US20140021075A1 - Convertible container - Google Patents

Convertible container Download PDF

Info

Publication number
US20140021075A1
US20140021075A1 US13/983,160 US201213983160A US2014021075A1 US 20140021075 A1 US20140021075 A1 US 20140021075A1 US 201213983160 A US201213983160 A US 201213983160A US 2014021075 A1 US2014021075 A1 US 2014021075A1
Authority
US
United States
Prior art keywords
container
boxes
deployed configuration
parallelepiped
container according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/983,160
Inventor
Georges-Paul Deschamps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deschamps SARL
Original Assignee
Deschamps SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deschamps SARL filed Critical Deschamps SARL
Assigned to ETS A. DESCHAMPS ET FILS reassignment ETS A. DESCHAMPS ET FILS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESCHAMPS, GEORGES-PAUL
Publication of US20140021075A1 publication Critical patent/US20140021075A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/52Large containers collapsible, i.e. with walls hinged together or detachably connected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • B63B35/36Pontoons foldable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B7/00Collapsible, foldable, inflatable or like vessels
    • B63B7/06Collapsible, foldable, inflatable or like vessels having parts of non-rigid material
    • B63B7/08Inflatable
    • B63B7/082Inflatable having parts of rigid material
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D15/00Movable or portable bridges; Floating bridges
    • E01D15/14Floating bridges, e.g. pontoon bridges
    • E01D15/20Floating bridges, e.g. pontoon bridges collapsible, expandable, inflatable or the like with main load supporting structure consisting only of non-rigid members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B7/00Collapsible, foldable, inflatable or like vessels
    • B63B2007/003Collapsible, foldable, inflatable or like vessels with foldable members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2221/00Methods and means for joining members or elements
    • B63B2221/20Joining substantially rigid elements together by means that allow one or more degrees of freedom, e.g. hinges, articulations, pivots, universal joints, telescoping joints, elastic expansion joints, not otherwise provided for in this class
    • B63B2221/22Joining substantially rigid elements together by means that allow one or more degrees of freedom, e.g. hinges, articulations, pivots, universal joints, telescoping joints, elastic expansion joints, not otherwise provided for in this class by means that allow one or more degrees of angular freedom, e.g. hinges, articulations, pivots, universal joints, not otherwise provided for in this class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2241/00Design characteristics
    • B63B2241/02Design characterised by particular shapes
    • B63B2241/10Design characterised by particular shapes by particular three dimensional shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2241/00Design characteristics
    • B63B2241/20Designs or arrangements for particular purposes not otherwise provided for in this class
    • B63B2241/24Designs or arrangements for particular purposes not otherwise provided for in this class for facilitating transport, e.g. hull shape with limited dimensions

Definitions

  • the present invention concerns a convertible container which in its non-deployed configuration can be picked up, manipulated or secured like any transport container and which in its deployed configuration forms an autonomous floating structure.
  • Floating containers which when they are secured to each other enable a boat to be formed for fighting an accidental oil spill at sea, in rivers or lakes. These containers advantageously allow very rapid routing of means for fighting oil slicks by aircraft or by ship. In the latter case, and when the ship that has caused the accidental oil spill is a container ship, these floating maritime containers may already be on board.
  • this type of boat necessitates a plurality of different containers each having a specific function and the whole being indispensable to the formation and correct operation of the boat.
  • this type of boat has restricted buoyancy, especially in a heavy sea, at the same time as having a relatively small storage capacity.
  • the objective of the present invention is therefore to propose a floating transport device of simple design and mode of use, having the dimensions of a container for transporting goods in a non-deployed configuration, including fittings for holding, handling and fixing this device with standard harbour installations, for example, and forming a boat in its deployed configuration.
  • Another object of the present invention is to provide a floating transport device of this kind which from a given longitudinal dimension and a given transverse dimension in its non-deployed configuration, i.e. those of a container, has a maximized deck area in order significantly to increase the loading capacity of the boat and a maximized hull volume in order to have the best possible buoyancy in its deployed configuration.
  • this transport device in its non-deployed configuration, i.e. in its container configuration, are therefore advantageously small, allowing its transport by truck, ship or cargo aircraft.
  • Another imperative for a container of this kind, as in all containers for transporting goods, is then to have all of its structural components contained within, and consequently not projecting from, the parallelepiped defined by the free walls of this container so that a plurality of such containers can be stacked and/or juxtaposed.
  • the present invention aims to minimize the space lost in the parallelepiped defined by the contours of a container that can be converted into a boat so as to maximize the useful dimensions of the deck of this boat.
  • the invention concerns a container including fittings for holding, handling and fixing this container, each of these fittings being placed at a corner of this container in a non-deployed configuration of the container, said container having a longitudinal dimension and a transverse dimension in this non-deployed configuration.
  • a parallelepiped, and even better a right-angle parallelepiped or a cube can be found each of the walls of which is constituted at least in part by said container in its non-deployed configuration, this container being constituted in this non-deployed configuration of at least three boxes.
  • free walls of the stack refers to the exterior envelope of the stack defined by all of the shapes of the boxes and their fitting in the non-deployed configuration of the container.
  • the cumulative percentage of empty spaces between said boxes at least partly in contact with each another on the one hand and the free walls of said stack and said parallelepiped on the other hand refers to the sum on the one hand of the percentage of empty spaces between the walls of the boxes placed at least in part against each other relative to the interior volume of the parallelepiped, these walls therefore being placed entirely within the interior volume of this parallelepiped, and the percentage of empty spaces between the free walls of said stack and said parallelepiped relative to the interior volume of the parallelepiped.
  • this percentage does not take into account the empty spaces placed inside the boxes and resulting, for example, from hollow boxes intended to receive loads and/or a hydraulic feed circuit.
  • the empty spaces may result from mobile boxes having a truncated triangular shape leaving an empty space between two superposed mobile boxes.
  • the interior volume of a parallelepiped is known to the person skilled in the art.
  • fittings for holding, handling and fixing said container are also known as corner fittings enabling holding, securing and transhipment of the container.
  • the container is entirely inscribed within the parallelepiped.
  • the actuators enabling movement of the mobile boxes from the non-deployed configuration to the deployed configuration of this container are not placed projecting from the parallelepiped.
  • the hull of said floating structure has a longitudinal dimension from the prow to the poop greater than twice the longitudinal dimension of said container in its non-deployed configuration.
  • This hinge is preferably a hinge with two axes.
  • This hinge with two axes also known as a biaxial hinge, includes two articulated parts that are connected to an intermediate part carrying the two offset hinge pins.
  • the mobile boxes preferably being connected in an articulated manner by hinges to a fixed unit comprising one or more fixed boxes, these actuators are motorized hinges or hinges including means for opening and closing said hinges.
  • these means for opening and closing said hinges include, for example, rotary actuators fed by a source of electrical, hydraulic or pneumatic power.
  • This power source and its distribution circuit are preferably placed in one of the boxes of the container.
  • the means for opening and closing the hinges may be remotely sited, and thus not integrated into the hinges themselves.
  • they may be linear actuators or a cable system or an external crane.
  • the mobile boxes may therefore have a triangular or truncated triangular profile.
  • the triangular shape of the mobile boxes ensures that there is no preferential direction of movement of the floating structure, which is then advantageously double-ended.
  • This propulsion system preferably allows at least movement of the floating structure in a direction transverse or parallel to the longitudinal axis of the floating structure.
  • inflatable elements are advantageously received in housings provided for this purpose in the lateral edges of this container. Accordingly, in an emergency, the container may pass from its deployed configuration to its non-deployed configuration without having to deflate these inflatable elements.
  • these inflatable elements may be deployed from housings placed in the bottom of one or more boxes, the inflatable elements then being placed under these elements when they are deployed.
  • These inflatable elements are preferably sized to ensure the stability and the buoyancy of the floating structure.
  • these inflatable elements will have an elementary section of circular type.
  • these inflatable elements will have an elementary section derived from the trapezium or the rectangle, having edges with very rounded corners and continuous faces minimizing ruptures of shape.
  • the interior face of these inflatable elements will advantageously have a small slope oriented facing the flows.
  • a flexible wall could be held tangentially to their lower part, this feature therefore enabling some continuity of shape to be restored.
  • the container preferably includes a feeder circuit for inflating these inflatable elements independently or otherwise from a power source, for example a pneumatic power source.
  • a power source for example a pneumatic power source.
  • these inflatable elements are inflatable pudding fenders.
  • This power source may be placed in one of the boxes, for example.
  • the inflation pressure of the inflatable elements is controlled and adjusted thanks to servocontrol of the power source by probes such as pressure sensors verifying the pressure to which each inflatable element is inflated.
  • This container preferably includes at least two wheels, retractable or not, per extension unit.
  • the central box can include at least one pair of wheels, retractable or not, for movement of the container in its non-deployed configuration by road.
  • At least two of the wheels of the container are advantageously steerable. Moreover, at least two of said wheels are preferably driving wheels.
  • This container then forms an amphibious vehicle in its deployed configuration.
  • These locking means may comprise locks designed to cooperate with two or more fittings for holding, handling and fixing said container placed face-to-face.
  • these locks may be rotary double locks (also known as “twist-locks”), mounted tips facing, and disposed between two holding fittings placed face-to-face and put into place before complete expansion of the container.
  • the locking means may include attachments such as pins or bolted fixing lugs.
  • the container may be self-lockable in its deployed configuration, the self-locking being ensured by the force resulting from the expansion actuators.
  • the self-locking may be ensured by load maintaining valves on the hydraulic actuators for expanding the container.
  • the container includes one or more probes connected to a hydraulic power circuit, for example, for feeding the hinges and assuring their movement from their open position to their closed position.
  • These probes detecting the presence of the container in the water, ensure its good stability and, in the affirmative, send a message to the hydraulic power source to feed the hinges to activate them. Their activation causes the container to pass from its non-deployed configuration to its deployed configuration.
  • the container includes at least one receiver, or transmitter/receiver, connected to a control unit, the latter controlling activation of the hydraulic source to feed the hinges and activate them.
  • the invention also concerns a floating craft including at least two containers as described above in their deployed configuration, these containers being connected to each other to form a unitary floating structure.
  • These containers in their deployed configuration can be assembled end-to-end and/or edge-to-edge.
  • FIG. 1 represents diagrammatically a front view of a container in accordance with a first embodiment of the invention in its non-deployed configuration
  • FIG. 2 represents diagrammatically the container from FIG. 1 in its deployed configuration
  • FIG. 3 represents diagrammatically a front view of a container in accordance with a second embodiment of the invention in its non-deployed configuration
  • FIG. 4 represents diagrammatically the container from FIG. 3 in the process of expansion
  • FIG. 5 represents diagrammatically the container from FIG. 3 in its deployed configuration
  • FIG. 6 represents diagrammatically a front view of a container in accordance with a third embodiment of the invention in its non-deployed configuration
  • FIG. 7 represents diagrammatically the container from FIG. 6 in the process of expansion
  • FIG. 8 represents diagrammatically the container from FIG. 6 in its deployed configuration
  • FIG. 9 represents diagrammatically a perspective view of a container in accordance with a fourth embodiment of the invention in its non-deployed configuration
  • FIG. 10 represents diagrammatically the container from FIG. 9 in the process of expansion
  • FIG. 11 represents diagrammatically the container from FIG. 9 in its deployed configuration
  • FIG. 12 represents diagrammatically a view in section of a container with its inflatable elements in a deployed configuration; for simplicity, the container in the deployed configuration has been represented in the form of a single unit;
  • FIGS. 1 and 2 show a convertible container in accordance with a first embodiment of the invention in its non-deployed and deployed configurations.
  • This container is constituted only of a central box 1 having a longitudinal dimension and at the ends of which are placed extension units 2 , 3 that are connected to the central box 1 by biaxial hinges 4 - 7 .
  • Each extension unit 2 , 3 is constituted of a single box, also referred to as an end box hereinafter, which is connected in an articulated manner to the central box 1 by a pair of biaxial hinges 4 - 7 .
  • each extension unit 2 , 3 could comprise two boxes placed in contact with each other.
  • hinges 4 - 7 include rotary hydraulic actuators.
  • the container therefore includes a hydraulic power source and a circuit for distribution of this hydraulic fluid (not represented) for feeding the various hinges 4 - 7 and thus enabling opening and closing thereof.
  • the container is consequently perfectly autonomous.
  • the end boxes 2 , 3 which have a truncated triangular profile, are placed in part one on the other, being superposed on the central box 1 . Accordingly, one of the end boxes is placed in the non-deployed configuration of the container between the central box 1 and the other end box 3 .
  • Each end box 2 , 3 has a length greater than half the longitudinal dimension of the central box 1 .
  • At least one of these boxes 1 - 3 is advantageously hollow to receive loads and/or equipment or devices necessary for the correct operation of the container.
  • Each box 1 - 3 which is watertight, forms a floating box.
  • the free exterior walls of the end boxes 2 , 3 and the central box 1 substantially define a right-angle parallelepiped 8 , i.e. this container can be inscribed in its non-deployed configuration within this regular right-angle parallelepiped 8 (shown in dotted outline).
  • No structural element of the container is, by definition, placed projecting from this right-angle parallelepiped 8 so that this container can be stacked on and/or placed against other containers with a view to its storage or transport.
  • the container in its non-deployed configuration departs from this regular right-angle parallelepiped 8 by the hollows or empty spaces 9 , 10 (shaded areas) between the boxes 1 - 3 and the walls of the regular parallelepiped 8 .
  • this right-angle parallelepiped has dimensions equal to those of an ISO 20-foot maritime transport container so that it can advantageously be picked up, transported, manipulated, transhipped or secured like any ISO standard container without necessitating any specific infrastructure or equipment.
  • the cumulative percentage of empty spaces between said boxes 1 - 3 placed at least in part against each other on the one hand and the free walls of the stack formed by the boxes 1 - 3 and the regular right-angle parallelepiped 8 on the other hand is the sum of the shaded areas 9 , 10 and 11 here, i.e. 8%.
  • This container includes, at each of its corners, a fitting 12 for holding, handling and fixing the container. It therefore includes eight fittings 12 that are placed at the extreme corners of the container in its non-deployed configuration.
  • the activation of the biaxial hinges 4 - 7 ensures the passage from the non-deployed configuration of the container to its deployed configuration.
  • the end boxes 2 , 3 form longitudinal extensions of the central box 1 , said assembly deployed in this way then forming a floating structure the hull of which has a longitudinal dimension greater than twice the longitudinal dimension of this central box 1 .
  • first end box 2 effects a rotation of 180° between the non-deployed configuration and the deployed configuration of the container
  • the other end box 3 effects a rotation of less than 180°, here equal to approximately 167°, between these two configurations.
  • the end wall 13 of the central box 1 intended to be placed against the end box 3 in the deployed configuration of the container has an inclined shape complementary to the inclined face 14 of this end box 3 coming into contact, so that the angle formed between these two inclined walls 13 , 14 is equal to the value of the angle of rotation.
  • Each hinge with two axes 4 - 7 also called a biaxial hinge, includes two fixed parts each connected to or forming an integral part of a box 1 , 3 and supporting one of the two hinge pins of this hinge. These two hinge pins are connected by one or more links assuring the offsetting of the rotation axes.
  • Each box 1 - 3 has aluminium walls forming its watertight exterior envelope.
  • Each box 1 - 3 formed in this way is structured by a longitudinal and transverse network of stiffeners designed to withstand the local forces and the overall forces to which the container is subjected as much in the non-deployed configuration as in the deployed configuration.
  • Each of these boxes 1 - 3 therefore forms a load-bearing structure able to receive heavy loads such as a hut, vehicles (truck, etc.), equipment and/or personnel.
  • the triangular shape of the end boxes 2 , 3 moreover ensures good bearing of loads by the central box 1 allowing the use of the ends, or tips, of these boxes 2 , 3 to carry loads.
  • the loading area of the load-bearing structure is therefore significantly increased, which is advantageous.
  • the biaxial hinges 4 - 7 are sized to withstand high loads as much in the deployed configuration, i.e. in the floating structure configuration, as in the non-deployed configuration, i.e. in the container configuration.
  • these boxes 1 - 3 could be made of steel, stainless steel, copper-nickel alloy, polymer or more generally composite materials.
  • FIGS. 3 to 5 show a convertible container in accordance with a second embodiment of the invention in its non-deployed configuration, in the process of expansion and in its deployed configuration.
  • the elements of FIGS. 3 to 5 bearing the same references as elements of FIGS. 1 and 2 represent the same objects which will therefore not be described again hereinafter.
  • This container differs from that described with reference to FIGS. 1 and 2 in that in its non-deployed configuration its perimeter forms a regular right-angle parallelepiped. This embodiment is preferred because the cumulative percentage of empty spaces between the boxes 15 - 19 themselves on the one hand and between the boxes 15 - 19 and the walls of the regular parallelepiped within which this container is inscribed is then close to zero.
  • this container includes five boxes 15 - 19 of which only one box 15 is fixed, the other boxes 16 - 19 being mobile. Two of these mobile boxes 16 , 17 are placed between two other boxes 15 , 18 , 19 , all of the boxes 15 - 19 being placed against each other.
  • a deck surface 20 is formed having a longitudinal dimension greater than twice the longitudinal dimension of the fixed box 15 on which the mobile boxes 16 - 19 are superposed in the non-deployed configuration of the container.
  • a box is connected in an articulated manner to another box by a pair or biaxial hinges 4 - 7 , 21 , 22 allowing movement of one of these two boxes relative to the other.
  • FIGS. 6 to 8 show a convertible container in accordance with a third embodiment of the invention in its non-deployed configuration, in the process of deployment and in its deployed configuration.
  • the elements from FIGS. 6 to 8 bearing the same references as elements from FIGS. 1 and 2 represent the same objects which will therefore not be described again hereinafter.
  • This container differs from that described with reference to FIGS. 1 and 2 in that in its non-deployed configuration its perimeter forms a regular right-angle parallelepiped.
  • this container includes six boxes 23 - 28 which during expansion of the container are mobile so as to form in the deployed configuration of the container a floating structure, the longitudinal dimension of which is greater than the longitudinal dimension of the container in its non-deployed configuration.
  • This floating structure therefore has an increased plane deck area.
  • FIGS. 9 to 11 show a convertible container in accordance with a fourth embodiment of the invention.
  • This container includes in its non-deployed configuration a stack of three boxes 30 - 32 having equal dimensions, which are therefore superposed on each other.
  • These boxes 30 - 32 are moreover articulated relative to each other so that two consecutive boxes are connected to each other on each of their lateral edges by at least two connecting arms 33 - 38 , one of these connecting arms 34 , 37 being common to the three boxes 30 - 32 .
  • Two consecutive connecting arms form with the two consecutive boxes that they connect a deformable regular parallelogram so that the movement of one of these boxes relative to an immediately lower box in the stack from said non-deployed configuration of said container leads to circular translation of that box relative to the immediately lower box of the stack.
  • the connecting arms 34 , 37 connecting the three boxes 30 - 32 advantageously ensure simultaneous and uniform movement of all of the boxes of the container between the non-deployed configuration and the deployed configuration and vice versa.
  • These connecting arms 33 - 38 are advantageously received in lateral housings 39 provided for this purpose in order for no structural element of the container to be placed projecting from the parallelepiped 40 defined by the free walls of the boxes 30 - 32 so that this container can be stacked on and/or placed against other containers for its storage or its transport.
  • These lateral housings 39 correspond here to recesses in the lateral edges of the boxes 30 - 32 .
  • the connecting arms 33 - 38 are mounted to be mobile in rotation on the boxes 30 - 32 to allow relative movement of each of these boxes.
  • These connecting arms 33 - 38 include links, for example.
  • the face or faces 40 , 41 of the boxes 30 - 32 intended to come into contact with a face of another box when these boxes are placed end-to-end in the deployed configuration of the container each have a shape complementary to the face with which it is intended to cooperate in the deployed configuration of the container.
  • the faces of two consecutive boxes coupled in this manner cooperate to lock the floating structure in position.
  • This container in its non-deployed configuration can be inscribed within a right-angle parallelepiped 42 from which the container in its non-deployed configuration departs by virtue of the empty spaces between the boxes 30 - 32 and the walls of this regular parallelepiped 42 .
  • the walls of this right-angle parallelepiped 42 are then formed at least in part by the free walls of the stack formed by the boxes 30 - 32 .
  • the cumulative percentage of empty spaces between these boxes 30 - 32 on the one hand and the free walls of the stack and the parallelepiped 42 on the other hand is of the order of 15% of the interior volume of this parallelepiped.
  • FIG. 12 shows diagrammatically a view in section of a container with its inflatable elements in a deployed configuration on the water; for simplicity, the container in the deployed configuration has been represented in the form of a single unit 43 .
  • One of these inflatable elements 44 has an elemental section derived from the trapezium having edges with highly rounded corners and continuous faces minimizing ruptures of shape while the other inflatable elements 45 , 46 have a circular section. These latter two inflatable elements 45 , 46 are connected to each other by a web 47 so that there is a continuous surface between these inflatable elements minimizing ruptures of shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Stackable Containers (AREA)
  • Cartons (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Revetment (AREA)
  • Packages (AREA)

Abstract

A container includes fittings for gripping, handling and securing same, each fitting being placed at a corner of the container in the non-deployed position of the container. In the non-deployed position, the container is formed by: a central case having a longitudinal dimension and a transverse dimension, and two extension blocks connected to the central case, with at least part of the structure of the central case and of the extension blocks being sealed, the length or width of each of the extension blocks being greater than half the longitudinal or transverse dimension of the central case respectively. The extension blocks can move between the non-deployed position, in which the blocks and the central case are placed at least partially on top of one another, and a deployed position in which each block forms a longitudinal or transverse extension of the central case, the deployed assembly forming a floating structure.

Description

  • The present invention concerns a convertible container which in its non-deployed configuration can be picked up, manipulated or secured like any transport container and which in its deployed configuration forms an autonomous floating structure.
  • Floating containers are known which when they are secured to each other enable a boat to be formed for fighting an accidental oil spill at sea, in rivers or lakes. These containers advantageously allow very rapid routing of means for fighting oil slicks by aircraft or by ship. In the latter case, and when the ship that has caused the accidental oil spill is a container ship, these floating maritime containers may already be on board.
  • However, this type of boat necessitates a plurality of different containers each having a specific function and the whole being indispensable to the formation and correct operation of the boat.
  • Moreover, this type of boat has restricted buoyancy, especially in a heavy sea, at the same time as having a relatively small storage capacity.
  • The objective of the present invention is therefore to propose a floating transport device of simple design and mode of use, having the dimensions of a container for transporting goods in a non-deployed configuration, including fittings for holding, handling and fixing this device with standard harbour installations, for example, and forming a boat in its deployed configuration.
  • Another object of the present invention is to provide a floating transport device of this kind which from a given longitudinal dimension and a given transverse dimension in its non-deployed configuration, i.e. those of a container, has a maximized deck area in order significantly to increase the loading capacity of the boat and a maximized hull volume in order to have the best possible buoyancy in its deployed configuration.
  • The dimensions of this transport device in its non-deployed configuration, i.e. in its container configuration, are therefore advantageously small, allowing its transport by truck, ship or cargo aircraft.
  • Another imperative for a container of this kind, as in all containers for transporting goods, is then to have all of its structural components contained within, and consequently not projecting from, the parallelepiped defined by the free walls of this container so that a plurality of such containers can be stacked and/or juxtaposed.
  • More generally, the present invention aims to minimize the space lost in the parallelepiped defined by the contours of a container that can be converted into a boat so as to maximize the useful dimensions of the deck of this boat.
  • To this end, the invention concerns a container including fittings for holding, handling and fixing this container, each of these fittings being placed at a corner of this container in a non-deployed configuration of the container, said container having a longitudinal dimension and a transverse dimension in this non-deployed configuration.
  • In accordance with the invention:
      • in said non-deployed configuration, said container is constituted by a stack of n boxes with n≧3, at least one of said boxes being placed between and at least partly in contact with two others of said boxes, at least some of said boxes being connected to each other to form a rigid structure, at least part of said container being watertight,
      • in said non-deployed configuration, said boxes are at least partly in contact with each other, the number n of boxes and/or the dimensions of each of said boxes being determined so that there exists a parallelepiped within which said container can be inscribed, the walls of this parallelepiped then being formed at least in part by the free walls of said stack, the cumulative percentage of empty spaces between said boxes on the one hand and the free walls of said stack and said parallelepiped on the other hand then being between 0.1% and 15% of the interior volume of said parallelepiped,
      • at least some of said boxes are mobile between said non-deployed configuration and a deployed configuration in which the whole deployed in this way then forms a floating structure having a longitudinal dimension and/or a transverse dimension greater than said longitudinal and/or transverse dimension of said container in its non-deployed configuration so as to have a maximized loading area greater than at least twice the area of said container in its non-deployed configuration.
  • In other words, a parallelepiped, and even better a right-angle parallelepiped or a cube, can be found each of the walls of which is constituted at least in part by said container in its non-deployed configuration, this container being constituted in this non-deployed configuration of at least three boxes.
  • The expression “free walls of the stack” refers to the exterior envelope of the stack defined by all of the shapes of the boxes and their fitting in the non-deployed configuration of the container.
  • The expression “the cumulative percentage of empty spaces between said boxes at least partly in contact with each another on the one hand and the free walls of said stack and said parallelepiped on the other hand” refers to the sum on the one hand of the percentage of empty spaces between the walls of the boxes placed at least in part against each other relative to the interior volume of the parallelepiped, these walls therefore being placed entirely within the interior volume of this parallelepiped, and the percentage of empty spaces between the free walls of said stack and said parallelepiped relative to the interior volume of the parallelepiped.
  • Of course, this percentage does not take into account the empty spaces placed inside the boxes and resulting, for example, from hollow boxes intended to receive loads and/or a hydraulic feed circuit.
  • For example, in the first case, the empty spaces may result from mobile boxes having a truncated triangular shape leaving an empty space between two superposed mobile boxes.
  • The interior volume of a parallelepiped is known to the person skilled in the art. By way of illustration only, for a right-angle parallelepiped, the interior volume is given by the formula V=L×I×H where L is the length, I is the width and H is the height of this right-angle parallelepiped.
  • These fittings for holding, handling and fixing said container are also known as corner fittings enabling holding, securing and transhipment of the container.
  • These fittings being placed at the corners of the container, at least these corners are solid in order to have sufficient stiffness to withstand the applied forces.
  • In various particular embodiments of this container, each having its particular advantages and open to numerous possible technical combinations:
      • in the non-deployed configuration of said container at least some of the vertices of the parallelepiped including one of the fittings for holding, handling and fixing said container, no element of this container is placed projecting from said parallelepiped.
  • Thus the container is entirely inscribed within the parallelepiped. By way of illustration only, the actuators enabling movement of the mobile boxes from the non-deployed configuration to the deployed configuration of this container are not placed projecting from the parallelepiped.
      • the cumulative percentage of empty spaces between said boxes on the one hand and the free walls of said stack and said parallelepiped on the other hand is less than 10% of the interior volume of said parallelepiped,
      • in the deployed configuration of the container the hull of said floating structure has a longitudinal or transverse dimension greater than twice the longitudinal, respectively transverse, dimension of said container in its non-deployed configuration,
  • Thus, and by way of example, in the deployed configuration of said container, the hull of said floating structure has a longitudinal dimension from the prow to the poop greater than twice the longitudinal dimension of said container in its non-deployed configuration.
      • said mobile boxes are connected in an articulated manner to a fixed unit comprising one or more fixed boxes,
  • These mobile boxes are advantageously connected in an articulated manner to the fixed unit by a hinge. This hinge is preferably a hinge with two axes.
  • This hinge with two axes, also known as a biaxial hinge, includes two articulated parts that are connected to an intermediate part carrying the two offset hinge pins.
      • the container being constituted only of mobile boxes, these boxes are connected in an articulated manner to each other, and, even better, are connected to each other by biaxial hinges,
      • this container includes actuators for moving the mobile boxes from the non-deployed configuration to the deployed configuration of this container and vice versa,
  • The mobile boxes preferably being connected in an articulated manner by hinges to a fixed unit comprising one or more fixed boxes, these actuators are motorized hinges or hinges including means for opening and closing said hinges.
  • By way of illustration only, these means for opening and closing said hinges include, for example, rotary actuators fed by a source of electrical, hydraulic or pneumatic power. This power source and its distribution circuit are preferably placed in one of the boxes of the container.
  • Alternatively, the means for opening and closing the hinges may be remotely sited, and thus not integrated into the hinges themselves. By way of illustration only, they may be linear actuators or a cable system or an external crane.
      • the mobile boxes have complementary profiles so as to cooperate in the non-deployed configuration of the container to form with a fixed unit comprising one or more fixed boxes an assembly the free walls of which define a parallelepiped or substantially a parallelepiped and even better a right-angle parallelepiped or a cube,
  • By way of illustration only, the mobile boxes may therefore have a triangular or truncated triangular profile.
  • The triangular shape of the mobile boxes ensures that there is no preferential direction of movement of the floating structure, which is then advantageously double-ended.
      • the external surface of said container in its deployed configuration is plane or substantially plane so that the deck of the floating structure is plane or substantially plane,
      • the container includes at least one propulsion system so that said floating structure is self-propelled,
  • This propulsion system preferably allows at least movement of the floating structure in a direction transverse or parallel to the longitudinal axis of the floating structure.
      • at least one of said boxes is hollow to receive loads,
      • said fittings for holding, handling and fixing said container being at least eight in number, said fittings are placed at the extreme corners of said container in its non-deployed configuration, said fittings being intended to cooperate with standard ISO infrastructures for holding, handling and fixing said container,
      • the container is connected to interconnection means allowing two or more containers to be connected edge-to-edge or end-to-end to form a unitary shipping assembly at the extreme corners of which are placed fittings for holding, handling and fixing said unitary assembly,
      • the container includes elements inflatable independently or otherwise, allowing the buoyancy of said floating structure to be improved,
  • These inflatable elements are advantageously received in housings provided for this purpose in the lateral edges of this container. Accordingly, in an emergency, the container may pass from its deployed configuration to its non-deployed configuration without having to deflate these inflatable elements.
  • Alternatively or additionally, these inflatable elements may be deployed from housings placed in the bottom of one or more boxes, the inflatable elements then being placed under these elements when they are deployed.
  • These inflatable elements are preferably sized to ensure the stability and the buoyancy of the floating structure.
  • As a minimum, these inflatable elements will have an elementary section of circular type. However, in order to improve stability (increase buoyancy inertia), resistance to forward movement (reduce hydrodynamic drag) and buoyancy (limit lost buoyancy volumes), these inflatable elements will have an elementary section derived from the trapezium or the rectangle, having edges with very rounded corners and continuous faces minimizing ruptures of shape.
  • The interior face of these inflatable elements will advantageously have a small slope oriented facing the flows.
  • Alternatively, and with the aim of reducing the hydrodynamic drag of juxtaposed circular section inflatable elements, a flexible wall could be held tangentially to their lower part, this feature therefore enabling some continuity of shape to be restored.
  • The container preferably includes a feeder circuit for inflating these inflatable elements independently or otherwise from a power source, for example a pneumatic power source. By way of illustration only, these inflatable elements are inflatable pudding fenders. This power source may be placed in one of the boxes, for example.
  • In order to compensate the pressure losses that may result from leaks or from variations of temperature, the inflation pressure of the inflatable elements is controlled and adjusted thanks to servocontrol of the power source by probes such as pressure sensors verifying the pressure to which each inflatable element is inflated.
      • the container includes wheels, retractable or not,
  • This container preferably includes at least two wheels, retractable or not, per extension unit. Of course, the central box can include at least one pair of wheels, retractable or not, for movement of the container in its non-deployed configuration by road.
  • At least two of the wheels of the container are advantageously steerable. Moreover, at least two of said wheels are preferably driving wheels.
  • This container then forms an amphibious vehicle in its deployed configuration.
      • said container includes locking means,
  • These locking means may comprise locks designed to cooperate with two or more fittings for holding, handling and fixing said container placed face-to-face. By way of illustration, these locks may be rotary double locks (also known as “twist-locks”), mounted tips facing, and disposed between two holding fittings placed face-to-face and put into place before complete expansion of the container. In accordance with another embodiment, or additionally, the locking means may include attachments such as pins or bolted fixing lugs.
  • Alternatively, the container may be self-lockable in its deployed configuration, the self-locking being ensured by the force resulting from the expansion actuators.
  • By way of illustration only, the self-locking may be ensured by load maintaining valves on the hydraulic actuators for expanding the container.
      • this container has the dimensions of an ISO 10-feet, 20-feet, 30-feet, 40-feet or 45-feet transport container, or a standard container of any other size as defined by the ISO standards 668 and 1496-1 or any other authority or standard used in multimode transport by sea, river, road, rail or air,
      • the container in its non-deployed configuration advantageously floats so that it may be launched at sea and deployed, for example, automatically or remotely, to form a ship.
  • If it is deployed automatically, the container includes one or more probes connected to a hydraulic power circuit, for example, for feeding the hinges and assuring their movement from their open position to their closed position. These probes, detecting the presence of the container in the water, ensure its good stability and, in the affirmative, send a message to the hydraulic power source to feed the hinges to activate them. Their activation causes the container to pass from its non-deployed configuration to its deployed configuration.
  • If the container is remote-controlled, it includes at least one receiver, or transmitter/receiver, connected to a control unit, the latter controlling activation of the hydraulic source to feed the hinges and activate them.
  • The invention also concerns a floating craft including at least two containers as described above in their deployed configuration, these containers being connected to each other to form a unitary floating structure.
  • These containers in their deployed configuration can be assembled end-to-end and/or edge-to-edge.
  • The invention will be described in more detail with reference to the appended drawings in which:
  • FIG. 1 represents diagrammatically a front view of a container in accordance with a first embodiment of the invention in its non-deployed configuration;
  • FIG. 2 represents diagrammatically the container from FIG. 1 in its deployed configuration;
  • FIG. 3 represents diagrammatically a front view of a container in accordance with a second embodiment of the invention in its non-deployed configuration;
  • FIG. 4 represents diagrammatically the container from FIG. 3 in the process of expansion;
  • FIG. 5 represents diagrammatically the container from FIG. 3 in its deployed configuration;
  • FIG. 6 represents diagrammatically a front view of a container in accordance with a third embodiment of the invention in its non-deployed configuration;
  • FIG. 7 represents diagrammatically the container from FIG. 6 in the process of expansion;
  • FIG. 8 represents diagrammatically the container from FIG. 6 in its deployed configuration;
  • FIG. 9 represents diagrammatically a perspective view of a container in accordance with a fourth embodiment of the invention in its non-deployed configuration;
  • FIG. 10 represents diagrammatically the container from FIG. 9 in the process of expansion;
  • FIG. 11 represents diagrammatically the container from FIG. 9 in its deployed configuration;
  • FIG. 12 represents diagrammatically a view in section of a container with its inflatable elements in a deployed configuration; for simplicity, the container in the deployed configuration has been represented in the form of a single unit;
  • FIGS. 1 and 2 show a convertible container in accordance with a first embodiment of the invention in its non-deployed and deployed configurations.
  • This container is constituted only of a central box 1 having a longitudinal dimension and at the ends of which are placed extension units 2, 3 that are connected to the central box 1 by biaxial hinges 4-7.
  • Each extension unit 2, 3 is constituted of a single box, also referred to as an end box hereinafter, which is connected in an articulated manner to the central box 1 by a pair of biaxial hinges 4-7. Alternatively, each extension unit 2, 3 could comprise two boxes placed in contact with each other.
  • Here these hinges 4-7 include rotary hydraulic actuators. The container therefore includes a hydraulic power source and a circuit for distribution of this hydraulic fluid (not represented) for feeding the various hinges 4-7 and thus enabling opening and closing thereof. The container is consequently perfectly autonomous.
  • The end boxes 2, 3, which have a truncated triangular profile, are placed in part one on the other, being superposed on the central box 1. Accordingly, one of the end boxes is placed in the non-deployed configuration of the container between the central box 1 and the other end box 3. Each end box 2, 3 has a length greater than half the longitudinal dimension of the central box 1.
  • At least one of these boxes 1-3 is advantageously hollow to receive loads and/or equipment or devices necessary for the correct operation of the container.
  • Each box 1-3, which is watertight, forms a floating box.
  • In the non-deployed configuration of the container, the free exterior walls of the end boxes 2, 3 and the central box 1 substantially define a right-angle parallelepiped 8, i.e. this container can be inscribed in its non-deployed configuration within this regular right-angle parallelepiped 8 (shown in dotted outline). No structural element of the container is, by definition, placed projecting from this right-angle parallelepiped 8 so that this container can be stacked on and/or placed against other containers with a view to its storage or transport.
  • The container in its non-deployed configuration departs from this regular right-angle parallelepiped 8 by the hollows or empty spaces 9, 10 (shaded areas) between the boxes 1-3 and the walls of the regular parallelepiped 8.
  • Here this right-angle parallelepiped has dimensions equal to those of an ISO 20-foot maritime transport container so that it can advantageously be picked up, transported, manipulated, transhipped or secured like any ISO standard container without necessitating any specific infrastructure or equipment.
  • There exists moreover an empty space 11 (shaded area) between the end boxes 2, 3 so that the interior volume of this regular right-angle parallelepiped 8 is not entirely filled by the container in its non-deployed configuration.
  • The cumulative percentage of empty spaces between said boxes 1-3 placed at least in part against each other on the one hand and the free walls of the stack formed by the boxes 1-3 and the regular right-angle parallelepiped 8 on the other hand is the sum of the shaded areas 9, 10 and 11 here, i.e. 8%.
  • This container includes, at each of its corners, a fitting 12 for holding, handling and fixing the container. It therefore includes eight fittings 12 that are placed at the extreme corners of the container in its non-deployed configuration.
  • The activation of the biaxial hinges 4-7 ensures the passage from the non-deployed configuration of the container to its deployed configuration. In this latter configuration, the end boxes 2, 3 form longitudinal extensions of the central box 1, said assembly deployed in this way then forming a floating structure the hull of which has a longitudinal dimension greater than twice the longitudinal dimension of this central box 1.
  • Whereas a first end box 2 effects a rotation of 180° between the non-deployed configuration and the deployed configuration of the container, the other end box 3 effects a rotation of less than 180°, here equal to approximately 167°, between these two configurations. These two different rotations ensure the production of a plane or substantially plane deck for the floating structure.
  • The angle of rotation being less than 180°, the end wall 13 of the central box 1 intended to be placed against the end box 3 in the deployed configuration of the container has an inclined shape complementary to the inclined face 14 of this end box 3 coming into contact, so that the angle formed between these two inclined walls 13, 14 is equal to the value of the angle of rotation.
  • Each hinge with two axes 4-7, also called a biaxial hinge, includes two fixed parts each connected to or forming an integral part of a box 1, 3 and supporting one of the two hinge pins of this hinge. These two hinge pins are connected by one or more links assuring the offsetting of the rotation axes.
  • Each box 1-3 has aluminium walls forming its watertight exterior envelope. Each box 1-3 formed in this way is structured by a longitudinal and transverse network of stiffeners designed to withstand the local forces and the overall forces to which the container is subjected as much in the non-deployed configuration as in the deployed configuration.
  • Each of these boxes 1-3 therefore forms a load-bearing structure able to receive heavy loads such as a hut, vehicles (truck, etc.), equipment and/or personnel. The triangular shape of the end boxes 2, 3 moreover ensures good bearing of loads by the central box 1 allowing the use of the ends, or tips, of these boxes 2, 3 to carry loads. The loading area of the load-bearing structure is therefore significantly increased, which is advantageous. Of course, the biaxial hinges 4-7 are sized to withstand high loads as much in the deployed configuration, i.e. in the floating structure configuration, as in the non-deployed configuration, i.e. in the container configuration.
  • Alternatively, these boxes 1-3 could be made of steel, stainless steel, copper-nickel alloy, polymer or more generally composite materials.
  • FIGS. 3 to 5 show a convertible container in accordance with a second embodiment of the invention in its non-deployed configuration, in the process of expansion and in its deployed configuration. The elements of FIGS. 3 to 5 bearing the same references as elements of FIGS. 1 and 2 represent the same objects which will therefore not be described again hereinafter.
  • This container differs from that described with reference to FIGS. 1 and 2 in that in its non-deployed configuration its perimeter forms a regular right-angle parallelepiped. This embodiment is preferred because the cumulative percentage of empty spaces between the boxes 15-19 themselves on the one hand and between the boxes 15-19 and the walls of the regular parallelepiped within which this container is inscribed is then close to zero.
  • This ensures that the interior volume of this regular parallelepiped is occupied to the maximum by the material of the container in its non-deployed configuration so that the area of the deck of the floating structure obtained by expanding this container is then maximized.
  • Here this container includes five boxes 15-19 of which only one box 15 is fixed, the other boxes 16-19 being mobile. Two of these mobile boxes 16, 17 are placed between two other boxes 15, 18, 19, all of the boxes 15-19 being placed against each other.
  • By deploying the mobile boxes 15-19, a deck surface 20 is formed having a longitudinal dimension greater than twice the longitudinal dimension of the fixed box 15 on which the mobile boxes 16-19 are superposed in the non-deployed configuration of the container.
  • Here a box is connected in an articulated manner to another box by a pair or biaxial hinges 4-7, 21, 22 allowing movement of one of these two boxes relative to the other.
  • FIGS. 6 to 8 show a convertible container in accordance with a third embodiment of the invention in its non-deployed configuration, in the process of deployment and in its deployed configuration. The elements from FIGS. 6 to 8 bearing the same references as elements from FIGS. 1 and 2 represent the same objects which will therefore not be described again hereinafter.
  • This container differs from that described with reference to FIGS. 1 and 2 in that in its non-deployed configuration its perimeter forms a regular right-angle parallelepiped.
  • Here this container includes six boxes 23-28 which during expansion of the container are mobile so as to form in the deployed configuration of the container a floating structure, the longitudinal dimension of which is greater than the longitudinal dimension of the container in its non-deployed configuration. This floating structure therefore has an increased plane deck area.
  • These boxes 23-28 are connected to each other in an articulated manner by biaxial hinges 4-7, 21, 22, 29 already described above.
  • FIGS. 9 to 11 show a convertible container in accordance with a fourth embodiment of the invention.
  • This container includes in its non-deployed configuration a stack of three boxes 30-32 having equal dimensions, which are therefore superposed on each other.
  • These boxes 30-32 are moreover articulated relative to each other so that two consecutive boxes are connected to each other on each of their lateral edges by at least two connecting arms 33-38, one of these connecting arms 34, 37 being common to the three boxes 30-32.
  • Two consecutive connecting arms form with the two consecutive boxes that they connect a deformable regular parallelogram so that the movement of one of these boxes relative to an immediately lower box in the stack from said non-deployed configuration of said container leads to circular translation of that box relative to the immediately lower box of the stack.
  • The connecting arms 34, 37 connecting the three boxes 30-32 advantageously ensure simultaneous and uniform movement of all of the boxes of the container between the non-deployed configuration and the deployed configuration and vice versa.
  • These connecting arms 33-38 are advantageously received in lateral housings 39 provided for this purpose in order for no structural element of the container to be placed projecting from the parallelepiped 40 defined by the free walls of the boxes 30-32 so that this container can be stacked on and/or placed against other containers for its storage or its transport. These lateral housings 39 correspond here to recesses in the lateral edges of the boxes 30-32.
  • The connecting arms 33-38 are mounted to be mobile in rotation on the boxes 30-32 to allow relative movement of each of these boxes. These connecting arms 33-38 include links, for example.
  • The face or faces 40, 41 of the boxes 30-32 intended to come into contact with a face of another box when these boxes are placed end-to-end in the deployed configuration of the container each have a shape complementary to the face with which it is intended to cooperate in the deployed configuration of the container. As a result, the faces of two consecutive boxes coupled in this manner cooperate to lock the floating structure in position.
  • This container in its non-deployed configuration can be inscribed within a right-angle parallelepiped 42 from which the container in its non-deployed configuration departs by virtue of the empty spaces between the boxes 30-32 and the walls of this regular parallelepiped 42. The walls of this right-angle parallelepiped 42 are then formed at least in part by the free walls of the stack formed by the boxes 30-32. The cumulative percentage of empty spaces between these boxes 30-32 on the one hand and the free walls of the stack and the parallelepiped 42 on the other hand is of the order of 15% of the interior volume of this parallelepiped.
  • FIG. 12 shows diagrammatically a view in section of a container with its inflatable elements in a deployed configuration on the water; for simplicity, the container in the deployed configuration has been represented in the form of a single unit 43.
  • One of these inflatable elements 44 has an elemental section derived from the trapezium having edges with highly rounded corners and continuous faces minimizing ruptures of shape while the other inflatable elements 45, 46 have a circular section. These latter two inflatable elements 45, 46 are connected to each other by a web 47 so that there is a continuous surface between these inflatable elements minimizing ruptures of shape.

Claims (19)

1. Container including fittings for holding, handling and fixing said container, each of said fittings (12) being placed at a corner of said container in a non-deployed configuration of said container, said container having a longitudinal dimension and a transverse dimension in this non-deployed configuration, characterized in that:
in said non-deployed configuration, said container is constituted by a stack of n boxes (1-3, 15-19, 23-28) with n≧3, at least one of said boxes (1-3, 15-19, 23-28) being placed between and at least partly in contact with two others of said boxes (1-3, 15-19, 23-28), at least some of said boxes (1-3, 15-19, 23-28) being connected to each other to form a rigid structure, at least part of said container being watertight,
in said non-deployed configuration, said boxes (1-3, 15-19, 23-28) are at least partly in contact with each other, the number n of boxes and/or the dimensions of each of said boxes (1-3, 15-19, 23-28) being determined so that there exists a parallelepiped (8) within which said container can be inscribed, the walls of this parallelepiped (8) then being formed at least in part by the free walls of said stack, the cumulative percentage of empty spaces between said boxes (1-3, 15-19, 23-28) on the one hand and the free walls of said stack and said parallelepiped (8) on the other hand then being between 0.1% and 15% of the interior volume of said parallelepiped (8),
at least some of said boxes (1-3, 15-19, 23-28) are mobile between said non-deployed configuration and a deployed configuration in which the whole deployed in this way then forms a floating structure having a longitudinal dimension and/or a transverse dimension greater than said longitudinal and/or transverse dimension of said container in its non-deployed configuration so as to have a maximized loading area greater than at least twice the area of said container in its non-deployed configuration.
2. Container according to claim 1, characterized in that in the non-deployed configuration of said container at least some of the vertices of said parallelepiped (8) including one of said fittings (12) for holding, handling and fixing said container, no element of said container is placed projecting from said parallelepiped (8).
3. Container according to claim 1, characterized in that the cumulative percentage of empty spaces between said boxes (1-3, 15-19, 23-28) on the one hand and the free walls of said stack and said parallelepiped (8) on the other hand is less than 10% of the interior volume of said parallelepiped (8).
4. Container according to claim 1, characterized in that in said deployed configuration the hull of said floating structure has a longitudinal or transverse dimension greater than or equal to twice the longitudinal, respectively transverse, dimension of said container in its non-deployed configuration.
5. Container according to claim 1, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected in an articulated manner to a fixed unit comprising one or more fixed boxes.
6. Container according to claim 1, characterized in that it includes actuators for moving said mobile boxes (1-3, 15-19, 23-28) from the non-deployed configuration to the deployed configuration of said container and vice versa.
7. Container according to claim 5, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected to said fixed unit by hinges (4-7, 22, 22, 29) and even better by hinges with two axes.
8. Container according to claim 1, characterized in that at least some of said mobile boxes are connected to each other by hinges and even better by hinges with two axes.
9. Container according to claim 2, characterized in that the cumulative percentage of empty spaces between said boxes (1-3, 15-19, 23-28) on the one hand and the free walls of said stack and said parallelepiped (8) on the other hand is less than 10% of the interior volume of said parallelepiped (8).
10. Container according to claim 2, characterized in that in said deployed configuration the hull of said floating structure has a longitudinal or transverse dimension greater than or equal to twice the longitudinal, respectively transverse, dimension of said container in its non-deployed configuration.
11. Container according to claim 3, characterized in that in said deployed configuration the hull of said floating structure has a longitudinal or transverse dimension greater than or equal to twice the longitudinal, respectively transverse, dimension of said container in its non-deployed configuration.
12. Container according to claim 2, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected in an articulated manner to a fixed unit comprising one or more fixed boxes.
13. Container according to claim 3, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected in an articulated manner to a fixed unit comprising one or more fixed boxes.
14. Container according to claim 4, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected in an articulated manner to a fixed unit comprising one or more fixed boxes.
15. Container according to claim 2, characterized in that it includes actuators for moving said mobile boxes (1-3, 15-19, 23-28) from the non-deployed configuration to the deployed configuration of said container and vice versa.
16. Container according to claim 3, characterized in that it includes actuators for moving said mobile boxes (1-3, 15-19, 23-28) from the non-deployed configuration to the deployed configuration of said container and vice versa.
17. Container according to claim 4, characterized in that it includes actuators for moving said mobile boxes (1-3, 15-19, 23-28) from the non-deployed configuration to the deployed configuration of said container and vice versa.
18. Container according to claim 5, characterized in that it includes actuators for moving said mobile boxes (1-3, 15-19, 23-28) from the non-deployed configuration to the deployed configuration of said container and vice versa.
19. Container according to claim 6, characterized in that said mobile boxes (1-3, 15-19, 23-28) are connected to said fixed unit by hinges (4-7, 22, 22, 29) and even better by hinges with two axes.
US13/983,160 2011-02-17 2012-02-09 Convertible container Abandoned US20140021075A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1151313A FR2971777B1 (en) 2011-02-17 2011-02-17 TRANSFORMABLE CONTAINER
FR1151313 2011-02-17
PCT/EP2012/052236 WO2012110400A1 (en) 2011-02-17 2012-02-09 Convertible container

Publications (1)

Publication Number Publication Date
US20140021075A1 true US20140021075A1 (en) 2014-01-23

Family

ID=45567028

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/983,160 Abandoned US20140021075A1 (en) 2011-02-17 2012-02-09 Convertible container

Country Status (17)

Country Link
US (1) US20140021075A1 (en)
EP (1) EP2675699A1 (en)
JP (1) JP2014510662A (en)
KR (1) KR20140029393A (en)
CN (1) CN103391879A (en)
AU (1) AU2012217254A1 (en)
BR (1) BR112013021005A2 (en)
CA (1) CA2826863A1 (en)
EA (1) EA201300920A1 (en)
FR (1) FR2971777B1 (en)
IL (1) IL227969A0 (en)
MA (1) MA34902B1 (en)
MX (1) MX2013009498A (en)
SG (1) SG192758A1 (en)
TN (1) TN2013000343A1 (en)
WO (1) WO2012110400A1 (en)
ZA (1) ZA201306058B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025823A1 (en) * 2014-08-14 2016-02-18 Staples The Office Superstore, Llc Reusable bag
US11358484B2 (en) * 2016-10-28 2022-06-14 Samsung Electronics Co., Ltd. Charger for electric vehicle and charging control method of electric vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120290B2 (en) * 2012-10-10 2015-09-01 Universal Display Corporation Flexible screen backed with rigid ribs
FR3034086B1 (en) 2015-03-25 2017-07-14 Sylvia Numa-Beaujour INTERMODAL CONTAINER LIMITING ENVIRONMENTAL POLLUTION
KR101702057B1 (en) * 2015-10-06 2017-02-02 주식회사 마인디즈 Portable Car Lift Apparatus Having the Slope Structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661114A (en) * 1969-06-10 1972-05-09 Kloeckner Humboldt Deutz Ag Amphibious vehicle
US4730574A (en) * 1985-03-25 1988-03-15 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Collapsible pontoon
US4754723A (en) * 1985-11-15 1988-07-05 Man Gutehoffnungshutte Gmbh Apparatus for folding a pontoon unit
US4809636A (en) * 1984-08-17 1989-03-07 Robishaw Engineering, Inc. Construction transportation assembly
US5727491A (en) * 1995-10-18 1998-03-17 Eisenwerke Kaiserslautern Gmbh Pontoon for military collapsible floating bridges and crossing ferries
US6167582B1 (en) * 1997-10-20 2001-01-02 Man Technologies Ag Floating bridge
US6234103B1 (en) * 1999-04-06 2001-05-22 Ewk Eisenwerke Kaiserlauten Gmbh Ramp unit for floating pontoons
US20030143900A1 (en) * 2002-01-30 2003-07-31 Klaus Eberl Amphibian bridge-forming and ferrying vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709948C3 (en) * 1977-03-08 1980-09-18 Maschinenfabrik Buckau R. Wolf Ag, 4048 Grevenbroich Amphibious cargo transport vehicle
DE3013779C2 (en) * 1980-04-10 1982-04-08 Salzgitter Ag, 1000 Berlin Und 3320 Salzgitter Swivel device for foldable pontoon sections
DE29921680U1 (en) * 1999-12-09 2000-04-13 Ghering, Jan, 65462 Ginsheim-Gustavsburg Three-part mobile and buoyant unit
NZ517723A (en) * 2002-03-08 2004-02-27 Michael James Carter Foldable craft
NL2001572C2 (en) * 2008-05-13 2009-11-16 Mammoet Europ B V Pontoon, has two interconnected pontoon sections, which are adjustable between locked position in which pontoon sections are superposed to each other and unlocked position in which pontoon sections are adjacent to each other
CN201305119Y (en) * 2008-11-25 2009-09-09 湖北华舟重工有限责任公司 Fixed washplate for four-fold pontoon bridge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661114A (en) * 1969-06-10 1972-05-09 Kloeckner Humboldt Deutz Ag Amphibious vehicle
US4809636A (en) * 1984-08-17 1989-03-07 Robishaw Engineering, Inc. Construction transportation assembly
US4730574A (en) * 1985-03-25 1988-03-15 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Collapsible pontoon
US4754723A (en) * 1985-11-15 1988-07-05 Man Gutehoffnungshutte Gmbh Apparatus for folding a pontoon unit
US5727491A (en) * 1995-10-18 1998-03-17 Eisenwerke Kaiserslautern Gmbh Pontoon for military collapsible floating bridges and crossing ferries
US6167582B1 (en) * 1997-10-20 2001-01-02 Man Technologies Ag Floating bridge
US6234103B1 (en) * 1999-04-06 2001-05-22 Ewk Eisenwerke Kaiserlauten Gmbh Ramp unit for floating pontoons
US20030143900A1 (en) * 2002-01-30 2003-07-31 Klaus Eberl Amphibian bridge-forming and ferrying vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025823A1 (en) * 2014-08-14 2016-02-18 Staples The Office Superstore, Llc Reusable bag
US11358484B2 (en) * 2016-10-28 2022-06-14 Samsung Electronics Co., Ltd. Charger for electric vehicle and charging control method of electric vehicle

Also Published As

Publication number Publication date
MA34902B1 (en) 2014-02-01
BR112013021005A2 (en) 2016-10-11
SG192758A1 (en) 2013-09-30
KR20140029393A (en) 2014-03-10
ZA201306058B (en) 2014-04-30
NZ614046A (en) 2015-07-31
FR2971777B1 (en) 2013-03-22
EP2675699A1 (en) 2013-12-25
CN103391879A (en) 2013-11-13
EA201300920A1 (en) 2014-01-30
AU2012217254A1 (en) 2013-10-03
JP2014510662A (en) 2014-05-01
WO2012110400A1 (en) 2012-08-23
MX2013009498A (en) 2013-11-20
TN2013000343A1 (en) 2015-01-20
IL227969A0 (en) 2013-09-30
CA2826863A1 (en) 2012-08-23
FR2971777A1 (en) 2012-08-24

Similar Documents

Publication Publication Date Title
US20140042044A1 (en) Convertible container
US3903825A (en) Transport system
US9764800B2 (en) System and method of transporting over water with multiple vessels
US20140021075A1 (en) Convertible container
KR20020025090A (en) Self-contained container ship
KR101068662B1 (en) Hybrid mobile floating port
KR20100123438A (en) Floating harbor and cargo loading and unloading method using the same
Kim et al. A ship-to-ship automatic docking system for ocean cargo transfer
KR101904618B1 (en) Cargo ship and barge capable of being loaded in the same
NZ614046B2 (en) Convertible container
JP5172848B2 (en) Ships and related assembly and control laws
US20100068008A1 (en) Mobile Harbor
KR101068663B1 (en) Hybrid mobile floating port
EP3245124B1 (en) A mine storage and handling unit
BG62606B1 (en) Sea-based transportation and load handling system
US6334401B1 (en) Floating structure for the transfer of cargo
KR101113693B1 (en) Hybrid mobile floating port
OA16535A (en) Conteneur transformable.

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETS A. DESCHAMPS ET FILS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DESCHAMPS, GEORGES-PAUL;REEL/FRAME:031345/0782

Effective date: 20131004

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION