US20140018322A1 - Synergistic antimicrobial composition - Google Patents

Synergistic antimicrobial composition Download PDF

Info

Publication number
US20140018322A1
US20140018322A1 US14/025,862 US201314025862A US2014018322A1 US 20140018322 A1 US20140018322 A1 US 20140018322A1 US 201314025862 A US201314025862 A US 201314025862A US 2014018322 A1 US2014018322 A1 US 2014018322A1
Authority
US
United States
Prior art keywords
alternatively
ppm
hydroxymethyl
tris
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/025,862
Other versions
US8613941B1 (en
Inventor
Bei Yin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Nutrition and Biosciences USA 1 LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US14/025,862 priority Critical patent/US8613941B1/en
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YIN, BEI
Application granted granted Critical
Publication of US8613941B1 publication Critical patent/US8613941B1/en
Publication of US20140018322A1 publication Critical patent/US20140018322A1/en
Assigned to DDP SPECIALTY ELECTRONIC MATERIALS US, LLC. reassignment DDP SPECIALTY ELECTRONIC MATERIALS US, LLC. CHANGE OF LEGAL ENTITY Assignors: DDP Specialty Electronic Materials US, Inc.
Assigned to THE DOW CHEMICAL COMPANY reassignment THE DOW CHEMICAL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOW GLOBAL TECHNOLOGIES LLC
Assigned to DDP Specialty Electronic Materials US, Inc. reassignment DDP Specialty Electronic Materials US, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE DOW CHEMICAL COMPANY
Assigned to NUTRITION & BIOSCIENCES USA 1, LLC reassignment NUTRITION & BIOSCIENCES USA 1, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DDP SPECIALTY ELECTRONIC MATERIALS US, LLC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/18Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
    • A01N57/20Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/16Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds
    • A01N33/18Nitro compounds
    • A01N33/20Nitro compounds containing oxygen or sulfur attached to the carbon skeleton containing the nitro group

Definitions

  • This invention relates to combinations of biocides, the combinations having greater activity than would be observed for the individual antimicrobial compounds.
  • Use of combinations of at least two antimicrobial compounds can broaden potential markets, reduce use concentrations and costs, and reduce waste.
  • commercial antimicrobial compounds cannot provide effective control of microorganisms, even at high use concentrations, due to weak activity against certain types of microorganisms, or relatively slow antimicrobial action, or instability under certain conditions such as high temperature and high pH.
  • Combinations of different antimicrobial compounds are sometimes used to provide overall control of microorganisms or to provide the same level of microbial control at lower use rates in a particular end use environment. For example, U.S. Pat. No.
  • 5,385,896 discloses combinations of phosphonium salts and aldehydes, but this reference does not suggest any of the combinations claimed herein. Moreover, there is a need for additional combinations of antimicrobial compounds having enhanced activity to provide effective control of microorganisms. The problem addressed by this invention is to provide such combinations of antimicrobial compounds.
  • the present invention is directed to a synergistic antimicrobial composition
  • a synergistic antimicrobial composition comprising: (a) a hydroxymethyl-substituted phosphorus compound selected from the group consisting of tetrakis(hydroxymethyl)phoshponium salts and tris(hydroxymethyl)phosphine; and (b) tris(hydroxymethyl)nitromethane (Tris Nitro); wherein a weight ratio of the hydroxymethyl-substituted phosphorus compound to tris(hydroxymethyl)nitromethane is from 8:1 to 1:12.
  • antimicrobial compound refers to a compound capable of inhibiting the growth or propagation of microorganisms, and/or killing microorganisms; antimicrobial compounds include bactericides, bacteristats, fungicides, fungistats, algaecides and algistats, depending on the dose level applied, system conditions and the level of microbial control desired.
  • microorganism includes, for example, fungi (such as yeast and mold), bacteria and algae.
  • Percentages of antimicrobial compounds in the composition of this invention are based on the total weight of active ingredients in the composition, i.e., the antimicrobial compounds themselves, exclusive of any amounts of solvents, carriers, dispersants, stabilizers or other materials which may be present.
  • the hydroxymethyl-substituted phosphorus compound is selected from the group consisting of tetrakis(hydroxymethyl)phosphonium salts (e.g., tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and tetrakis(hydroxymethyl)phosphonium chloride) and tris(hydroxymethyl)phosphine. More than one hydroxymethyl-substituted phosphorus compound may be present, in which case the biocide ratio is calculated from the total content of such compounds.
  • tetrakis(hydroxymethyl)phosphonium salts e.g., tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and tetrakis(hydroxymethyl)phosphonium chloride
  • THPS tetrakis(hydroxymethyl)phosphonium sulfate
  • tetrakis(hydroxymethyl)phosphonium chloride tris(hydroxymethyl)phosphine.
  • a weight ratio of the hydroxymethyl-substituted phosphorus compound(s) to tris(hydroxymethyl)nitromethane is from 7:1 to 1:12, alternatively from 8:1 to 1:9, alternatively from 7:1 to 1:9, alternatively from 7:1 to 1:8, alternatively from 6:1 to 1:12, alternatively from 6:1 to 1:10, alternatively from 6:1 to 1:9, alternatively from 6:1 to 1:8; alternatively from 5:1 to 1:12, alternatively from 5:1 to 1:10, alternatively from 5:1 to 1:9, alternatively from 5:1 to 1:8; alternatively from 4:1 to 1:12, alternatively from 4:1 to 1:10, alternatively from 4:1 to 1:9, alternatively from 4:1 to 1:8; alternatively from 3:1 to 1:12, alternatively from 3:1 to 1:9, alternatively from 3:1 to 1:10, alternatively from 3:1 to 1:8.
  • the composition is used to prevent microbial growth in a medium at higher temperatures and high sulfide levels, i.e., at least 50° C. and 2 ppm sulfide, conditions which typically are present in oil and gas wells and reservoirs.
  • the weight ratio of the hydroxymethyl-substituted phosphorus compound to tris(hydroxymethyl)nitromethane is from 1:1.5 to 1:12;
  • a higher temperature and high-sulfide medium is one having a temperature at least 60° C. and a sulfide level at least 4 ppm.
  • the temperature is at least 65° C.; alternatively at least 70° C.; alternatively at least 75° C.; alternatively at least 80° C.
  • the medium contains at least 5 ppm sulfide, alternatively at least 6 ppm sulfide, alternatively at least 7 ppm sulfide, alternatively at least 8 ppm sulfide, alternatively at least 9 ppm sulfide, alternatively at least 10 ppm sulfide.
  • the medium to which the antimicrobial composition is added is anaerobic. In some embodiments of the invention, the anaerobic medium is a high-temperature and high-sulfide environment.
  • the medium to which the antimicrobial composition is added contains sulfate-reducing bacteria. In some embodiments of the invention, the high-temperature and high-sulfide environment contains sulfate-reducing bacteria. In some embodiments of the invention, the medium to which the antimicrobial composition is added is an aqueous medium, i.e., one comprising at least 60% water, alternatively at least 80% water. In some embodiments of the invention, the aqueous medium is a high-temperature and high-sulfide medium.
  • the antimicrobial combination of this invention is useful in oil and gas field injection, produced fluids, fracturing fluids and functional fluids, oil and gas wells, oil and gas operation, separation, storage, and transportation systems, oil and gas pipelines, oil and gas vessels, and fuel.
  • the combination is especially useful in aqueous fluids added to or produced by oil and gas well.
  • the composition also is useful for controlling microorganisms in other industrial water and water containing/contaminated matrixes, such as cooling water, air washer, heat exchangers, boiler water, pulp and paper mill water, other industrial process water, ballast water, wastewater, metalworking fluids, latex, paint, coatings, adhesives, inks, tape joint compounds, pigment, water-based slurries, personal care and household products such as detergent, filtration systems (including reverse osmosis and ultrafiltration systems), toilet bowel, textiles, leather and leather production system, or a system used therewith.
  • other industrial water and water containing/contaminated matrixes such as cooling water, air washer, heat exchangers, boiler water, pulp and paper mill water, other industrial process water, ballast water, wastewater, metalworking fluids, latex, paint, coatings, adhesives, inks, tape joint compounds, pigment, water-based slurries, personal care and household products such as detergent, filtration systems (including reverse osmosis and ultrafiltration systems), toilet bowel, textiles,
  • the amount of the biocide combinations of the present invention to control the growth of microorganisms is from 10 ppm to 5,000 ppm active ingredient.
  • the active ingredients of the composition are present in an amount of at least 20 ppm, alternatively at least 50 ppm, alternatively at least 100 ppm, alternatively at least 150 ppm, alternatively at least 200 ppm.
  • the active ingredients of the composition are present in an amount of no more than 2,000 ppm, alternatively no more than 1,000 ppm, alternatively no more than 500 ppm, alternatively no more than 400 ppm, alternatively no more than 300 ppm, alternatively no more than 250 ppm, alternatively no more than 200 ppm, alternatively no more than 100 ppm, alternatively no more than 50 ppm. Concentrations mentioned above are in a liquid composition containing the biocide combinations. Biocide concentrations in a high-sulfide and high-temperature environment typically will be higher than in other environments.
  • the present invention also encompasses a method for reducing, or inhibiting, or preventing microbial growth in the use areas described above, especially in oil or natural gas production operations, by incorporating the claimed biocide combination into the materials.
  • a deaerated sterile salt solution (3.1183 g of NaCl, 1.3082 mg of NaHCO 3 , 47.70 mg of KCl, 72.00 mg of CaCl 2 , 54.49 mg of MgSO 4 , 172.28 mg of Na 2 SO 4 , 43.92 mg of Na 2 CO 3 in 1 L water) was contaminated with an oil field isolated anaerobic consortium, mainly SRB, at final bacterial concentrations of 10 6 to 10 7 CFU/mL. The aliquots of this contaminated water were then treated with THPS and Tris Nitro, or the THPS/Tris Nitro combination at different active concentration levels.
  • biocides solutions were challenged with 10 4 to 10 5 CFU/mL of an oilfield SRB consortium and 10 ppm sulfide ion (added in the form of sodium sulfide). The biocide solutions were then incubated at 80° C. under anaerobic condition for 7 days. Then the biocidal efficacy was evaluated against the field SRB consortium. The biocidal efficacy was determined by the biocide dosage required for 99.999% bacterial reduction. Synergy Index was then calculated. Table 2 summarizes the efficacy of each biocide and their blends, and the Synergy Index* of each combination.
  • Table 2 shows that the THPS and Tris Nitro combination was synergistic for a high temperature and sulfide-rich environment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A synergistic antimicrobial composition comprising:
    • (a) a hydroxymethyl-substituted phosphorus compound selected from the group consisting of tetrakis(hydroxymethyl)phoshponium salts and tris(hydroxymethyl)phosphine; and
    • (b) tris(hydroxymethyl)nitromethane.

Description

  • This invention relates to combinations of biocides, the combinations having greater activity than would be observed for the individual antimicrobial compounds. Use of combinations of at least two antimicrobial compounds can broaden potential markets, reduce use concentrations and costs, and reduce waste. In some cases, commercial antimicrobial compounds cannot provide effective control of microorganisms, even at high use concentrations, due to weak activity against certain types of microorganisms, or relatively slow antimicrobial action, or instability under certain conditions such as high temperature and high pH. Combinations of different antimicrobial compounds are sometimes used to provide overall control of microorganisms or to provide the same level of microbial control at lower use rates in a particular end use environment. For example, U.S. Pat. No. 5,385,896 discloses combinations of phosphonium salts and aldehydes, but this reference does not suggest any of the combinations claimed herein. Moreover, there is a need for additional combinations of antimicrobial compounds having enhanced activity to provide effective control of microorganisms. The problem addressed by this invention is to provide such combinations of antimicrobial compounds.
  • STATEMENT OF THE INVENTION
  • The present invention is directed to a synergistic antimicrobial composition comprising: (a) a hydroxymethyl-substituted phosphorus compound selected from the group consisting of tetrakis(hydroxymethyl)phoshponium salts and tris(hydroxymethyl)phosphine; and (b) tris(hydroxymethyl)nitromethane (Tris Nitro); wherein a weight ratio of the hydroxymethyl-substituted phosphorus compound to tris(hydroxymethyl)nitromethane is from 8:1 to 1:12.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the following terms have the designated definitions, unless the context clearly indicates otherwise. The term “antimicrobial compound” refers to a compound capable of inhibiting the growth or propagation of microorganisms, and/or killing microorganisms; antimicrobial compounds include bactericides, bacteristats, fungicides, fungistats, algaecides and algistats, depending on the dose level applied, system conditions and the level of microbial control desired. The term “microorganism” includes, for example, fungi (such as yeast and mold), bacteria and algae. The following abbreviations are used throughout the specification: ppm=parts per million by weight (weight/weight), mL=milliliter, Unless otherwise specified, temperatures are in degrees centigrade (° C.), and references to percentages are by weight (wt %). Percentages of antimicrobial compounds in the composition of this invention are based on the total weight of active ingredients in the composition, i.e., the antimicrobial compounds themselves, exclusive of any amounts of solvents, carriers, dispersants, stabilizers or other materials which may be present. The hydroxymethyl-substituted phosphorus compound is selected from the group consisting of tetrakis(hydroxymethyl)phosphonium salts (e.g., tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and tetrakis(hydroxymethyl)phosphonium chloride) and tris(hydroxymethyl)phosphine. More than one hydroxymethyl-substituted phosphorus compound may be present, in which case the biocide ratio is calculated from the total content of such compounds.
  • In some embodiments of the invention, a weight ratio of the hydroxymethyl-substituted phosphorus compound(s) to tris(hydroxymethyl)nitromethane is from 7:1 to 1:12, alternatively from 8:1 to 1:9, alternatively from 7:1 to 1:9, alternatively from 7:1 to 1:8, alternatively from 6:1 to 1:12, alternatively from 6:1 to 1:10, alternatively from 6:1 to 1:9, alternatively from 6:1 to 1:8; alternatively from 5:1 to 1:12, alternatively from 5:1 to 1:10, alternatively from 5:1 to 1:9, alternatively from 5:1 to 1:8; alternatively from 4:1 to 1:12, alternatively from 4:1 to 1:10, alternatively from 4:1 to 1:9, alternatively from 4:1 to 1:8; alternatively from 3:1 to 1:12, alternatively from 3:1 to 1:9, alternatively from 3:1 to 1:10, alternatively from 3:1 to 1:8. In some embodiments of the invention, the composition is used to prevent microbial growth in a medium at higher temperatures and high sulfide levels, i.e., at least 50° C. and 2 ppm sulfide, conditions which typically are present in oil and gas wells and reservoirs. In these embodiments, the weight ratio of the hydroxymethyl-substituted phosphorus compound to tris(hydroxymethyl)nitromethane is from 1:1.5 to 1:12;
  • alternatively from 1:1.5 to 1:10; alternatively from 1:1.5 to 1:9; alternatively from 1:1.5 to 1:8; alternatively from 1:1.8 to 1:12; alternatively from 1:1.8 to 1:10; alternatively from 1:1.8 to 1:9; alternatively from 1:1.8 to 1:8; alternatively from 1:2 to 1:12; alternatively from 1:2 to 1:10; alternatively from 1:2 to 1:9; alternatively from 1:2 to 1:8. In some embodiments of the invention, a higher temperature and high-sulfide medium is one having a temperature at least 60° C. and a sulfide level at least 4 ppm. In some embodiments, the temperature is at least 65° C.; alternatively at least 70° C.; alternatively at least 75° C.; alternatively at least 80° C. In some embodiments, the medium contains at least 5 ppm sulfide, alternatively at least 6 ppm sulfide, alternatively at least 7 ppm sulfide, alternatively at least 8 ppm sulfide, alternatively at least 9 ppm sulfide, alternatively at least 10 ppm sulfide. In some embodiments of the invention, the medium to which the antimicrobial composition is added is anaerobic. In some embodiments of the invention, the anaerobic medium is a high-temperature and high-sulfide environment. In some embodiments of the invention, the medium to which the antimicrobial composition is added contains sulfate-reducing bacteria. In some embodiments of the invention, the high-temperature and high-sulfide environment contains sulfate-reducing bacteria. In some embodiments of the invention, the medium to which the antimicrobial composition is added is an aqueous medium, i.e., one comprising at least 60% water, alternatively at least 80% water. In some embodiments of the invention, the aqueous medium is a high-temperature and high-sulfide medium.
  • In some embodiments of the invention, the antimicrobial combination of this invention is useful in oil and gas field injection, produced fluids, fracturing fluids and functional fluids, oil and gas wells, oil and gas operation, separation, storage, and transportation systems, oil and gas pipelines, oil and gas vessels, and fuel. The combination is especially useful in aqueous fluids added to or produced by oil and gas well. The composition also is useful for controlling microorganisms in other industrial water and water containing/contaminated matrixes, such as cooling water, air washer, heat exchangers, boiler water, pulp and paper mill water, other industrial process water, ballast water, wastewater, metalworking fluids, latex, paint, coatings, adhesives, inks, tape joint compounds, pigment, water-based slurries, personal care and household products such as detergent, filtration systems (including reverse osmosis and ultrafiltration systems), toilet bowel, textiles, leather and leather production system, or a system used therewith.
  • Typically, the amount of the biocide combinations of the present invention to control the growth of microorganisms is from 10 ppm to 5,000 ppm active ingredient. In some embodiments of the invention, the active ingredients of the composition are present in an amount of at least 20 ppm, alternatively at least 50 ppm, alternatively at least 100 ppm, alternatively at least 150 ppm, alternatively at least 200 ppm. In some embodiments, the active ingredients of the composition are present in an amount of no more than 2,000 ppm, alternatively no more than 1,000 ppm, alternatively no more than 500 ppm, alternatively no more than 400 ppm, alternatively no more than 300 ppm, alternatively no more than 250 ppm, alternatively no more than 200 ppm, alternatively no more than 100 ppm, alternatively no more than 50 ppm. Concentrations mentioned above are in a liquid composition containing the biocide combinations. Biocide concentrations in a high-sulfide and high-temperature environment typically will be higher than in other environments.
  • The present invention also encompasses a method for reducing, or inhibiting, or preventing microbial growth in the use areas described above, especially in oil or natural gas production operations, by incorporating the claimed biocide combination into the materials.
  • EXAMPLES Example 1
  • Synergistic effect of THPS and Tris Nitro against sulfate reducing bacteria (SRB)
  • Inside an anaerobic chamber (BACTRON anaerobic chamber), a deaerated sterile salt solution (3.1183 g of NaCl, 1.3082 mg of NaHCO3, 47.70 mg of KCl, 72.00 mg of CaCl2, 54.49 mg of MgSO4, 172.28 mg of Na2SO4, 43.92 mg of Na2CO3 in 1 L water) was contaminated with an oil field isolated anaerobic consortium, mainly SRB, at final bacterial concentrations of 106to 107 CFU/mL. The aliquots of this contaminated water were then treated with THPS and Tris Nitro, or the THPS/Tris Nitro combination at different active concentration levels. After the mixtures were incubated at 40° C. for 24 hours, the biocidal efficacy was determined by minimum tested biocide concentration for bacteria kill in the aliquots (MBC). Table 1 summarizes the efficacy of each biocide and their blends, and the Synergy Index* of each combination.
  • TABLE 1
    Biocidal efficacy of THPS, Tris Nitro, THPS/Tris
    Nitro combination, and Synergy Index
    Average MBC
    Ratio of THPS to (active ppm) Average p value
    Tris Nitro (active Tris Synergy in
    w/w) THPS Nitro Index*1 ztest*2
    1:0 6.1 0.0
    9:1 6.0 0.7 1.02 0.66
    3:1 4.9 1.6 0.87 0.00
    1:1 4.4 4.4 0.84 0.00
    1:3 3.8 11.5 0.90 0.03
    1:9 2.5 22.6 0.93 0.08
    0:1 0.0 46.1
    *1Synergy Index = Ca/CA + Cb/CB
    Ca: Concentration of biocide A required to achieve a certain level of bacterial kill when used in combination
    CA: Concentration of biocide A required to achieve a certain level of bacterial kill when used alone
    Cb: Concentration of biocide B required to achieve a certain level of bacterial kill when used in combination
    CB: Concentration of biocide B required to achieve a certain level of bacterial kill when used alone
    *2P value < 0.05 means that there is significant difference between the average Synergy Index and 1.00
  • Example 2
  • Evaluation of biocidal efficacy of THPS, Tris Nitro, and their combination against anaerobic bacteria for a high temperature and sulfide-rich environment.
  • Inside an anaerobic chamber (BACTRON IV), biocides solutions were challenged with 104 to 105 CFU/mL of an oilfield SRB consortium and 10 ppm sulfide ion (added in the form of sodium sulfide). The biocide solutions were then incubated at 80° C. under anaerobic condition for 7 days. Then the biocidal efficacy was evaluated against the field SRB consortium. The biocidal efficacy was determined by the biocide dosage required for 99.999% bacterial reduction. Synergy Index was then calculated. Table 2 summarizes the efficacy of each biocide and their blends, and the Synergy Index* of each combination.
  • TABLE 2
    Biocidal efficacy evaluation of THPS, Tris Nitro, and
    THPS/Tris Nitro combination for a high temperature
    and sulfide-rich environment, and Synergy Index
    Concentration (active ppm)
    required for 99.999% bacterial
    Ratio of THPS to Tris reduction (active ppm) Synergy
    Nitro (active w/w) THPS Tris Nitro Index
    1:0 360.0 0.0
    2:1 >180 >90 >0.75
    1:1 >180 >180 >1
    1:2 90 180 0.75
    1:4 45 180 0.63
    1:8 22.5 180 0.56
    0:1 0 360
  • Table 2 shows that the THPS and Tris Nitro combination was synergistic for a high temperature and sulfide-rich environment.

Claims (5)

1. A method for inhibiting microbial growth in a medium at a temperature of at least 60° C. and a sulfide level at least 4 ppm; said method comprising adding to the medium:
(a) tetrakis(hydroxymethyl)phosphonium sulfate; and (b) tris(hydroxymethyl)nitromethane;
wherein a weight ratio of tetrakis(hydroxymethyl)phosphonium sulfate to tris(hydroxymethyl)nitromethane is from 1:1.5 to 1:12.
2. The method of claim 1 in which the temperature is at least 70° C. and a sulfide level at least 7 ppm; and in which said weight ratio is from 1:1.8 to 1:10.
3. The method of claim 2 in which the medium is anaerobic and contains sulfate-reducing bacteria.
4. The method of claim 3 in which said weight ratio is from 1:2 to 1:8.
5. The method of claim 1 in which said weight ratio is from 1:2 to 1:8
US14/025,862 2012-01-05 2013-09-13 Synergistic antimicrobial composition Active US8613941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/025,862 US8613941B1 (en) 2012-01-05 2013-09-13 Synergistic antimicrobial composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201213382407A 2012-01-05 2012-01-05
US14/025,862 US8613941B1 (en) 2012-01-05 2013-09-13 Synergistic antimicrobial composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201213382407A Division 2012-01-05 2012-01-05

Publications (2)

Publication Number Publication Date
US8613941B1 US8613941B1 (en) 2013-12-24
US20140018322A1 true US20140018322A1 (en) 2014-01-16

Family

ID=49770052

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/025,862 Active US8613941B1 (en) 2012-01-05 2013-09-13 Synergistic antimicrobial composition

Country Status (1)

Country Link
US (1) US8613941B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981998A (en) 1974-03-08 1976-09-21 Waldstein David A Bactericidal and fungicidal 1,3,5 trialkanol triazines
GB8702055D0 (en) 1987-01-30 1987-03-04 Albright & Wilson Wood treatment process
US4978512B1 (en) 1988-12-23 1993-06-15 Composition and method for sweetening hydrocarbons
GB8904844D0 (en) 1989-03-03 1989-04-12 Albright & Wilson Biocidal compositions and treatments
US5347004A (en) 1992-10-09 1994-09-13 Baker Hughes, Inc. Mixtures of hexahydrotriazines useful as H2 S scavengers
JP4250676B2 (en) 1998-02-04 2009-04-08 株式会社片山化学工業研究所 Industrial disinfectant and industrial disinfection method
US20080004189A1 (en) 2006-06-29 2008-01-03 Weatherford/Lamb, Inc. Effervescent biocide compositions for oilfield applications

Also Published As

Publication number Publication date
US8613941B1 (en) 2013-12-24

Similar Documents

Publication Publication Date Title
US8598147B2 (en) Synergistic antimicrobial composition
US8557266B2 (en) Synergistic antimicrobial composition
US9686996B2 (en) Synergistic antimicrobial composition
US8722713B2 (en) Synergistic antimicrobial composition of 1,2-benzisothiazolin-3-one and tris(hydroxymethyl)nitromethane
US8445521B2 (en) Synergistic antimicrobial composition
US8613941B1 (en) Synergistic antimicrobial composition
US8557862B2 (en) Synergistic antimicrobial composition
AU2013242826B2 (en) Synergistic antimicrobial composition
AU2013242825B2 (en) Synergistic antimicrobial composition
US20130245020A1 (en) Synergistic antimicrobial composition
AU2013231142A1 (en) Synergistic antimicrobial composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YIN, BEI;REEL/FRAME:031650/0135

Effective date: 20100923

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: DDP SPECIALTY ELECTRONIC MATERIALS US, LLC., DELAWARE

Free format text: CHANGE OF LEGAL ENTITY;ASSIGNOR:DDP SPECIALTY ELECTRONIC MATERIALS US, INC.;REEL/FRAME:054530/0384

Effective date: 20201101

Owner name: THE DOW CHEMICAL COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW GLOBAL TECHNOLOGIES LLC;REEL/FRAME:054531/0001

Effective date: 20181101

Owner name: DDP SPECIALTY ELECTRONIC MATERIALS US, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE DOW CHEMICAL COMPANY;REEL/FRAME:054533/0001

Effective date: 20181101

Owner name: NUTRITION & BIOSCIENCES USA 1, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DDP SPECIALTY ELECTRONIC MATERIALS US, LLC.;REEL/FRAME:054533/0575

Effective date: 20201101

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8