US20130340988A1 - Heat dissipating structure, heat dissipating pad, and heat dissipating bag - Google Patents

Heat dissipating structure, heat dissipating pad, and heat dissipating bag Download PDF

Info

Publication number
US20130340988A1
US20130340988A1 US13/529,924 US201213529924A US2013340988A1 US 20130340988 A1 US20130340988 A1 US 20130340988A1 US 201213529924 A US201213529924 A US 201213529924A US 2013340988 A1 US2013340988 A1 US 2013340988A1
Authority
US
United States
Prior art keywords
heat dissipating
main rib
auxiliary
rib
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/529,924
Inventor
Yung-Chiang Chu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLUIDITECH IP Ltd
Original Assignee
FLUIDITECH IP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLUIDITECH IP Ltd filed Critical FLUIDITECH IP Ltd
Priority to US13/529,924 priority Critical patent/US20130340988A1/en
Assigned to FLUIDITECH IP LIMITED reassignment FLUIDITECH IP LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHU, YUNG-CHIANG
Publication of US20130340988A1 publication Critical patent/US20130340988A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to heat dissipating structures, and more particularly, to a heat dissipating structure, a heat dissipating pad, and a heat dissipating bag which enable heat generated from an electronic device to be dissipated.
  • a conventional heat dissipating pad is disadvantaged by its lack of portability.
  • Yet another objective of the present invention is to provide a heat dissipating pad and a plurality of heat dissipating bodies which comes in the form of a plurality of ribs and are alternately disposed on a substrate to not only effectuate heat dissipation but also lessen the demand for a consumable material.
  • a further objective of the present invention is to provide the heat dissipating pad for removing the heat generated from the electronic device in the absence of any additional power supply.
  • a further objective of the present invention is to provide the heat dissipating bag.
  • the heat dissipating bag comprises a receiving space formed by coupling together the plurality of heat dissipating pads of the present invention.
  • the receiving space receives the electronic device.
  • the electronic device is tightly clamped by the ribs of the heat dissipating pads and positioned in the receiving space of the heat dissipating bag. Therefore, the electronic device is contained in the heat dissipating bag and well protected.
  • the auxiliary ribs flank the first main rib such that the first auxiliary ribs are spaced apart by a space width and occupy a plurality of first auxiliary rib peak regions and a plurality of first auxiliary rib trough regions defined on the substrate, the first auxiliary rib peak region corresponding in position to the first main rib peak region, and the first auxiliary rib trough region corresponding in position to the first main rib trough region.
  • a distance between the first main rib and each of the first auxiliary ribs determines a ratio of an area of the first auxiliary rib peak region to an area of the first main rib peak region.
  • the present invention provides a heat dissipating pad for removing heat generated from an electronic device.
  • the heat dissipating pad comprises a substrate, a first heat dissipating body and a second heat dissipating body.
  • the first heat dissipating body is disposed on the substrate.
  • the first heat dissipating body comprises a first main rib and a plurality of first auxiliary ribs.
  • the second heat dissipating body is disposed on the substrate and positioned proximate to the first heat dissipating body.
  • the second heat dissipating body comprises a second main rib and a plurality of second auxiliary ribs.
  • the first main rib is half-wave shaped and protrudes from the substrate with a first period.
  • the first main rib occupies a plurality of first peak regions and a plurality of first trough regions which are defined on the substrate.
  • the first auxiliary ribs flank the first main rib such that the first auxiliary ribs are spaced apart by a space width and occupy a plurality of first auxiliary rib peak regions and a plurality of first auxiliary rib trough regions defined on the substrate, the first auxiliary rib peak region corresponding in position to the first main rib peak region, and the first auxiliary rib trough region corresponding in position to the first main rib trough region.
  • a distance between the first main rib and each of the first auxiliary ribs determines a ratio of an area of the first auxiliary rib peak region to an area of the first main rib peak region.
  • the second main rib is half-wave shaped and protrudes from the substrate with a second period.
  • the second main rib occupies a plurality of second main rib peak regions and a plurality of second main rib trough regions which are defined on the substrate.
  • the second period differs from the first period by an angle.
  • the second auxiliary ribs flank the second main rib such that the second auxiliary ribs are spaced apart by a space width and occupy a plurality of second auxiliary rib peak regions and a plurality of second auxiliary rib trough regions defined on the substrate, the second auxiliary rib peak region corresponding in position to the second main rib peak region, the second auxiliary rib trough region corresponding in position to the second main rib trough region.
  • a distance between the second main rib and each of the second auxiliary ribs determines a ratio of an area of the second auxiliary rib peak region to an area of the second main rib peak region.
  • the present invention provides a heat dissipating bag for removing heat generated from an electronic device and containing the electronic device.
  • the heat dissipating bag comprises a first heat dissipating pad and a second heat dissipating pad.
  • the first heat dissipating pad comprises a first substrate and a first heat dissipating layer.
  • the first heat dissipating layer is disposed on the first substrate.
  • the first heat dissipating layer comprises a first main rib and a plurality of first auxiliary ribs. A plurality of first heat dissipating grooves is formed between the first main rib and the first auxiliary ribs.
  • the first heat dissipating pad and the second heat dissipating pad are coupled together to form a receiving space for receiving the electronic device, such that heat generated by the electronic device is dissipated by at least one of the first heat dissipating grooves and the second heat dissipating grooves.
  • the present invention provides a heat dissipating structure, a heat dissipating pad, and a heat dissipating bag, such that heat dissipating grooves formed between ribs are conducive to heat dissipation.
  • Each of the ribs is half-wave shaped and protrudes from a substrate periodically such that, once an electronic device comes into contact with the ribs, the electronic device will be in contact with the half-wave shaped peak of the each of the ribs only, thereby reducing the contact area between the electronic device and the ribs.
  • the electronic device When the first and second heat dissipating pads are formed inside or outside the heat dissipating bag, not only can the electronic device be contained in the heat dissipating bag, clamped firmly, and well protected, but the electronic device can also undergo heat dissipation.
  • FIG. 1 is a structural schematic view of a heat dissipating structure according to an embodiment of the present invention
  • FIG. 3 is an end view of the main rib and the auxiliary ribs taken in the direction of arrow Dir of FIG. 1 ;
  • FIG. 4 is a structural schematic view of a heat dissipating pad according to the first embodiment of the present invention.
  • FIG. 5 is an end view of the heat dissipating pad taken in the direction of arrow Dir of FIG. 4 according to the second embodiment of the present invention.
  • FIG. 6 is a structural schematic view of a heat dissipating bag according to an embodiment of the present invention.
  • the heat dissipating structure 10 enables heat generated from an electronic device (not shown) to be dissipated.
  • the electronic device is a portable computer or a tablet computer.
  • Electronic components of the electronic device generate heat while the electronic components are performing high-speed computation.
  • the heat is removed from the electronic device by means of a heat dissipating fan of the electronic device. In general, the heat is discharged from the bottom of the electronic device.
  • the heat dissipating structure 10 comprises a substrate 12 and a heat dissipating body 14 .
  • the heat dissipating body 14 is disposed on the substrate 12 .
  • the substrate 12 is made of nylon, for example. In this embodiment, in addition to nylon, the substrate 12 can be made of any other appropriate material, as long as the substrate 12 is suitable for being coupled to the heat dissipating body 14 and fixing the heat dissipating body 14 in place.
  • the heat dissipating body 14 has a main rib 142 and a plurality of auxiliary ribs 144 .
  • FIG. 2 there is shown a longitudinal cross-sectional view of the main rib 142 and the auxiliary ribs 144 taken along line A-A′ of FIG. 1 .
  • the main rib 142 is half-wave shaped, and the shape of the main rib 142 is exemplified by a sinusoidal wave shape.
  • the main rib 142 protrudes from the substrate 12 periodically until it reaches the end of the substrate 12 .
  • the substrate 12 is defined with a plurality of main rib peak regions 1422 and a plurality of main rib trough regions 1424 .
  • the main rib peak region 1422 and the main rib trough region 1424 alternate.
  • the substrate 12 is defined with a plurality of auxiliary rib peak regions 1442 and a plurality of auxiliary rib trough regions 1444 .
  • the auxiliary rib peak region 1442 and the auxiliary rib trough region 1444 alternate.
  • the auxiliary ribs 144 are formed on the substrate 12 in a manner that the auxiliary ribs 144 cover all the auxiliary rib peak regions 1442 and all the auxiliary rib trough regions 1444 .
  • the auxiliary rib peak region 1442 and the auxiliary rib trough region 1444 adjacent thereto together define a wavelength of the half-wave shape of each of the auxiliary ribs 144 .
  • the auxiliary rib peak region 1442 corresponds in position to the main rib peak region 1422 .
  • the auxiliary rib trough region 1444 corresponds in position to the main rib trough region 1424 .
  • FIG. 3 there is shown an end view of the main rib 142 and the auxiliary ribs 144 taken in the direction of arrow Dir of FIG. 1 .
  • the auxiliary ribs 144 flank the main rib 142 to form a plurality of heat dissipating grooves 16 therebetween.
  • the auxiliary ribs 144 do not cross the main rib 142 , nor do the auxiliary ribs 144 cross each other.
  • the main rib 142 spaced apart from the nearest ones of the auxiliary ribs 144 thereto, but the auxiliary ribs 144 are also spaced apart from each other.
  • the space which is measured in millimeters (mm) and disposed between the main rib 142 and the nearest ones of the auxiliary ribs 144 thereto, and between two adjacent ones of the auxiliary ribs 144 , accommodate the heat dissipating grooves 16 .
  • this embodiment is illustrated with eight auxiliary ribs 144 , wherein not only are any two adjacent ones of the auxiliary ribs 144 spaced apart by a fixed distance, but the main rib 142 is also spaced apart from the nearest ones of the auxiliary ribs thereto by the fixed distance.
  • the space width SPW is defined as the distance from any one of the auxiliary ribs to the main rib 142 and is for use in calculating the ratio R of the area of the auxiliary rib peak region 1442 of that specific auxiliary rib 144 to the area of the main rib peak region 1422 of the main rib 142 (to be described in detail below).
  • the mathematical relation between the space width SPW and the ratio R is as follows:
  • auxiliary ribs are identified with n which denotes an integer equal to 1, 2, 3, and 4, respectively.
  • n denotes an integer equal to 1, 2, 3, and 4, respectively.
  • the constant B is set to 0.2, and D to 0.3 mm.
  • the ratio R of the area of the auxiliary rib peak region 1442 of the auxiliary ribs 144 ′ to the area of the main rib peak region 1422 of the main rib 142 is equal to 0.8 (because (1 ⁇ 0.2 ⁇ (0.3/0.3)) is equal to 0.8); in other words, the area of the auxiliary rib peak region 1442 of the auxiliary ribs 144 ′ is equal to 80% of the area of the main rib peak region 1422 of the main rib 142 .
  • the ratio R of the area of the auxiliary rib peak region 1442 of each of the auxiliary ribs to the area of the main rib peak region 1422 of the main rib 142 is calculated according to the aforesaid mathematical relation between the ratio R and the space width SPW and shown in the table below.
  • the ratio R also applies to height.
  • the height of the peak of the auxiliary ribs 144 ′ is equal to 80% of the height of the peak 1426 of the main rib 142 . That is to say, the height of the peak of the auxiliary ribs 144 ′ is less than the height of the peak 1426 of the main rib 142 by 20%.
  • the ratio R decreases progressively by 0.2, that is, the ratio R starts from 0.8, and then decreases to 0.6, 0.4, and 0.2 progressively.
  • the main rib 142 and the auxiliary ribs 144 are made of a material that manifests resilience, plasticity, and flexibility.
  • FIG. 4 there is shown a structural schematic view of a heat dissipating pad 20 according to the first embodiment of the present invention.
  • the heat dissipating pad 20 serves to remove the heat generated by the electronic device (not shown).
  • the heat dissipating pad 20 comprises a substrate 22 , a first heat dissipating body 24 , and a second heat dissipating body 26 .
  • the first heat dissipating body 24 is disposed on one side of the substrate 22 and protrudes therefrom.
  • the first heat dissipating body 24 comprises a first main rib 242 and a plurality of first auxiliary ribs 244 .
  • the second heat dissipating body 26 is disposed on one side of the substrate 22 and positioned proximate to the first heat dissipating body 24 .
  • the second heat dissipating body 26 comprises a second main rib 262 and a plurality of second auxiliary ribs 264 .
  • the first and second heat dissipating bodies 24 , 26 are disposed on the same side of the substrate 22 .
  • the first main rib 242 and the plurality of first auxiliary ribs 244 of the first heat dissipating body 24 are substantially identical to the main rib 142 and the auxiliary ribs 144 described in the preceding embodiment, respectively.
  • the first main rib 242 is half-wave shaped.
  • the first main rib 242 protrudes from the substrate 22 with a first period.
  • the substrate 22 is defined with a plurality of first main rib peak regions 2422 and a plurality of first main rib trough regions 2424 .
  • the first main rib peak region 2422 and the first main rib trough region 2424 alternate.
  • the first main rib 242 is formed on the substrate 22 to cover all the first main rib peak regions 2422 and all the first main rib trough regions 2424 .
  • the substrate 22 is defined with a plurality of first auxiliary rib peak regions 2442 and a plurality of first auxiliary rib trough regions 2444 .
  • the first auxiliary rib peak region 2442 and the first auxiliary rib trough region 2444 alternate.
  • the first auxiliary ribs 244 are formed on the substrate 22 to cover all the first auxiliary rib peak regions 2442 and all the first auxiliary rib trough regions 2444 .
  • the first auxiliary ribs 244 flank the first main rib 242 .
  • the first auxiliary ribs 244 are spaced apart from each other by a space width SPW.
  • the first auxiliary rib peak region 2442 corresponds in position to the first main rib peak region 2422 .
  • the first auxiliary rib trough region 2444 corresponds in position to the first main rib trough region 2424 .
  • the distance between the first main rib 242 and each of the first auxiliary ribs 244 determines the ratio of the area of the first auxiliary rib peak region 2442 to the area of the first main rib peak region 2422 .
  • a second main rib 262 and a plurality of second auxiliary ribs 264 of the second heat dissipating body 26 are substantially identical to the main rib 142 and the auxiliary ribs 144 described in the preceding embodiment, respectively, and protrude from the substrate 22 .
  • the first heat dissipating body 24 and the second heat dissipating body 26 are disposed on the substrate 22 alternately.
  • the first main rib 242 has a peak (that is, the maximum height of the first main rib 242 ) in each of the first main rib peak regions 2422
  • the first auxiliary ribs 244 each have a peak (that is, the maximum height of the first auxiliary ribs 244 ) in each of the first auxiliary rib peak regions 2444 .
  • the peaks of the first main rib 242 are higher than the peaks of the first auxiliary ribs 244 in order to support the electronic device.
  • the second main rib 262 has the same structure and function as the first main rib 242 .
  • the heat dissipating pad 20 ′ comprises the substrate 22 , the first heat dissipating body 24 , and the second heat dissipating body 26 .
  • the heat dissipating pad 20 ′ further comprises an anti-slip layer 28 .
  • the anti-slip layer 28 is formed on the opposing side of the substrate 22 , such that the anti-slip layer 28 is opposite to the first heat dissipating body 24 and the second heat dissipating body 26 .
  • the anti-slip layer 28 serves to increase the friction between the heat dissipating pad 20 ′ and a desk on which the heat dissipating pad 20 ′ rests, such that the heat dissipating pad 20 ′ cannot move readily.
  • the anti-slip layer 28 comprises a plurality of bumps 282 .
  • FIG. 6 there is shown a structural schematic view of a heat dissipating bag 30 according to an embodiment of the present invention.
  • the heat dissipating bag 30 serves two purposes, that is, removing the heat generated by an electronic device (not shown), and containing the electronic device.
  • the heat dissipating bag 30 comprises a first heat dissipating pad 32 and a second heat dissipating pad 34 .
  • auxiliary ribs are identified with n which denotes an integer equal to 1, 2, 3, and 4, respectively.
  • n denotes an integer equal to 1, 2, 3, and 4, respectively.
  • n refers to the auxiliary rib farthest from the first main rib (or the second main rib).
  • n is equal to 1
  • n refers to the auxiliary rib nearest to the first main rib (or the second main rib).
  • the remaining ones of the auxiliary ribs are indicated by n equal to 2 and 3, respectively.

Abstract

A heat dissipating structure, a heat dissipating pad, and a heat dissipating bag which enable heat generated from an electronic device to be dissipated are introduced. The heat dissipating structure includes a substrate and a heat dissipating body disposed thereon. The heat dissipating body has a main rib and a plurality of auxiliary ribs. The main rib is half-wave shaped and protrudes from the substrate periodically. The auxiliary ribs flank the main rib to form a plurality of heat dissipating grooves therebetween and define a ratio. The heat dissipating pad and a plurality of heat dissipating bodies are alternately disposed on a substrate to effectuate heat dissipation. The heat dissipating bag not only dissipates heat generated from the electronic device but also contains the electronic device.

Description

    FIELD OF THE INVENTION
  • The present invention relates to heat dissipating structures, and more particularly, to a heat dissipating structure, a heat dissipating pad, and a heat dissipating bag which enable heat generated from an electronic device to be dissipated.
  • BACKGROUND OF THE INVENTION
  • Conventional portable electronic devices operating at a high speed generate high heat which accumulates to have a significant effect upon the electronic devices. For example, the heat thus accumulated causes a computation delay, a computation error, or a breakdown to the electronic devices.
  • To overcome the aforesaid drawbacks of the prior art, improved prior art teaches positioning an electronic device on a heat dissipating pad equipped with a fan for removing the heat generated from the electronic device. With the heat dissipating pad being equipped with the, it is necessary for the fan to be electrically connected to a power supply or be supplied with power from the electronic device in order for the fan to operate.
  • In addition to the aforesaid power requirement, a conventional heat dissipating pad is disadvantaged by its lack of portability.
  • Accordingly, it is imperative to overcome the aforesaid drawbacks of the prior art.
  • SUMMARY OF THE INVENTION
  • It is an objective of the present invention to provide a heat dissipating structure having a plurality of ribs for supporting an electronic device and minimizing the area of contact with the electronic device, wherein heat dissipating grooves formed between the ribs are conducive to rapid removal of heat generated from the electronic device, so as to prevent the heat from accumulating inside the electronic device.
  • Another objective of the present invention is to provide the heat dissipating structure having a main rib and a plurality of auxiliary ribs, with the auxiliary ribs having a height less than the main rib, such that the contact area between the electronic device and the heat dissipating structure is reduced.
  • Yet another objective of the present invention is to provide a heat dissipating pad and a plurality of heat dissipating bodies which comes in the form of a plurality of ribs and are alternately disposed on a substrate to not only effectuate heat dissipation but also lessen the demand for a consumable material.
  • A further objective of the present invention is to provide the heat dissipating pad for removing the heat generated from the electronic device in the absence of any additional power supply.
  • A further objective of the present invention is to provide a heat dissipating bag. The heat dissipating bag comprises a receiving space formed by coupling together the plurality of heat dissipating pads of the present invention. The receiving space receives the electronic device. The ribs of the heat dissipating pads are exposed from the heat dissipating bag. Once the electronic device is positioned on the heat dissipating pads, the heat generated by the electronic device is dissipated through the ribs of the heat dissipating pads.
  • A further objective of the present invention is to provide the heat dissipating bag. The heat dissipating bag comprises a receiving space formed by coupling together the plurality of heat dissipating pads of the present invention. The receiving space receives the electronic device. The electronic device is tightly clamped by the ribs of the heat dissipating pads and positioned in the receiving space of the heat dissipating bag. Therefore, the electronic device is contained in the heat dissipating bag and well protected.
  • In order to achieve the above and other objectives, the present invention provides a heat dissipating structure for removing heat generated from an electronic device. The heat dissipating structure comprises a substrate and heat dissipating bodies. The heat dissipating bodies are disposed on the substrate. The heat dissipating bodies comprise a main rib and a plurality of auxiliary ribs. The main rib is half-wave shaped and protrudes from the substrate periodically. The main rib is disposed on the substrate defined with a plurality of main rib peak regions and a plurality of main rib trough regions. The auxiliary ribs flank the first main rib such that the first auxiliary ribs are spaced apart by a space width and occupy a plurality of first auxiliary rib peak regions and a plurality of first auxiliary rib trough regions defined on the substrate, the first auxiliary rib peak region corresponding in position to the first main rib peak region, and the first auxiliary rib trough region corresponding in position to the first main rib trough region. A distance between the first main rib and each of the first auxiliary ribs determines a ratio of an area of the first auxiliary rib peak region to an area of the first main rib peak region.
  • In order to achieve the above and other objectives, the present invention provides a heat dissipating pad for removing heat generated from an electronic device. The heat dissipating pad comprises a substrate, a first heat dissipating body and a second heat dissipating body. The first heat dissipating body is disposed on the substrate. The first heat dissipating body comprises a first main rib and a plurality of first auxiliary ribs. The second heat dissipating body is disposed on the substrate and positioned proximate to the first heat dissipating body. The second heat dissipating body comprises a second main rib and a plurality of second auxiliary ribs. The first main rib is half-wave shaped and protrudes from the substrate with a first period. The first main rib occupies a plurality of first peak regions and a plurality of first trough regions which are defined on the substrate. The first auxiliary ribs flank the first main rib such that the first auxiliary ribs are spaced apart by a space width and occupy a plurality of first auxiliary rib peak regions and a plurality of first auxiliary rib trough regions defined on the substrate, the first auxiliary rib peak region corresponding in position to the first main rib peak region, and the first auxiliary rib trough region corresponding in position to the first main rib trough region. A distance between the first main rib and each of the first auxiliary ribs determines a ratio of an area of the first auxiliary rib peak region to an area of the first main rib peak region. The second main rib is half-wave shaped and protrudes from the substrate with a second period. The second main rib occupies a plurality of second main rib peak regions and a plurality of second main rib trough regions which are defined on the substrate. The second period differs from the first period by an angle. The second auxiliary ribs flank the second main rib such that the second auxiliary ribs are spaced apart by a space width and occupy a plurality of second auxiliary rib peak regions and a plurality of second auxiliary rib trough regions defined on the substrate, the second auxiliary rib peak region corresponding in position to the second main rib peak region, the second auxiliary rib trough region corresponding in position to the second main rib trough region. A distance between the second main rib and each of the second auxiliary ribs determines a ratio of an area of the second auxiliary rib peak region to an area of the second main rib peak region.
  • In order to achieve the above and other objectives, the present invention provides a heat dissipating bag for removing heat generated from an electronic device and containing the electronic device. The heat dissipating bag comprises a first heat dissipating pad and a second heat dissipating pad. The first heat dissipating pad comprises a first substrate and a first heat dissipating layer. The first heat dissipating layer is disposed on the first substrate. The first heat dissipating layer comprises a first main rib and a plurality of first auxiliary ribs. A plurality of first heat dissipating grooves is formed between the first main rib and the first auxiliary ribs. The first main rib and the first auxiliary ribs are half-wave shaped and periodically protrude from the first substrate. The second heat dissipating pad comprises a second substrate and a second heat dissipating layer. The second heat dissipating layer is disposed on the second substrate. The second heat dissipating layer comprises a second main rib and a plurality of second auxiliary ribs. A plurality of second heat dissipating grooves is formed between the second main rib and the second auxiliary ribs. The second main rib and the second auxiliary ribs are half-wave shaped and periodically protrude from the second substrate. The first heat dissipating pad and the second heat dissipating pad are coupled together to form a receiving space for receiving the electronic device, such that heat generated by the electronic device is dissipated by at least one of the first heat dissipating grooves and the second heat dissipating grooves.
  • Compared with the prior art, the present invention provides a heat dissipating structure, a heat dissipating pad, and a heat dissipating bag, such that heat dissipating grooves formed between ribs are conducive to heat dissipation. Each of the ribs is half-wave shaped and protrudes from a substrate periodically such that, once an electronic device comes into contact with the ribs, the electronic device will be in contact with the half-wave shaped peak of the each of the ribs only, thereby reducing the contact area between the electronic device and the ribs. When the first and second heat dissipating pads are formed inside or outside the heat dissipating bag, not only can the electronic device be contained in the heat dissipating bag, clamped firmly, and well protected, but the electronic device can also undergo heat dissipation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Objectives, features, and advantages of the present invention are hereunder illustrated with specific embodiments in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a structural schematic view of a heat dissipating structure according to an embodiment of the present invention;
  • FIG. 2 is a longitudinal cross-sectional view of a main rib and auxiliary ribs taken along line A-A′ of FIG. 1;
  • FIG. 3 is an end view of the main rib and the auxiliary ribs taken in the direction of arrow Dir of FIG. 1;
  • FIG. 4 is a structural schematic view of a heat dissipating pad according to the first embodiment of the present invention;
  • FIG. 5 is an end view of the heat dissipating pad taken in the direction of arrow Dir of FIG. 4 according to the second embodiment of the present invention; and
  • FIG. 6 is a structural schematic view of a heat dissipating bag according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, there is shown a structural schematic view of a heat dissipating structure 10 according to an embodiment of the present invention. As shown in FIG. 1, the heat dissipating structure 10 enables heat generated from an electronic device (not shown) to be dissipated. For example, the electronic device is a portable computer or a tablet computer. Electronic components of the electronic device generate heat while the electronic components are performing high-speed computation. The heat is removed from the electronic device by means of a heat dissipating fan of the electronic device. In general, the heat is discharged from the bottom of the electronic device.
  • The heat dissipating structure 10 comprises a substrate 12 and a heat dissipating body 14.
  • The heat dissipating body 14 is disposed on the substrate 12. The substrate 12 is made of nylon, for example. In this embodiment, in addition to nylon, the substrate 12 can be made of any other appropriate material, as long as the substrate 12 is suitable for being coupled to the heat dissipating body 14 and fixing the heat dissipating body 14 in place. The heat dissipating body 14 has a main rib 142 and a plurality of auxiliary ribs 144.
  • Referring to FIG. 2, there is shown a longitudinal cross-sectional view of the main rib 142 and the auxiliary ribs 144 taken along line A-A′ of FIG. 1. As shown in FIG. 2, the main rib 142 is half-wave shaped, and the shape of the main rib 142 is exemplified by a sinusoidal wave shape. The main rib 142 protrudes from the substrate 12 periodically until it reaches the end of the substrate 12. The substrate 12 is defined with a plurality of main rib peak regions 1422 and a plurality of main rib trough regions 1424. The main rib peak region 1422 and the main rib trough region 1424 alternate. The main rib 142 is formed on the substrate 12 in a manner that the main rib 142 covers all the main rib peak regions 1422 and all the main rib trough regions 1424. The main rib peak region 1422 and the main rib trough region 1424 adjacent thereto together define a wavelength of the half-wave shape of the main rib 142. In this embodiment, the main rib peak region 1422 is defined as a region that flanks a peak 1426 (i.e., the maximum height of the main rib 142), whereas the main rib trough region 1424 is defined as a region that flanks a trough 1428 (i.e., the minimum height of the main rib 142).
  • The substrate 12 is defined with a plurality of auxiliary rib peak regions 1442 and a plurality of auxiliary rib trough regions 1444. The auxiliary rib peak region 1442 and the auxiliary rib trough region 1444 alternate. The auxiliary ribs 144 are formed on the substrate 12 in a manner that the auxiliary ribs 144 cover all the auxiliary rib peak regions 1442 and all the auxiliary rib trough regions 1444. The auxiliary rib peak region 1442 and the auxiliary rib trough region 1444 adjacent thereto together define a wavelength of the half-wave shape of each of the auxiliary ribs 144.
  • The auxiliary rib peak region 1442 corresponds in position to the main rib peak region 1422. The auxiliary rib trough region 1444 corresponds in position to the main rib trough region 1424.
  • Referring to FIG. 3, there is shown an end view of the main rib 142 and the auxiliary ribs 144 taken in the direction of arrow Dir of FIG. 1. The auxiliary ribs 144 flank the main rib 142 to form a plurality of heat dissipating grooves 16 therebetween. The auxiliary ribs 144 do not cross the main rib 142, nor do the auxiliary ribs 144 cross each other. For example, in this embodiment, not only is the main rib 142 spaced apart from the nearest ones of the auxiliary ribs 144 thereto, but the auxiliary ribs 144 are also spaced apart from each other. The space, which is measured in millimeters (mm) and disposed between the main rib 142 and the nearest ones of the auxiliary ribs 144 thereto, and between two adjacent ones of the auxiliary ribs 144, accommodate the heat dissipating grooves 16. To serve an exemplary purpose, this embodiment is illustrated with eight auxiliary ribs 144, wherein not only are any two adjacent ones of the auxiliary ribs 144 spaced apart by a fixed distance, but the main rib 142 is also spaced apart from the nearest ones of the auxiliary ribs thereto by the fixed distance.
  • The space width SPW is defined as the distance from any one of the auxiliary ribs to the main rib 142 and is for use in calculating the ratio R of the area of the auxiliary rib peak region 1442 of that specific auxiliary rib 144 to the area of the main rib peak region 1422 of the main rib 142 (to be described in detail below). The mathematical relation between the space width SPW and the ratio R is as follows:

  • R n=|(1−B×SPW n /D)|
  • where B denotes a constant, and D denotes the distance (in millimeters) between the main rib 142 and the nearest ones of the auxiliary ribs thereto. To differentiate the auxiliary ribs, the auxiliary ribs are identified with n which denotes an integer equal to 1, 2, 3, and 4, respectively. When n is equal to 4, it refers to the auxiliary ribs farthest from the main rib. When n is equal to 1, it refers to the auxiliary ribs nearest to the main rib. The remaining ones of the auxiliary ribs 144 are indicated by n equal to 2 and 3, respectively. The above arrangement in this embodiment is illustrative rather than restrictive of the present invention.
  • In this embodiment, the constant B is set to 0.2, and D to 0.3 mm. Take n equal to 1 (referring to the auxiliary ribs 144′ shown in FIG. 3) as an example, according to the aforesaid mathematical relation between the ratio R and the space width SPW, the ratio R of the area of the auxiliary rib peak region 1442 of the auxiliary ribs 144′ to the area of the main rib peak region 1422 of the main rib 142 is equal to 0.8 (because (1−0.2×(0.3/0.3)) is equal to 0.8); in other words, the area of the auxiliary rib peak region 1442 of the auxiliary ribs 144′ is equal to 80% of the area of the main rib peak region 1422 of the main rib 142. As mentioned earlier, not only are any two adjacent ones of the auxiliary ribs spaced apart by a fixed distance, but the main rib 142 is also spaced apart from the auxiliary ribs 144′ (i.e., the nearest auxiliary ribs) by the fixed distance; hence, given D equal to 0.3 mm, the space width SPW for the auxiliary ribs are 0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm when n=1, 2, 3, and 4, respectively. The ratio R of the area of the auxiliary rib peak region 1442 of each of the auxiliary ribs to the area of the main rib peak region 1422 of the main rib 142 is calculated according to the aforesaid mathematical relation between the ratio R and the space width SPW and shown in the table below.
  • n space width SPWn (mm) distance D (mm) constant B ratio R n
    1 0.3 0.3 0.2 0.8
    2 0.6 0.3 0.2 0.6
    3 0.9 0.3 0.2 0.4
    4 1.2 0.3 0.2 0.2
  • The ratio R also applies to height. Hence, the height of the peak of the auxiliary ribs 144′ is equal to 80% of the height of the peak 1426 of the main rib 142. That is to say, the height of the peak of the auxiliary ribs 144′ is less than the height of the peak 1426 of the main rib 142 by 20%.
  • By analogy, as the distance between the main rib 142 and the auxiliary ribs 144 increases, the ratio R decreases progressively by 0.2, that is, the ratio R starts from 0.8, and then decreases to 0.6, 0.4, and 0.2 progressively.
  • The main rib 142 and the auxiliary ribs 144 are made of a material that manifests resilience, plasticity, and flexibility.
  • Referring to FIG. 4, there is shown a structural schematic view of a heat dissipating pad 20 according to the first embodiment of the present invention. As shown in FIG. 4, the heat dissipating pad 20 serves to remove the heat generated by the electronic device (not shown). The heat dissipating pad 20 comprises a substrate 22, a first heat dissipating body 24, and a second heat dissipating body 26. The first heat dissipating body 24 is disposed on one side of the substrate 22 and protrudes therefrom. The first heat dissipating body 24 comprises a first main rib 242 and a plurality of first auxiliary ribs 244. The second heat dissipating body 26 is disposed on one side of the substrate 22 and positioned proximate to the first heat dissipating body 24. The second heat dissipating body 26 comprises a second main rib 262 and a plurality of second auxiliary ribs 264. Preferably, the first and second heat dissipating bodies 24, 26 are disposed on the same side of the substrate 22.
  • The first main rib 242 and the plurality of first auxiliary ribs 244 of the first heat dissipating body 24 are substantially identical to the main rib 142 and the auxiliary ribs 144 described in the preceding embodiment, respectively.
  • The first main rib 242 is half-wave shaped. The first main rib 242 protrudes from the substrate 22 with a first period. The substrate 22 is defined with a plurality of first main rib peak regions 2422 and a plurality of first main rib trough regions 2424. The first main rib peak region 2422 and the first main rib trough region 2424 alternate. The first main rib 242 is formed on the substrate 22 to cover all the first main rib peak regions 2422 and all the first main rib trough regions 2424.
  • The substrate 22 is defined with a plurality of first auxiliary rib peak regions 2442 and a plurality of first auxiliary rib trough regions 2444. The first auxiliary rib peak region 2442 and the first auxiliary rib trough region 2444 alternate. The first auxiliary ribs 244 are formed on the substrate 22 to cover all the first auxiliary rib peak regions 2442 and all the first auxiliary rib trough regions 2444.
  • The first auxiliary ribs 244 flank the first main rib 242. The first auxiliary ribs 244 are spaced apart from each other by a space width SPW. The first auxiliary rib peak region 2442 corresponds in position to the first main rib peak region 2422. The first auxiliary rib trough region 2444 corresponds in position to the first main rib trough region 2424. The distance between the first main rib 242 and each of the first auxiliary ribs 244 determines the ratio of the area of the first auxiliary rib peak region 2442 to the area of the first main rib peak region 2422.
  • A second main rib 262 and a plurality of second auxiliary ribs 264 of the second heat dissipating body 26 are substantially identical to the main rib 142 and the auxiliary ribs 144 described in the preceding embodiment, respectively, and protrude from the substrate 22.
  • A point to note is that there is still a slight difference between the first heat dissipating body 24 and the second heat dissipating body 26.
  • Although the second main rib 262 is half-wave shaped, the second main rib 262 protrudes from the substrate 22 with a second period. The second period differs from the first period by an angle θ. In this embodiment, the angle θ is exemplified by 90 degrees.
  • With the angle θ being 90 degrees, the first heat dissipating body 24 and the second heat dissipating body 26 are disposed on the substrate 22 alternately.
  • Likewise, the first main rib 242 has a peak (that is, the maximum height of the first main rib 242) in each of the first main rib peak regions 2422, whereas the first auxiliary ribs 244 each have a peak (that is, the maximum height of the first auxiliary ribs 244) in each of the first auxiliary rib peak regions 2444. The peaks of the first main rib 242 are higher than the peaks of the first auxiliary ribs 244 in order to support the electronic device. The second main rib 262 has the same structure and function as the first main rib 242.
  • Referring to FIG. 5, there is shown an end view of a heat dissipating pad 20′ taken in the direction of arrow Dir according to the second embodiment of the present invention. As shown in FIG. 5, the heat dissipating pad 20′ comprises the substrate 22, the first heat dissipating body 24, and the second heat dissipating body 26. This embodiment is different from the preceding embodiment in that, in this embodiment, the heat dissipating pad 20′ further comprises an anti-slip layer 28. The anti-slip layer 28 is formed on the opposing side of the substrate 22, such that the anti-slip layer 28 is opposite to the first heat dissipating body 24 and the second heat dissipating body 26. The anti-slip layer 28 serves to increase the friction between the heat dissipating pad 20′ and a desk on which the heat dissipating pad 20′ rests, such that the heat dissipating pad 20′ cannot move readily. In this embodiment, the anti-slip layer 28 comprises a plurality of bumps 282.
  • Referring to FIG. 6, there is shown a structural schematic view of a heat dissipating bag 30 according to an embodiment of the present invention. As shown in FIG. 6, the heat dissipating bag 30 serves two purposes, that is, removing the heat generated by an electronic device (not shown), and containing the electronic device.
  • The heat dissipating bag 30 comprises a first heat dissipating pad 32 and a second heat dissipating pad 34.
  • The first heat dissipating pad 32 comprises a first substrate 322 and a first heat dissipating layer 324. The first heat dissipating layer 324 is disposed on the first substrate 322. The first heat dissipating layer 324 comprises a first main rib 3242 and a plurality of first auxiliary ribs 3244. A plurality of first heat dissipating grooves 326 is formed between the first main rib 3242 and the first auxiliary ribs 3244 and is formed between the first auxiliary ribs 3244. The first main rib 3242 and the first auxiliary ribs 3244 are half-wave shaped and protrude from the first substrate 322 periodically.
  • The second heat dissipating pad 34 comprises a second substrate 342 and a second heat dissipating layer 344. The second heat dissipating layer 344 is disposed on the second substrate 342. The second heat dissipating layer 344 comprises a second main rib 3442 and a plurality of second auxiliary ribs 3444. A plurality of second heat dissipating grooves 346 is formed between the second main rib 3442 and the second auxiliary ribs 3444 and is formed between the second auxiliary ribs 3444. The second main rib 3442 and the second auxiliary ribs 3444 are half-wave shaped and protrude from the second substrate 342 periodically.
  • The first heat dissipating pad 32 and the second heat dissipating pad 34 are coupled together to form a receiving space 36 for receiving the electronic device, such that heat generated by the electronic device is dissipated by means of the first heat dissipating grooves 326 and/or the second heat dissipating grooves 346.
  • A point to note is that the space width SPW between the first main rib 3242 and each of the first auxiliary ribs 3244 determines the first ratio of the height of the first auxiliary ribs 3244 to the height of the first main rib 3242 as well as the area of the peak region of the first main rib 3242 and the area of the peak region of each of the first auxiliary ribs 3244. Likewise, the space width SPW between the second main rib 3442 and each of the second auxiliary ribs 3444 determines the second ratio of the height of each of the second auxiliary ribs 3444 to the height of the second main rib 3442 as well as the area of the peak region of each of the second auxiliary ribs 3444 to the area of the peak region of the second main rib 3442. The mathematical relation that expresses the relationship between the space width SPW and the first ratio and expresses the relationship between the space width SPW and the second ratio is as follows:

  • R n=|(1−B×SPW n /D)|
  • where B denotes a constant, and D denotes the distance (in millimeters) from the first main rib 3242 (or the second main rib 3442) to the nearest one of the auxiliary ribs. To differentiate the auxiliary ribs, the auxiliary ribs are identified with n which denotes an integer equal to 1, 2, 3, and 4, respectively. When n is equal to 4, it refers to the auxiliary rib farthest from the first main rib (or the second main rib). When n is equal to 1, it refers to the auxiliary rib nearest to the first main rib (or the second main rib). The remaining ones of the auxiliary ribs are indicated by n equal to 2 and 3, respectively. The above arrangement in this embodiment is illustrative rather than restrictive of the present invention.
  • In another embodiment, the heat dissipating bag 30 further comprises an anti-slip layer 38. The anti-slip layer 38 is disposed on a side of the first heat dissipating pad 32, wherein the anti-slip layer-disposed side of the first heat dissipating pad 32 does not bear the first heat dissipating layer 324. The anti-slip layer 38 is also disposed on a side of the second heat dissipating pad 34, wherein the anti-slip layer-disposed side of the second heat dissipating pad 34 does not bear the second heat dissipating layer 344. The anti-slip layer 38 serves to clamp and position the electronic device in the receiving space 36.
  • Accordingly, the present invention provides a heat dissipating structure, a heat dissipating pad and a heat dissipating bag, such that heat dissipating grooves formed between ribs are conducive to heat dissipation. Each of the ribs is half-wave shaped and protrudes from a substrate periodically such that, once an electronic device comes into contact with the ribs, the electronic device will be in contact with the half-wave shaped peak of the each of the ribs only, thereby reducing the contact area between the electronic device and the ribs. When the first and second heat dissipating pads are formed inside or outside the heat dissipating bag, not only can the electronic device be contained in the heat dissipating bag, clamped firmly, and well protected, but the electronic device can also undergo heat dissipation.
  • The present invention is disclosed above by preferred embodiments. However, persons skilled in the art should understand that the preferred embodiments are illustrative of the present invention only, but should not be interpreted as restrictive of the scope of the present invention. Hence, all equivalent modifications and replacements made to the aforesaid embodiments should fall within the scope of the present invention. Accordingly, the legal protection for the present invention should be defined by the appended claims.

Claims (13)

What is claimed is:
1. A heat dissipating structure for removing heat generated from an electronic device, the heat dissipating structure comprising:
a substrate;
a heat dissipating body disposed on the substrate and having a main rib and a plurality of auxiliary ribs, and
wherein the main rib is half-wave shaped, protrudes from the substrate periodically, and occupies a plurality of main rib peak regions and a plurality of main rib trough regions which are defined on the substrate,
wherein the auxiliary ribs flank the main rib to form a plurality of heat dissipating grooves therebetween, the auxiliary ribs being spaced apart from each other and occupying a plurality of auxiliary rib peak regions and a plurality of auxiliary rib trough regions defined on the substrate, the auxiliary rib peak region corresponding in position to the main rib peak region, and the auxiliary rib trough region corresponding in position to the main rib trough region,
wherein a distance between the main rib and each of the auxiliary ribs determines a ratio of an area of the auxiliary rib peak region to an area of the main rib peak region.
2. The heat dissipating structure of claim 1, wherein a width of the heat dissipating grooves is equal to a distance spacing apart the main rib and the nearest ones of the auxiliary ribs thereto and spacing apart two adjacent ones of the auxiliary ribs.
3. The heat dissipating structure of claim 1, wherein a fixed distance spaces apart the main rib and the nearest ones of the auxiliary ribs thereto and spaces apart two adjacent ones of the auxiliary ribs.
4. The heat dissipating structure of claim 1, wherein the main rib and the auxiliary ribs are made of a material manifesting at least one of resilience, plasticity, and flexibility.
5. A heat dissipating pad for removing heat generated from an electronic device, the heat dissipating pad comprising:
a substrate;
a first heat dissipating body disposed on a side of the substrate and having a first main rib and a plurality of first auxiliary ribs,
wherein the first main rib is half-wave shaped, protrudes from the substrate with a first period, and occupies a plurality of first peak regions and a plurality of first trough regions defined on the substrate,
wherein the first auxiliary ribs flank the first main rib such that the first auxiliary ribs are spaced apart by a space width and occupy a plurality of first auxiliary rib peak regions and a plurality of first auxiliary rib trough regions defined on the substrate, the first auxiliary rib peak region corresponding in position to the first main rib peak region, and the first auxiliary rib trough region corresponding in position to the first main rib trough region,
wherein a distance between the first main rib and each of the first auxiliary ribs determines a ratio of an area of the first auxiliary rib peak region to an area of the first main rib peak region; and
a second heat dissipating body disposed on a side of the substrate and positioned proximate to the first heat dissipating body, the second heat dissipating body comprising a second main rib and a plurality of second auxiliary ribs,
wherein the second main rib is half-wave shaped, protrudes from the substrate with a second period, and occupies a plurality of second main rib peak regions and a plurality of second main rib trough regions defined on the substrate,
wherein the second auxiliary ribs flank the second main rib such that the second auxiliary ribs are spaced apart by a space width and occupy a plurality of second auxiliary rib peak regions and a plurality of second auxiliary rib trough regions defined on the substrate, the second auxiliary rib peak region corresponding in position to the second main rib peak region, the second auxiliary rib trough region corresponding in position to the second main rib trough region,
wherein a distance between the second main rib and each of the second auxiliary ribs determines a ratio of an area of the second auxiliary rib peak region to an area of the second main rib peak region,
wherein the second period differs from the first period by an angle.
6. The heat dissipating pad of claim 5, wherein the angle is 90 degrees for allowing the first main rib peak region to correspond in position to the second auxiliary rib trough region and allowing the first main rib trough region to correspond in position to the second auxiliary rib peak region.
7. The heat dissipating pad of claim 5, further comprising an anti-slip layer formed on the substrate, wherein the first heat dissipating body and the second heat dissipating body are formed on the same side of the substrate, and the anti-slip layer is formed on an opposing side of the substrate.
8. The heat dissipating pad of claim 7, wherein the anti-slip layer comprises a plurality of bumps.
9. The heat dissipating pad of claim 5, wherein the first main rib and the second main rib have peaks, respectively, whereas the first auxiliary ribs and the second auxiliary ribs have peaks, respectively, wherein the peaks of the first and second main ribs are higher than the peaks of the first and second auxiliary ribs so as to support the electronic device.
10. A heat dissipating bag for removing heat generated from an electronic device and containing the electronic device, the heat dissipating bag comprising:
a first heat dissipating pad comprising a first substrate and a first heat dissipating layer disposed on the first substrate, the first heat dissipating layer comprising a first main rib and a plurality of first auxiliary ribs, wherein a plurality of first heat dissipating grooves is formed between the first main rib and the first auxiliary ribs, wherein the first main rib and the first auxiliary ribs are half-wave shaped and periodically protrude from the first substrate; and
a second heat dissipating pad comprising a second substrate and a second heat dissipating layer disposed on the second substrate, the second heat dissipating layer comprising a second main rib and a plurality of second auxiliary ribs, wherein a plurality of second heat dissipating grooves is formed between the second main rib and the second auxiliary ribs, wherein the second main rib and the second auxiliary ribs are half-wave shaped and periodically protrude from the second substrate;
wherein the first heat dissipating pad and the second heat dissipating pad are coupled together to form a receiving space for receiving the electronic device, such that heat generated by the electronic device is dissipated by at least one of the first heat dissipating grooves and the second heat dissipating grooves.
11. The heat dissipating bag of claim 10, wherein a space width spacing apart the first main rib and each of the first auxiliary ribs determines a first ratio, wherein a space width spacing apart the second main rib and each of the second auxiliary ribs determines a second ratio.
12. The heat dissipating bag of claim 11, wherein a mathematical relation expressing a relationship between the space width and the first ratio and expressing a relationship between the space width and the second ratio is as follows:

R=|(1−B×SPW/D)|
wherein the first ratio and the second ratio are denoted by R, a constant by B, and the space width by SPW, wherein a distance between the first main rib and a nearest one of the first auxiliary ribs thereto and a distance between the second main rib to a nearest one of the second auxiliary ribs thereto are denoted by D.
13. The heat dissipating bag of claim 10, further comprising an anti-slip layer disposed on a side of the first heat dissipating pad and on a side of the second heat dissipating pad, wherein the anti-slip layer-disposed side of the first heat dissipating pad does not bear the first heat dissipating layer, wherein the anti-slip layer-disposed side of the second heat dissipating pad does not bear the second heat dissipating layer.
US13/529,924 2012-06-21 2012-06-21 Heat dissipating structure, heat dissipating pad, and heat dissipating bag Abandoned US20130340988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/529,924 US20130340988A1 (en) 2012-06-21 2012-06-21 Heat dissipating structure, heat dissipating pad, and heat dissipating bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/529,924 US20130340988A1 (en) 2012-06-21 2012-06-21 Heat dissipating structure, heat dissipating pad, and heat dissipating bag

Publications (1)

Publication Number Publication Date
US20130340988A1 true US20130340988A1 (en) 2013-12-26

Family

ID=49773419

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/529,924 Abandoned US20130340988A1 (en) 2012-06-21 2012-06-21 Heat dissipating structure, heat dissipating pad, and heat dissipating bag

Country Status (1)

Country Link
US (1) US20130340988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950520B2 (en) * 2018-11-22 2021-03-16 Siliconware Precision Industries Co., Ltd. Electronic package, method for fabricating the same, and heat dissipator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950520B2 (en) * 2018-11-22 2021-03-16 Siliconware Precision Industries Co., Ltd. Electronic package, method for fabricating the same, and heat dissipator

Similar Documents

Publication Publication Date Title
US7694727B2 (en) Heat dissipation device with multiple heat pipes
US20110232877A1 (en) Compact vapor chamber and heat-dissipating module having the same
US20110075369A1 (en) Electronic device
US7866376B2 (en) Heat dissipation device with U-shaped and S-shaped heat pipes
US20080101035A1 (en) Heat-dissipating assembly structure
US20140321058A1 (en) Apparatus and method for dissipating heat
US8205665B2 (en) Heat dissipation device
US20130032323A1 (en) Heat sink structure
US8908373B2 (en) Cooling structure for an electronic component and electronic instrument
US7478668B2 (en) Heat dissipation device
US20080173430A1 (en) Heat dissipation device with heat pipes
US20100212869A1 (en) Heat dissipation device
KR20150088694A (en) Heat dissipation mechanism for handheld electronic apparatus
TW200611110A (en) Heatsink
US20120199336A1 (en) Heat sink with columnar heat dissipating structure
US20210225410A1 (en) Tool-free hard disk mounting and dismounting device
US20200248968A1 (en) Vapor chamber and heat dissipation device with same
US20140116656A1 (en) Heat dissipation module and electronic device with the same
US20130340988A1 (en) Heat dissipating structure, heat dissipating pad, and heat dissipating bag
US7929293B2 (en) Heat dissipating assembly
CN113910101A (en) Polishing pad
US20130032322A1 (en) External cellular heat sink structure
US20100264790A1 (en) Computer enclosure
US7688590B2 (en) Thermal module and electronic apparatus using the same
US20100014247A1 (en) Anti-turbulent casing

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLUIDITECH IP LIMITED, SEYCHELLES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHU, YUNG-CHIANG;REEL/FRAME:028422/0547

Effective date: 20120529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION