is depicted by the respective arrows.
  • In view 30 b the compressor returns to its original (rest) state when no driving force is applied. The pistons are now in their top dead centre position, approaching the valve plates 24A and 24B.
  • In view 30 c a second shortened condition of the compressor is shown when the free pistons 31 a, 31 b are driven by the torsion force of the electro motors in opposite direction with respect to the direction shown in view 30 a.
  • The weight of the piston, or more particularly, the torsion inertia of the pistons, and the stiffness of the torsion bar are selected so that the natural torsion vibrating frequency equals about 50 Hz. This substantially improves operating parameters of the device according to the invention.
  • By suitably alternating the driving directions for the free pistons 31 a, 31 b a pulse-like translational movement of the compressor may be obtained.
  • FIG. 4 presents schematically a complete design of the torsion drive compressor 40 according to a further aspect of the invention. The torsion bar 47 is cooperating with the elastic elements 45. Preferably, the compressor has a fully symmetrical design in both the static and the dynamic modes. In the present embodiment, the compressor comprises two integrated oscillating electromotors, wherein the piston is arranged as a rotor with integrated permanent magnets 48. The stator windings are schematically given by 41. The motors may be canned motors. The stator windings are physically separated from the refrigerant/liquid by a cylinder liner. This has an advantage that in the case of application as compressor, it is suitable for operating with different refrigerants, including ammonia. The cylinder liner 43 encloses all moving components, except the valve plates 49.
  • The cylinder liner is part of the hermetically sealed outer shell of the compressor.
  • It is found that the compressor according to the invention may operate with a refrigeration capacity of 0.5 to 5 kW. This corresponds to a compressor with an effective length of 500 mm and a piston diameter of 65mm. The compressor is hermetic, oil free, compatible with all refrigerants and has a step less capacity from 0 to 100%. This combination is very useful for application with natural refrigerants and enables new combinations of technologies, gas compression and sorption cycles.
  • The torsion drive compressor is able to increase the efficiency of the compressor itself and of an overall system using the compressor. The low internal friction, the step less capacity control, the absence of a frequency controller and other part load losses gives a significantly improved energetic efficiency of the compressor. The efficiency of the system will be increased by the used of a natural refrigerant like ammonia and the absence of oil. As oil free system has the following positive effects”
      • i) improved heat transfer in the heat exchangers, which is used to be the most problematic at low temperature applications of the known systems;
      • ii) reduced flow losses in the suction line;
      • iii) layout of the suction line may be less critical.
  • An additional effect of the absence of oil is that hydrocarbon will not dissolve in the oil. Accordingly, the 150 g refrigerant can be used more effective, increasing the refrigeration capacity.
  • An important new possibility is the use of hybrid heat pimps, based on vapor compression and absorption technology. Sorption cycles do not function properly with oil circulating in the system, so the absence of oil is advantageous. The hybrid pump may be used to increase efficiency and application range of the compressor. As it may use two independent energy sources (electric and heat), it is easier for heat pumps of the type discussed above to handle peak loads.
  • It is found that the compressor according to the invention has the following additional advantages:
      • well vibration balanced of construction;
      • high speed of the electromotor is easy transfer to a high driving force of the free pistons;
      • a continuous adjustment of the capacity is possible by varying the amplitude of the torsion movement;
      • oil-free application is possible, which makes the compressor according to the invention particularly versatile in use;
      • high motor speed enables the use of small and cheap motors.
  • While specific embodiments have been described above, it will be appreciated that the invention may be practiced otherwise than as described. Moreover, specific items discussed with reference to any of the isolated drawings may freely be inter-changed supplementing each outer in any particular way. The descriptions above are intended to be illustrative, not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described in the foregoing without departing from the scope of the claims set out below.

Claims (9)

1. A free piston type compressor comprising a first piston and a second piston interconnected with a torsion body and elastic bending elements, said first piston and said second piston being driven by a first motor and a second motor by applying force in opposite circumferential directions, so that in use the first piston and second piston displace along a displacement direction wherein the said motors drive the first piston and the second piston in the circumferential direction transversal to the displacement direction.
2. The compressor according to claim 1, having an integrated motor, where the torsion body comprises a central torsion rod encircled by a set of elastic rods for controlling the displacement.
3. The compressor according to claim 1, with a centrally positioned integrated motor wherein each piston is connected with its own set of torsion bar and elastic bending elements.
4. The compressor according to claim 1, wherein the first motor and the second motor are adapted to rotate with substantially the same frequency having opposite phases.
5. The compressor according to claim 1, wherein the rotors of the respective motors are integrated with the respective free pistons.
6. The compressor according to claim 1, wherein the torsion body is adapted to undergo an elastic deformation.
7. An air conditioning system comprising a free piston type compressor according to claim 1.
8. A heat or liquid pump comprising a free piston type compressor according to claim 1.
9. The compressor according to claim 3, where in operation, the motor moves in an opposite phase than both pistons.
US14/118,581 2011-05-23 2012-05-23 Free piston type torsion drive compressor Abandoned US20140099216A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11167100A EP2527653A1 (en) 2011-05-23 2011-05-23 A free piston type compressor
EP11167100.4 2011-05-23
PCT/NL2012/050357 WO2012161575A1 (en) 2011-05-23 2012-05-23 A free piston type torsion drive compressor

Publications (1)

Publication Number Publication Date
US20140099216A1 true US20140099216A1 (en) 2014-04-10

Family

ID=46208135

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/118,581 Abandoned US20140099216A1 (en) 2011-05-23 2012-05-23 Free piston type torsion drive compressor

Country Status (3)

Country Link
US (1) US20140099216A1 (en)
EP (2) EP2527653A1 (en)
WO (1) WO2012161575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921704A1 (en) 2014-03-17 2015-09-23 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A free piston type fluid pump
CN112324563B (en) * 2020-09-27 2022-01-07 山东休普动力科技股份有限公司 Double-winding free piston linear generator and control method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1099223A (en) * 1964-09-04 1968-01-17 British Oxygen Co Ltd Compressors
US4002935A (en) * 1975-05-15 1977-01-11 A. O. Smith Corporation Reciprocating linear motor
JPH04121477U (en) 1991-04-16 1992-10-29 サンデン株式会社 Free piston type compressor
CN1083939C (en) * 1996-07-09 2002-05-01 三洋电机株式会社 Linear compressor
US5818131A (en) * 1997-05-13 1998-10-06 Zhang; Wei-Min Linear motor compressor and its application in cooling system
BR9805280A (en) * 1998-11-24 2000-06-06 Brasil Compressores Sa Reciprocating compressor with linear motor
JP4603433B2 (en) * 2005-07-11 2010-12-22 日東工器株式会社 Electromagnetic reciprocating fluid device

Also Published As

Publication number Publication date
EP2718567A1 (en) 2014-04-16
EP2527653A1 (en) 2012-11-28
WO2012161575A1 (en) 2012-11-29
EP2718567B1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP4542532B2 (en) Alpha type free piston Stirling engine consisting of multistage cylinders
KR100768597B1 (en) Reciprocating compressor
KR100544031B1 (en) Variable capacity compressor
JP5995971B2 (en) Gamma-type free piston Stirling engine with opposed pistons
US20100176591A1 (en) Reciprocating piston machine with oscillating balancing rotors
US20100322790A1 (en) Reciprocating compressor
CN102953956B (en) Compressor driven by brushless coreless linear motor
KR20060035409A (en) Bi-direction operating linear compressor using transverse flux linear motor
BR112014027904B1 (en) ALTERNATIVE COMPRESSOR
JP6286035B2 (en) Electric compressor and refrigeration apparatus including the same
CN102966512B (en) A kind of annular compressor
US20160025080A1 (en) Apparatus including swashplates fixed on shaft assembly and piston assemblies
US20140099216A1 (en) Free piston type torsion drive compressor
US20060283186A1 (en) Stirling cycle machines
CN101294560B (en) Straight line type air compressor
CN201206539Y (en) Portable straight-line air compressor
JP5265341B2 (en) Pressure wave generator
CN107843022A (en) A kind of dual drive rotates Split type Stirling refrigerating machine
KR100761277B1 (en) Modulation reciprocating compressor and refrigerator with this
KR101441927B1 (en) Reciprocating compressor
EP2921704A1 (en) A free piston type fluid pump
KR100893335B1 (en) Generator Using Reciprocating Engine
KR101386484B1 (en) Reciprocating compressor
CN102953960B (en) Cross annular compressor
JP2006144730A (en) Reciprocating refrigerant compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WISSINK, EDO B.;REEL/FRAME:031791/0053

Effective date: 20131128

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION