US20140061796A1 - Techniques for metal gate workfunction engineering to enable multiple threshold voltage finfet devices - Google Patents
Techniques for metal gate workfunction engineering to enable multiple threshold voltage finfet devices Download PDFInfo
- Publication number
- US20140061796A1 US20140061796A1 US13/611,257 US201213611257A US2014061796A1 US 20140061796 A1 US20140061796 A1 US 20140061796A1 US 201213611257 A US201213611257 A US 201213611257A US 2014061796 A1 US2014061796 A1 US 2014061796A1
- Authority
- US
- United States
- Prior art keywords
- work function
- pitch
- fins
- conformal
- fin fet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
- H10D86/215—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/011—Manufacture or treatment comprising FinFETs
Definitions
- the present invention relates to FIN field-effect transistor (FET) devices, and more particularly, to techniques for gate work function engineering using a work function setting material an amount of which is provided proportional to fin pitch so as to enable multiple threshold voltage devices.
- FET FIN field-effect transistor
- CMOS complementary metal-oxide semiconductor
- FET undoped FIN field-effect transistor
- Vt threshold voltage
- One solution is to dope the FINFET device. To do so, however, for aggressively scaled devices has serious drawbacks from random dopant fluctuation (RDF) effects.
- RDF random dopant fluctuation
- the present invention provides techniques for gate work function engineering in FIN field-effect transistor (FET) devices using a work function setting material an amount of which is provided proportional to fin pitch.
- a method of fabricating a FIN FET device includes the following steps.
- a semiconductor-on-insulator (SOI) wafer having a SOI layer over a buried oxide (BOX) is provided.
- An oxide layer is formed over the SOI layer.
- a plurality of fins is patterned in the SOI layer and the oxide layer.
- An interfacial oxide is formed on the fins.
- a conformal gate dielectric layer is deposited over the interfacial oxide.
- a conformal gate metal layer is deposited on the conformal gate dielectric layer.
- a conformal work function setting material layer is deposited on the conformal gate metal layer to form at least one gate stack over the fins.
- a volume of the conformal gate metal layer and a volume of the conformal work function setting material layer deposited over the fins is proportional to a pitch of the fins.
- a FIN FET device in another aspect of the invention, includes a SOI wafer having an oxide layer and a SOI layer over a BOX, and a plurality of fins patterned in the oxide layer and the SOI layer; an interfacial oxide on the fins; and at least one gate stack on the interfacial oxide, the gate stack having (i) a conformal gate dielectric layer present on the interfacial oxide, (ii) a conformal gate metal layer on the conformal gate dielectric layer, and (iii) a conformal work function setting material layer on the conformal gate metal layer.
- a volume of the conformal gate metal layer and a volume of the conformal work function setting material layer present in the gate stack is proportional to a pitch of the fins.
- FIG. 1 is a three-dimensional diagram illustrating poly-silicon mandrels having been formed on a starting wafer (i.e., a silicon-on-insulator (SOI) wafer having an SOI layer and an oxide layer over the SOI layer) according to an embodiment of the present invention
- a starting wafer i.e., a silicon-on-insulator (SOI) wafer having an SOI layer and an oxide layer over the SOI layer
- FIG. 2 is a three-dimensional diagram illustrating spacers having been formed on opposite sides of the poly-silicon mandrels according to an embodiment of the present invention
- FIG. 3 is a three-dimensional diagram illustrating the spacers having been used as a hardmask to pattern fins in the SOI layer/oxide layer according to an embodiment of the present invention
- FIG. 4 is a three-dimensional diagram illustrating gate stacks having been formed on a portion of the fins that will serve as channel regions of the FIN FET devices according to an embodiment of the present invention
- FIG. 5 is a cross-sectional diagram illustrating (with regard to gate stack formation) interfacial oxide layers having been formed on the fins according to an embodiment of the present invention
- FIG. 6 is a cross-sectional diagram illustrating (with regard to gate stack formation) gate dielectric layers having been formed on the interfacial oxide layers according to an embodiment of the present invention
- FIG. 7 is a cross-sectional diagram illustrating (with regard to gate stack formation) gate metal layers having been formed on the gate dielectric layers according to an embodiment of the present invention
- FIG. 8 is a cross-sectional diagram illustrating (with regard to gate stack formation) work function setting material layers having been formed on the gate metal layers according to an embodiment of the present invention
- FIG. 9 is a cross-sectional diagram illustrating an angled deposition process being used to deposit the work function setting material according to an embodiment of the present invention.
- FIG. 10 is a three-dimensional diagram illustrating completion of the gate stacks and offset spacers having been formed on opposite sides of the gate stacks according to an embodiment of the present invention
- FIG. 11 is a three-dimensional diagram illustrating source and drain regions of the device having been formed according to an embodiment of the present invention.
- FIG. 12 is a table of FIN details of an exemplary device produced using the present process according to an embodiment of the present invention.
- FIG. 13A is a cross-sectional diagram illustrating how with a tighter FIN pitch, less of the work function setting material gets deposited when an angled deposition process is employed according to an embodiment of the present invention.
- FIG. 13B is a cross-sectional diagram of the structure in FIG. 13A after a diffusion anneal has been used to spread the work function setting material evenly across the fin sidewall, resulting in a thinner film on the tight pitch fins according to an embodiment of the present invention.
- Vt threshold voltage
- FET field-effect transistor
- a gate-first approach to FINFET device fabrication involves patterning one or more fin-shaped channels and forming a gate(s) over the channels.
- a gate-last fin-first approach involves patterning one or more fin-shaped channels, forming a dummy gate(s) over the channels, then removing the dummy gate a replacing with metal material late in the flow.
- a gate-last fin-last approach was developed to improve the fin patterning process and to permit self-aligned source and drain formation. See, for example, U.S. Pat. No.
- FIGS. 1-11 The present techniques will be described by way of reference to FIGS. 1-11 .
- the process illustrated is representative of the steps that may be performed after removal of the dummy gate in a gate-last approach or beginning at the fin patterning stage in a gate-first approach.
- the figures provided illustrate use of a side wall image transfer (SIT) process to pattern the fins.
- SIT side wall image transfer
- any fin lithography process may be employed in the same manner.
- the advantage to a SIT process is that it permits scaling beyond that achievable using standard lithography.
- a SIT process can involve use of a sacrificial mandrel (typically formed from polysilicon) to place spacers. Once the mandrel is removed, the spacers can be used as a hardmask to pattern the fins.
- FIG. 1 is a three-dimensional diagram illustrating poly-silicon mandrels 102 a , 102 b (i)/ 102 b (ii), and 102 c (i)/ 102 c (ii) having been formed on a starting wafer.
- multiple FINFET devices will be fabricated on the starting wafer (each device being formed with varying fin pitch).
- three FINFET devices will be produced, namely a large pitch FINFET, a medium pitch FINFET and a tight pitch FINFET.
- a tight FINFET pitch may be from about 20 nanometers (nm) to about 40 nm, whereas a wide pitch may be from about 40 nm to about 80 nm.
- fin pitch values range from about 20 nm to about 80 nm.
- Fin pitch is defined as the distance from the center of one fin to the center of an adjacent fin(s).
- a work function setting material(s) will be used in the gate stacks of the devices.
- the work function setting material acts as a doping source, and by way of the present process serves to change the workfunction of the gate stacks. Since the work function setting material acts as a doping source, advantageously, the present process flow permits the same gate metal to be used in each of the devices being formed (which simplifies the fabrication process).
- a different work function setting material can then be employed depending, e.g., on whether an n-channel FINFET or a p-channel FINFET is desired.
- the work function setting material from the gate stack can be diffused into the surrounding dielectric or gate metal to change the threshold voltage of the device.
- the more work function setting material present in the gate the lower the threshold voltage (V T ) of the device may be.
- V T threshold voltage
- the volume of work function setting material deposited on a fin sidewall can be designed to vary with fin pitch for pitches within a certain window.
- the volume of work function setting material reduces as fin pitch decreases. In this case, tighter fin pitch would result in a higher threshold device. This is why three devices of varying fin pitch are shown in the figures so as to illustrate this aspect of the present techniques.
- the threshold voltage of the large pitch device will be lower than that of the medium pitch device, and the threshold voltage of the medium pitch device will be lower than that of the tight pitch device. Varying the threshold voltage proportional to pitch allows for the creation of multiple threshold voltage devices on one chip without the use of either doping or multiple work function materials.
- the starting wafer is a semiconductor-on-insulator (SOI) wafer.
- An SOI wafer generally includes an SOI layer (here SOI layer 104 ) separated from a substrate by a buried oxide or BOX.
- SOI layer 104 SOI layer 104
- BOX buried oxide
- Suitable semiconductor materials for use in SOI layer 104 include, but are not limited to, silicon, germanium, silicon germanium, and silicon carbon.
- Oxide layer 106 is present on the SOI layer 104 .
- Oxide layer 106 can be deposited on the SOI layer 104 using a process such as chemical vapor deposition (CVD) or grown on SOI layer 104 , e.g., by a thermal oxidation process.
- the poly-silicon mandrels can be formed on the SOI layer 104 by blanket depositing a layer of poly-silicon and then patterning the poly-silicon layer, e.g., using a directional reactive ion etching (RIE) process.
- RIE reactive ion etching
- the number of mandrels being formed in this step is a function of the number of fins to be formed for each FINFET device.
- the number of fins being produced in the example shown (and hence the number of mandrels required) is merely to illustrate the present techniques.
- the next step in the SIT process is to form spacers 202 a , 202 b and 202 c on opposite sides of the poly-silicon mandrels 102 a , 102 b (i)/ 102 b (ii), and 102 c (i)/ 102 c (ii), respectively. See FIG. 2 .
- the spacers can be used as a hardmask to pattern fins in the SOI layer 104 /oxide layer 106 .
- this SIT process permits scaling fin dimensions beyond what is achievable using standard lithography techniques. See, for example, U.S.
- the spacers are formed by first depositing a suitable spacer material (such as silicon nitride) onto the wafer, and then patterning the material into the spacers.
- a suitable spacer material such as silicon nitride
- the poly-silicon mandrels can next be removed (selective to the spacers) using wet chemical etching or dry etching.
- the spacers are then used as a hardmask to pattern fins 302 a , 302 b and 302 c in the SOI layer 104 /oxide layer 106 . See FIG. 3 .
- the fins are patterned (with the spacers acting as a hardmask) using a directional RIE process.
- the now-patterned SOI layer 104 /oxide layer 106 are herein after given the reference numerals 104 a - c and 106 a - c , respectively.
- gate stacks 402 a , 402 b , and 402 c are formed for each of the FIN FET devices covering a portion of the fins which will serve as channel regions of the respective (large pitch, medium pitch and tight pitch) devices. See FIG. 4 .
- the gate stacks will each contain a work function setting material, an amount of which (by way of the present fabrication process) is proportional to the fin pitch of the device.
- the work function setting material (i) acts as a doping source, and by way of the present process serves to change the work function of the gate stacks, and (ii) will diffuse into the surrounding gate metal or dielectric to change the threshold voltage of the device.
- FIG. 5 is a cross-sectional diagram illustrating that in the first step of the gate stack fabrication process an interfacial oxide 502 a , 502 b and 502 c is formed on each of the fins 302 a , 302 b , and 302 c , respectively.
- the interfacial oxide prepares the fins for the subsequent deposition of a high-k gate dielectric (see below).
- the interfacial oxide will form, for example, by exposing the wafer to an oxygen-containing environment.
- the interfacial oxide will form only on the exposed silicon surfaces.
- the interfacial oxide is formed to a thickness from about 0.5 nm to about 10 nm.
- the SIT fin patterning hardmask (formed from the spacers, see above) may be removed prior to gate deposition, e.g., using a wet etching process.
- the buried oxide or BOX is shown in FIG. 5 and thereafter to illustrate an orientation of the fins relative to the underlying wafer.
- Conformal gate dielectric layers 602 a , 602 b , and 602 c are then deposited over the interfacial oxide 502 a , 502 b and 502 c , respectively. See FIG. 6 .
- the gate dielectric layers are formed from a high-k dielectric material, such as hafnium oxide and hafnium silicon-oxynitride. Suitable conformal deposition processes include, but are not limited to atomic layer deposition (ALD) or chemical vapor deposition (CVD).
- ALD atomic layer deposition
- CVD chemical vapor deposition
- the gate dielectric layers are each deposited to a thickness t gd (see FIG. 6 ) of from about 1 nm to about 5 nm.
- the gate metal layers include a metal(s) such as titanium and/or tantalum, e.g., titanium nitride and/or tantalum nitride.
- Suitable deposition processes for conformally depositing the gate metal include, but are not limited to ALD and CVD.
- a work function setting material(s) will be deposited onto the gate metal.
- the work function setting material acts as a doping source, and by way of the present process serves to change the work function of the gate stacks. Since the work function setting material acts as a doping source, advantageously, the present process flow permits the same gate metal to be used in each of the devices being formed (which simplifies the fabrication process).
- a different work function setting material can then be employed depending, e.g., on whether an n-channel FIN FET or a p-channel FIN FET is desired. Further, the metal from the gate stack will diffuse into the surrounding gate metal or dielectric to change the threshold voltage of the device.
- the threshold voltage (V T ) of the device can be effectively modulated by fin pitch.
- the volume of the gate metal layers and the volume of the work function setting material are important parameters to the present process. According to the present techniques, the volume of these layers is quantified based on the thickness of these layers.
- the gate metal layers are deposited to a thickness T gm of (i.e., a uniform thickness across all of the devices) from about 5 nm to about 20 nm.
- conformal work function setting material layers 802 a , 802 b , and 802 c are deposited on the gate metal layers 702 a , 702 b , and 702 c , respectively.
- the work function setting material acts as a doping source, and a different work function setting material can then be employed depending on whether a re-channel FIN FET or a p-channel FIN FET device is desired.
- the same gate metal e.g., titanium nitride or tantalum nitride
- a different (if so desired) work function setting material can be used in one or more devices to obtain a different doping polarity.
- suitable work function setting materials for use in p-channel FIN FET devices include, but are not limited to aluminum, dysprosium, gadolinium, and ytterbium.
- Suitable work function setting materials for use in n-channel FIN FET devices include, but are not limited to lanthanum, titanium, and tantalum.
- Suitable deposition processes for conformally depositing the work function setting material(s) include, but are not limited to CVD.
- Conventional CVD processes can be tuned such that deposited thickness on a fin sidewall is proportional to fin pitch by, for example, operating in a flow-limited regime where the flow of reactants and by-products is more restricted in the space between fins at a smaller fin pitch.
- an angled work function metal deposition process such as evaporation or sputtering, may be employed so as to further control the amount of work function setting material deposited in proportion to the device pitch.
- the work function setting material serves to lower the threshold voltage (V T ) of the device.
- the work function setting material(s) can be deposited to a given thickness (T wsm , see FIG. 8 ) throughout the devices (e.g., to a thickness of from about 5 nm to about 20 nm), but because of the configuration of the gate stacks, the volume of work function setting material present in each gate stack will be proportional to the pitch of the fins. See for example in FIG.
- the work function setting material layers 802 a , 802 b , and 802 c deposited to a thickness T wsm will result in the work function metal layers 802 b and 802 c completely filling the spaces in between the fins 302 b and 302 c , respectively. Since the pitch (and thus the resulting spacing between the fins) in the tight pitch device is less than that of the medium pitch and large pitch devices, then the amount of the work function setting material deposited in the tight pitch device is less than the amount deposited in the medium pitch device, and similarly the amount of the work function metal deposited in the medium pitch device is less than the amount of the work function setting material deposited in the large pitch device. This advantage of the present techniques is shown illustrated in FIG. 8 .
- an angled deposition process may be employed to deposit the work function setting material.
- suitable angled deposition processes include, but are not limited to evaporation or sputtering.
- FIG. 9 illustrates how when an angled deposition process is used to deposit the work function setting material, less of the work function setting material gets deposited between the medium pitch devices as compared to the large pitch devices, and more of the work function setting material gets deposited between the medium pitch devices as compared to the tight pitch devices.
- variable deposition amount is that, depending on the angle of deposition, adjacent gate stacks will “shadow” each other.
- a deposition angle ⁇ of from about 5 degrees to about 45 degrees the gate stacks in the medium pitch and tight pitch devices will shadow each other resulting in a lesser amount of the work function setting material getting deposited between the gate stacks in these devices.
- the tight pitch devices will receive less work function setting material between the gate stacks than the medium pitch devices due to this shadowing effect.
- FIG. 10 illustrates the remainder of gate stack formation and patterning.
- the work function setting material is capped with more gate metal and/or other gate capping layers which may include for example polysilicon, tungsten (W) and/or silicon nitride (SiN).
- This completed gate stack is then patterned into gate lines (depicted here as 402 a , 402 b , and 402 c ), which preferably run perpendicular to the fins.
- the gates may be patterned by, for example, lithography and RIE. Offset spacers (depicted here as 1002 a , 1002 b , and 1002 c ) are then formed on either side of gate stack respectively.
- the offset spacers can be formed by, for example, a conformal deposition of a dielectric material followed by an anisotropic RIE with an overetch long enough to clear the sidewalls of the fins.
- the offset spacers include silicon nitride (SiN).
- FIG. 11 illustrates the formation of either a source region or a drain region on one side of the gate, however it is to be understood that the same processes apply to forming the counterpart source region or drain region on the opposite side of the gate.
- Extension implants into fins 302 a , 302 b , and 302 c in the source/drain regions is also performed.
- epitaxial silicon 1102 a , 1102 b , and 1102 c is seeded from the fins 302 a , 302 b , and 302 c , respectively (in the source and drain regions of the device).
- Offset spacers 1002 a , 1002 b , and 1002 c see FIG.
- Source/drain implants are then introduced to the region, followed by a rapid thermal anneal. As a result, source/drain regions of each of the devices are formed. Silicide contacts (not shown) to the source/drain regions may also be formed.
- the specific parameters for source region/drain region and silicide formation techniques are well known to those of skill in the art and thus are not described further herein. Any additional standard processing steps may also be performed, if so desired, to the device structure.
- Exemplary device dimensions are provided in FIG. 12 .
- Exemplary Fin width values range from about 6 nm to about 14 nm
- Fin Height values range from about 15 nm to about 30 nm
- Fin Pitch values range from about 20 nm to about 60 nm.
- the trench in which gate work function engineering occurs is 18 nm wide and 27 nm tall, yielding an aspect ratio of 1:1.5.
- work function modulation could be achieved using a CVD process which deposits differently in trenches with aspect ratios of, for example, 1:1, 1:1.5, and 1:2 by increasing the fin pitch to 49 nm for some devices and decreasing the fin pitch to 35.5 nm for other devices.
- an angled evaporation approach could be used to modulate thickness of work function setting material on the fins.
- neighboring fins shadow progressively more of an angled evaporation as the fin pitch is decreased.
- the work function setting material would then diffuse along the surface area of the fin during subsequent anneals, such as the dopant activation anneal, resulting in a thinner overall film of work function setting material on the tighter pitch fins.
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 13/596,687 filed on Aug. 28, 2012, the disclosure of which is incorporated by reference herein.
- The present invention relates to FIN field-effect transistor (FET) devices, and more particularly, to techniques for gate work function engineering using a work function setting material an amount of which is provided proportional to fin pitch so as to enable multiple threshold voltage devices.
- In current complementary metal-oxide semiconductor (CMOS) scaling, the use of undoped FIN field-effect transistor (FET) devices is highly preferred as a device choice for CMOS at and beyond the 22 nanometer (nm) node. One key problem with undoped devices is the implementation of multiple threshold voltage (Vt) devices. One solution is to dope the FINFET device. To do so, however, for aggressively scaled devices has serious drawbacks from random dopant fluctuation (RDF) effects. One can also engineer gate stacks with different work functions for different Vt's. This however requires a substantial amount of process complexity.
- Therefore, improved techniques for fabricating multiple Vt FINFET devices that avoid the above-described drawbacks would be desirable.
- The present invention provides techniques for gate work function engineering in FIN field-effect transistor (FET) devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect of the invention, a method of fabricating a FIN FET device is provided. The method includes the following steps. A semiconductor-on-insulator (SOI) wafer having a SOI layer over a buried oxide (BOX) is provided. An oxide layer is formed over the SOI layer. A plurality of fins is patterned in the SOI layer and the oxide layer. An interfacial oxide is formed on the fins. A conformal gate dielectric layer is deposited over the interfacial oxide. A conformal gate metal layer is deposited on the conformal gate dielectric layer. A conformal work function setting material layer is deposited on the conformal gate metal layer to form at least one gate stack over the fins. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer deposited over the fins is proportional to a pitch of the fins.
- In another aspect of the invention, a FIN FET device is provided. The FIN FET device includes a SOI wafer having an oxide layer and a SOI layer over a BOX, and a plurality of fins patterned in the oxide layer and the SOI layer; an interfacial oxide on the fins; and at least one gate stack on the interfacial oxide, the gate stack having (i) a conformal gate dielectric layer present on the interfacial oxide, (ii) a conformal gate metal layer on the conformal gate dielectric layer, and (iii) a conformal work function setting material layer on the conformal gate metal layer. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer present in the gate stack is proportional to a pitch of the fins.
- A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
-
FIG. 1 is a three-dimensional diagram illustrating poly-silicon mandrels having been formed on a starting wafer (i.e., a silicon-on-insulator (SOI) wafer having an SOI layer and an oxide layer over the SOI layer) according to an embodiment of the present invention; -
FIG. 2 is a three-dimensional diagram illustrating spacers having been formed on opposite sides of the poly-silicon mandrels according to an embodiment of the present invention; -
FIG. 3 is a three-dimensional diagram illustrating the spacers having been used as a hardmask to pattern fins in the SOI layer/oxide layer according to an embodiment of the present invention; -
FIG. 4 is a three-dimensional diagram illustrating gate stacks having been formed on a portion of the fins that will serve as channel regions of the FIN FET devices according to an embodiment of the present invention; -
FIG. 5 is a cross-sectional diagram illustrating (with regard to gate stack formation) interfacial oxide layers having been formed on the fins according to an embodiment of the present invention; -
FIG. 6 is a cross-sectional diagram illustrating (with regard to gate stack formation) gate dielectric layers having been formed on the interfacial oxide layers according to an embodiment of the present invention; -
FIG. 7 is a cross-sectional diagram illustrating (with regard to gate stack formation) gate metal layers having been formed on the gate dielectric layers according to an embodiment of the present invention; -
FIG. 8 is a cross-sectional diagram illustrating (with regard to gate stack formation) work function setting material layers having been formed on the gate metal layers according to an embodiment of the present invention; -
FIG. 9 is a cross-sectional diagram illustrating an angled deposition process being used to deposit the work function setting material according to an embodiment of the present invention; -
FIG. 10 is a three-dimensional diagram illustrating completion of the gate stacks and offset spacers having been formed on opposite sides of the gate stacks according to an embodiment of the present invention; -
FIG. 11 is a three-dimensional diagram illustrating source and drain regions of the device having been formed according to an embodiment of the present invention; -
FIG. 12 is a table of FIN details of an exemplary device produced using the present process according to an embodiment of the present invention; -
FIG. 13A is a cross-sectional diagram illustrating how with a tighter FIN pitch, less of the work function setting material gets deposited when an angled deposition process is employed according to an embodiment of the present invention; and -
FIG. 13B is a cross-sectional diagram of the structure inFIG. 13A after a diffusion anneal has been used to spread the work function setting material evenly across the fin sidewall, resulting in a thinner film on the tight pitch fins according to an embodiment of the present invention. - As described above, there are notable disadvantages associated with using doping and/or different work function gate stacks to produce multiple threshold voltage (Vt) FIN field-effect transistor (FET) devices. Advantageously, provided herein are techniques for producing multiple Vt FINFET devices using a work function setting material in an amount that is continuously modulated as a function of FIN pitch. Namely, a thickness of the materials in the device gate stacks will be chosen such that less work function setting material ends up in the tighter pitch FINFETs. Thus, for smaller pitch, higher FINFET Vt is obtained and therefore, through FIN pitch variation, different Vt devices may be fabricated. The technique does come at the cost of FIN active width density, however if the lower Vt (wider FIN pitch) devices are not used for a large fraction of the chip area, this trade-off may be very preferred over the use of more complex (and yield challenging) integration schemes.
- The present techniques are applicable in gate-first fin-first, gate-last fin-first, and gate-last fin-last process flows. In general, a gate-first approach to FINFET device fabrication involves patterning one or more fin-shaped channels and forming a gate(s) over the channels. A gate-last fin-first approach involves patterning one or more fin-shaped channels, forming a dummy gate(s) over the channels, then removing the dummy gate a replacing with metal material late in the flow. A gate-last fin-last approach was developed to improve the fin patterning process and to permit self-aligned source and drain formation. See, for example, U.S. Pat. No. 7,923,337 issued to Chang et al., entitled “Fin Field Effect Transistor Devices with Self-Aligned Source and Drain Regions, the contents of which are incorporated by reference herein. With either gate-last approach, a dummy gate is formed early in the process and then, late in the process flow, is removed and replaced with a replacement gate. Advantageously, the present techniques are easily integrated in either a gate-first or a gate-last approach where the gate is formed over a silicon wafer.
- The present techniques will be described by way of reference to
FIGS. 1-11 . The process illustrated is representative of the steps that may be performed after removal of the dummy gate in a gate-last approach or beginning at the fin patterning stage in a gate-first approach. Further, the figures provided illustrate use of a side wall image transfer (SIT) process to pattern the fins. However, it is to be understood that any fin lithography process may be employed in the same manner. The advantage to a SIT process is that it permits scaling beyond that achievable using standard lithography. As will be described in detail below, a SIT process can involve use of a sacrificial mandrel (typically formed from polysilicon) to place spacers. Once the mandrel is removed, the spacers can be used as a hardmask to pattern the fins. - Accordingly,
FIG. 1 is a three-dimensional diagram illustrating poly- 102 a, 102 b(i)/102 b(ii), and 102 c(i)/102 c(ii) having been formed on a starting wafer. In the exemplary embodiment depicted, multiple FINFET devices will be fabricated on the starting wafer (each device being formed with varying fin pitch). For purposes of illustrating the present techniques, three FINFET devices will be produced, namely a large pitch FINFET, a medium pitch FINFET and a tight pitch FINFET. By way of example only, according to an exemplary embodiment, a tight FINFET pitch may be from about 20 nanometers (nm) to about 40 nm, whereas a wide pitch may be from about 40 nm to about 80 nm. Thus, according to an exemplary embodiment, fin pitch values range from about 20 nm to about 80 nm. Fin pitch is defined as the distance from the center of one fin to the center of an adjacent fin(s).silicon mandrels - Of course, this configuration of devices is merely exemplary and any other combination of devices, or even a single device, may be obtained using the present techniques. As will be described in detail below, a work function setting material(s) will be used in the gate stacks of the devices. The work function setting material acts as a doping source, and by way of the present process serves to change the workfunction of the gate stacks. Since the work function setting material acts as a doping source, advantageously, the present process flow permits the same gate metal to be used in each of the devices being formed (which simplifies the fabrication process). A different work function setting material can then be employed depending, e.g., on whether an n-channel FINFET or a p-channel FINFET is desired. During subsequent processing, the work function setting material from the gate stack can be diffused into the surrounding dielectric or gate metal to change the threshold voltage of the device. In one embodiment, the more work function setting material present in the gate, the lower the threshold voltage (VT) of the device may be. Thus, by adding a larger volume of work function setting material to the gate stack, the threshold voltages of the resulting devices can be lowered. In some deposition process such as CVD or angled evaporation, the volume of work function setting material deposited on a fin sidewall can be designed to vary with fin pitch for pitches within a certain window. In general, the volume of work function setting material reduces as fin pitch decreases. In this case, tighter fin pitch would result in a higher threshold device. This is why three devices of varying fin pitch are shown in the figures so as to illustrate this aspect of the present techniques.
- Accordingly, by way of the present techniques, more of the work function setting material will be deposited in the larger pitch devices as compared to the medium pitch devices, and more of the work function setting material will get deposited in the medium pitch devices as compared to the tight pitch devices. Thus, as a result, the threshold voltage of the large pitch device will be lower than that of the medium pitch device, and the threshold voltage of the medium pitch device will be lower than that of the tight pitch device. Varying the threshold voltage proportional to pitch allows for the creation of multiple threshold voltage devices on one chip without the use of either doping or multiple work function materials.
- According to an exemplary embodiment, the starting wafer is a semiconductor-on-insulator (SOI) wafer. An SOI wafer generally includes an SOI layer (here SOI layer 104) separated from a substrate by a buried oxide or BOX. For ease and clarity of depiction, the BOX and underlying substrate are not shown (the BOX will be shown in later depictions to illustrate an orientation of the fins relative to the underlying wafer). Suitable semiconductor materials for use in
SOI layer 104 include, but are not limited to, silicon, germanium, silicon germanium, and silicon carbon. - An oxide layer (e.g., silicon dioxide) 106 is present on the
SOI layer 104.Oxide layer 106 can be deposited on theSOI layer 104 using a process such as chemical vapor deposition (CVD) or grown onSOI layer 104, e.g., by a thermal oxidation process. The poly-silicon mandrels can be formed on theSOI layer 104 by blanket depositing a layer of poly-silicon and then patterning the poly-silicon layer, e.g., using a directional reactive ion etching (RIE) process. It is notable that (as will be apparent from the description provided below) the number of mandrels being formed in this step is a function of the number of fins to be formed for each FINFET device. The number of fins being produced in the example shown (and hence the number of mandrels required) is merely to illustrate the present techniques. - The next step in the SIT process is to form
202 a, 202 b and 202 c on opposite sides of the poly-spacers 102 a, 102 b(i)/102 b(ii), and 102 c(i)/102 c(ii), respectively. Seesilicon mandrels FIG. 2 . As will be described in detail below, once the poly-silicon mandrels are removed, the spacers can be used as a hardmask to pattern fins in theSOI layer 104/oxide layer 106. Advantageously, this SIT process permits scaling fin dimensions beyond what is achievable using standard lithography techniques. See, for example, U.S. Patent Application Publication Number 2011/0111596 filed by Kanakasabapathy, entitled “Sidewall Image Transfer Using the Lithography Stack as the Mandrel,” the contents of which are incorporated by reference herein. According to an exemplary embodiment, the spacers are formed by first depositing a suitable spacer material (such as silicon nitride) onto the wafer, and then patterning the material into the spacers. - The poly-silicon mandrels can next be removed (selective to the spacers) using wet chemical etching or dry etching. The spacers are then used as a hardmask to
302 a, 302 b and 302 c in thepattern fins SOI layer 104/oxide layer 106. SeeFIG. 3 . According to an exemplary embodiment, the fins are patterned (with the spacers acting as a hardmask) using a directional RIE process. The now-patternedSOI layer 104/oxide layer 106 are herein after given thereference numerals 104 a-c and 106 a-c, respectively. - Following patterning of the fins, gate stacks 402 a, 402 b, and 402 c are formed for each of the FIN FET devices covering a portion of the fins which will serve as channel regions of the respective (large pitch, medium pitch and tight pitch) devices. See
FIG. 4 . As highlighted above, and as will be described in detail below, the gate stacks will each contain a work function setting material, an amount of which (by way of the present fabrication process) is proportional to the fin pitch of the device. The work function setting material (i) acts as a doping source, and by way of the present process serves to change the work function of the gate stacks, and (ii) will diffuse into the surrounding gate metal or dielectric to change the threshold voltage of the device. As also shown inFIG. 4 , the SIT fin patterning hardmask (formed from the spacers, see above) has been removed prior to gate deposition. In order to illustrate the present gate stack fabrication process in detail, reference is now made to cross-sectional cuts through the fins (i.e., cross-sectional cuts along line A1-A2 through the fins, seeFIG. 3 ). - Namely,
FIG. 5 is a cross-sectional diagram illustrating that in the first step of the gate stack fabrication process an 502 a, 502 b and 502 c is formed on each of theinterfacial oxide 302 a, 302 b, and 302 c, respectively. The interfacial oxide prepares the fins for the subsequent deposition of a high-k gate dielectric (see below). The interfacial oxide will form, for example, by exposing the wafer to an oxygen-containing environment. The interfacial oxide will form only on the exposed silicon surfaces. According to an exemplary embodiment, the interfacial oxide is formed to a thickness from about 0.5 nm to about 10 nm. As provided above, the SIT fin patterning hardmask (formed from the spacers, see above) may be removed prior to gate deposition, e.g., using a wet etching process. The buried oxide or BOX is shown infins FIG. 5 and thereafter to illustrate an orientation of the fins relative to the underlying wafer. - Conformal gate
602 a, 602 b, and 602 c are then deposited over thedielectric layers 502 a, 502 b and 502 c, respectively. Seeinterfacial oxide FIG. 6 . According to an exemplary embodiment, the gate dielectric layers are formed from a high-k dielectric material, such as hafnium oxide and hafnium silicon-oxynitride. Suitable conformal deposition processes include, but are not limited to atomic layer deposition (ALD) or chemical vapor deposition (CVD). By way of example only, the gate dielectric layers are each deposited to a thickness tgd (seeFIG. 6 ) of from about 1 nm to about 5 nm. - Next, as shown in
FIG. 7 , conformal 702 a, 702 b, and 702 c are deposited on the gategate metal layers 602 a, 602 b, and 602 c, respectively. According to an exemplary embodiment, the gate metal layers include a metal(s) such as titanium and/or tantalum, e.g., titanium nitride and/or tantalum nitride. Suitable deposition processes for conformally depositing the gate metal (especially in the case of titanium and tantalum gate metals) include, but are not limited to ALD and CVD.dielectric layers - As will be described in detail below, a work function setting material(s) will be deposited onto the gate metal. The work function setting material acts as a doping source, and by way of the present process serves to change the work function of the gate stacks. Since the work function setting material acts as a doping source, advantageously, the present process flow permits the same gate metal to be used in each of the devices being formed (which simplifies the fabrication process). A different work function setting material can then be employed depending, e.g., on whether an n-channel FIN FET or a p-channel FIN FET is desired. Further, the metal from the gate stack will diffuse into the surrounding gate metal or dielectric to change the threshold voltage of the device. Specifically, the more metal present in the gate, the lower the threshold voltage (VT) of the device. Thus, by modulating the volume of work function setting material added to the gate stack proportionally to the fin pitch, the threshold voltage of a device can be effectively modulated by fin pitch.
- Accordingly, the volume of the gate metal layers and the volume of the work function setting material (to be deposited as described below) are important parameters to the present process. According to the present techniques, the volume of these layers is quantified based on the thickness of these layers. By way of example only, as shown in
FIG. 7 , the gate metal layers are deposited to a thickness Tgm of (i.e., a uniform thickness across all of the devices) from about 5 nm to about 20 nm. - Next, as shown in
FIG. 8 , conformal work function setting 802 a, 802 b, and 802 c are deposited on thematerial layers 702 a, 702 b, and 702 c, respectively. As provided above, the work function setting material acts as a doping source, and a different work function setting material can then be employed depending on whether a re-channel FIN FET or a p-channel FIN FET device is desired. Thus, the same gate metal (e.g., titanium nitride or tantalum nitride) can be used in each of the devices, yet a different (if so desired) work function setting material can be used in one or more devices to obtain a different doping polarity. By way of example only, suitable work function setting materials for use in p-channel FIN FET devices include, but are not limited to aluminum, dysprosium, gadolinium, and ytterbium. Suitable work function setting materials for use in n-channel FIN FET devices include, but are not limited to lanthanum, titanium, and tantalum. Suitable deposition processes for conformally depositing the work function setting material(s) include, but are not limited to CVD. Conventional CVD processes can be tuned such that deposited thickness on a fin sidewall is proportional to fin pitch by, for example, operating in a flow-limited regime where the flow of reactants and by-products is more restricted in the space between fins at a smaller fin pitch. Alternatively, as will be described in detail below, an angled work function metal deposition process, such as evaporation or sputtering, may be employed so as to further control the amount of work function setting material deposited in proportion to the device pitch.gate metal layers - As also described above, the work function setting material serves to lower the threshold voltage (VT) of the device. Advantageously, by way of the present process, the work function setting material(s) can be deposited to a given thickness (Twsm, see
FIG. 8 ) throughout the devices (e.g., to a thickness of from about 5 nm to about 20 nm), but because of the configuration of the gate stacks, the volume of work function setting material present in each gate stack will be proportional to the pitch of the fins. See for example inFIG. 8 where it is shown that a greater volume of work function setting material is present in the large pitch FIN FET versus the medium pitch FIN FET, and a greater volume of work function setting material is present in the medium pitch FIN FET versus the tight pitch FIN FET. The present techniques rely on using the FIN pitch variation to intentionally vary the amount (volume) of the work function setting material. Therefore, the amount (volume) of the work function setting material is varied by having a different size gap for the work function setting material to fill in as a function of fin pitch. It is notable that in the example shown inFIG. 8 , the work function setting 802 a, 802 b, and 802 c deposited to a thickness Twsm will result in the workmaterial layers 802 b and 802 c completely filling the spaces in between thefunction metal layers 302 b and 302 c, respectively. Since the pitch (and thus the resulting spacing between the fins) in the tight pitch device is less than that of the medium pitch and large pitch devices, then the amount of the work function setting material deposited in the tight pitch device is less than the amount deposited in the medium pitch device, and similarly the amount of the work function metal deposited in the medium pitch device is less than the amount of the work function setting material deposited in the large pitch device. This advantage of the present techniques is shown illustrated infins FIG. 8 . If so desired, it is not necessary to vary the composition of the work function setting material used in the devices, and embodiments are anticipated herein where the same work function setting material (deposited, e.g., to the same thickness) is used in each of the work function setting 802 a, 802 b, and 802 c.material layers - As described above, an angled deposition process may be employed to deposit the work function setting material. By way of example only, suitable angled deposition processes include, but are not limited to evaporation or sputtering. By employing an angled deposition process, less of the work function setting material will get deposited in the tighter pitch devices. See
FIG. 9 . Specifically,FIG. 9 which follows fromFIG. 7 (as an alternate to the deposition process used to deposit the work function setting material inFIG. 8 ) illustrates how when an angled deposition process is used to deposit the work function setting material, less of the work function setting material gets deposited between the medium pitch devices as compared to the large pitch devices, and more of the work function setting material gets deposited between the medium pitch devices as compared to the tight pitch devices. The reason for this variable deposition amount is that, depending on the angle of deposition, adjacent gate stacks will “shadow” each other. In this example, with a deposition angle θ of from about 5 degrees to about 45 degrees, the gate stacks in the medium pitch and tight pitch devices will shadow each other resulting in a lesser amount of the work function setting material getting deposited between the gate stacks in these devices. Further, accordingly, the tight pitch devices will receive less work function setting material between the gate stacks than the medium pitch devices due to this shadowing effect. - Switching back to a cross-sectional view of the device,
FIG. 10 illustrates the remainder of gate stack formation and patterning. The work function setting material is capped with more gate metal and/or other gate capping layers which may include for example polysilicon, tungsten (W) and/or silicon nitride (SiN). This completed gate stack is then patterned into gate lines (depicted here as 402 a, 402 b, and 402 c), which preferably run perpendicular to the fins. The gates may be patterned by, for example, lithography and RIE. Offset spacers (depicted here as 1002 a, 1002 b, and 1002 c) are then formed on either side of gate stack respectively. These spacers can be formed by, for example, a conformal deposition of a dielectric material followed by an anisotropic RIE with an overetch long enough to clear the sidewalls of the fins. According to an exemplary embodiment, the offset spacers include silicon nitride (SiN). -
FIG. 11 illustrates the formation of either a source region or a drain region on one side of the gate, however it is to be understood that the same processes apply to forming the counterpart source region or drain region on the opposite side of the gate. Extension implants into 302 a, 302 b, and 302 c in the source/drain regions is also performed. As shown infins FIG. 11 , 1102 a, 1102 b, and 1102 c is seeded from theepitaxial silicon 302 a, 302 b, and 302 c, respectively (in the source and drain regions of the device). Offsetfins 1002 a, 1002 b, and 1002 c (seespacers FIG. 10 ) may be removed and replaced by 1104 a, 1104 b, and 1104 c, respectively. Source/drain implants are then introduced to the region, followed by a rapid thermal anneal. As a result, source/drain regions of each of the devices are formed. Silicide contacts (not shown) to the source/drain regions may also be formed. The specific parameters for source region/drain region and silicide formation techniques are well known to those of skill in the art and thus are not described further herein. Any additional standard processing steps may also be performed, if so desired, to the device structure.final spacers - The present techniques are now described further by way of reference to the following non-limiting example.
- Exemplary device dimensions are provided in
FIG. 12 . Exemplary Fin width values range from about 6 nm to about 14 nm, Fin Height values range from about 15 nm to about 30 nm, and Fin Pitch values range from about 20 nm to about 60 nm. For an exemplary fin width of 12 nm, Fin Height of 27 nm, Fin Pitch of 40 nm, interfacial oxide thickness of 1 nm, and hi-k dielectric thickness of 2 nm, and a gate metal thickness of 2 nm, the trench in which gate work function engineering occurs is 18 nm wide and 27 nm tall, yielding an aspect ratio of 1:1.5. Thus, work function modulation could be achieved using a CVD process which deposits differently in trenches with aspect ratios of, for example, 1:1, 1:1.5, and 1:2 by increasing the fin pitch to 49 nm for some devices and decreasing the fin pitch to 35.5 nm for other devices. - In another embodiment, an angled evaporation approach could be used to modulate thickness of work function setting material on the fins. As illustrated in
FIG. 13A , neighboring fins shadow progressively more of an angled evaporation as the fin pitch is decreased. As illustrated inFIG. 13B , the work function setting material would then diffuse along the surface area of the fin during subsequent anneals, such as the dopant activation anneal, resulting in a thinner overall film of work function setting material on the tighter pitch fins. - Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made by one skilled in the art without departing from the scope of the invention.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/611,257 US8669615B1 (en) | 2012-08-28 | 2012-09-12 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/596,687 US8669167B1 (en) | 2012-08-28 | 2012-08-28 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
| US13/611,257 US8669615B1 (en) | 2012-08-28 | 2012-09-12 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/596,687 Continuation US8669167B1 (en) | 2012-08-28 | 2012-08-28 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20140061796A1 true US20140061796A1 (en) | 2014-03-06 |
| US8669615B1 US8669615B1 (en) | 2014-03-11 |
Family
ID=50186280
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/596,687 Active US8669167B1 (en) | 2012-08-28 | 2012-08-28 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
| US13/611,257 Active US8669615B1 (en) | 2012-08-28 | 2012-09-12 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/596,687 Active US8669167B1 (en) | 2012-08-28 | 2012-08-28 | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US8669167B1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140327045A1 (en) * | 2013-05-06 | 2014-11-06 | International Bussiness Machines Corporation | Method to make dual material finfet on same substrate |
| US9412664B2 (en) | 2013-05-06 | 2016-08-09 | International Business Machines Corporation | Dual material finFET on single substrate |
| US20160307804A1 (en) * | 2013-03-15 | 2016-10-20 | Infineon Technologies Dresden Gmbh | Method for processing a carrier |
| CN106409767A (en) * | 2015-07-31 | 2017-02-15 | 台湾积体电路制造股份有限公司 | Multi-threshold voltage field effect transistor and manufacturing method thereof |
| US20190214345A1 (en) * | 2018-01-08 | 2019-07-11 | Samsung Electronics Co., Ltd. | Semiconductor device including conductive patterns and method of fabricating the same |
Families Citing this family (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9142400B1 (en) | 2012-07-17 | 2015-09-22 | Stc.Unm | Method of making a heteroepitaxial layer on a seed area |
| US9177820B2 (en) * | 2012-10-24 | 2015-11-03 | Globalfoundries U.S. 2 Llc | Sub-lithographic semiconductor structures with non-constant pitch |
| KR20140052734A (en) * | 2012-10-25 | 2014-05-07 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
| US9190419B2 (en) * | 2013-02-07 | 2015-11-17 | International Business Machines Corporation | Diode structure and method for FINFET technologies |
| CN108807274B (en) | 2013-09-27 | 2023-04-28 | 英特尔公司 | Nonplanar I/O and Logic Semiconductor Devices with Different Work Functions on a Common Substrate |
| EP2866264A1 (en) * | 2013-10-22 | 2015-04-29 | IMEC vzw | Method for manufacturing a field effect transistor of a non-planar type |
| US9236445B2 (en) | 2014-01-16 | 2016-01-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistor having replacement gate and epitaxially grown replacement channel region |
| US9224814B2 (en) | 2014-01-16 | 2015-12-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Process design to improve transistor variations and performance |
| US9425099B2 (en) * | 2014-01-16 | 2016-08-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Epitaxial channel with a counter-halo implant to improve analog gain |
| US9184234B2 (en) | 2014-01-16 | 2015-11-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistor design |
| US9543407B2 (en) * | 2014-02-27 | 2017-01-10 | International Business Machines Corporation | Low-K spacer for RMG finFET formation |
| US9525031B2 (en) | 2014-03-13 | 2016-12-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Epitaxial channel |
| US9419136B2 (en) | 2014-04-14 | 2016-08-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Dislocation stress memorization technique (DSMT) on epitaxial channel devices |
| US9508826B2 (en) | 2014-06-18 | 2016-11-29 | Globalfoundries Inc. | Replacement gate structure for enhancing conductivity |
| CN105470295B (en) * | 2014-09-09 | 2020-06-30 | 联华电子股份有限公司 | Fin structure and manufacturing method thereof |
| US9406682B2 (en) * | 2014-09-12 | 2016-08-02 | International Business Machines Corporation | Method and structure for preventing epi merging in embedded dynamic random access memory |
| US9536739B2 (en) | 2014-10-28 | 2017-01-03 | International Business Machines Corporation | Self-cut sidewall image transfer process |
| US10817636B2 (en) | 2014-10-31 | 2020-10-27 | Synopsys, Inc. | Methodology using Fin-FET transistors |
| US9748241B2 (en) * | 2015-02-26 | 2017-08-29 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor device for simultaneous operation at two temperature ranges |
| KR102307467B1 (en) * | 2015-03-20 | 2021-09-29 | 삼성전자주식회사 | Semiconductor device comprising active fin |
| KR102170701B1 (en) | 2015-04-15 | 2020-10-27 | 삼성전자주식회사 | Semiconductor device and method of fabricating the same |
| KR102376503B1 (en) | 2015-04-23 | 2022-03-18 | 삼성전자주식회사 | Integrated circuit device and method for manufacturing the same |
| US9576803B2 (en) * | 2015-05-13 | 2017-02-21 | United Microelectronics Corporation | Method for tuning metal gate work function before contact formation in fin-shaped field effect transistor manufacturing process |
| CN106531618B (en) | 2015-09-15 | 2021-05-18 | 联华电子股份有限公司 | Work function adjusting method for semiconductor element with metal gate structure |
| CN106611787A (en) * | 2015-10-26 | 2017-05-03 | 联华电子股份有限公司 | Semiconductor structure and manufacturing method thereof |
| US10170477B2 (en) | 2015-11-06 | 2019-01-01 | International Business Machines Corporation | Forming MOSFET structures with work function modification |
| US9583486B1 (en) | 2015-11-19 | 2017-02-28 | International Business Machines Corporation | Stable work function for narrow-pitch devices |
| US9397006B1 (en) * | 2015-12-04 | 2016-07-19 | International Business Machines Corporation | Co-integration of different fin pitches for logic and analog devices |
| US10622356B2 (en) | 2016-01-19 | 2020-04-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of manufacturing the same |
| US10290634B2 (en) * | 2016-01-20 | 2019-05-14 | Globalfoundries Inc. | Multiple threshold voltages using fin pitch and profile |
| US10431583B2 (en) | 2016-02-11 | 2019-10-01 | Samsung Electronics Co., Ltd. | Semiconductor device including transistors with adjusted threshold voltages |
| US9627379B1 (en) * | 2016-03-07 | 2017-04-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | FinFET devices and methods of forming the same |
| US9887136B2 (en) * | 2016-03-07 | 2018-02-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor devices, FinFET devices, and methods of forming the same |
| US9852917B2 (en) | 2016-03-22 | 2017-12-26 | International Business Machines Corporation | Methods of fabricating semiconductor fins by double sidewall image transfer patterning through localized oxidation enhancement of sacrificial mandrel sidewalls |
| WO2018063359A1 (en) * | 2016-09-30 | 2018-04-05 | Intel Corporation | Multi voltage threshold transistors through process and design-induced multiple work functions |
| KR102293127B1 (en) * | 2017-06-23 | 2021-08-26 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
| US10510875B2 (en) * | 2017-07-31 | 2019-12-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source and drain structure with reduced contact resistance and enhanced mobility |
| US10515952B2 (en) | 2017-08-04 | 2019-12-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor (FinFET) device structure and method for forming the same |
| US10811507B2 (en) * | 2017-09-20 | 2020-10-20 | International Business Machines Corporation | Vertical transistors having multiple gate thicknesses for optimizing performance and device density |
| US11088258B2 (en) | 2017-11-16 | 2021-08-10 | Samsung Electronics Co., Ltd. | Method of forming multiple-Vt FETs for CMOS circuit applications |
| US10770353B2 (en) | 2017-11-16 | 2020-09-08 | Samsung Electronics Co., Ltd. | Method of forming multi-threshold voltage devices using dipole-high dielectric constant combinations and devices so formed |
| US10971493B2 (en) * | 2017-11-27 | 2021-04-06 | Taiwan Semiconductor Manufacturing Company Ltd. | Integrated circuit device with high mobility and system of forming the integrated circuit |
| CN109994471B (en) * | 2017-12-29 | 2020-12-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
| US10985075B2 (en) | 2018-10-11 | 2021-04-20 | International Business Machines Corporation | Gate formation scheme for n-type and p-type transistors having separately tuned threshold voltages |
| US11315835B2 (en) | 2019-03-08 | 2022-04-26 | Globalfoundries U.S. Inc. | Methods of forming an IC product comprising transistor devices with different threshold voltage levels |
| US11658216B2 (en) | 2021-01-14 | 2023-05-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for metal gate boundary isolation |
| KR20220162334A (en) * | 2021-06-01 | 2022-12-08 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7145191B1 (en) | 2000-03-31 | 2006-12-05 | National Semiconductor Corporation | P-channel field-effect transistor with reduced junction capacitance |
| US6548842B1 (en) | 2000-03-31 | 2003-04-15 | National Semiconductor Corporation | Field-effect transistor for alleviating short-channel effects |
| US6444512B1 (en) | 2000-06-12 | 2002-09-03 | Motorola, Inc. | Dual metal gate transistors for CMOS process |
| EP1519421A1 (en) * | 2003-09-25 | 2005-03-30 | Interuniversitair Microelektronica Centrum Vzw | Multiple gate semiconductor device and method for forming same |
| KR100487567B1 (en) * | 2003-07-24 | 2005-05-03 | 삼성전자주식회사 | Method for fabricating a finfet in a semiconductor device |
| US7253650B2 (en) * | 2004-05-25 | 2007-08-07 | International Business Machines Corporation | Increase productivity at wafer test using probe retest data analysis |
| US8188551B2 (en) * | 2005-09-30 | 2012-05-29 | Infineon Technologies Ag | Semiconductor devices and methods of manufacture thereof |
| US20070052037A1 (en) * | 2005-09-02 | 2007-03-08 | Hongfa Luan | Semiconductor devices and methods of manufacture thereof |
| US7439106B2 (en) * | 2006-02-22 | 2008-10-21 | Texas Instruments Incorporated | Gate CD trimming beyond photolithography |
| JP2008103492A (en) | 2006-10-18 | 2008-05-01 | Nec Electronics Corp | Semiconductor device and manufacturing method thereof |
| US7923337B2 (en) | 2007-06-20 | 2011-04-12 | International Business Machines Corporation | Fin field effect transistor devices with self-aligned source and drain regions |
| US7723798B2 (en) | 2007-08-07 | 2010-05-25 | International Business Machines Corporation | Low power circuit structure with metal gate and high-k dielectric |
| US8076738B2 (en) | 2007-09-28 | 2011-12-13 | Infineon Technologies Ag | Integrally fabricated micromachine and logic elements |
| US8310027B2 (en) * | 2008-06-12 | 2012-11-13 | Infineon Technologies Ag | Electronic device and manufacturing method thereof |
| US7947589B2 (en) * | 2009-09-02 | 2011-05-24 | Freescale Semiconductor, Inc. | FinFET formation with a thermal oxide spacer hard mask formed from crystalline silicon layer |
| US8455364B2 (en) | 2009-11-06 | 2013-06-04 | International Business Machines Corporation | Sidewall image transfer using the lithographic stack as the mandrel |
| CN102117831B (en) | 2009-12-31 | 2013-03-13 | 中国科学院微电子研究所 | Transistor and method of manufacturing the same |
| US8557675B2 (en) * | 2011-11-28 | 2013-10-15 | Globalfoundries Inc. | Methods of patterning features in a structure using multiple sidewall image transfer technique |
-
2012
- 2012-08-28 US US13/596,687 patent/US8669167B1/en active Active
- 2012-09-12 US US13/611,257 patent/US8669615B1/en active Active
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160307804A1 (en) * | 2013-03-15 | 2016-10-20 | Infineon Technologies Dresden Gmbh | Method for processing a carrier |
| US9984930B2 (en) * | 2013-03-15 | 2018-05-29 | Infineon Technologies Dresden Gmbh | Method for processing a carrier |
| US20140327045A1 (en) * | 2013-05-06 | 2014-11-06 | International Bussiness Machines Corporation | Method to make dual material finfet on same substrate |
| US9048318B2 (en) * | 2013-05-06 | 2015-06-02 | International Business Machines Corporation | Dual material finFET on same substrate |
| US9412664B2 (en) | 2013-05-06 | 2016-08-09 | International Business Machines Corporation | Dual material finFET on single substrate |
| US9613963B2 (en) | 2013-05-06 | 2017-04-04 | International Business Machines Corporation | Dual material finFET on single substrate |
| US9640536B2 (en) | 2013-05-06 | 2017-05-02 | International Business Machines | Method to make dual material finFET on same substrate |
| CN106409767A (en) * | 2015-07-31 | 2017-02-15 | 台湾积体电路制造股份有限公司 | Multi-threshold voltage field effect transistor and manufacturing method thereof |
| US20190214345A1 (en) * | 2018-01-08 | 2019-07-11 | Samsung Electronics Co., Ltd. | Semiconductor device including conductive patterns and method of fabricating the same |
| US10665544B2 (en) * | 2018-01-08 | 2020-05-26 | Samsung Electronics Co., Ltd. | Semiconductor device including conductive patterns |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140065802A1 (en) | 2014-03-06 |
| US8669615B1 (en) | 2014-03-11 |
| US8669167B1 (en) | 2014-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8669615B1 (en) | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices | |
| US11024709B2 (en) | Vertical fin field effect transistor with air gap spacers | |
| DE112018000201B4 (en) | Approach to bottom dielectric insulation for vertical transport fin field effect transistors | |
| US10833073B2 (en) | Vertical transistors with different gate lengths | |
| US8659006B1 (en) | Techniques for metal gate work function engineering to enable multiple threshold voltage nanowire FET devices | |
| US8928083B2 (en) | Diode structure and method for FINFET technologies | |
| US10340364B2 (en) | H-shaped VFET with increased current drivability | |
| US11315922B2 (en) | Fin cut to prevent replacement gate collapse on STI | |
| US20170373159A1 (en) | Fabrication of a vertical fin field effect transistor with a reduced contact resistance | |
| TW201839984A (en) | Semiconductor structure and method of forming same | |
| TW202243025A (en) | Methods for fabricating semiconductor devices | |
| US20210328045A1 (en) | Forming Gate Last Vertical FET With Self-Aligned Spacers and Junctions | |
| DE102017122702B4 (en) | Structure and method for asymmetric contact FinFET device | |
| US20250031418A1 (en) | Gate-all-around field effect transistor having trench internal spacer, and method for manufacturing same | |
| US11094781B2 (en) | Nanosheet structures having vertically oriented and horizontally stacked nanosheets | |
| US20190198399A1 (en) | Vertical FET with Various Gate Lengths by an Oxidation Process | |
| TWI866022B (en) | Gate-all-around field effect transistor having trench inner spacers and method for manufacturing same | |
| US12272692B2 (en) | 3D selective material transformation to integrate 2D material elements |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049490/0001 Effective date: 20181127 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:054633/0001 Effective date: 20201022 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:054636/0001 Effective date: 20201117 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |