US20140032177A1 - Apparatus and system for determining, optimizing or monitoring at least one process variable - Google Patents

Apparatus and system for determining, optimizing or monitoring at least one process variable Download PDF

Info

Publication number
US20140032177A1
US20140032177A1 US14/009,349 US201214009349A US2014032177A1 US 20140032177 A1 US20140032177 A1 US 20140032177A1 US 201214009349 A US201214009349 A US 201214009349A US 2014032177 A1 US2014032177 A1 US 2014032177A1
Authority
US
United States
Prior art keywords
evaluating
control
measuring
unit
calculating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/009,349
Inventor
Matthias Altendorf
Marc Bret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Assigned to ENDRESS + HAUSER GMBH + CO. KG reassignment ENDRESS + HAUSER GMBH + CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALTENDORF, MATTHIAS, BARET, MARC
Publication of US20140032177A1 publication Critical patent/US20140032177A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • G05B19/0425Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors

Definitions

  • the invention relates to an apparatus for determining, optimizing or monitoring at least one process variable. Furthermore, a system is presented, which, among other things, preferably comprises a plurality of the aforesaid apparatuses.
  • field devices are often applied, which serve for determining, optimizing and/or influencing process variables.
  • sensors such as, for example, fill level measuring devices, flow measuring devices, pressure- and temperature measuring devices, pH-redox potential measuring devices, conductivity measuring devices, etc., which register the corresponding process variables, fill level, flow, pressure, temperature, pH-value, and conductivity.
  • Serving for influencing process variables are actuators, such as, for example, valves or pumps, via which the flow of a liquid in a section of pipeline or the fill level in a container can be changed.
  • field devices are, in principle, all devices, which are applied near to the process and deliver or process information relevant to the process.
  • field devices thus include also remote I/Os, radio adapters, or, generally, devices, which are arranged at the field level. A large number of such field devices are produced and sold by the firm, Endress+Hauser.
  • EP 1 629 331 A1 is a variable field device for process automation technology.
  • the individual functions of this field device are distributed.
  • the actual field device provides only a few basic functions, e.g. the measured value production, while application-specific functionalities, such as e.g. frequency- or pulse outputs, are embodied as separate functional units, which are arranged spatially separated from the field device.
  • Field devices and functional units are connected to a corresponding communications medium for the purpose of data exchange.
  • the communications medium is a two-conductor supply line. Alternatively, a number of data channels are provided on the communications medium, so that multiple access to the connected units is possible. In this way, the field device is variably and application-specifically configurable.
  • a measuring apparatus for determining and/or monitoring at least one process variable
  • the measuring apparatus includes as integral components a sensor unit, an in/output unit and a display unit.
  • the sensor unit produces raw, measured values, wherein from the raw, measured values the information concerning the process variable is producible. Data are received or forwarded via the in/output unit.
  • the display unit is the information representing the process variable, as provided by a control unit. Communication between the sensor unit, the in/output unit and the display unit, on the one hand, and the control unit, on the other hand, occurs via one of the fieldbusses customary in automation technology.
  • An object of the invention is to provide an apparatus and a system for determining, optimizing or monitoring at least one process variable simply and therewith cost effectively.
  • the apparatus of the invention includes the following components:
  • a measuring unit respectively a measuring module, having a sensor element and a measuring electronics, at least one control/evaluating/calculating unit arranged removed from the measuring unit and/or an in/output unit arranged removed from the measuring unit and the control/evaluating/calculating unit.
  • the control/evaluating/calculating unit and/or the in/output unit communicate with the measuring apparatus of the invention via a first interface and a second interface.
  • the measuring electronics operates the sensor element and forwards the measurement signals as unprocessed, raw, measured values via the interfaces to the control/evaluating/calculating unit. Based on the raw, measured values, the control/evaluating/calculating unit arranged removed from the measuring unit determines, improves and/or monitors the process variable. Information concerning the process variable is made available via the in/output unit.
  • Integrated in the measuring unit are, thus, only the functional components necessarily required on-site for the measured value registering, such as, for instance, in the case of a fill-level measuring device, the signal producing unit and the transmitting- and receiving unit for the ultrasound- or microwave measurement signals.
  • the conditioning- and further processing functions are outsourced to a “central” control/evaluating/calculating unit, respectively a “central” in/output unit.
  • the control/evaluating/calculating unit is preferably so embodied that the raw, measured values delivered from the most varied of measuring units can be conditioned and further processed with appropriate soft- and/or hardware.
  • the measuring electronics is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip.
  • the control/evaluating/calculating unit is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip.
  • the functional soft- and/or hardware components can be configured in real time for the measuring unit, which is just delivering the raw measurement signals.
  • the control/evaluating/calculating unit is, in high measure, flexibly adaptable to the respective requirements.
  • control/evaluating/calculating unit is implemented in a handheld device or computer or—generally stated—in a transportable service unit.
  • a transportable service unit For example, a smart phone or a smart pad or other transportable service unit can be used.
  • the software for the control/evaluating/calculating unit is downloaded from a server, as a function of the respective measuring unit, as apps, respectively as an application oriented, software unit.
  • the server is, for example, made available by the device manufacturer. This solution has the advantage that always the current version of the software is available to the control/evaluating/calculating unit.
  • the server is, moreover, a web server, so that the accessing can occur via the browser of a computer.
  • the server can, however, be any server.
  • an OPC-US server can be applied.
  • the object is achieved by features including that a plurality of measuring units are connected with the control/evaluating/calculating unit via suitable communication connections.
  • the control/evaluating/calculating unit processes the raw, measured values delivered from the different measuring units further by using the corresponding evaluating hardware and/or evaluating software and determines, improves and/or monitors the corresponding process variable, concerning which the measuring unit is to deliver information.
  • the system of the invention includes, among other things, elements of a computer network. Included in this network are measuring devices 1 for process variables, such as was already described above.
  • HMI Human Machine Interface
  • the customer does not need on-site display infrastructure, thus the so-called HMI (Human Machine Interface), nor does it need the corresponding infrastructure concerning in- and outputs.
  • HMI Human Machine Interface
  • the on-site infrastructure for the hardware moreover, also the on-site infrastructure for the software can be omitted. This means considerable savings.
  • the networking of the individual system components occurs advantageously via suitable communication connections.
  • the communication connections include wired connections or wireless connections.
  • Preferably used in the system of the invention are already present network infrastructures, thus especially Internet or intranet structures.
  • the control/evaluating/calculating unit which, among other things, provides the information concerning the process variable by application of suitable algorithms, can be part of a usual PC or laptop. Since corresponding PCs and laptops are available worldwide, the information delivered from the measuring units and then further processed is, in principle, available at any site at any time. The same holds for the in/output unit, since any PC or laptop as well as any handheld device comes equipped with display and with input means.
  • control/evaluating/calculating unit for example, an alarm management based on diagnostic programs for the individual measuring units or parts of the system of the invention, or the configuring or parametering of the measuring units and/or of the system can be performed.
  • responsibilities for the aforesaid functionalities can also be distributed to a number of control/evaluating/calculating units, which can be at different locations.
  • an option is to link the information delivered from different measuring units in desired manner, in order to generate added value for the customer or also the device manufacturer.
  • a transmitter which is associated physically with a given measuring unit, can become a virtual transmitter, which is also quite able to supplement a plurality, and even a large number, of measuring units in desired type and manner.
  • an option is to access the measuring units from quite different locations. This means that, in given cases, measures for assuring authorized accessing of the measuring units or the system must be included. The same holds as regards the safety of the data transmission.
  • a database in which a plurality of data sets with raw, measured values of different measuring units and/or with further processed, raw, measured values of different measuring units are stored, wherein the data sets reflect raw, measured values and/or further processed, raw, measured values, which have been ascertained as a function of different process- and/or device conditions in different applications directly or by simulation.
  • a parameter set Associated with each data set with raw, measured values and/or further processed, raw, measured values is a parameter set, which provides an optimized adjusting of the corresponding measuring unit and/or the control/evaluating/calculating unit as a function of defined process- and/or device conditions.
  • the parameters can be filter settings.
  • an added value in the form of an enrichment of information know how and/or measurement data is provided for the user.
  • This added value rests on the information delivered from, in given cases, different transportable service units based on the software for the control/evaluating/calculating unit. In such case, the information is normally referenced to the individual measuring units and is simultaneously available in real time.
  • Installed in the control/evaluating/calculating unit, or units are corresponding apps, respectively application oriented, software tools.
  • control/evaluating/calculating unit or units is/are installed in at least one computer.
  • the accessing occurs then, for example, via Java or HTML.
  • the at least one control/evaluating/calculating unit obtains the suitable software from a server via web services.
  • control/evaluating/calculating unit is implemented on an iPhone, an iPad or other handheld computer.
  • FIG. 1 a schematic representation of a measuring apparatus known from the state of the art
  • FIG. 2 a schematic representation of a preferred embodiment of the measuring apparatus of the invention
  • FIG. 3 a schematic representation of an advantageous embodiment of the system of the invention.
  • FIG. 4 a flow diagram of a method for changing the configuration of the measuring apparatus of the invention.
  • FIG. 1 shows a schematic representation of a measuring apparatus 1 , such as known from the state of the art.
  • Measuring apparatus 1 is composed of a sensor element 4 , which is so embodied that it can determine a desired physical, chemical or biological process variable, and a transmitter 9 , which in the shown case includes a measuring electronics 5 , a control/evaluating/calculating unit 3 , a first interface 7 and a second interface 8 .
  • transmitter 9 Via the interfaces 7 , 8 , transmitter 9 is connected with a local service unit, for example, a handheld device 10 .
  • a control/evaluating/calculating unit 3 is associated with the handheld device 10 in the illustrated case.
  • the local service unit 10 in the case of known solutions is an integral component of the measuring apparatus 1 .
  • the transmitter 9 is connected with a remotely arranged computer 11 .
  • Associated with the computer 11 is—same as in the case of the handheld device 10 —an in/output unit 6 and a control/evaluating/calculating unit.
  • the communication connection 13 between the transmitter 9 and the local service unit 10 , respectively the computer 11 occurs either wired or wirelessly, e.g. via wireless HART, for instance, one of the fieldbusses (HART, Fieldbus Foundation, Profibus, etc.) established in automation technology.
  • FIG. 2 shows a schematic representation of a preferred embodiment of the measuring apparatus 1 of the invention for determining, optimizing or monitoring at least one process variable.
  • Measuring apparatus 1 includes a sensor element 4 and a measuring electronics 5 . Both together form the measuring unit 2 , respectively the measuring module 2 .
  • the control/evaluating/calculating unit 3 is arranged removed from the measuring unit 2 and/or the in/output unit is arranged removed from the measuring unit 2 and, in given cases, from the control/evaluating/calculating unit 3 .
  • Communication between the measuring electronics 5 , respectively the measuring apparatus 1 , and the control/evaluating/calculating unit 3 and/or the in/output unit 6 occurs via the interfaces 7 , 8 .
  • Measuring electronics 5 operates the sensor element 4 such that the measurement signals present as raw, measured values and representing the process variable are forwarded via the interfaces 7 , 8 to the control/evaluating/calculating unit 3 . Only in the control/evaluating/calculating unit 3 arranged removed from the measuring unit 2 is the corresponding process variable determined, improved and/or monitored based on the raw, measured values. Information concerning the process variable is made available via the in/output unit 6 .
  • the measuring electronics 5 is implemented, for example, on an FPGA chip, a dynamically reconfigurable FPGA chip, an ASIC or a memory chip.
  • the control/evaluating/calculating unit 3 can be implemented on an FPGA chip, a dynamically reconfigurable FPGA chip, an ASIC or a memory chip.
  • Control/evaluating/calculating unit 3 can be installed both in a manually operated device 10 as well as also in a computer 11 .
  • the control/evaluating/calculating unit 3 can be located in any transportable service unit.
  • the handheld device 10 can be, for example, a laptop, an iPhone or an iPad.
  • the computer 11 can be e.g. a PC or an iPad.
  • the software for the control/evaluating/calculating unit 3 is downloadable from a server 12 as an app or as an application oriented, software unit as a function of the measuring unit 2 being used. In this way, it is assured that always the current version of the software is available.
  • the identification of the measuring apparatus 1 respectively the measuring electronics 4 , occurs e.g. via an RF-ID tag.
  • FIG. 3 shows a schematic representation of an advantageous embodiment of the system of the invention, in the case of which a plurality of the measuring units 2 . 1 , . . . , 2 . n described with respect to FIG. 2 transmit their raw, measured values to one or a few remotely arranged control/evaluation unit/s.
  • the measuring units 2 . 1 , . . . , 2 . n are, for example, integrated in an automated plant; they can, however, likewise be arranged at remote locations far from one another.
  • Wireless communication connections 13 are preferably utilized for the purpose of data exchange.
  • control/evaluating/calculating unit 3 which is associated either with a handheld device 10 or a computer 11 , processes the raw, measured values delivered from the different measuring units 2 . 1 , . . . , 2 . n and determines, improves and/or monitors the corresponding process variable.
  • a server 12 which is preferably a web server (this is advantageous, since thereby the widely distributed computer infrastructures can be utilized), the current evaluation software can be downloaded.
  • At least one database 16 is provided, in which a plurality of data sets with raw, measured values of the different measuring units 2 . 1 , . . . , 2 . n and/or with further processed, raw, measured values of the different measuring units ( 2 . 1 , . . . , 2 . n ) are stored, wherein the data sets reflect raw, measured values and/or further processed, raw, measured values, which have been ascertained as a function of different process- and/or device conditions in different applications directly or by simulation.
  • a parameter set which reflects an optimized adjusting of the corresponding measuring unit 2 . 1 , . . .
  • the system of the invention provides the opportunity of achieving added value in the form of enrichment of information, know how and measurement data.
  • the added value rests on the information delivered from the transportable service units 10 , 11 based on the software for the control/evaluating/calculating unit 3 as a function of the individual measuring units 2 . 1 , . . . , 2 . n units, on which the apps, respectively the application oriented software, work.
  • This added value can exist, for example, in the performing of advanced diagnostic functions.
  • an optimizing of the energy consumption in the automated plant can represent an important added value for the user, respectively plant operator. Maintenance information represents important information for the device manufacturer and the plant operator.
  • FIG. 4 shows a flow diagram, which illustrates a preferred method for changing the configuration data set for the measuring electronics 5 of the measuring apparatus 1 of the invention.
  • the program starts at program point 20 .
  • it is checked whether the communication connection to the server 12 , here a license server, is in order.
  • the communication connection is established (program point 22 )
  • the license can also be granted with reference to the user.
  • the license is preferably granted, in each case, for a certain number of accesses to the license server 12 . So long as the maximum number of allowed accesses is not exceeded, an attempt is made to establish the connection to the computer 11 , which is preferably a configuration server 11 .
  • the measuring apparatus 1 works further with the current configuration of the measuring electronics 5 associated with the measuring apparatus 1 , until a corresponding license is present (program point 26 ). For the case, in which communication connection to the configuration server 11 cannot be established, the measuring apparatus 1 likewise operates further with the present configuration data set. This step appears at program point 27 .
  • a changed configuration data set is downloaded for the measuring electronics 5 from the configuration server 11 and then utilized for operating the measuring apparatus 1 .
  • the configuration data set serves, for example, for programming the FPGA chips.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

An apparatus for determining or monitoring at least one process variable which comprises a sensor element, measuring electronics, at least one control/evaluating/calculating unit arranged removed from the measuring unit and/or an in/output unit arranged removed from the measuring unit and the control/evaluating/calculating unit. The control/evaluating/calculating unit and the in/output unit are connected with the measuring unit via a first interface, respectively a second interface, wherein the measuring electronics operates the sensor element and forwards the measurement signals via the interfaces to the control/evaluating/calculating unit as unprocessed, raw, measured values, and wherein the control/evaluating/calculating unit arranged removed from the measuring unit determines, improves and/or monitors the process variable based on the raw, measured values and makes such available via the in/output unit.

Description

  • The invention relates to an apparatus for determining, optimizing or monitoring at least one process variable. Furthermore, a system is presented, which, among other things, preferably comprises a plurality of the aforesaid apparatuses.
  • In automation technology, especially in process automation, field devices are often applied, which serve for determining, optimizing and/or influencing process variables. Serving for registering process variables are sensors, such as, for example, fill level measuring devices, flow measuring devices, pressure- and temperature measuring devices, pH-redox potential measuring devices, conductivity measuring devices, etc., which register the corresponding process variables, fill level, flow, pressure, temperature, pH-value, and conductivity. Serving for influencing process variables are actuators, such as, for example, valves or pumps, via which the flow of a liquid in a section of pipeline or the fill level in a container can be changed. Referred to as field devices are, in principle, all devices, which are applied near to the process and deliver or process information relevant to the process. In connection with the invention, field devices thus include also remote I/Os, radio adapters, or, generally, devices, which are arranged at the field level. A large number of such field devices are produced and sold by the firm, Endress+Hauser.
  • Known from EP 1 629 331 A1 is a variable field device for process automation technology. The individual functions of this field device are distributed. The actual field device provides only a few basic functions, e.g. the measured value production, while application-specific functionalities, such as e.g. frequency- or pulse outputs, are embodied as separate functional units, which are arranged spatially separated from the field device. Field devices and functional units are connected to a corresponding communications medium for the purpose of data exchange. The communications medium is a two-conductor supply line. Alternatively, a number of data channels are provided on the communications medium, so that multiple access to the connected units is possible. In this way, the field device is variably and application-specifically configurable.
  • Known from DE 10 2006 016 381 A1 is a measuring apparatus for determining and/or monitoring at least one process variable, wherein the measuring apparatus includes as integral components a sensor unit, an in/output unit and a display unit. The sensor unit produces raw, measured values, wherein from the raw, measured values the information concerning the process variable is producible. Data are received or forwarded via the in/output unit. Presented on the display unit is the information representing the process variable, as provided by a control unit. Communication between the sensor unit, the in/output unit and the display unit, on the one hand, and the control unit, on the other hand, occurs via one of the fieldbusses customary in automation technology.
  • An object of the invention is to provide an apparatus and a system for determining, optimizing or monitoring at least one process variable simply and therewith cost effectively.
  • The apparatus of the invention includes the following components:
  • A measuring unit, respectively a measuring module, having a sensor element and a measuring electronics, at least one control/evaluating/calculating unit arranged removed from the measuring unit and/or an in/output unit arranged removed from the measuring unit and the control/evaluating/calculating unit. The control/evaluating/calculating unit and/or the in/output unit communicate with the measuring apparatus of the invention via a first interface and a second interface. The measuring electronics operates the sensor element and forwards the measurement signals as unprocessed, raw, measured values via the interfaces to the control/evaluating/calculating unit. Based on the raw, measured values, the control/evaluating/calculating unit arranged removed from the measuring unit determines, improves and/or monitors the process variable. Information concerning the process variable is made available via the in/output unit.
  • Integrated in the measuring unit are, thus, only the functional components necessarily required on-site for the measured value registering, such as, for instance, in the case of a fill-level measuring device, the signal producing unit and the transmitting- and receiving unit for the ultrasound- or microwave measurement signals. The conditioning- and further processing functions, same as the in- and output functions, are outsourced to a “central” control/evaluating/calculating unit, respectively a “central” in/output unit. The control/evaluating/calculating unit is preferably so embodied that the raw, measured values delivered from the most varied of measuring units can be conditioned and further processed with appropriate soft- and/or hardware.
  • In a preferred embodiment of the apparatus of the invention, the measuring electronics is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip. Moreover, it is provided that the control/evaluating/calculating unit is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip.
  • If a dynamically reconfigurable FPGA chip is used, then, for example, the functional soft- and/or hardware components can be configured in real time for the measuring unit, which is just delivering the raw measurement signals. In this way, the control/evaluating/calculating unit is, in high measure, flexibly adaptable to the respective requirements.
  • Furthermore, it is advantageous in connection with the apparatus of the invention when, in the case of application of a dynamically reconfigurable FPGA chip, a permanently configured region is provided, in which a microprocessor is permanently configured.
  • Preferably, the control/evaluating/calculating unit is implemented in a handheld device or computer or—generally stated—in a transportable service unit. For example, a smart phone or a smart pad or other transportable service unit can be used. Preferably, the software for the control/evaluating/calculating unit is downloaded from a server, as a function of the respective measuring unit, as apps, respectively as an application oriented, software unit.
  • The server is, for example, made available by the device manufacturer. This solution has the advantage that always the current version of the software is available to the control/evaluating/calculating unit.
  • Preferably, the server is, moreover, a web server, so that the accessing can occur via the browser of a computer. Of course, the server can, however, be any server. Thus, also an OPC-US server can be applied.
  • With regard to the system of the invention, the object is achieved by features including that a plurality of measuring units are connected with the control/evaluating/calculating unit via suitable communication connections. The control/evaluating/calculating unit processes the raw, measured values delivered from the different measuring units further by using the corresponding evaluating hardware and/or evaluating software and determines, improves and/or monitors the corresponding process variable, concerning which the measuring unit is to deliver information.
  • The system of the invention includes, among other things, elements of a computer network. Included in this network are measuring devices 1 for process variables, such as was already described above. Through the solution of the invention, the customer does not need on-site display infrastructure, thus the so-called HMI (Human Machine Interface), nor does it need the corresponding infrastructure concerning in- and outputs. Besides the on-site infrastructure for the hardware, moreover, also the on-site infrastructure for the software can be omitted. This means considerable savings.
  • The networking of the individual system components occurs advantageously via suitable communication connections. The communication connections include wired connections or wireless connections. Preferably used in the system of the invention are already present network infrastructures, thus especially Internet or intranet structures. Thus, the control/evaluating/calculating unit, which, among other things, provides the information concerning the process variable by application of suitable algorithms, can be part of a usual PC or laptop. Since corresponding PCs and laptops are available worldwide, the information delivered from the measuring units and then further processed is, in principle, available at any site at any time. The same holds for the in/output unit, since any PC or laptop as well as any handheld device comes equipped with display and with input means.
  • Furthermore, by means of the control/evaluating/calculating unit, for example, an alarm management based on diagnostic programs for the individual measuring units or parts of the system of the invention, or the configuring or parametering of the measuring units and/or of the system can be performed. Of course, responsibilities for the aforesaid functionalities can also be distributed to a number of control/evaluating/calculating units, which can be at different locations. Likewise an option is to link the information delivered from different measuring units in desired manner, in order to generate added value for the customer or also the device manufacturer.
  • Thus, according to the invention, a transmitter, which is associated physically with a given measuring unit, can become a virtual transmitter, which is also quite able to supplement a plurality, and even a large number, of measuring units in desired type and manner. Moreover, an option is to access the measuring units from quite different locations. This means that, in given cases, measures for assuring authorized accessing of the measuring units or the system must be included. The same holds as regards the safety of the data transmission.
  • Especially advantageous is, moreover, when a database is provided, in which a plurality of data sets with raw, measured values of different measuring units and/or with further processed, raw, measured values of different measuring units are stored, wherein the data sets reflect raw, measured values and/or further processed, raw, measured values, which have been ascertained as a function of different process- and/or device conditions in different applications directly or by simulation. Associated with each data set with raw, measured values and/or further processed, raw, measured values is a parameter set, which provides an optimized adjusting of the corresponding measuring unit and/or the control/evaluating/calculating unit as a function of defined process- and/or device conditions. For example, the parameters can be filter settings.
  • As already mentioned above, it is, moreover, provided that an added value in the form of an enrichment of information, know how and/or measurement data is provided for the user. This added value rests on the information delivered from, in given cases, different transportable service units based on the software for the control/evaluating/calculating unit. In such case, the information is normally referenced to the individual measuring units and is simultaneously available in real time.
  • Installed in the control/evaluating/calculating unit, or units, are corresponding apps, respectively application oriented, software tools.
  • Alternatively, the control/evaluating/calculating unit, or units is/are installed in at least one computer. The accessing occurs then, for example, via Java or HTML. Furthermore, it is provided that the at least one control/evaluating/calculating unit obtains the suitable software from a server via web services.
  • As already mentioned above, it is especially advantageous in connection with the solution of the invention, when the virtual transmitter, thus the control/evaluating/calculating unit, is implemented on an iPhone, an iPad or other handheld computer.
  • The invention will now be explained in greater detail based on the appended drawing, the figures of which show as follows:
  • FIG. 1 a schematic representation of a measuring apparatus known from the state of the art,
  • FIG. 2 a schematic representation of a preferred embodiment of the measuring apparatus of the invention,
  • FIG. 3 a schematic representation of an advantageous embodiment of the system of the invention, and
  • FIG. 4 a flow diagram of a method for changing the configuration of the measuring apparatus of the invention.
  • FIG. 1 shows a schematic representation of a measuring apparatus 1, such as known from the state of the art. Measuring apparatus 1 is composed of a sensor element 4, which is so embodied that it can determine a desired physical, chemical or biological process variable, and a transmitter 9, which in the shown case includes a measuring electronics 5, a control/evaluating/calculating unit 3, a first interface 7 and a second interface 8. Via the interfaces 7, 8, transmitter 9 is connected with a local service unit, for example, a handheld device 10. Furthermore, a control/evaluating/calculating unit 3 is associated with the handheld device 10 in the illustrated case. Often, the local service unit 10 in the case of known solutions is an integral component of the measuring apparatus 1.
  • Via the second interface 8, the transmitter 9 is connected with a remotely arranged computer 11. Associated with the computer 11 is—same as in the case of the handheld device 10—an in/output unit 6 and a control/evaluating/calculating unit. The communication connection 13 between the transmitter 9 and the local service unit 10, respectively the computer 11, occurs either wired or wirelessly, e.g. via wireless HART, for instance, one of the fieldbusses (HART, Fieldbus Foundation, Profibus, etc.) established in automation technology.
  • FIG. 2 shows a schematic representation of a preferred embodiment of the measuring apparatus 1 of the invention for determining, optimizing or monitoring at least one process variable.
  • Measuring apparatus 1 includes a sensor element 4 and a measuring electronics 5. Both together form the measuring unit 2, respectively the measuring module 2. The control/evaluating/calculating unit 3 is arranged removed from the measuring unit 2 and/or the in/output unit is arranged removed from the measuring unit 2 and, in given cases, from the control/evaluating/calculating unit 3. Communication between the measuring electronics 5, respectively the measuring apparatus 1, and the control/evaluating/calculating unit 3 and/or the in/output unit 6 occurs via the interfaces 7, 8. Measuring electronics 5 operates the sensor element 4 such that the measurement signals present as raw, measured values and representing the process variable are forwarded via the interfaces 7, 8 to the control/evaluating/calculating unit 3. Only in the control/evaluating/calculating unit 3 arranged removed from the measuring unit 2 is the corresponding process variable determined, improved and/or monitored based on the raw, measured values. Information concerning the process variable is made available via the in/output unit 6.
  • As already mentioned above, the measuring electronics 5 is implemented, for example, on an FPGA chip, a dynamically reconfigurable FPGA chip, an ASIC or a memory chip. Likewise the control/evaluating/calculating unit 3 can be implemented on an FPGA chip, a dynamically reconfigurable FPGA chip, an ASIC or a memory chip.
  • From corresponding applications of the assignee, it is already known that, in the case of application of a dynamically reconfigurable FPGA chips, a permanently configured region is provided, in which a microprocessor is permanently configured.
  • Control/evaluating/calculating unit 3 can be installed both in a manually operated device 10 as well as also in a computer 11. In general, the control/evaluating/calculating unit 3 can be located in any transportable service unit. The handheld device 10 can be, for example, a laptop, an iPhone or an iPad. The computer 11 can be e.g. a PC or an iPad. In such case, it is especially advantageous when the software for the control/evaluating/calculating unit 3 is downloadable from a server 12 as an app or as an application oriented, software unit as a function of the measuring unit 2 being used. In this way, it is assured that always the current version of the software is available. The identification of the measuring apparatus 1, respectively the measuring electronics 4, occurs e.g. via an RF-ID tag.
  • FIG. 3 shows a schematic representation of an advantageous embodiment of the system of the invention, in the case of which a plurality of the measuring units 2.1, . . . , 2.n described with respect to FIG. 2 transmit their raw, measured values to one or a few remotely arranged control/evaluation unit/s. The measuring units 2.1, . . . , 2.n are, for example, integrated in an automated plant; they can, however, likewise be arranged at remote locations far from one another. Wireless communication connections 13 are preferably utilized for the purpose of data exchange. Using the corresponding evaluating hardware and/or evaluating software, the control/evaluating/calculating unit 3, which is associated either with a handheld device 10 or a computer 11, processes the raw, measured values delivered from the different measuring units 2.1, . . . , 2.n and determines, improves and/or monitors the corresponding process variable.
  • Via a server 12, which is preferably a web server (this is advantageous, since thereby the widely distributed computer infrastructures can be utilized), the current evaluation software can be downloaded.
  • Furthermore, at least one database 16 is provided, in which a plurality of data sets with raw, measured values of the different measuring units 2.1, . . . , 2.n and/or with further processed, raw, measured values of the different measuring units (2.1, . . . , 2.n) are stored, wherein the data sets reflect raw, measured values and/or further processed, raw, measured values, which have been ascertained as a function of different process- and/or device conditions in different applications directly or by simulation. Preferably there is associated with each data set with raw, measured values and/or further processed, raw, measured values a parameter set, which reflects an optimized adjusting of the corresponding measuring unit 2.1, . . . , 2.n and/or the control/evaluating/calculating unit 3 as a function of the defined process- and/or device conditions. Further information for this solution is set forth in the not pre-published German patent application DE 10 2010 044 182.1 (US 2012/0130509 A1) of the assignee. The corresponding passages are an integral part of the present application.
  • Moreover, the system of the invention provides the opportunity of achieving added value in the form of enrichment of information, know how and measurement data. The added value rests on the information delivered from the transportable service units 10, 11 based on the software for the control/evaluating/calculating unit 3 as a function of the individual measuring units 2.1, . . . , 2.n units, on which the apps, respectively the application oriented software, work. This added value can exist, for example, in the performing of advanced diagnostic functions. Furthermore, an optimizing of the energy consumption in the automated plant can represent an important added value for the user, respectively plant operator. Maintenance information represents important information for the device manufacturer and the plant operator.
  • FIG. 4 shows a flow diagram, which illustrates a preferred method for changing the configuration data set for the measuring electronics 5 of the measuring apparatus 1 of the invention.
  • The program starts at program point 20. At program point 21, it is checked whether the communication connection to the server 12, here a license server, is in order. As soon as the communication connection is established (program point 22), it is checked at the program point 23 whether authorization for accessing the license server 12 exists. For example, is the license and/or the number of the downloadable configuration data sets for the measuring electronics 5 of the measuring apparatus 1 associated with the serial number of the measuring apparatus 1? Of course, the license can also be granted with reference to the user. The license is preferably granted, in each case, for a certain number of accesses to the license server 12. So long as the maximum number of allowed accesses is not exceeded, an attempt is made to establish the connection to the computer 11, which is preferably a configuration server 11. These steps appear at program points 24, 25.
  • If the maximum number of allowed, licensed accesses is exceeded, then the measuring apparatus 1 works further with the current configuration of the measuring electronics 5 associated with the measuring apparatus 1, until a corresponding license is present (program point 26). For the case, in which communication connection to the configuration server 11 cannot be established, the measuring apparatus 1 likewise operates further with the present configuration data set. This step appears at program point 27.
  • If the communication connection to the configuration server 11 can be produced, then at program point 28 a changed configuration data set is downloaded for the measuring electronics 5 from the configuration server 11 and then utilized for operating the measuring apparatus 1. The configuration data set serves, for example, for programming the FPGA chips. As soon as the measuring apparatus 1 is to be utilized for a changed measuring point (e.g. pressure measuring point instead of a fill level measuring point), the program jumps back to the program point 21. If at program point 29 no change of the measuring point is needed, then the program jumps back to the program point 27.
  • LIST OF REFERENCE CHARACTERS
  • 1 measuring apparatus of the invention
  • 2 measuring unit
  • 3 control/evaluating/calculating unit
  • 4 sensor element
  • 5 measuring electronics
  • 6 in/output unit
  • 7 first interface
  • 8 second interface
  • 9 transmitter
  • 10 handheld device
  • 11 computer
  • 12 server
  • 13 communication connection
  • 14 RF-ID tag
  • 15 permanently configured region
  • 16 database

Claims (11)

1-10. (canceled)
11. An apparatus for determining or monitoring at least one process variable, comprising:
a sensor element;
measuring electronics;
at least one control/evaluating/calculating unit arranged removed from said measuring unit; and/or
an in/output unit arranged removed from said measuring unit and said control/evaluating/calculating unit, wherein:
said control/evaluating/calculating unit and said in/output unit are connected with said measuring unit via a first interface, respectively a second interface;
said measuring electronics operates said sensor element and forwards the measurement signals via said interfaces to said control/evaluating/calculating unit as unprocessed, raw, measured value; and
said control/evaluating/calculating unit arranged removed from said measuring unit determines, improves and/or monitors the process variable based on the raw, measured values and makes such available via said in/output unit.
12. The apparatus as claimed in claim 11, wherein:
said measuring electronics is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip.
13. The apparatus as claimed in claim 11, wherein:
said control/evaluating/calculating unit is implemented on an FPGA chip or on a dynamically reconfigurable FPGA chip or on an ASIC or on a memory chip.
14. The apparatus as claimed in claim 12, wherein:
in the case of application of a dynamically reconfigurable FPGA chip a permanently configured region is provided, in which a microprocessor is permanently configured.
15. The apparatus as claimed in claim 11, wherein:
said control/evaluating/calculating unit is implemented as one of: a handheld device, or a computer and a transportable service unit.
16. The apparatus as claimed in claim 15, wherein:
said handheld device is a smart phone or a smart pad or a transportable service unit; and
the software for said control/evaluating/calculating unit is downloadable from a server as a function of said respective measuring unit as apps or as an application oriented, software unit.
17. A system, comprising: a plurality of apparatuses for determining or monitoring at least one process variable, comprising: a sensor element; measuring electronics; at least one control/evaluating/calculating unit arranged removed from said measuring unit; and/or an in/output unit arranged removed from said measuring unit and said control/evaluating/calculating unit, wherein: said control/evaluating/calculating unit and said in/output unit are connected with said measuring unit via a first interface, respectively a second interface; said measuring electronics operates said sensor element and forwards the measurement signals via said interfaces to said control/evaluating/calculating unit as unprocessed, raw, measured value; and said control/evaluating/calculating unit arranged removed from said measuring unit determines, improves and/or monitors the process variable based on the raw, measured values and makes such available via said in/output unit; wherein:
a plurality of measuring units are connected with said control/evaluating/calculating unit via corresponding communication connections and
said control/evaluating/calculating unit, using corresponding evaluating hardware and/or evaluating software, further processes raw, measured values delivered from said different measuring units and determines, improves and/or monitors the corresponding process variable.
18. The system as claimed in claim 17, wherein:
said communication connections are wired connections and/or wireless connections.
19. The system as claimed in claim 16, further comprising:
a database, in which are stored a plurality of data sets with raw, measured values of different measuring units and/or with further processed, raw, measured values of the different measuring units;
the data sets reflect raw, measured values and/or further processed, raw, measured values, which have been ascertained as a function of different process- and/or device conditions in different applications directly or by simulation; and
associated with each data set with raw, measured values and/or further processed, raw, measured values is a parameter set, which provides an optimized adjusting of the corresponding measuring unit and/or said control/evaluating/calculating unit as a function of defined process- and/or device conditions.
20. The system as claimed in claim 17, wherein:
added value is achieved in the form of an enrichment of information, know how and measurement data;
the added value rests on the information delivered from said transportable service units based on the software for said control/evaluating/calculating unit as a function of said individual measuring units, on which the apps, respectively the application oriented, software units, work.
US14/009,349 2011-04-07 2012-03-15 Apparatus and system for determining, optimizing or monitoring at least one process variable Abandoned US20140032177A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011006989A DE102011006989A1 (en) 2011-04-07 2011-04-07 Device and system for determining, optimizing or monitoring at least one process variable
DE102011006989.5 2011-04-07
PCT/EP2012/054533 WO2012136457A1 (en) 2011-04-07 2012-03-15 Device and system for determining, optimizing, or monitoring at least one process parameter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054533 A-371-Of-International WO2012136457A1 (en) 2011-04-07 2012-03-15 Device and system for determining, optimizing, or monitoring at least one process parameter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/596,308 Continuation US10620600B2 (en) 2011-04-07 2017-05-16 Apparatus and system for determining, optimizing or monitoring at least one process variable

Publications (1)

Publication Number Publication Date
US20140032177A1 true US20140032177A1 (en) 2014-01-30

Family

ID=45937240

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/009,349 Abandoned US20140032177A1 (en) 2011-04-07 2012-03-15 Apparatus and system for determining, optimizing or monitoring at least one process variable
US15/596,308 Active 2032-10-14 US10620600B2 (en) 2011-04-07 2017-05-16 Apparatus and system for determining, optimizing or monitoring at least one process variable

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/596,308 Active 2032-10-14 US10620600B2 (en) 2011-04-07 2017-05-16 Apparatus and system for determining, optimizing or monitoring at least one process variable

Country Status (4)

Country Link
US (2) US20140032177A1 (en)
EP (2) EP2988182B1 (en)
DE (1) DE102011006989A1 (en)
WO (1) WO2012136457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247754B2 (en) 2013-03-27 2019-04-02 Krohne Messtechnik Gmbh Measuring device having an interface
US20220321403A1 (en) * 2021-04-02 2022-10-06 Nokia Solutions And Networks Oy Programmable network segmentation for multi-tenant fpgas in cloud infrastructures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021312B4 (en) * 2012-10-31 2015-05-07 Krohne Messtechnik Gmbh Measuring device, measuring arrangement and method for determining a measured variable
DE102019129969A1 (en) 2019-11-06 2021-05-06 Endress+Hauser SE+Co. KG System for resource management in an automation technology system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647562B2 (en) * 2003-04-03 2010-01-12 National Instruments Corporation Deployment and execution of a graphical program on an embedded device from a PDA
US20110087460A1 (en) * 2009-10-12 2011-04-14 Endress + Hauser Gmbh + Co. Kg Field device for determining or monitoring a physical or chemical process variable

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032409B1 (en) * 1999-11-22 2011-10-04 Accenture Global Services Limited Enhanced visibility during installation management in a network-based supply chain environment
US6917845B2 (en) * 2000-03-10 2005-07-12 Smiths Detection-Pasadena, Inc. Method for monitoring environmental condition using a mathematical model
EP1325469A4 (en) * 2000-09-15 2006-11-29 Invensys Sys Inc A method and system for animating graphical user interface elements via manufacturing/process control portal server
US7440735B2 (en) * 2002-10-23 2008-10-21 Rosemount Inc. Virtual wireless transmitter
DE10325277A1 (en) 2003-06-03 2005-01-13 Endress + Hauser Flowtec Ag, Reinach Variable field device for process automation technology
DE10361465A1 (en) 2003-12-23 2005-08-11 Endress + Hauser Gmbh + Co. Kg Process meter with extended hardware error detection
JP4495960B2 (en) * 2003-12-26 2010-07-07 キヤノンItソリューションズ株式会社 Model creation device for the relationship between process and quality
JP2007536634A (en) * 2004-05-04 2007-12-13 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Service-oriented architecture for process control systems
DE102005051769A1 (en) * 2005-10-27 2007-05-03 Endress + Hauser Flowtec Ag Device for operating a process plant
JP5177958B2 (en) * 2006-03-31 2013-04-10 Hoya株式会社 Processing data management system, processing system for magnetic disk manufacturing apparatus, and data management method for magnetic disk manufacturing apparatus
DE102006016381A1 (en) 2006-04-05 2007-10-18 Endress + Hauser Gmbh + Co. Kg Measuring device for e.g. container, has control unit releasing raw value and processing value by input and output unit, receiving data from input and output unit and displaying receiving data by display unit
EP2082485A2 (en) * 2006-10-17 2009-07-29 Endress+Hauser GmbH+Co. KG System for the flexible configuration of functional modules
DE102007021099A1 (en) * 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Method for commissioning and / or reconfiguring a programmable field meter
DE102007039530A1 (en) 2007-08-21 2009-02-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for compatibility testing of a measuring system consisting of a transmitter and a sensor
DE102007049523A1 (en) * 2007-10-15 2009-04-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG System for process automation with a large number of intelligent sensors and a method for calibrating the sensors
DE102007053223A1 (en) * 2007-11-06 2009-05-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for operating a measuring point, measuring point and sensor unit for such a measuring point
DE102007054672A1 (en) * 2007-11-14 2009-05-20 Endress + Hauser Gmbh + Co. Kg Field device for determining or monitoring a process variable in process automation
US8571696B2 (en) * 2009-06-10 2013-10-29 Fisher-Rosemount Systems, Inc. Methods and apparatus to predict process quality in a process control system
DE102009028938A1 (en) * 2009-08-27 2011-03-03 Endress + Hauser Gmbh + Co. Kg Field device for determining or monitoring a physical or chemical variable
DE102010042116A1 (en) * 2010-10-07 2012-04-12 Endress + Hauser Process Solutions Ag Method for enabling prompt diagnosis, field device connected to a wireless adapter
DE102010044182A1 (en) 2010-11-19 2012-06-06 Endress + Hauser Gmbh + Co. Kg Method for setting a measuring device
US9720406B2 (en) * 2011-08-15 2017-08-01 Endress+Hauser Conducta Gmbh+Co. Kg Measuring system
JP2015501025A (en) * 2011-10-05 2015-01-08 オプテオン コーポレーション Method, apparatus and system for monitoring and / or controlling a dynamic environment
JP5701810B2 (en) * 2012-04-06 2015-04-15 株式会社東芝 Sensor data recording apparatus, method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647562B2 (en) * 2003-04-03 2010-01-12 National Instruments Corporation Deployment and execution of a graphical program on an embedded device from a PDA
US20110087460A1 (en) * 2009-10-12 2011-04-14 Endress + Hauser Gmbh + Co. Kg Field device for determining or monitoring a physical or chemical process variable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247754B2 (en) 2013-03-27 2019-04-02 Krohne Messtechnik Gmbh Measuring device having an interface
US20220321403A1 (en) * 2021-04-02 2022-10-06 Nokia Solutions And Networks Oy Programmable network segmentation for multi-tenant fpgas in cloud infrastructures

Also Published As

Publication number Publication date
EP2988182B1 (en) 2018-05-16
EP2695026B1 (en) 2015-12-09
DE102011006989A1 (en) 2012-10-11
US20170255176A1 (en) 2017-09-07
WO2012136457A1 (en) 2012-10-11
EP2695026A1 (en) 2014-02-12
EP2988182A1 (en) 2016-02-24
US10620600B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
US10620600B2 (en) Apparatus and system for determining, optimizing or monitoring at least one process variable
US9702732B2 (en) Process variable transmitter with loop-powered wireless transceiver
US10309873B2 (en) Method for servicing a field device
US11188051B2 (en) Method and cloud gateway for monitoring an automated facility
US9342979B2 (en) Radio unit for field devices used in automation technology
EP3286744B1 (en) Process instrumentation with wireless configuration
US9081380B2 (en) Apparatus for determining and/or monitoring a chemical or physical process variable in automation technology
US20040193287A1 (en) Method for offline-parametering of a field device of the process automation technology
US20110153040A1 (en) Arrangement with a superordinated control unit and at least one intelligent field device connectable with the control unit
US20090254678A1 (en) Operating Device for Exchanging data With a field Device in an Automation System
US20110251792A1 (en) Method for servicing a field device of process automation technology having at least two measurement channels and field device of process automation tecnology having at least two measurement channels and being suitable for performing the method
US20120296483A1 (en) Method for diagnosis of incorrectly set energy supply parameters of a field device power supply module
CN108363368A (en) Run method and automated system, the field device and controller of automated system
US20120159366A1 (en) Method for servicing field devices in an automation plant
US20200264592A1 (en) Smartwatch and method for the maintenance operating an automation technology facility
US20080036621A1 (en) Method for Transmitting Measuring Values Between Two Measuring Transducers
US20060233119A1 (en) Method for Parameterizing a Field Device Used in Automation Technology
US20200183346A1 (en) Method for operating a field device in the field of automation engineering
US20240211555A1 (en) Automation technology field device and method for safe operation of a field device
McIntyre Using smart instrumentation: all you need to know to deploy smart instruments throughout your processes, and get the highest performance available. The capabilities are there if you put them to work

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDRESS + HAUSER GMBH + CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALTENDORF, MATTHIAS;BARET, MARC;REEL/FRAME:031739/0953

Effective date: 20130912

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION